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Abstract

Online Continual Learning (CL) solves the problem of001
learning the ever-emerging new classification tasks from a002
continuous data stream. Unlike its offline counterpart, in003
online CL, the training data can only be seen once. Most004
existing online CL research regards catastrophic forgetting005
(i.e., model stability) as almost the only challenge. In this006
paper, we argue that the model’s capability to acquire new007
knowledge (i.e., model plasticity) is another challenge in008
online CL. While replay-based strategies have been shown009
to be effective in alleviating catastrophic forgetting, there is010
a notable gap in research attention toward improving model011
plasticity. To this end, we propose Collaborative Contin-012
ual Learning (CCL), a collaborative learning based strat-013
egy to improve the model’s capability in acquiring new con-014
cepts. Additionally, we introduce Distillation Chain (DC),015
a novel collaborative learning scheme to boost the training016
of the models. We adapted CCL-DC to existing represen-017
tative online CL works. Extensive experiments demonstrate018
that even if the learners are well-trained with state-of-the-019
art online CL methods, our strategy can still improve model020
plasticity dramatically, and thereby improve the overall per-021
formance by a large margin. The source code is included in022
the supplementary material and will be publicly available023
upon acceptance.024

1. Introduction025

Continual Learning (CL) [11, 14, 35, 47] aims to learn a026
sequence of tasks incrementally and encourage the neural027
network to gain more performance on the tasks at hand,028
without forgetting heretofore learned knowledge. CL can029
be done in two different manners [4, 47]: offline continual030
learning and online continual learning. In offline CL, the031
learner can have infinite access to all the training data of032
the current task it trains on and may go through the data033
for any epoch. Contrary to offline CL, in online CL, the034
training data for each task also comes continually in a data035
stream, and the learner can only see the training data once.036
Apart from the learning manner, there are also three dif-037

ferent CL scenarios [25, 32, 45]: Task-incremental Learn- 038
ing (TIL), Domain-incremental Learning (DIL), and Class- 039
incremental learning (CIL). In this paper, we focus on the 040
CIL setting in online CL. 041

Various online CL methods [6, 7, 21, 22, 38, 48] have 042
been proposed to help the models learn continually on one- 043
epoch data stream, with alleviated forgetting. Among them, 044
replay-based methods have shown remarkable success, and 045
current state-of-the-art methods rely heavily on memory re- 046
play to mitigate catastrophic forgetting [19, 33]. However, 047
while most existing online CL research almost only focuses 048
on improving model stability (i.e., alleviating catastrophic 049
forgetting) in pursuit of better overall accuracy, the impor- 050
tance of model plasticity (i.e., the capability to acquire new 051
knowledge) is greatly overlooked. Contrary to offline CL, 052
where it is possible to gain high plasticity by iterating sev- 053
eral epochs on the current task before proceeding to the sub- 054
sequent task, the plasticity in online CL is more important 055
because the training data can only be seen once. As shown 056
in Fig. 1, compared to learning without memory replay, the 057
replay-based methods implicitly alleviate the low plasticity 058
issue to some extent. Also, it is possible to improve the plas- 059
ticity with multiple updates trick on incoming samples [3]. 060
However, the combination of memory replay and multiple 061
updates does not bridge the plasticity gap, and multiple up- 062
dates trick will also lead to higher catastrophic forgetting. 063
Overall, the plasticity gap hinders the performance of on- 064
line CL methods. 065

In this paper, we claim that besides stability, the model’s 066
ability to acquire new knowledge (i.e., model plasticity) 067
is also vital in order to have a good overall accuracy. To 068
shed light on how model plasticity and stability will impact 069
the overall performance, we propose a quantitative link be- 070
tween plasticity, stability, and final accuracy, showing that 071
both plasticity and stability play crucial roles in the overall 072
performance. 073

Guided by the quantitative relationship, we focus our- 074
selves on the former-overlooked plasticity perspective. In- 075
spired by the ability of collaborative learning to accelerate 076
the convergence in non-continual scenarios [5], we incor- 077
porated collaborative learning in online CL and observed 078

1



CVPR

#7545
CVPR

#7545
CVPR 2024 Submission #7545. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1. The plasticity (learning accuracy) and stability (relative
forgetting, our metric proposed in Sec. 3) comparison of ER under
different settings on CIFAR-100. For experiments with memory
replay, the size of the memory buffer is set to 2,000. We can wit-
ness a plasticity gap between offline CL and online CL, even with
memory replay and multiple update trick (memory iteration > 1).

a similar phenomenon. To this end, we propose Collab-079
orative Continual Learning with Distillation Chain (CCL-080
DC), a collaborative learning scheme that can be adapted to081
existing online CL methods. CCL-DC comprises two key082
components: Collaborative Continual Learning (CCL) and083
Distillation Chain (DC).084

