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ABSTRACT

Diffusion models have gained traction as powerful algorithms for synthesizing
high-quality images. Central to these algorithms is the diffusion process, which
maps data to noise according to equations inspired by thermodynamics, and which
can significantly impact performance. In this work, we explore whether a diffusion
process can be learned from data. We propose multivariate learned adaptive noise
(MULAN), a learned diffusion process that applies Gaussian noise at different rates
across an image. Our method consists of three components—a multivariate noise
schedule, instance-conditional diffusion, and auxiliary variables—which ensure
that the learning objective is no longer invariant to the choice of noise schedule
as in previous works. Our work is grounded in Bayesian inference and casts the
learned diffusion process as an approximate variational posterior that yields a
tighter lower bound on marginal likelihood. Empirically, MULAN significantly
improves likelihood estimation on CIFAR10 and ImageNet, and achieves ~2x
faster convergence to state-of-the-art performance compared to classical diffusion.

1 INTRODUCTION

Diffusion models, inspired by the physics of heat diffusion, have gained traction as powerful tools for
generative modeling, capable of synthesizing realistic, high-quality images (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Rombach et al., 2021). Central to these algorithms is the diffusion process,
a gradual mapping of clean images into white noise. The reverse of this mapping defines the data-
generating process we seek to learn—hence, its choice can significantly impact performance (Kingma
& Gao, 2023). The conventional approach involves adopting a diffusion process derived from the
laws of thermodynamics, which, albeit simple and principled, may be suboptimal due to its lack of
adaptability to the variations within the dataset.

In this study, we investigate whether the notion of diffusion can be instead learned from data. We
focus on classical Gaussian diffusion, and propose a method for learning the schedule by which
Gaussian noise is applied to different parts of an image. Our approach is grounded in Bayesian
inference (Kingma & Welling, 2013), allowing the diffusion process to be viewed as an approximate
variational posterior—Ilearning this process induces a tighter lower bound on the marginal likelihood
of the data. More generally, this methodology allows us to adapt the noise schedule to the specific
characteristics of each image instance, thereby enhancing the performance of the diffusion model.

Specifically, we propose a new diffusion process, multivariate learned adaptive noise (MuLAN)),
which augments classical diffusion models (Sohl-Dickstein et al., 2015; Kingma et al., 2021) with
three innovations: a per-pixel polynomial noise schedule, a conditional noising process, and auxiliary-
variable reverse diffusion. While previous work argued that the learning objective of a diffusion
model is invariant to the choice of diffusion process (Kingma et al., 2021; Kingma & Gao, 2023), we
show that this claim is only true for the simplest types of univariate Gaussian noise: we identify a
broader class of noising processes whose optimization yields significant performance gains.

Our learned diffusion process yields improved log-likelihood estimates on two standard image
datasets, CIFAR10 and ImageNet. Remarkably, we achieve state-of-the-art performance for diffusion
models with less than half of the training time of previous methods. Our method also does not require
any modifications to the underlying UNet architecture, making it compatible with most existing
diffusion algorithms.
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Contributions In summary, our paper (1) provides a theoretical argument that suggests that creating
a noise schedule for each input dimension and conditioning it on the input yields improved likelihood
estimation. We then (2) introduce a novel approach for conditioning the noise schedule on the input
via a latent distribution. We demonstrate its effectiveness over conditioning the schedule on the input
directly through both empirical and theoretical means. Lastly, we (3) empirically demonstrate that
learning the diffusion process leads to ~2x faster convergence towards state-of-the-art performance
on CIFAR-10 and ImageNet datasets.

2 BACKGROUND

A diffusion process ¢ transforms an input datapoint denoted by x and sampled from a distribution
q(x0) into a sequence of noisy data instances x; for ¢ € [0, 1] by progressively adding Gaussian
noise of increasing magnitude. (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). The
marginal distribution of each latent is defined by g(x:|xo) = N (x¢; ayxg, 0+ 1) where the diffusion
parameters o, 0y € RT implicitly define a noise schedule as a function of ¢, such that v(t) = a7 /o?
is a monotonically decreasing function in ¢. Given any discretization of time into 7" timesteps of
width 1/T, we define ¢(i) = /T and s(i) = (i — 1)/T and we use Xg.; to denote the subset of
variables associated with these timesteps; the forward process g can be shown to factorize into a

