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ABSTRACT

We consider feature representation learning problem of molecular graphs. Graph
Neural Networks have been widely used in feature representation learning of
molecular graphs. However, most existing methods deal with molecular graphs
individually while neglecting their connections, such as motif-level relationships.
We propose a novel molecular graph representation learning method by construct-
ing a heterogeneous motif graph to address this issue. In particular, we build a
heterogeneous motif graph that contains motif nodes and molecular nodes. Each
motif node corresponds to a motif extracted from molecules. Then, we propose
a Heterogeneous Motif Graph Neural Network (HM-GNN) to learn feature rep-
resentations for each node in the heterogeneous motif graph. Our heterogeneous
motif graph also enables effective multi-task learning, especially for small molec-
ular datasets. To address the potential efficiency issue, we propose to use an edge
sampler, which can significantly reduce computational resources usage. The ex-
perimental results show that our model consistently outperforms previous state-
of-the-art models. Under multi-task settings, the promising performances of our
methods on combined datasets shed light on a new learning paradigm for small
molecular datasets. Finally, we show that our model achieves similar perfor-
mances with significantly less computational resources by using our edge sampler.

1 INTRODUCTION

Graph neural networks (GNNs) have been proved to effectively solve various challenging tasks in
graph embedding fields, such as node classification (Kipf & Welling, 2016), graph classification (Xu
et al., 2018), and link prediction (Schlichtkrull et al., 2018), which have been extensively applied
in social networks, molecular properties prediction, natural language processing, and other fields.
Compared with hand-crafted features in the molecular properties prediction field, GNNs map a
molecular graph into a dimensional Euclidean space using the topological information among the
nodes in the graph (Scarselli et al., 2008). Most existing GNNs use the basic molecular graphs
topology to obtain structural information through neighborhood feature aggregation and pooling
methods (Kipf & Welling, 2016; Ying et al., 2018; Gao & Ji, 2019). However, these methods fail
to consider connections among molecular graphs, specifically the sharing of motif patterns in the
molecular graph.

One of the critical differences between molecular graphs and other graph structures such as social
network graphs and citation graphs is that motifs, which can be seen as common sub-graphs in
molecular graphs have special meanings. For example, an edge in a molecule represents a bond,
and a cycle represents a ring. One ground truth that has been widely used in explanation of GNNs
is that carbon rings and NO2 groups tend to be mutagenic (Debnath et al., 1991). Thus, motifs
deserve more attention when designing GNNs for motif-level feature representation learning. To this
end, we propose a novel method to learn motif-level feature embedding for molecular graphs. We
first extract motifs from molecular graphs and build a motif vocabulary containing all these motifs.
Then we construct a heterogeneous motif graph containing all motif nodes and molecular nodes.
We can apply GNNs to learn motif-level representations for each molecular graph based on the
heterogeneous motif graph. The message passing scheme in a heterogeneous motif graph enables
interaction between motifs and molecules, which helps exchange information between molecular
graphs. The experimental results show that the learned motif-level embedding can dramatically
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Figure 1: Example of building a motifs vocabulary. Given a molecule Tosic Acid, we first extract six
bonds and rings from its atom graph. After removing duplicates, we add five unique motifs into the
vocabulary. Blue, red, and purple nodes represent Carbon, Sulfur, and Oxygen atoms, respectively.

improve the representation of a molecule, and our model can significantly outperform other state-
of-the-art GNN models on a variety of graph classification datasets.

2 HETEROGENEOUS MOTIF GRAPH NEURAL NETWORKS

In this section, we propose a novel method to construct a motif-based heterogeneous graph, which
can advance motif-based feature representation learning on molecular graphs. Then, we use two
separate graph neural networks to learn atom-level and motif-level graph feature representations,
respectively.

2.1 MOTIF VOCABULARY OF MOLECULAR GRAPHS

In molecular graphs, motifs are sub-graphs that appear repeatedly and are statistically significant.
Specific to biochemical molecule graphs, motifs can be bonds and rings. Analogously, an edge in
the graph represents a bond, and a cycle represents a ring. Thus, we can construct a molecule from
sub-graphs or motifs out of a motif vocabulary. To represent a molecule by motifs, we first build a
motif vocabulary that contains valid sub-graphs from given molecular graphs.

To build the motif vocabulary, we search all molecular graphs and extract important sub-graphs. In
this work, we only keep bonds and rings to ensure a manageable vocabulary size. However, the
algorithm can be easily extended to include different motif patterns. We then remove all duplicate
bonds and rings. Some motifs may appear in most of molecules, which carry little information
for molecule representation. To reduce the impact of these common motifs, we employ the term
frequency–inverse document frequency (TF-IDF) algorithm (Ramos et al., 2003). In particular, term
frequency measures the frequency of a motif in a molecule, and inverse document frequency refers
to the number of molecules containing a motif. We average the TF-IDFs of those molecules that
contain a motif as the TF-IDF value of the motif. By sorting the vocabulary by TF-IDF, we keep the
most essential motifs as our final vocabulary. Figure 1 illustrates the procedure of building motifs
vocabulary.