CCL involves two peer continual learners to learn from085
the data stream simultaneously in a peer teaching manner,086
and it enables us to have more parallelism in optimization087
and provides more maneuverability to the continual learn-088
ers. To the best of our knowledge, CCL is the first to089
involve collaborative learning techniques in online CL re-090
search. Moreover, to fully exploit the potential of collabo-091
rative learning in online CL scenarios, we proposed DC, an092
entropy regularization based optimization strategy explic-093
itly designed for online CL.094

The main contribution of this paper can be summarized095
as follows.096

1. We identify two important challenges in training online097
continual learners: plasticity and stability. Moreover, we098
propose a quantitative link between plasticity, stability,099
and final performance. Based on this, we find that plas-100
ticity is an important obstacle in online CL, which was101
greatly overlooked in the previous research;102

2. To overcome the plasticity issue, we propose CCL-DC,103
a collaborative learning based strategy that can be seam-104
lessly integrated into the existing methods and improve105
their performance by enhancing plasticity;106

3. Extensive experiments show that CCL-DC can enhance107
the performance of existing methods by a large margin.108

2. Related Work109

Continual Learning. Continual Learning methods can110
be classified into three different categories: regularization-111

based methods, parameter-isolation-based methods, and 112
replay-based methods. Regularization-based methods [2, 113
9, 26, 29, 50] add extra regularization terms to balance 114
the old and new tasks. Parameter-isolation-based meth- 115
ods [1, 17, 39–41] solve the problem explicitly by dynam- 116
ically allocating task-specific parameters. Replay-based 117
methods [6, 7, 10, 15, 21, 22, 34, 38, 48] maintain a small 118
memory buffer that stores a few old training samples. 119

Among these methods, replay-based strategies have 120
gained huge success due to their impressive performance 121
and simplicity. ER [38] is the fundamental replay-based 122
method that leverages Cross-Entropy loss for classification 123
and a random replay buffer. DER++ [6] stores the logits in 124
the memory buffer and extends ER with the distillation of 125
old stored logits. ER-ACE [7] extends ER with Asymmet- 126
ric Cross-Entropy loss for classification to suppress the drift 127
of old class representations. OCM [21] leverages a replay- 128
based strategy by maximizing the mutual information be- 129
tween old and new class representations. GSA [22] solves 130
cross-task class discrimination with replay-based strategy 131
and Gradient Self Adaption. OnPro [48] uses online pro- 132
totype learning to address shortcut learning and alleviate 133
catastrophic forgetting. 134

These replay-based methods propose different strategies 135
for alleviating catastrophic forgetting and improving the 136
model stability. However, the importance of the model plas- 137
ticity is greatly neglected in their research, despite their suc- 138
cess in terms of final performance. In our work, these meth- 139
ods serve as the baselines and we adapted our strategy to 140
these baselines to show the efficiency of our proposed ap- 141
proach. 142

Collaborative Learning. Collaborative learning [5, 20, 143
42, 51, 52] orients from online knowledge distillation (KD). 144
Different from the conventional KD methods, online KD 145
trains a cohort of deep networks from scratch in a peer- 146
teaching manner. During the training process, the model 147
imitates their peers and guides the training of other models 148
simultaneously. DML [51] suggests peer student models 149
learn from each other through the logit distillation between 150
the probability distributions. Codistillation [5] is similar to 151
DML and suggests the ensemble of peer networks can fur- 152
ther improve the performance. More importantly, Codistil- 153
lation shows that online KD can help the model converge 154
faster on non-continual scenarios. 155

Despite the success of collaborative learning in non- 156
continual scenarios, due to the lack of focus on plasticity, 157
the research on collaborative learning in CL is still limited. 158
To the best of our knowledge, there is no existing research 159
using the collaborative learning technique to boost the train- 160
ing of online CL. Moreover, in our work, we propose DC, an 161
entropy regularization based optimization strategy, which is 162
designed to exploit the full potential of collaborative learn- 163
ing in online CL scenarios. 164
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Figure 2. Overview of the proposed CCL-DC framework applied to a baseline online CL method. The proposed CCL-DC framework has
two main components. The first one is CCL, which involves two peer continual learners that simultaneously learn from the data stream in
a peer teaching manner. The second component is DC, which generates a chain of samples with varying levels of difficulty and feeds them
to models to obtain a chain of logit distribution of different confidence levels. Then, in a collaborative learning approach, DC conducts
distillation from less confident predictions to more confident predictions, to serve as a learned entropy regularization.