Markov chain ¢(xo.1) = ¢(xo) (H?:l q(X¢(i) |Xs(i))>'

The diffusion model py, is defined by a neural network (with parameters €) used to denoise
the forward process ¢q. Given a discretization of time into T steps, p factorizes as py(xg.1) =
po(x1) H¢T21 Po(Xs(i)[Xe(i)). We treat the x; for ¢ > 0 as latent variables and fit py by maximizing
the evidence lower bound (ELBO) on the marginal log-likelihood given by:

log pe(x0) = ELBO(pe, q) + Dkr[q(X¢(1):¢(7) [X0) |Po (X¢(1):¢(1) [%0)] > ELBO(pyg, q) (D

T
= E |log pa(xox(1)) — > Dkr[gs (Xs(i) Xt X0) Do (Xs (i) [Xe(i))] — Dre[po(x1) g (x1[%0)]
1=2

In most works, the noise schedule, as defined by v(t), is either fixed or treated as a hyper-
parameter (Ho et al., 2020; Chen, 2023; Hoogeboom et al., 2023). Chen (2023); Hoogeboom
et al. (2023) show that the noise schedule can have a significant impact on sample quality. Kingma
etal. (2021) consider learning v(t), but argue that the KL divergence terms in the ELBO are invariant
to the choice of function v, except for the initial values v(0), (1), and they set these values to
hand-specified constants in their experiments. They only consider learning v for the purpose of
minimizing the variance of the gradient of the ELBO. In this work, we show that the ELBO is not
invariant to more complex forward processes.

3 DIFFUSION MODELS WITH MULTIVARIATE LEARNED ADAPTIVE NOISE

A standard diffusion process is defined via hand-crafted equations inspired by thermodynamics (Sohl-
Dickstein et al., 2015). Here, we investigate whether the notion of diffusion can be instead learned
from data. Specifically, we introduce a new diffusion process, multivariate learned adaptive noise
(MuLAN), which introduces three innovations: a per-pixel polynomial noise schedule, a conditional
noising process, and auxiliary-variable reverse diffusion. We describe these below.

3.1 WHY LEARNED DIFFUSION?

Perhaps the most direct motivation for our work comes from Bayesian inference. Notice that the gap
between the evidence lower bound ELBO(p, ¢) and the marginal log-likelihood (MLL) in Equation |
is precisely the KL divergence Dy [q(X(1):(1)|X0)||Po (X¢(1):¢(7)|X0)] between the diffusion process
q over the latents x; and the true posterior of the diffusion model. The diffusion process takes the
role of an approximate variational posterior in ELBO(p, ).

This observation suggests that the ELBO can be made tighter by choosing a diffusion processes
q that is closer to the true posterior pg(X(1):+(7)|Xo); this in turn brings the learning objective of
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closer to log p(x), which is often the ideal objective that we wish to optimize. In fact, the key
idea of variational inference is to optimize max,eco ELBO(p, q) over an family of approximate
posteriors Q to induce an tighter ELBO (Kingma & Welling, 2013). Most diffusion algorithms,
however optimize max,cp ELBO(p, ¢) within some family P with a fixed ¢. Our work seeks to
jointly optimize max,ep 40 ELBO(p, ¢); we will show in our experiments that this improves the
likelihood estimation.

More generally, our methodology will allow us to adapt the noise schedule to the specific characteris-
tics of an input image. For example, a set of photographs of the sky might benefit from a different
schedule than images of human faces. When a diffusion process introduces noise into an image, it
tends to effectively mask high frequency components first (e.g., by drowning the textures in white
noise), while low-level frequencies (e.g., large shapes) disappear in noise last. Thus, images with
varying amounts of high-level and low-level frequencies might benefit from varying noise schedules.
A learned model might also discover improved noising strategies that we cannot anticipate.

3.2 A FORWARD DIFFUSION PROCESS WITH MULTIVARIATE ADAPTIVE NOISE

Next, our plan is to define a family of approximate posteriors Q, as well as a family suitably matching
reverse processes P, such that the optimization problem max,cp qc0 ELBO(p, ¢) is tractable and
does not suffer from the aforementioned invariance to the choice of ¢. This subsection focuses on
defining Q; the next sections will show how to parameterize and train a reverse model p € P.