2.2 HETEROGENEOUS MOTIF GRAPH CONSTRUCTION

Based on the motif vocabulary, we build a heterogeneous graph that contains motif nodes and molec-
ular nodes. In this graph, each motif node represents a motif in the vocabulary, and each molecular
node is a molecule. Then, we build two types of edges between these nodes; those are motif-
molecule edges and motif-motif edges. We add motif-molecule edges between a molecule node and
motif nodes that represent its motifs. We add a motif-motif edge between two motifs if they share
at least one atom in any molecule. In this way, we can build a heterogeneous graph containing all
motifs in the vocabulary and all molecules connected by two kinds of edges. Appendix A contains
detailed pseudocode of constructing a Heterogeneous Motif Graph.
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Figure 2: Example of a heterogeneous motif graph. In this graph, there are five molecular nodes:
Phenol, Styrene, Toluene, m-Cresol, and 3-Chlorophenol. Here, we have five motifs in the vocab-
ulary. We connect a molecular node with a motif node if the molecule contains this motif. For
example, Phenol has Benzene and carbon–oxygen bond. Thus, we connect the Phenol node with the
Benzene node and carbon-oxygen bond node. We connect two motif nodes if they share at least one
atom in molecules. In this graph, we connect the Benzene node and the carbon-oxygen bond node
since they share a carbon atom.

One thing to notice is that different motifs have different impacts. We assign different weights to
edges based on their ending nodes. In particular, for edges between a motif node and a molecule
node, we use the TF-IDF value of the motif as the weight. For the edges between two motif nodes,
we use the co-occurrence information point-wise mutual information (PMI), which is a popular
correlation measure in information theory and statistics (Yao et al., 2019). Formally, the edge weight
Aij between node i and node j is computed as

Aij =

{ PMIij , if i, j are motifs
TF-IDFij , if i or j is a motif
0, Otherwise

(1)

The TF-IDF value of an edge between a motif node i and a molecular node j is computed as

TF-IDFij = C(i)j

(
log

1 +M

1 +N(i)
+ 1

)
, (2)

where C(i)j is the number of times that the motif i appears in the molecule j, M is the number of
molecules, and N(i) is the number of molecules containing motif i.

The PMI value of an edge between two motif nodes is computed as

PMIij = log
p(i, j)

p(i)p(j)
, (3)

where p(i, j) is the probability that a molecule contains both motif i and motif j, p(i) is the proba-
bility that a molecule contains motif i, and p(j) is the probability that a molecule contains motif j.
We use following formulas to compute these probabilities.

p(i, j) =
N(i, j)

M
, p(i) =

N(i)

M
, p(j) =

N(j)

M
, (4)

where N(i, j) is the number of molecules that contain both motif i and motif j. Figure 2 provides
an example of heterogeneous motif graph construction. Note that we assign zero weight for motif
node pairs with negative PMI value.

2.3 HETEROGENEOUS MOTIF GRAPH NEURAL NETWORKS

In this part, we build a HM-GNN to learn both atom-level and motif-level graph feature represen-
tations. In Section 2.2, we construct a heterogeneous motif graph that contains all motif nodes and

3



Under review as a conference paper at ICLR 2022

A
to

m
-l

ev
el

 E
m

be
dd

in
g

M
ot

if
-l

ev
el

 E
m

be
dd

in
g

F
in

al
 F

ea
tu

re
 E

m
be

dd
in

g

Heterogeneous Motif Graph

Molecular Graph

3-Chlorophenol

GNN

H-GNN

Phenol

3-Chlorophenol

Phenol

Heterogeneous Motif Graph

Phenol

Figure 3: Example of our HM-GNN. Given an input Phenol, we first apply a GNN on its atom-level
graph structure to learn its atom-level feature embedding. Meanwhile, we add it into a heteroge-
neous motif graph and use a heterogeneous GNN to learn its motif-level graph embedding. In the
heterogeneous motif graph, Phenol is one of the molecular nodes. Finally, we concatenate graph
embeddings from two GNNs and feed them into a MLP for prediction.

molecular nodes. Here, we first initiate features for each motif node and molecular node. We use the
one-hot encoding to generate features for motif nodes. In particular, each motif node i has a feature
vector Xi of length |V |, where V represents the motif vocabulary we obtained in Section 2.1. Given
the unique index i of the motif in the vocabulary, we set Xi[i] = 1 and other positions to 0. For
molecular nodes, we use a bag-of-words method to populate their feature vectors. We consider each
motif as a word and each molecule as a document. By applying the bag-of-words model, we can
obtain feature vectors for molecular nodes. Based on this heterogeneous graph, a heterogeneous
graph neural network can be applied to learn the motif-level feature embedding for each molecule
in the graph.

At the same time, each molecule can be easily converted into a graph by using atoms as nodes and
bonds as edges. The original molecule graph topology and node features contain atom-level graph
information, which can supplement motif-level information. Thus, we employ another graph neural
network to learn the atom-level feature embedding. Finally, we concatenate feature embeddings
from two graph neural networks and feed them into a multi-layer perceptron (MLP) for prediction.
Figure 3 shows an example of our HM-GNN model.