3. Plasticity and Stability in online CL165

In this section, we revise the metric for model plasticity166
and propose a novel metric for model stability. In addition,167
we quantitatively derived the impact of model plasticity and168
stability on the final performance.169

3.1. Model Plasticity170

The model plasticity measures the learner’s capability to171
learn new knowledge when a new task arrives. Several dif-172
ferent metrics have been proposed to measure the model173
plasticity [9, 30, 37, 47]. In our work, we evaluate the model174
plasticity with Learning Accuracy (LA) [37]. Formally, the175
Learning Accuracy for the j-th task is defined as:176

lj = ajj , (1)177

where aij is the accuracy evaluated on the test set of task j178
after training the network from task 1 to task i. For an over-179
all metric normalized against all tasks, the averaged Learn-180
ing Accuracy is written as LA = 1

T

∑T
j=1 lj , and T is the181

number of tasks in total.182

3.2. Model Stability183

The stability measures how much the model forgets given184
its current state. The most commonly used metric in previ-185
ous CL research is the Forgetting Measure (FM) [9]. Intu-186
itively, FM for the j-th task fmk

j reveals how much perfor-187
mance the model loses on a given task j, after training on188
task k, compared with its maximum performance obtained189
in the past:190

fmk
j = max

i∈{1,...,k−1}
(aij − akj ),∀j < k. (2)191

For the overall metric obtained across all tasks, FM can be 192
expressed as: 193

FM =
1

T − 1

T−1∑
j=1

fmT
j . (3) 194

In our work, instead of using FM as the stability metric, 195
we propose forgetting measure on a relative basis, which 196
we call Relative Forgetting (RF). There are two reasons for 197
shifting from absolute forgetting to relative forgetting: 198

1. RF is more fair for methods with higher plasticity. This 199
is because methods with poor plasticity will never have 200
a large FM, and FM is capped by the maximum perfor- 201
mance obtained by the learner in the past. Moreover, 202
even if two learners lose the same absolute performance, 203
the more plastic learner can still be regarded as forget- 204
ting less, because it has a higher peak performance and 205
loses less proportion of its performance; 206

2. RF helps quantitatively derive the relationship between 207
the model stability and final performance. 208

Intuitively, RF measures how much proportion of perfor- 209
mance the model forgets. And RF for the j-th task after 210
training on task k, can be defined as: 211

fk
j = max

i∈{1,...,k}

(
1−

akj
aij

)
,∀j ≤ k. (4) 212

The overall metric averaged across all tasks can be written 213
as: 214

RF =
1

T

T∑
j=1

fT
j . (5) 215
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3.3. Impact on the Overall Performance216

For online CL, the model’s final average accuracy (AA) is217
the most vital metric. In this subsection, we try to show218
how the model plasticity and stability will impact the final219
performance quantitatively.220

The model’s final average accuracy can be calculated by:221

AA =
1

T

T∑
j=1

aTj . (6)222

With the definition of our plasticity metric (LA) and stabil-223
ity metric (RF), we can easily find the relationship between224
learning accuracy, relative forgetting, and accuracy:225

aij ≥ lj × (1− f i
j), (7)226

where we take the equal sign when ajj = maxi∈{1,...,i} a
i
j .227

When generalizing the class-wise final accuracy aTj to the228
average accuracy (AA), we need to take the dot product of229
the LA vector [l1, ..., lT ] with RF vector [fT

1 , ..., fT
T ] which230

is trivial. More intuitively, in practice, we can make the231
approximation with:232

AA ⪆ LA× (1−RF ). (8)233

As indicated by Eq. 8, the lower bound of the final per-234
formance is proportional to LA and 1−RF , which suggests235
that both plasticity (LA) and stability (RF) play a crucial236
role in the final accuracy. Our findings reveal the impor-237
tance of the model plasticity which was neglected in the238
past. And it can serve as a good guide for future online CL239
research.240

4. Proposed Method241

In this section, we first justify our motivation with the find-242
ings in Sec. 3. Then, we introduce our proposed strategy:243
Collaborative Continual Learning and Distillation Chain.244
Finally, we show how to adapt our proposed strategy to the245
existing online CL methods and boost their plasticity.246

4.1. Motivation Justification247

Online continual learners aim to continuously adapt to non-248
stationary data streams, efficiently acquiring new knowl-249
edge while retaining previously learned information. In250
current online CL research, almost all of the efforts focus251
on alleviating catastrophic forgetting, and the importance252
of “learning capability” on new knowledge is greatly over-253
looked. However, our finding in Sec. 3 shows both plasticity254
and stability play important roles in achieving decent final255
performance.256

While replay-based methods were originally designed257
to tackle forgetting issues, Fig. 1 demonstrates that they258
can implicitly mitigate the plasticity gap. Nonetheless, as259

shown in Fig. 1, the limited plasticity is still a significant 260
barrier to the performance, even with replay. To this end, 261
we explicitly focus on the plasticity perspective. 262