Notation. Given two vectors a and b, we use the notation ab to represent the Hadamard product
(element-wise multiplication). Additionally, we denote element-wise division of aby b asa/b. We
denote the mapping diag(.) that takes a vector as input and produces a diagonal matrix as output.

3.2.1 MULTIVARIATE GAUSSIAN NOISE SCHEDULE

Our proposed forward diffusion process progressively induces varying amounts of Gaussian noise
across different areas of the image. We introduce two new components relative to previous work:
multivariate noise scheduling and context-adaptive noise.

Intuitively, a multivariate noise schedule injects noise at different rates for each pixel of an input
image. This enables adapting the diffusion process to spatial variations within the image. We will
also see that this change is sufficient to make the ELBO no longer invariant in q.

Formally, our definition of a forward diffusion process with a multivariate noise schedule follows
previous work (Kingma et al., 2021; Hoogeboom & Salimans, 2022) and defines ¢ via the marginal
for each latent noise variable x; for ¢ € [0, 1], where the marginal is given by:

q(Xt|X0) = N(Xt7 aXop, dlag(af))7 (2)

where x, %9 € R%, oy, 04 € Ri and d is the dimensionality of the input data. The o, o; denote

varying amounts of signal and associated with each component (i.e., each pixel) of x as a function
of time ¢(¢). Similarly to Kingma et al. (2021), we may define the multivariate signal-to-noise ratio
as v(t) = a?o; % and we choose a, oy such that v/(t) is monotonically decreasing in ¢ along all
dimensions and is differentiable in t € [0,1]. Let o; = a¢/ax; and 0} = o} — o) /o with
all operations applied elementwise. In Hoogeboom & Salimans (2022), show that these marginals
induce transition kernels of the true reverse process between steps s < ¢ that are given by:

9 2 2 2
Q|0 O4s%s . 0,0,
q(xs|x¢,%x0) =N (xs;uq = :2 x4+ :2 Xg, X4 = diag < 80_2 S)) €))

t t t

In Sec. 3.5, we argue that this class of diffusion process Q induces an ELBO that is not invariant to
g € Q. The ELBO consists of a line integral along the diffusion trajectory specified by v(t). A line
integrand is almost always path-dependent, unless its integral corresponds to a conservative force
field, which is rarely the case for a diffusion process (Spinney & Ford, 2012). See Sec. 3.5 for details.

3.2.2 ADAPTIVE NOISE SCHEDULE CONDITIONED ON CONTEXT

Next, we extend the diffusion process to support context-adaptive noise. This enables injecting noise
in a way that is dependent on the features of an image. Formally, we introduce a context variable
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c € R™ which encapsulates high-level information regarding xo. Examples of c could be a class
label, a vector of attributes (e.g., features characterizing a human face), or even the input x itself. We
define the marginal of the latent x; in the forward process as q(x;|xo, c) = N (x4; a;(c)xg, 0%(c));
the reverse process kernel can be similarly derived as Hoogeboom & Salimans (2022):

2

- _at\s(c)ag(c)x 0-3|s(c)as(c)x — dia US(C)UE\S(C)
Q(XS"t’X""’)‘N(“q‘ O O A O

oi oi(c
“

where the diffusion parameters o, o, are now conditioned on c via a neural network.

Specifically, we parameterize the diffusion parameters cay(c),oy(c),v(t,c) as a?(c) =
sigmoid(—~,(c,t)), o7 (c) = sigmoid(vy,(c,t)), and v(c,t) = exp (—y4(c,t)). Here, v4(c,t) :
R™ x [0,1] = [Ymin, Ymax]? is a neural network with the property that v4(c,t) is monotonic in ¢.
Following Kingma et al. (2021); Zheng et al. (2023), we set Ymin = —13.30, Ymax = 5.0.

We explore various parameterizations for v, (c, t). These schedules are designed in a manner that
guarantees Y4(c, 0) = YminL, and v4(c, 1) = YmaxI,., Below, we list these parameterizations. The
polynomial parameterization is novel to our work and yields significant performance gains.

Monotonic Neural Network. (Kingma et al., 2021) We use the monotonic neural network ~yam (t),
proposed in VDM to express - as a function of ¢ such that Yyam (¢) : [0, 1] = [Ymin, Ymax)?- Then we
use FiLM conditioning (Perez et al., 2018) in the intermediate layers of this network via a neural
network that maps z. The activations of the FILM layer are constrained to be positive.