2.4 MULTI-TASK LEARNING VIA HETEROGENEOUS MOTIF GRAPH

This part will show that our heterogeneous motif graph can help with graph deep learning models on
small molecular datasets via multi-task learning. It is well known that deep learning methods require
a significant amount of data for training. However, most molecular datasets are relatively small, and
graph deep learning methods can easily over-fit on these datasets. Multi-task learning (Caruana,
1997) has been shown to effectively reduce the risk of over-fitting and help improve the generaliza-
tion performances of all tasks (Zhang & Yang, 2017). It can effectively increase the size of train data
and decrease the influence of data-dependent noise, which leads to a more robust model. However,
it is hard to directly apply multi-task learning on several molecular datasets due to the lack of ex-
plicit connections among different datasets. Based on our heterogeneous motif graph, we can easily
connect a set of molecular datasets and form a multi-task learning paradigm.

GivenN molecular datasetsD1, · · · , DN , each datasetDi contains ni molecules. We first construct
a motif vocabulary V that contains motifs from N molecular datasets. Here, the motif only needs
to be shared in some datasets but not all of them. Then, we build a heterogeneous motif graph that
contains motifs in the vocabulary and molecules from all datasets. We employ our HM-GNN to
learn both graph-level and motif-level feature representations for each molecule based on this graph.
The resulting features of each dataset are fed into a separate MLP for prediction. In this process, the
motif nodes can be considered as connectors connecting molecules from different datasets or tasks.
Under the multi-task training paradigm, our motif-heterogeneous graph can improve the feature
representation learning on all datasets.
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Figure 4: Example of generating a sub-graph for a 3-layer HM-GNN via an edge sampler. A sam-
pling rule is we sample all edges, one edge, two edges for each layer, respectively (We select motif-
motif edges at first). In this graph, we have four molecular nodes and seven motifs nodes. We use
solid lines to represent selected edges and dashed lines to indicate unselected edges. We randomly
choose node S as the ”starting” node. In the first hop, we keep all edges connecting the node S
and motif nodes. We sample one motif-motif edge for each motif node connecting to node S in the
second hop. In the third hop, two motif-motif edges are selected for each newly added motif node
in the last hop. Finally, the resulting sub-graph contains all nodes and edges we sampled.

2.5 EFFICIENT TRAINING VIA EDGE SAMPLING

In Section 2.2, we construct a heterogeneous motif graph that contains all motif nodes and molec-
ular nodes. As the number of molecular nodes increases, there can be an issue with computational
resources. To address this issue, we propose to use an edge sampler to reduce the size of the het-
erogeneous motif graph. Due to the special structure of our heterogeneous motif graph that it has
two kinds of nodes and two kinds of edges, we can efficiently generate a computational subgraph by
using the type of an edge.

We show how sampling edges can save computational resources. Most GNNs follow a neighborhood
aggregation learning scheme. Formally, the `-th layer of a GNN can be represented by

x`+1
i = f

(
x`i , φ

({
eji, x

`
j | j ∈ N(i)

}))
), (5)

where x`+1
i is the new feature vector of node i, f is a function that combines the `-th layer’s features

and the aggregated features, φ is the function that aggregate all neighbors’ feature vectors of node i,
eji is the weight of edgeji, and N(i) is the set of node i’s neighbors. This equation shows that the
time and space complexity are both O(|E|), where |E| is the number of edges in the graph. This
means we can reduce the usage of computational resources by removing some edges from the graph.
Thus, we employ an edge sampler that samples edges from the graph. And a sampling rule is that
we prioritize motif-molecule edges.

To sample edges, we first randomly select some molecular nodes as “starting” nodes. We run a
breadth-first algorithm to conduct a hop-by-hop exploration on the heterogeneous motif graph start-
ing from these nodes. In each hop, we randomly sample a fixed size of edges based on edge type.
Note that the first-hop neighbors of each molecular node are the motif nodes, which play essen-
tial roles in our heterogeneous motif graph. Thus, we retain all first-hop edges to ensure effective
learning of feature representations for motif nodes. Starting from the second hop, we only sam-
ple motif-motif edges to retain as much motif information as possible. Figure 4 shows an example
of sampling a sub-graph for a 3-layer HM-GNN. Appendix B contains complete sample rules and
pseudocode.

3 EXPERIMENTAL STUDIES

In this section, we evaluate our proposed methods on graph classification tasks. We compare our
methods with previous state-of-the-art models on various benchmark datasets. Datasets details and
experiment settings are provided in the Appendix C and D.

3.1 PERFORMANCE STUDIES ON MOLECULAR GRAPH DATASETS

We first evaluate our model on five popular bioinformatics graph benchmark datasets from TU-
Dataset (Morris et al., 2020), which includes four molecule datasets and one protein dataset. Here,
PTC, MUTAG, NCI1, and Mutagenicity are molecule datasets, and PROTEINS is a protein dataset.
Following GIN (Xu et al., 2018), we use node labels provided by TUDataset as the initial node
features. To learn graph feature representations in our heterogeneous motif graphs, we use a 3-layer
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Table 1: Graph classification accuracy (%) on various TUD graph classification tasks. Some results
for GraphSAGE and GCN are reported from (Xu et al., 2018) and (Zhang et al., 2019). The best
performer on each dataset are shown in bold. - means there is no reported accuracy on this dataset
in original papers
.