The potential of collaborative learning to improve con- 263
vergence in non-continual scenarios [5] positions it as a 264
promising candidate for enhancing plasticity. With the ap- 265
parent lack of focus on plasticity, collaborative learning has 266
yet to be leveraged to boost convergence of online continual 267
learners. In our research, we propose to exploit collabora- 268
tive learning convergence properties for improving plastic- 269
ity. We find that similar to non-continual scenarios, collab- 270
orative learning strategy can boost convergence by allowing 271
more parallelism in the training and more maneuverability 272
of the continual learners. Moreover, to fully take advan- 273
tage of collaborative learning, we also propose Distillation 274
Chain (DC), an entropy regularization based optimization 275
strategy in collaborative learning specifically designed for 276
online CL. 277

4.2. Collaborative Continual Learning 278

The introduced Collaborative Continual Learning (CCL) 279
enables more parallelism and flexibility in training online 280
continual learners, and it is the key to improving the model 281
plasticity and the final performance. As shown in Fig. 2, 282
CCL involves two peer continual learners of the same ar- 283
chitecture and optimizer setting training in a peer-teaching 284
manner. In the training phase, networks are supervised with 285
both the ground truth label and the predictions of their peers. 286
In the inference phase, models can either make predictions 287
collaboratively with ensemble methods [5] to get a better 288
performance or predict independently for the sake of com- 289
putation efficiency. If we denote two networks in CCL as 290
θ1 and θ2, we formulate our loss to network θ1 as: 291

L1
CCL =λ1 · Lcls(θ

1(X), y)

+λ2 ·DKL(θ
1(X)/τ, θ2(X)/τ),

(9) 292

where (X, y) is the data-label pair, Lcls(·) is the classifica- 293
tion loss in the baseline method CCL adapts to, DKL(·) is 294
the Kullback-Leibler divergence, λ1 and λ2 are balancing 295
hyperparameters and τ is the temperature hyperparameter. 296
Note that the network θ2 should be trained with L2

CCL, re- 297
spectively. 298

4.3. Distillation Chain 299

To fully take advantage of CCL, we propose Distillation 300
Chain (DC), an entropy regularizaion based strategy explic- 301
itly designed for online CL. As illustrated in Fig. 2, DC 302
comprises two steps: (1) generating a chain of samples with 303
different levels of difficulty [43] using data augmentation, 304
and (2) distillation of logit distribution from harder samples 305
to easier samples in a collaborative learning way. 306

The main motivation of DC originates from the idea 307
of entropy regularization-based optimization strategies, like 308

4



CVPR
#7545

CVPR
#7545

CVPR 2024 Submission #7545. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

label smoothing [44], knowledge distillation [49], and con-309
fidence penalty [36], where we find that overconfidence will310
hurt performance in non-continual scenarios. As shown311
in the supplementary material, we observed a similar phe-312
nomenon in online CL. To tackle the problem, DC uses data313
augmentation strategies to generate samples with different314
levels of difficulty and produces logit distribution with dif-315
ferent confidence. The distillation from less confident pre-316
dictions to more confident predictions weakens the overall317
confidence of the network and benefits the performance by318
improving the generalization capability.319

In our work, we use a geometric distortion comprised of320
RandomCrop and RandomHorizontalFlip as the first step of321
DC augmentation. After that, we use RandAugment [13]322
for the subsequent augmentations and we involve two hy-323
perparameters N and M for RandAugment. We take three324
augmentation steps and distill the logit distribution from the325
teacher with harder samples to the student with easier sam-326
ples. We formulate our loss with DC to network θ1 as:327

L1
DC =λ1

3∑
i=1

Lcls(θ
1(Xi), y)

+λ2

3∑
i=1

DKL(θ
1(Xi−1)/τ, θ

2(Xi)/τ),

(10)328

where Xi is the augmentation of input sample X after i329
augmentation steps. More discussion about why and how330
DC works can be found in the supplementary material.331

4.4. Apply CCL-DC to online CL methods332

The overall loss to network θ1 when adapting CCL-DC can333
be written as:334

L1 = LBaseline + L1
CCL + L1

DC , (11)335

where LBaseline is the loss function of the baseline model336
CCL-DC adapts to. Note that the model θ2 should be337
trained similarly. In Algorithm 1, we provide a Pytorch-338
like pseudo-code demonstrating how to incorporate CCL-339
DC into a given baseline. For simplicity, we only show the340
loss function for model θ1. Also, we omitted the memory341
buffer in the pseudo-code. However, the training should342
be consistent with the baseline, using both streaming and343
memory data.344

5. Experiments345

5.1. Experimental Setup346

Datasets. We use four image classification benchmark347
datasets to evaluate the effectiveness of our method, includ-348
ing CIFAR-10 [27], CIFAR-100 [27], TinyImageNet [28],349
and ImageNet-100 [24]. More detailed information about350