Sigmoid. (Ours) We express 74(c, t) as a sigmoid function in ¢ such that:

(€, t) = Ymin + (Ymax — Ymin) Z((aa((cc))t:&(:)))):;((,;)((5)))) where o(c) = 1/(1 + e~ °). Coefficients a, b

are parameterized by a neural network such that a : R™ — R+ b : R™ — R

Polynomial. (Ours) We express v as a degree 5 polynomial in ¢. ~y(c,t) = Ymin + (Ymax —

o) (a(c)t5+b(c)t4+d(c)t3+e(c)t2+f(c)t
min a(c)+b(c)+d(c)+e(c)+f(c)

monotonicity of v, (z,t) in ¢.

) In Suppl. D.2 we discuss the tricks we used to ensure the

3.3 AUXILIARY-VARIABLE REVERSE DIFFUSION PROCESSES

In principle, we can fit a normal diffusion model in conjunction with our proposed forward diffusion
process. However, variational inference suggests that the variational and the true posterior ought to
have the same dependency structure: that is the only way for the KL divergence between these two
distributions to be zero. Thus, we introduce a class of approximate reverse processes P that match
the structure of Q and that are naturally suited to the joint optimization max,ep 4c 0 ELBO(p, ¢).

Formally, we define a diffusion model where the reverse diffusion process is conditioned on the
context c. Specifically, given any discretization of ¢ € [0, 1] into T time steps as in Sec. 2, we
introduce a context-conditional diffusion model py(x(.1|c) that factorizes as the Markov chain

T
Po(x0:1]c) = po(x1]c) Hpe (Xs(i)|X¢(i)> €)- (%)
=1

Given that the true reverse process is a Gaussian as specified in Eq. 4, the ideal py matches this
parameterization (the proof mirrors that of regular diffusion models; Suppl. C), which yields

_ _ at\s(c)og(c)x o’as(c)as(c)x % — dia O’f(c)atz\s(c)
pH(X5|C7Xt)_N(“P_ U?(C) t + 0',52(0) 9( Ovt)v Ep_d g( O'tQ(C) )) )
(6)

where xg : (x¢, 1), is a neural network that approximates xo. We parameterize the denoising model
Xp in terms of a noise prediction model (Ho et al., 2020) where €g(x¢, t) is the denoising model
which is parameterized as €g(x;,t) = (x+ — a:(c)xp(x¢; ¢, ¢))/ot(c) (see Suppl. D.1).

3.3.1 CHALLENGES IN CONDITIONING ON CONTEXT

Note that the model pg(x¢.1|c) implicitly assumes the availability of c at generation time. Sometimes,
this context may be available, such as when we condition on a label. We may then fit a conditional
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diffusion process with a standard diffusion objective E, .[ELBO(xq, po(Xo:1|c), ¢4 (X0:1/c)], in
which both the forward and the backward processes are conditioned on c (see Sec. 3.4).

When c is not known at generation time, we may fit a model py that does not condition on c. Unfortu-
nately, this also forces us to define pg(xs|x;) = N (pp(x¢, 1), Xp(x¢, t)) Where o, (x¢, 1), Bp(x¢, t)
is parameterized directly by a neural network. We can no longer use a noise parameterization
e9(x¢,t) = (x¢ — ap(c)xg(xy4;t,¢))/o:(c) because it requires us to compute a;(c) and o¢(c),
which we do not know. Since noise parameterization plays a key role in the sample quality of
diffusion models (Ho et al., 2020), this approach limits performance.

The other approach is to approximate c using a neural network, cg(x¢,t). This would allow us

to write po(Xs|x:) = qo(xs|X, X0 = Xg(x¢,t),¢ = cp(xy,t)). Unfortunately, this introduces

instability in the learning objective, which we observe both theoretically and empirically. Specifically,

in Suppl. C we show that the learning objective diverges unless the following condition holds true:
2 /

o G0 (x0)v (x0)

o2 (xe )i (xe)0t (x0) I, pointwise across t. Experiments in Suppl. C.3 confirm this issue.

hmT—) [’}

3.3.2 CONDITIONING NOISE ON AN AUXILIARY LATENT VARIABLE

Instead, we propose an alternative strategy for learning conditional forward and reverse processes
D, q that feature the same structure and hence support efficient noise parameterization. Our approach
is based on the introduction of auxiliary variables (Wang et al., 2023), which lift the distribution pg
into an augmented latent space.