METHODS PTC MUTAG NCI1 PROTEINS MUTAGENICITY
PatchySAN 60.0 ± 4.8 92.6 ± 4.2 78.6 ± 1.9 75.9 ± 2.8 -
GCN 64.2 ± 4.3 85.6 ± 5.8 80.2 ± 2.0 76.0 ± 3.2 79.8 ± 1.6
GraphSAGE 63.9 ± 7.7 85.1 ± 7.6 77.7 ± 1.5 75.9 ± 3.2 78.8 ± 1.2
DGCNN 58.6 ± 2.5 85.8 ± 1.7 74.4 ± 0.5 75.5 ± 0.9 -
GIN 64.6 ± 7.0 89.4 ± 5.6 82.7 ± 1.7 76.2 ± 2.8 -
PPGN 66.2 ± 6.5 90.6 ± 8.7 83.2 ± 1.1 77.2 ± 4.7 -
CapsGNN - 86.7 ± 6.9 78.4 ± 1.6 76.3 ± 3.6 -
WEGL 64.6 ± 7.4 88.3 ± 5.1 76.8 ± 1.7 76.1 ± 3.3 -
GraphNorm 64.9 ± 7.5 91.6 ± 6.5 81.4 ± 2.4 77.4 ± 4.9 -
OURS 78.8 ± 6.5 96.3 ± 2.6 83.6 ± 1.5 79.9 ± 3.1 83.0 ± 1.1

GIN. To utilize atom-level information like node and edge features, we use another GIN on each
atom-level graphs. Specifically, it has 5 GNN layers and 2-layer MLPs. Batch normalization (Ioffe
& Szegedy, 2015) is applied to each layer, and dropout (Srivastava et al., 2014) is applied to all lay-
ers except the first layer. To evaluate the performance of our model, we strictly follow the settings
in (Yanardag & Vishwanathan, 2015; Niepert et al., 2016; Xu et al., 2018; Gao & Ji, 2019). For each
dataset, we perform 10-fold cross-validation with random splitting on the entire dataset. We report
the mean and standard deviation of validation accuracy from ten folds.

We compare our model on five datasets with six state-of-the-art GNN models for graph classifi-
cation tasks: PATCHY-SAN (Niepert et al., 2016), Graph Convolution Network (GCN) (Kipf &
Welling, 2016), GraphSAGE (Hamilton et al., 2017), Deep Graph CNN (DGCNN) (Zhang et al.,
2018), Graph Isomorphism Network (GIN) (Xu et al., 2018), Provably Powerful Graph Networks
(PPGN) (Maron et al., 2019), Capsule Graph Neural Network (CapsGNN) (Xinyi & Chen, 2018),
Wasserstein Embedding for Graph Learning (WEGL) (Kolouri et al., 2020), and GraphNorm (Cai
et al., 2021). For baseline models, we report the accuracy from their original papers. The compari-
son results are summarized in Table 1. From Table 1, our model consistently outperforms baseline
models on all five datasets. The superior performances on four molecular datasets demonstrate that
the motif nodes constructed from the motif vocabulary can help GNN learn better motif-level feature
representations of molecular graphs. On the protein dataset, our model also performs the best, which
shows that the motifs in protein molecules also contain useful structural information.

3.2 PERFORMANCE STUDIES ON LARGE-SCALE DATASETS

Table 2: Graph Classification Results (%) on two
open graph benchmark datasets. The results for
GCN and GIN are reported from (Hu et al., 2020).

METHODS ogbg-molhiv ogbg-pcba
GCN 75.99 ± 1.19 24.24 ± 0.34
GIN 77.07 ± 1.49 27.03 ± 0.23
PNA 79.05 ± 1.32 -
OURS 79.03 ± 0.92 28.70 ± 0.26
+ PNA 80.20 ± 1.18 -

To evaluate our methods on large-scale
datasets, we use two bioinformatics datasets
from the Open Graph Benchmark (OGB) (Hu
et al., 2020): ogbg-molhiv and ogbg-molpcba.
These two molecular property prediction
datasets are adopted from the MOLECU-
LENET (Wu et al., 2018). They are all
pre-processed by RDKIT (Landrum et al.,
2006). Each molecule has nine-dimensional
node features and three-dimensional edge
features. Ogbg-molhiv is a binary classification dataset, while Ogbg-molpcba is a multi-class
classification dataset. We report the Receiver Operating Characteristic Area Under the Curve
(ROC-AUC) for Ogbg-molhiv, and the Average Precision (AP) for Ogbg-molpcba, which are more
popular for the situation of highly skewed class balance (only about 1.4% of data is positive).
Following Wu et al. (2018); Hu et al. (2020), we adopt the scaffold splitting procedure to split
the dataset. This evaluation scheme is more challenging, which requires the out-of-distribution
generalization capability.
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Table 4: Results on the PTC dataset with three different training settings. The first row report
the performances of only using the PTC dataset. The second row and third row show the results
of training on combined vocabularies and datasets with PTC MM and PTC FR, respectively. We
report the motif vocabulary size (Vocab Size) of the dataset and the Overlap Ratio, which indicates
the overlap ratio of motif vocabularies between two datasets. The last three columns represent the
performances of using different sizes of training sets. For example, 90% means we use 90% of
dataset as the training set and 10% of dataset as the testing set.