Algorithm 1 PyTorch-like pseudo-code of CCL-DC to in-
tegrate to other baselines.
# model1: student model
# model2: teacher model
# optim1: optimizer for student model
# cls: classification loss in baseline
for x, y in dataloader:

# Baseline loss
loss_baseline = criterion_baseline(model1, x, y)

# DC Augmentation
x1 = geometric_distortion(x)
x2 = RandAugment(x1, N, M)
x3 = RandAugment(x2, N, M)

# CCL-DC loss
ls, ls1, ls2, ls3 = model1(x, x1, x2, x3)
lt, lt1, lt2, lt3 = model2(x, x1, x2, x3) # no grad

loss_cls = cls(ls, y) + cls(ls1, y) + cls(ls2, y) +
cls(ls3, y)↪→

loss_ccl = kl_div(ls/t, lt/t) # temperature t
loss_dc = kl_div(ls/t, lt1/t) + kl_div(ls1/t, lt2/t) +

kl_div(ls2/t, lt3/t)↪→

loss_ours = lam1*loss_cls + lam2*(loss_ccl + loss_dc)
loss = loss_baseline + loss_ours

optim1.zero_grad()
loss.backward()
optim1.step()

the dataset split and task allocation is given in the supple- 351
mentary material. 352

Baselines. To show the effectiveness of our strategy, we 353
applied CCL-DC to six typical and state-of-the-art online 354
CL methods, including ER [38], DER++ [6], ER-ACE [7], 355
OCM [21], GSA [22], and OnPro [48]. 356

Implementation details. We use full ResNet-18 [23] (not 357
pre-trained) as the backbone for every method. For each 358
baseline method, we perform a hyperparameter search on 359
CIFAR-100, M=2k, and apply the hyperparameter to all of 360
the settings. For fair comparison, we use the same opti- 361
mizer and hyperparameter setting when adapting CCL-DC 362
to the baselines. For hyperparameters unique to CCL-DC, 363
we conduct another hyperparameter search as stated in the 364
supplementary material. We set the streaming batch size to 365
10 and the memory batch size to 64. We do not use the 366
multiple update trick as described in [3]. More detailed in- 367
formation about data augmentation, hyperparameter search, 368
and hardware environments is given in the supplementary 369
material. 370

5.2. Results and Analysis 371

Final average accuracy. Table 1 presents the results of 372
average accuracy (AA) at the end of the training on four 373
datasets. As indicated in Sec. 4, to fully take advantage 374
of collaborative learning, we show the results with the en- 375
semble of two models, with the independent model perfor- 376
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Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER [38] 56.68±1.89 62.32±4.13 24.47±0.72 31.89±1.45 39.41±1.81 10.82±0.79 19.16±1.42 24.71±2.52 33.30±1.74

ER + Ours 66.43±2.48 74.10±1.71 33.43±1.06 44.45±1.04 53.81±1.16 16.56±1.63 29.39±1.23 37.73±0.85 43.11±1.49

DER++ [6] 58.04±2.30 64.02±1.92 25.09±1.41 32.33±2.66 38.31±2.28 8.73±1.58 17.95±2.49 19.40±3.71 34.75±2.23

DER++ + Ours 68.79±1.42 74.25±1.10 34.36±0.89 43.52±1.35 52.95±0.86 10.99±1.39 21.68±1.94 28.01±2.46 45.70±1.32

ER-ACE [7] 53.26±3.04 59.94±2.40 28.36±1.99 34.21±1.53 39.39±1.31 13.56±1.00 20.84±0.43 25.92±1.07 38.37±1.20

ER-ACE + Ours 70.08±1.38 75.56±1.14 37.20±1.15 45.14±1.00 53.92±0.48 18.32±1.49 26.22±2.01 32.23±1.70 45.15±1.94

OCM [21] 68.19±1.75 73.15±1.05 28.02±0.74 35.69±1.36 42.22±1.06 18.36±0.95 26.74±1.02 31.94±1.19 23.67±2.36

OCM + Ours 74.14±0.85 77.66±1.46 35.00±1.15 43.34±1.51 51.43±1.37 23.36±1.18 33.17±0.97 39.25±0.88 43.19±0.98

GSA [22] 60.34±1.97 66.54±2.28 27.72±1.57 35.08±1.37 41.41±1.65 12.44±1.17 19.59±1.30 25.34±1.43 41.03±0.99

GSA + Ours 68.91±1.68 75.78±1.16 35.56±1.39 44.74±1.32 55.39±1.09 16.70±1.66 28.11±1.70 37.13±1.75 44.28±1.16

OnPro [48] 70.47±2.12 74.70±1.51 27.22±0.77 33.33±0.93 41.59±1.38 14.32±1.40 21.13±2.12 26.38±2.18 38.75±1.03