Specifically, we define z € R™ as a low-dimensional auxiliary latent variable and define a lifted
po(x,2z) = pye(x|z)pe(z), where pg(x|z) is the conditional diffusion model from Eq. 5 (with context
c set to z) and py(z) is a simple prior (e.g., unit Gaussian or fully factored Bernoulli). The latents z
can be interpreted as a high-level semantic representation of x that conditions both the forward and
the reverse processes. Unlike x(.1, the z are not constrained to have a particular dimension and can
be a low-dimensional vector of latent factors of variation. They can be either continuous or discrete.

We form a learning objective for the lifted pg by applying the ELBO twice to obtain:
log pa(x0) > By, (2]x0)[l0g Po(x0|2)] — Dkr(q4(2[%0)||pe(2) (7
> By, (2lx0) [ELBO(po (X0:1|2), 4p (x0:112))] — Dxr.(q4(2|%0)[[Po(2), ®)
where ELBO(pg(X0:1|2), 94(X0:1|2z)) denotes the variational lower bound of a diffusion model
(defined in Eq. 1) with a forward process ¢,(xg.1|z) (defined in Eq. 4 and Sec. 3.2.2) and and an

approximate reverse process py(Xo.1|z) (defined in Eq. 5), both conditioned on z. The distribution
¢4(z|x0) is an approximate posterior for z parameterized by a neural network with parameters ¢.

Crucially, note that in the learning objective (8), the context, which in this case is z, is available at
training time in both the forward and reverse processes. At generation time, we can still obtain a
valid context vector by sampling an auxiliary latent from py(z). Thus, this approach addresses the
aforementioned challenges and enables us to use the noise parameterization in Eq. 6.

3.4 VARIATIONAL LOWER BOUND

Next, we derive a precise formula for the learning objective (8) of the auxiliary-variable diffusion
model. Using the objective of a diffusion model in (1) we can write (8) as a sum of four terms

IOg Do (XO) Z Eq¢ [‘Creconstr + £diffusion + Eprior + »Clatent]y (9)
where Lieconsr = 10g po(X0|2, x1) is the reconstruction error, Lpyrior = —Dxku[g¢(X1]%0, 2)||po (x1)]
is the diffusion prior term, Liyent = —Dk1[¢e(2]X0)||po(2)] is the latent prior term, and Laigsusion 1S

the diffusion loss term, which we examine below. The full derivation is in Suppl. D.4.

The reconstruction 10ss, Lrecons, and the prior loss, Lyrior, are stochastically and differentiablly
estimated using standard techniques; see Kingma & Welling (2013). The diffusion loss Lgifysion, and
the latent loss Liyen are computed in the manner examined below.

3.4.1 DIFFUSION LOSS

Discrete-Time Diffusion. We start by defining py in discrete time, and as in Sec. 2, we let 7" > 0
be the number of total time steps and define ¢(i) = i/T and s(i) = (¢ — 1)/T as indexing variables
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over the time steps. We also use x(.; to denote the subset of variables associated with these timesteps.
Starting with the expression in Eq. | and following the steps in Suppl. D, we can write Lgiffusion as:

T

Liffusion = — Z DiL[qg (Xs(5) [ Xe(3) X0, 2)||Po (X () [ Xt(3)  2)]
T
> (e — eo(xt,2, (i) " diag (v(z, 5(i)) — (2, £(i))) (e — €a(x1,2,1(i)))] (10)

2

N =

.
U

Continuous-Time Diffusion. We can also consider the limit of the above objective as we take an
infinitesimally small partition of ¢ € [0, 1], which corresponds to the limit when 7" — oo. In Suppl. D
we show that taking this limit of Eq. 10 yields the continuous-time diffusion loss:

1 .
Lgitfusion = _iEtN[O,l} [(er — eo(xt,2,t)) T diag (Viy(z, 1)) (€ — €g(xt,2,1))] (11)

where V;7(z,t) € R? denotes the Jacobian of ~(z, t) with respect to the scalar ¢. We observe that
the limit of 7' — oo yields improved performance, matching the existing theoretical argument by
Kingma et al. (2021).