Dataset Vocab Size Overlap Ratio 90% 50% 10%
PTC 97 - 71.8 ± 4.1 65.1 ± 0.8 59.9 ± 1.9
+ PTC MM 111 83.5% 76.5 ± 3.3 69.2 ± 0.8 66.7 ± 1.9
+ PTC FR 110 94.8% 84.3 ± 3.8 77.3 ± 0.8 74.0 ± 1.7

In this part, we compare our model with GIN (Xu et al., 2018), GCN (Kipf & Welling, 2016),
and PNA (Corso et al., 2020). We report the mean and standard deviation of the results by using
10 different seeds (0-9). Table 2 shows the ROC-AUC results on Ogbg-molhiv and AP results on
Ogbg-molpcba. It can be observed from the results that our approach outperforms GIN, GCN, and
PNA by significant margins. The results demonstrate our model’s superior generalization ability on
large-scale datasets.

3.3 ABLATION STUDIES ON HETEROGENEOUS MOTIF GRAPH NEURAL NETWORKS

Table 3: Graph classification accuracy (%) of GIN and
our model on three datasets: PTC, MUTAG, and PRO-
TEINS.

Models PTC MUTAG PROTEINS
GIN 64.6 ± 7.0 89.4 ± 5.6 76.2 ± 2.8
OURS 78.8 ± 6.5 96.3 ± 2.6 79.9 ± 3.1

In Section 3.1 and Section 3.2, our HM-
GNNs use GINs to learn atom-level infor-
mation for molecular graphs, which can be
a good complement to motif-level feature
representations. To demonstrate the effec-
tiveness of motif-level feature learning in
our HM-GNNs, we remove the heteroge-
neous graphs and the corresponding GNNs from HM-GNNs, which reduces to GINs. We compare
our HM-GNNs with GINs on three popular bioinformatics datasets: PTC, MUTAG, and PROTEINS.
The comparison results are summarized in Table 3. From the results, our model significantly out-
performs GIN by margins of 14.2%, 6.9%, and 3.7% on PTC, MUTAG, and PROTEINS datasets,
respectively. This demonstrates that motif-level features are critical for molecular feature represen-
tation learning.

3.4 RESULTS OF MULTI-TASK LEARNING ON SMALL MOLECULAR DATASETS

In the section 2.4, we introduce a new multi-task learning paradigm by constructing a mixed het-
erogeneous motif graph that contains molecular nodes from different datasets. Here, we conduct
experiments to demonstrate the effectiveness of this new multi-task learning paradigm. To this end,
we use another two PTC datasets: PTC MM and PTC FR. Here, both PTC and PTC FR are rats
datasets and PTC MM is a mice dataset. By combining PTC with PTC MM and PTC FR sepa-
rately, we can create another two datasets: PTC + PTC MM and PTC + PTC FR. The statistics of
these new datasets are summarized in Table 4. In this table, we report the vocabulary sizes and the
overlap ratios with the original PTC dataset. The overlap ratios show that these datasets share most
of their motifs. In particular, the PTC dataset has 94.8% and 83.5% overlapped motifs with PTC FR
and PTC MM, respectively. We construct separate heterogeneous motif graphs and evaluate our
HM-GNNs on them. Here, we conduct the evaluations on three settings: 90%, 50%, and 10% for
training and 10%, 50%, 90% for testing. The models trained on smaller training datasets have higher
risk of overfitting, which can better reveal the impacts on performances.

The comparison results are summarized in the last three columns in Table 4. We can observe from
the results that combing PTC with PTC MM and PTC FR can consistently bring performance im-
provements in three settings. Notably, combing PTC FR brings even larger performance boost than
using PTC MM. This is because PTC has larger motif vocabulary overlap with PTC FR. Thus, Com-
bining datasets with similar motif vocabularies will benefit multi-task learning on small molecular
datasets.
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3.5 COMPUTATIONAL EFFICIENCY STUDY
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Figure 5: Results of ROC-AUC and memory us-
age using different number of starting nodes. We
vary the number of starting nodes from 5,000 to
29,000. The ROC-AUC performances and mem-
ory usages of different batch sizes are illustrated
on blue and red lines, respectively.

In Section 2.5, we propose to use an edge sam-
pler to improve the training efficiency of our
HM-GNNs by reducing the size of edges in the
heterogeneous graph. In our algorithm, if we
fixed the sampling rule, the number of starting
nodes is a hyper-parameter to control the size of
the sampled heterogeneous motif graph. As an
essential hyper-parameter, the number of start-
ing nodes can influence both training efficiency
and model performance. In this part, we con-
duct experiments to investigate its impact on the
Ogbg-molhiv dataset. In particular, we change
the number of starting nodes and report the cor-
responding model performances in terms of the
ROC-AUC.

Figure 5 shows the performance of our model
as the number of starting nodes changes. The
blue line represents the ROC-AUC value, and
the red line shows the memory usage. The blue
line shows that the model performance boosts
significantly when the number of starting nodes
changes from 5,000 to 15,000. Starting from 15,000, the improvement of ROC-AUC gradually
slows down until it converges. The red line shows that the memory usage increases almost linearly
as the number of starting nodes increases. Thus, the model can achieve the best utility efficiency
when choosing 25,000 as the number of starting nodes. At this point, our model can achieve high
performance with relatively fewer computational resources.