OnPro + Ours 74.49±2.14 78.64±1.42 34.76±1.12 41.89±0.82 50.01±0.85 21.81±1.02 32.00±0.72 38.18±1.02 47.93±1.26

Table 1. Average Accuracy (%, higher is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER 83.13±1.60 78.15±3.60 53.77±1.51 51.53±1.66 50.79±0.71 68.15±1.47 64.99±1.22 64.44±1.45 53.95±1.51

ER + Ours 90.60±1.50 89.99±1.50 72.38±0.66 70.86±0.72 68.84±1.05 85.24±0.53 81.75±0.83 79.54±0.74 68.73±1.21

DER++ 77.14±2.96 78.00±2.16 56.13±3.75 55.33±3.26 56.32±3.44 70.01±1.83 66.87±1.30 70.28±2.42 60.65±2.97

DER++ + Ours 88.85±1.88 89.00±1.67 72.85±1.37 71.54±1.99 69.52±2.37 82.83±1.27 78.80±1.62 77.79±0.86 70.16±1.03

ER-ACE 57.66±4.16 61.59±3.35 38.53±1.61 39.95±2.00 41.56±1.44 5.60±1.45 4.83±0.78 4.92±0.95 49.82±1.05

ER-ACE + Ours 88.37±1.39 88.40±1.15 69.47±0.88 68.39±1.32 66.63±0.90 21.91±5.16 21.88±4.39 18.88±3.12 68.52±0.82

OCM 78.71±3.66 81.33±2.06 40.87±1.60 42.00±1.48 42.43±1.80 18.56±2.87 15.86±2.01 15.03±2.02 20.77±1.88

OCM + Ours 82.39±2.23 84.53±1.63 48.89±2.04 49.83±2.01 49.94±2.16 31.69±1.81 29.54±2.35 28.10±2.28 48.20±1.38

GSA 79.87±3.26 77.09±4.55 58.16±1.58 55.13±1.81 50.34±1.73 20.46±1.59 15.86±1.26 14.50±0.63 62.59±1.17

GSA + Ours 91.69±1.11 90.98±1.33 73.73±1.03 72.68±0.98 70.36±1.07 80.36±1.22 74.77±1.66 70.71±1.19 73.71±1.12

OnPro 84.23±2.00 85.60±1.56 41.34±1.63 42.59±1.65 42.92±1.00 20.84±1.47 16.73±1.27 15.82±1.04 39.60±0.86

OnPro + Ours 90.39±1.59 90.18±1.58 46.30±1.10 47.13±1.01 47.27±1.81 25.87±1.91 21.40±1.52 19.75±1.22 52.55±2.18

Table 2. Learning Accuracy (%, higher is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

mance available in Sec. 6. Generally, the ensemble method377
provides about 1% additional accuracy compared to inde-378
pendent inference. For all datasets, memory size M , and379
baseline methods, applying CCL-DC constantly improves380
the performance by a large margin. Notably, even for state-381
of-the-art methods like GSA and OnPro, we can still gain382
significant performance when incorporating CCL-DC.383

More interestingly, for almost all settings with different384
memory buffer sizes M , the performance gain tends to be385
a constant on a relative basis. For example, CCL-DC can386
boost the performance of ER on Tiny-ImageNet from 10.82387
to 16.56 when M=2k, which is a 53.0% performance gain388
on a relative basis. The performance gain is 53.4% and389
52.7% when M=5k and M=10k respectively. This indi-390
cates that we can achieve a decent performance gain regard-391
less of the memory buffer size, and it shows the scalability392
of our method to different resource conditions.393

Plasticity and stability metric. As mentioned in Sec. 3, 394
we evaluate the plasticity and stability of different continual 395
learners with Learning Accuracy and Relative Forgetting, 396
respectively. Table 2 shows the plasticity metric on four 397
datasets. For all settings, CCL-DC constantly improves the 398
model plasticity by a large margin. For model stability, as 399
indicated by RF in Table 3, models trained with CCL-DC 400
are comparable with the baselines under most cases. ER- 401
ACE is an exception as its plasticity is unexpectedly low, 402
especially on TinyImagenet. Also, the stability of ER-ACE 403
is compromised when incorporating CCL-DC. We will ex- 404
plain the reason for this unexpected phenomenon in the sup- 405
plementary material. 406

5.3. Ablation Studies 407

Effect of multiview learning. As mentioned in Sec. 4, 408
CCL-DC benefits from multiview learning with data aug- 409

6



CVPR
#7545

CVPR
#7545

CVPR 2024 Submission #7545. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER 31.63±3.81 20.63±8.32 55.71±2.24 39.11±3.87 23.05±3.69 85.00±1.30 71.62±2.18 62.43±3.83 39.26±3.21