3.4.2 AUXILIARY LATENT LOSS

We try two different kinds of priors for py(z): discrete (z € {0,1}™) and continuous (z € R™).

Continuous Auxiliary Latents. In the case where z is continuous, we select py(z) as N'(0,1,,).
This leads to the following KL loss term:

Dxu (4 (2[%0) Ipe (2)) = 5 (1 (x0) 1(x0)) + tr(3%(x0) — L) — log [2%(x0)]).

Discrete Auxiliary Latents. In the case where z is discrete, we select py(z) as a uniform dis-
tribution. Let z € {0,1}™ be a k-hot vector sampled from a discrete Exponential Family dis-
tribution py(z; 0) with logits . Niepert et al. (2021) show that z ~ py(z;0) is equivalent to
z = arg maxycy (0 + €4, y) where ¢, denotes the sum of gamma distribution Suppl. D.3, Y denotes
the set of all k-hot vectors of some fixed length m. For k£ > 1, To differentiate through the arg max
we use a relaxed estimator, Identity, as proposed by Sahoo et al. (2023). This leads to the following

KL loss term: Dy.(q4(z]%0)[lpo(z)) = — X7 4o (2[x0): log(may (z]x0):).

3.5 THE VARIATIONAL LOWER BOUND AS A LINE INTEGRAL OVER THE NOISE SCHEDULE

Having defined our loss, we now return to the question of whether it is invariant to the choice of
diffusion process. Notice that we may rewrite Eq. 11 in the following vectorized form:

1 1
Ldiftusion = _5/ (x0 — xo(%4,2,t))* - Viv(z,t)dt (12)
0

where the square is applied elementwise. We seek to rewrite (12) as a line integral f: £(r(t)-Lr(t)dt
for some vector field f and trajectory r(¢). Recall that v(z, t) is monotonically decreasing in each
coordinate as a function of ¢; hence, it is invertible on its image, and we can write t = v 1 (v(z,t))
for some 1. Let Xo(Xy(,1), 2, V(2 1)) = X0(X,,-1(,,,. 1)), % V5 | (¥(2,1))) and note that for all ¢,
we can write X; as X,,(5 1); see Eq. 26, and have X¢ (X, (z,1), 2, V(2, 1)) = Xg(X¢,2,t). We can then

write the integral in (12) as fol (X0 — Xo(Xp(n,1), 2, V(2,1)))? - Lv(z,t))dt, which is a line integral

with f = (x0 — X¢(Xp(2,4), 2, v(z,t)))? and r(t) = v(z,t).

Thus the diffusion loss, Lgifrusion, can be interpreted as a measure of work done along the trajectory
v(z,t) in the presence of a vector field f. Different "trajectories” yield different results for most
integrands, unless f is conservative. Although we do not guarantee that no model or dataset will
yield a conservative f, we observe empirically that across our experiments, swapping out different
multivariate v yields different values of the ELBO. In D.6, we show that variational diffusion models
can be viewed as following only linear trajectories v (¢), hence their objective is invariant to the noise
schedule. Our method learns a multivariate v that yields paths corresponding to a better ELBO.
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Table 1: Likelihood in bits per dimension (BPD) on the test set of CIFAR-10 and ImageNet. Results
with “/” means they are not reported in the original papers. Model types are autoregressive (AR),
normalizing flows (Flow), variational autoencoders (VAE), or diffusion models (Diff).

Model Type | CIFAR-10 ({) | ImageNet ({)
PixelCNN (Van den Oord et al., 2016) AR 3.03 3.83
PixelCNN++ (Salimans et al., 2017) AR 2.92 /
Glow (Kingma & Dhariwal, 2018) Flow / 4.09
Image Transformer (Parmar et al., 2018) AR 2.90 3.77
DDPM (Ho et al., 2020) Diff 3.69 /
Score SDE (Song et al., 2020) Diff 2.99 /
Improved DDPM (Nichol & Dhariwal, 2021) | Diff 2.94 /
VDM (Kingma et al., 2021) Diff 2.65 3.72
Flow Matching (Lipman et al., 2022) Flow 2.99 /
i-DODE* (Zheng et al., 2023) Diff 2.61 /
i-DODE* (Zheng et al., 2023) Flow 2.56 3.69
MULAN (Ours) Diff 2.60 3.71
MULAN (Ours) Flow 2.55 3.67

4 EXPERIMENTS

This section reports experimental results on the CIFAR-10 (Krizhevsky et al., 2009) and downsampled
ImageNet (Van Den Oord et al., 2016) datasets.