3.6 MOTIF VOCABULARY SIZE STUDY
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Figure 6: The impact of the motif keeping ra-
tio. We evaluate our method using different
keeping ratio of the original motif vocabu-
lary.

In Section 2.1, we propose filtering noisy motifs
from the motif vocabulary by their TF-IDF values,
which can improve our model’s generalization abil-
ity and robustness. By using different keeping ratios,
we can have different vocabulary sizes. In this part,
we conduct experiments to investigate the impact of
varying keeping ratios on the model performance.
Using different keeping ratios, we can obtain differ-
ent motif vocabularies on the Ogbg-molhiv dataset,
leading to different heterogeneous motif graph con-
struction outputs. Here, we apply our HM-GNNs on
the resulting heterogeneous motif graphs and report
the performances in terms of the ROC-AUC. Here,
we vary the keeping ratio from 50% to 100%, which
indicates the portion of top motifs using as final mo-
tif vocabulary.

We summarize the result in Figure 6. From the fig-
ure, we can observe that the model performance im-
proves as the increase of keep ratios. A higher keeping ratio increases the motifs in the vocabulary,
which leads to better motif-level feature propagation. And molecules in the graph have more con-
nectors (motifs) to communicate with other molecules. The model performance starts to decrease
when the keeping ratio is larger than 80%, which indicates the last 20% motifs are noisy and can
hurt the model generalization and robustness. Notably, even with 50% of the most important motifs
in the vocabulary, our model can still outperform GIN by a margin of 1.37%, which demonstrates
the significant contribution of motif-level feature representations.
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4 RELATED WORK

In this section, we provide a briefly introduction to some related works on graph representation,
motif learning, and deep molecular graph learning.

GNNs (Micheli, 2009; Scarselli et al., 2008) have became the most major tool in machine learning on
graph-related tasks. Many GNN variants have been proposed (Battaglia et al., 2016; Defferrard et al.,
2016; Duvenaud et al., 2015; Hamilton et al., 2017; Kipf & Welling, 2016; Li et al., 2015; Veličković
et al., 2017; Santoro et al., 2017; Xu et al., 2018). They have different neighborhood aggregation
and graph pooling method. In factual, these models have achieved state-of-the-art baselines in many
graph-related tasks like node classification, graph classification, and link prediction.

A motif can be a simple block of a complex graph and is highly related to the function of the
graph (Alon, 2007). (Prill et al., 2005) demonstrates that dynamic properties are highly correlated
with the relative abundance of network motifs in biological networks. MCN (Lee et al., 2019)
proposes a weighted multi-hop motif adjacency matrix to capture higher-order neighborhoods and
uses an attention mechanism to select neighbors. HierG2G (Jin et al., 2020) employs larger and more
flexible motifs as basic building blocks to generate a hierarchical graph encoder-decoder. MICRO-
Graph (Zhang et al., 2020) applies motif learning to help contrastive learning of GNN. Some GNN
explainers also use motif knowledge to generate subgraphs to explain GNNs (Ying et al., 2019; Yuan
et al., 2021).

Specific to the bioinformatics field, GNNs have been widely used in molecular graphs related tasks.
Duvenaud et al. (2015) introduces a molecular feature extraction method based on the idea of circu-
lar fingerprints. MPNNs (Gilmer et al., 2017) reformulate existing models and explores additional
novel variations. (Chen et al., 2017) introduces a non-backtracking operator defined on the line
graph of edge adjacencies to enhance GNNs. DimeNet (Klicpera et al., 2020) proposes directional
message passing to embed the message passing between atoms instead of the atoms themselves.
HIMP (Fey et al., 2020) develops a method to learn associated junction trees of molecular graphs
and exchange messages between junction tree representation and the original representation to detect
cycles. Some other works introduce permutations of nodes into models (Murphy et al., 2019; Al-
booyeh et al., 2019). Pre-training and self-supervised learning schemes have been proved that they
can effectively increase performance for downstream tasks (Hu et al., 2019; Sun et al., 2019; Rong
et al., 2020; Hassani & Khasahmadi, 2020; Zhang et al., 2020; Sun et al., 2021). DGN (Beani et al.,
2021) introduces a globally consistent anisotropic kernels for GNNs to overcome over-smoothing
issue. Another line of work focuses on graph pooling. DiffPool (Ying et al., 2018) addresses a
differentiable graph pooling module which can build hierarchical representations of graphs. Graph
U-Nets (Gao & Ji, 2019) introduces pooling and up-sampling operations into graph data.

However, most existing works focus on the molecular graph itself, and they have not considered
connections among molecular graphs, such as motif-level relationships. Because different molecules
may share the same motif in their structures, we use a heterogeneous motif graph neural network
model to extract and learn motif representation of molecular graphs. By learning motif-level feature
representations, our proposed methods can increase the expressiveness of deep molecular graph
representation learning.