ER + Ours 26.74±3.99 17.58±2.71 54.34±2.22 37.67±2.16 21.98±2.59 81.13±1.93 64.79±1.32 53.18±0.99 37.78±2.18

DER++ 23.60±3.64 17.71±2.18 55.65±4.36 41.27±4.93 31.72±3.95 87.79±2.35 73.28±3.88 72.51±5.53 42.97±5.89

DER++ + Ours 22.62±3.03 16.43±3.36 53.45±1.40 39.39±2.71 23.71±3.39 87.16±1.60 73.15±2.15 64.48±3.08 35.32±2.80

ER-ACE 12.25±3.84 9.92±2.83 25.88±4.10 17.68±1.90 10.62±2.08 57.41±2.38 44.48±1.96 37.83±3.12 23.92±2.05

ER-ACE + Ours 20.62±2.26 14.32±2.58 46.78±1.91 34.19±2.40 19.01±0.94 56.56±4.16 42.20±3.94 31.13±3.52 34.43±3.60

OCM 13.05±4.37 11.00±3.11 31.16±2.69 17.90±3.73 6.85±2.25 56.66±2.53 40.59±1.55 30.80±2.29 4.55±1.60

OCM + Ours 10.75±2.52 8.45±2.63 29.65±4.00 17.02±3.01 6.16±1.35 51.58±2.81 35.58±2.54 27.24±1.60 15.33±2.28

GSA 25.02±2.83 16.56±4.02 53.42±3.12 37.29±2.60 20.50±4.33 66.87±3.31 53.42±3.84 43.44±3.81 35.44±2.42

GSA + Ours 24.96±3.27 16.59±2.09 52.29±2.06 38.76±2.41 21.36±2.36 80.08±1.97 63.85±1.78 49.73±2.10 40.46±2.54

OnPro 16.47±4.23 12.93±3.02 35.03±4.45 24.26±2.31 12.04±2.11 64.69±3.36 50.47±4.20 42.81±4.63 14.44±2.08

OnPro + Ours 17.54±4.15 12.90±2.77 27.64±3.29 17.78±1.39 8.41±2.62 56.03±2.96 38.70±1.88 29.24±1.33 15.72±3.29

Table 3. Relative Forgetting (%, lower is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

Method Acc. ↑ LA ↑

ER 31.89±1.45 51.53±1.66

ER + Multivew 38.18±1.46 64.02±1.12

ER + Ours (CCL only) 41.05±1.21 68.76±0.79

ER + Ours 44.45±1.04 70.86±0.72

ER-ACE 34.21±1.53 39.95±2.00

ER-ACE + Multivew 38.61±1.48 47.45±1.88

ER-ACE + Ours (CCL only) 40.90±1.08 50.91±1.63

ER-ACE + Ours 45.14±1.00 68.39±1.32

Table 4. Ablation studies on CIFAR-100 (M=2k). We report the
ensemble performance for methods incorporating CCL.

mentation in DC. For fair comparison, we explore how mul-410
tiview learning will impact the performance of the base-411
lines. We apply the classification loss part of CCL-DC to412
the baselines. Table 4 demonstrates that multiview learning413
can improve both AA and LA of baselines. However, those414
performance gains are still inferior to CCL-DC.415

Effect of CCL. We evaluate how CCL alone can improve416
the baselines. In the experiments, we remove multiview417
learning and DC, and we train the continual learner pair418
with the loss illustrated in Eq. 9. Table 4 shows the per-419
formance gain for ER and ER-ACE. We can see that CCL420
alone can provide significant gains in both final accuracy421
and plasticity. Also, when combining CCL with DC, the422
performance can be further improved.423

Distillation scheme of DC. We also evaluate the effec-424
tiveness of DC’s strategy of distilling from harder sam-425
ples to easier samples in collaborative learning manner. As426
shown in Table 5, we compared it with other distillation427
strategies. The result shows that the distillation scheme of428
DC constantly outperforms other schemes. Extra exper-429
iments explaining the working mechanism of DC can be430
found in the supplementary material.431

Method Distillation scheme Acc. ↑ LA ↑

ER Easy to hard 40.95±0.97 60.03±0.98

ER Same difficulty 43.64±1.09 69.49±0.78

ER Hard to easy (Ours) 44.45±1.04 70.86±0.72

ER-ACE Easy to hard 38.46±1.51 39.00±1.03

ER-ACE Same difficulty 43.81±1.28 55.37±1.54

ER-ACE Hard to easy (Ours) 45.14±1.00 68.39±1.32

Table 5. Comparison of different distillation schemes in DC on
CIFAR-100 (M=2k).

6. Discussions 432

In this section, we analyze some properties of CCL-DC. 433

Improving plasticity. One of the important advantages 434
of CCL-DC is that it can improve the plasticity of con- 435
tinual learners. This can be evident by plasticity metrics 436
like LA. Moreover, we have observed that the plasticity of 437
CCL-DC facilitates the model to converge faster and de- 438
scend to a deeper loss. Figure 3 illustrates the classification 439
loss (cross-entropy) curve of the model. To obtain the loss 440
curve, we take a snapshot of the model every 10 iterations 441
and compute the cross-entropy over all the training samples 442
on the current task. We plot the curve on the logarithm scale 443
so that it is easy to observe that CCL-DC helps the model 444
descend deeper at the end of each task. 445

Improving feature discrimination. Another advantage 446
of CCL-DC is its ability to enhance the feature discrimi- 447
nation of continual learners. Fig. 4 illustrates the t-SNE 448
visualization [46] of the memory data’s embedding space at 449
the end of the training. We can see that the feature represen- 450
tation of the method with CCL-DC is more discriminative 451
compared with the baseline. 452

Moreover, we can evaluate the feature discrimination us- 453
ing the clustering methods. Following [31], we remove the 454
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Method NCM Acc. ↑ Logit Acc. ↑

ER 36.56±0.60 31.89±1.45

ER + Ours 44.76±0.55 44.45±1.04

ER-ACE 34.91±1.02 34.21±1.53

ER-ACE + Ours 45.62±1.04 45.14±1.00

OnPro 34.32±0.95 33.33±0.93

OnPro + Ours 42.82±0.67 41.89±0.82

Table 6. Final average accuracy on CIFAR-100 (M=2k), with and
without NCM classifier.

Figure 3. Classification loss curve of ER on CIFAR-100 (M=2k).
The curve is calculated on all training samples of the current task.
Since there are 10 tasks in total, the curve has 10 peaks.

(a) ER (b) ER + Ours

Figure 4. T-SNE visualization of memory data at the end of train-
ing on CIFAR-100 (M=2k).

final FC classifier and use Nearest-Class-Mean (NCM) [31]455
classifier with intermediate representations. Table 6 demon-456
strates that CCL-DC can greatly enhance the NCM accu-457
racy, which evidences the capability of CCL-DC in improv-458
ing feature discrimination.459

Alleviating shortcut learning. Shortcut learning [18] is460
another commonly observed issue that hinders the general-461
ization capability of continual learners [48]. In Fig. 5, we462
use GradCAM++ [8] on the training set of ImageNet-100463
(M=5k) at the end of the training of ER and GSA. Although464
both ER and GSA make correct predictions, we observed465
that they focus on irrelevant objects, which indicates a ten-466
dency toward shortcut learning. Also, we can see that by467
integrating CCL-DC, the shortcut learning can be greatly468
alleviated.469

Independent network performance. Although the en-470
semble method gives extra performance at inference time,471
by averaging the logit output of two networks in CCL-DC,472

Method Ind. Acc. ↑ Ens. Acc. ↑

ER + Ours 43.58±1.05 44.45±1.04

DER++ + Ours 42.79±1.38 43.52±1.35

ER-ACE + Ours 44.15±1.05 45.14±1.00

OCM + Ours 42.39±1.36 43.34±1.51

GSA + Ours 43.84±1.34 44.74±1.32

OnPro + Ours 41.18±0.83 41.89±0.82

Table 7. Comparison of the final average accuracy achieved
through independent inference and the use of the ensemble method
on CIFAR-100 (M=2k). Independent accuracy (Ind. Acc.) is cal-
culated by averaging the accuracy of two networks in CCL-DC.
All values are averaged over 10 runs.

Figure 5. GradCAM++ visualization on the training set of
ImageNet-100 (M=5k). Shortcut learning exists in the baseline
methods despite making correct predictions.

it also doubles the computation. In some cases, compu- 473
tational efficiency becomes more crucial during inference. 474
Continual learners trained with CCL-DC are also able to do 475
inference independently, albeit with a slight performance 476
drop compared with ensemble inference. Table 7 illustrates 477
the accuracy achieved through independent inference. It is 478
evident that the performance loss in independent inference, 479
when compared to ensemble inference, is minimal (approx- 480
imately 1%). 481

7. Conclusion 482

In this paper, we highlight the significance of plasticity 483
in online CL, which has been neglected in prior re- 484
search. We also establish the quantitative link between 485
plasticity, stability, and final accuracy. The quanti- 486
tative relationship sheds light on the future direction 487
of online CL research. Based on this, we introduce 488
collaborative learning into online CL and propose CCL- 489
DC, a strategy that can be seamlessly integrated into 490
existing online CL methods. Extensive experiments 491
show the effectiveness of CCL-DC in boosting plas- 492
ticity and subsequently improving the final performance. 493

494
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