5 CONCLUSION

In this work, we propose a novel heterogeneous motif graph and HM-GNNs for molecular graph rep-
resentation learning. We construct a motif vocabulary that contains all motifs in molecular graphs.
To remove the impact of noise motifs, we select the essential motifs with high TF-IDF values, which
leads to more robust graph feature representations. Then, we build a heterogeneous motif graph that
contains motif nodes and molecular nodes. We connect two molecules by jointly owned motifs in
the heterogeneous motif graph, enabling message passing between molecular graphs. We use one
HM-GNN to learn the heterogeneous motif graph and get the motif-level graph embedding. And
we use another GNN to learn the original graph’s atom-level graph embedding. This two-GNNs
model can learn graph feature representation from both atom-level and motif-level. Experimental
results demonstrate that our HM-GNN can significantly improve performance compared to previous
state-of-the-art GNNs on graph classification tasks.
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A PSEUDOCODE OF GENERATING A HETEROGENEOUS MOTIF GRAPH

Algorithm 1 is a pseudocode to show how to construct a Heterogeneous Motif Graph.
Lines 1-19 of Algorithm 1 generate all motif-molecule edges. Lines 20-24 build motif-motif edges.
Line 25 first calculates TF-IDF for all molecules containing a motif, then averages these TF-IDFs
as the TF-IDF value of the motif. Line 26 calculates the TF-IDF of a molecule as a molecule-motif
weight, then calculates PMI value as a motif-motif weight. Note that we assign zero weight to motif
node pairs with negative PMI. Lines 27-28 generate feature vectors for motif nodes and molecular
nodes by one-hot encoding and bag-of-words method, respectively.

Algorithm 1: An algorithm of building a Heterogeneous Motif Graph
Input : A set of graph data G = {G1,G2, ...,Gk, ...,GN}, ∀k ∈ {1, ..., N}, nk and ek

denote the numbers of nodes and edges in graph Gk, respectively.
Output : A large Heterogeneous Motif graph GM (V, E), V = Vmolecule ∪ Vmotif ,

E = E(molecule,motif) ∪ E(motif,motif).
Initialization: Initialize an empty set of motif vocabulary M = ∅

An empty Heterogeneous Motif graph GM (V, E), V = ∅, E = ∅
An empty dictionary B stores how many times a motif appears in a molecule
An empty dictionary C stores how many molecules contain it for each motif.

1 for k = 1, ..., N do
2 Search Graph Gk(Vk, Ek)
3 Generate a set of edges ME = {e1, e2, ..., ei, ..., eI}, ∀i ∈ {1, ..., I}
4 and a set of basic cycles MC = {c1, c2, ..., cj , ..., cJ}, ∀j ∈ {1, ..., J}
5 for ei ∈ME do
6 if ei is part of cj where cj ∈MC then
7 Delete ei from ME

8 end
9 end

10 Unify motifs Mk =ME ∪MC

11 Add generated motifs into motif vocabulary M =M ∪Mk

12 Add a molecular node vk into GM
13 for motif s in Mk do
14 Add a motif node vs into set GM
15 Add an edge between the motif node vs and the molecular node vk into set E
16 T donates how many s does Graph Gk have and add Bks : T to B
17 Update Cs

18 end
19 end
20 for motif s and motif r in M do
21 if s and r are sharing at least one atom then
22 Add an edge between the motif node s and the motif node r
23 end
24 end
25 Calculate TF-IDF for each motif, then select essential motifs based on some threshold.
26 Calculate molecule-motif edge weights based on dictionary B and motif-motif edge weights

based on C and then add them to Graph GM
27 Generate one-hot feature vectors for motif nodes. {x ∈ {0, 1}p :

∑p
i=1 xi = 1}, p is the length

of feature vector.
28 Generate feature vectors for molecular nodes using bag-of-word method.
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B PSEUDOCODE OF OUR MINI-BATCH HETEROGENEOUS MOTIF GRAPH
NEURAL NETWORK

Algorithm 2 is a pseudocode of minibatch HM-GNN. Lines 3-6 of Algorithm 2 correspond to the
sampling stage. R(k) is the sampling rule on each layer, and it fixes the sample size in each layer.
To retain as much important motif information as possible, we sample all edges in the first hop, and
starting from the second hop, we randomly sample edges from motif-motif edges. In this way, the
computational graph contains essential motif nodes in sampling. Lines 7-12 correspond to a motif-
level embedding learning stage. We can choose any kind of AGGREGATE(k)· and COMBINE(k)(·)
here. Lines 14-19 correspond to an atom-level embedding learning stage. Line 21 concatenates the
atom-level embedding and the motif-level embedding as a final graph embedding.

Algorithm 2: Mini-batch HM-GNN algorithm
Input : A set of graph data G = {G1,G2, ...,Gk, ...,GN}, ∀k ∈ {1, ..., N}, nk and ek

denote the number of nodes and edges
Input features {xg,∀g ∈ G}
Heterogeneous Motif Graph GM (V, E), V = Vmolecule ∪ Vmotif

Input feature of Heterogeneous Graph {h(0)v ,∀v ∈ V}
Depth K
AGGREGATE(k)(·)
COMBINE(k)(·)
Edge sampling ruleR(k)

Batch size S
A subset of G, we use this G′ to generate starting molecular nodes in HM graph
sampling
GNN model p(·) for atom-level learning

Output : Vector representations h for all molecular nodes in computational sampled graph
Initialization: An empty computational graph for motif learning GC(VC , EC), VC = ∅, EC = ∅

1 Generate starting molecular nodes B(K) ← G′

2 Add all nodes in B(K) into VC
3 for k = K...1 do
4 Randomly sample edges based on ruleR(k) and starting nodes B(k) from GM , and then add

these edges into EC , add all end nodes of edges into VC
5 All end nodes of these edges become a new set of starting nodes B(k−1) for next iteration
6 end
// Learning computational graph GC for motif embedding

7 for k = 1...K do
8 for v ∈ B(k) do
9 a

(k)
v = AGGREGATE(k)

(
{h(k−1)u : u ∈ N (v)}

)
10 h

(k)
v = COMBINE(k)

(
h
(k−1)
v , a

(k)
v

)
11 end
12 end
13 Motif embedding em ← hv , ∀v ∈ B(K)

// Learning atom-level embedding

14 for v ∈ B(K) do
15 Find the corresponding atom-level graph g
16 ha = p(g, xg)
17 end
18 Atom-level embedding ea ← ha, ∀a ∈ B(K)

19 Final graph embedding E = ea‖em
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C DETAILS OF DATASETS

We give detailed descriptions of datasets used in our experiments. Further details can be found
in Yanardag & Vishwanathan (2015), Zhang et al. (2019), and Wu et al. (2018).

MUTAG (Debnath et al., 1991) is a dataset that contains 188 mutagenic aromatic and heteroaromatic
nitro compounds. The task is to predict their mutagenicity on Salmonella typhimurium. It has 7
discrete labels. PTC (Toivonen et al., 2003) is a dataset that contains 344 chemical compounds
that reports the carcinogenicity for male and female rats with 19 discrete labels. NCI1 (Wale et al.,
2008) is made publicly available by the National Cancer Institute (NCI). It is a subset of a screened
compound balance dataset designed to inhibit or inhibit the growth of a group of human tumor cell
lines with 37 discrete labels. PROTEINS (Borgwardt et al., 2005) is a dataset in which nodes are
secondary structure elements (SSE). If two nodes are adjacent nodes in an amino acid sequence or
3D space, there are edges between them. It has 3 discrete labels, which represent spirals, slices, or
turns. Mutagenicity (Kazius et al., 2005) is a dataset of compounds for drugs, which can be divided
into two categories: mutagens and non-mutagenic agents.

The Ogbg-molhiv dataset was introduced by the Drug Therapy Program (DTP) AIDS Antiviral
Screen, which tested the ability of more than 40,000 compounds to inhibit HIV replication. The
screening results were evaluated and divided into three categories: Confirmed Inactivity (CI), Con-
firmed Activity (CA), and Confirmed Moderate Activity (CM). PubChem BioAssay (PCBA) is a
database consisting of the biological activities of small molecules produced by high-throughput
screening. The Ogbg-pcba dataset is a subset of PCBA. It contains 128 bioassays and measures
more than 400,000 compounds. Previous work was used to benchmark machine learning methods.
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D DETAILS OF EXPERIMENT SETTINGS

We give detailed descriptions of experiment settings used in our experiments.

TUDatasets. For all configurations, 3 GNN layers are applied, and all MLPs have 2 layers. Batch
normalization is applied on every hidden layer. Dropout is applied to all layers except the first layer.
The batch size is set to 2000. We use Adam optimizer with initial weight decay 0.0005. The hyper-
parameters we tune for each dataset are: (1) the learning rate ∈ {0.01, 0.05}; (2) the number of
hidden units ∈ {16, 64, 1024}; (3) the dropout ratio ∈ {0.2, 0.5}.
Open Graph Benchmark. For all configurations, 3 GNN layers are applied, and all MLPs have 2
layers. Batch normalization is applied on every hidden layer. Dropout is applied to all layers except
the first layer. We use Adam optimizer with initial weight decay 0.0005, and decay the learning rate
by 0.5 every 20 epochs if validate performance not increase. The hyper-parameters we tune for each
dataset are: (1) the learning rate ∈ {0.01, 0.001}; (2) the number of hidden units ∈ {10, 16}; (3) the
dropout ratio ∈ {0.5, 0.7, 0.9} (4) the batch size ∈ {128, 5000, 28000}.

16


	Introduction
	heterogeneous motif Graph Neural Networks
	Motif Vocabulary of Molecular Graphs
	Heterogeneous Motif Graph Construction
	Heterogeneous Motif Graph Neural Networks
	Multi-Task Learning via Heterogeneous Motif Graph
	Efficient Training via Edge Sampling

	Experimental Studies
	Performance Studies on Molecular Graph Datasets
	Performance Studies on Large-Scale Datasets
	Ablation Studies on heterogeneous motif Graph Neural Networks
	Results of Multi-Task Learning on Small Molecular Datasets
	Computational Efficiency Study
	Motif Vocabulary Size Study

	Related work
	Conclusion
	Pseudocode of Generating a Heterogeneous Motif Graph
	Pseudocode of Our Mini-batch Heterogeneous Motif Graph Neural Network
	Details of Datasets
	Details of Experiment Settings