Setup We implement our methods based on the open-source codebase of Kingma et al. (2021)
using JAX (Bradbury et al., 2018), and use the exact same hyperparameter settings and network
architecture for the denoising model. Our network that models g, (z|x) is a sequence of 4 Resnet
blocks with the number of channels set to 128 which is much smaller than the denoising network
which has 64 such blocks. Like VDM, we train our models for 10M steps. We chose to employ a
discrete prior for the auxiliary latent space rather than a Gaussian prior due to training instability
issues that frequently led to NaNs. In all our experiments, we set the parameters for the discrete latent
distribution as m = 32 and k = 8.

4.1 LIKELIHOOD ESTIMATION.

In Table 1, we present the likelihood estimation results for MUL AN, and other recent methods on
CIFAR-10 and ImageNet. We apply MULAN on top of the VDM model (Kingma et al., 2021),
endowing it with a learned multivariate noising schedule conditioned on auxiliary latent variables.
We find that these new components result in a significant improvement in BPD over a vanilla VDM.

Overall, our method outperforms all existing published works except for Zheng et al. (2023). Their
approach formulates the diffusion models as an ODE and employs a new parameterization of
po(xs|x:) as well as an importance sampled gradient estimator. These improvements to the model
are orthogonal to our work on the forward process, and we expect that combining them can further
improve performance.

Additionally, our method also improves training speed. Specifically, MULAN achieves an equivalent
BPD score to a vanilla VDM on CIFAR-10 after 3M training steps, whereas VDM was trained to
10M steps to reach the same score. Likewise, on ImageNet, MULAN achieves a matching BPD score
with VDM after 1M training steps, while VDM was trained for 2M steps.

4.2 ABLATION ANALYSIS

Due to the expensive cost of training, we only conduct ablation studies on CIFAR-10 with a reduced
batch size of 64 and train the model for 2.5M training steps. In Fig. | we ablate each component of
MULAN: when we remove the conditioning on an auxiliary latent space from MULAN such that we
have a multivariate noise schedule that is solely conditioned on time ¢, our performance becomes
comparable to that of VDM, on which our model is based. Modifying our method to have a scalar
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(a) Ablations for different components of MULAN. (b) Ablations for noise schedules with different func-
MULAN w/o aux. latent refers to MULAN where tional parameterizations: sigmoid, polynomial, and
the noise schedule isn’t conditioned on an auxililary a monotonic neural network. We observe that the
latent variable. MULAN w/o multivariate refers to polynomial parameterization performs the best.

MULAN with a scalar noise schedule. VDM uses a
scalar noise schedule and doesn’t have an auxiliary
latent space. We see that MUL AN performs the best.

Figure 1: Ablation studies were conducted on on CIFAR-10 with a reduced batch size and fewer
training steps.

noise schedule conditioned on the auxiliary latent variable z leads to slightly lower performance than
VDM in the initial training stages. However, it gradually converges toward VDM.

Loss curves for different noise schedules. We investigate different parameterizations of the noise
schedule in Fig. |. Among polynomial, sigmoid, and monotonic neural network, we find that the
polynomial parameterization yields the best performance. The polynomial noise schedule is a novel
component introduced in our work.

Replacing the noise schedules in a trained denoising model. We also wish to confirm ex-
perimentally our claim that the learning objective is not invariant to our choice of multivari-
ate noise schedule. To investigate this, we replace the noise schedule in the trained denoising
model with two alternatives: MULAN with scalar noise schedule, and a linear noise schedule:
Yo(2,t) = (Ymin + (Ymax — Ymin)t)1a; see (Kingma et al., 2021). For both the noise schedules the
likelihood worsens to the same value as that of the VDM: 2.65. This experimental result strongly
supports our theory that all scalar noise schedules are equivalent, as they compute the likelihood
along the same diffusion trajectory. It also underscores that it’s not the multivariate nature or the
auxiliary latent space individually, but the combination of both, that makes MULAN effective.

Examining the noise schedule. Since the noise

schedule, 7¢(Z’ t) is multivariate, we expect to CIFAR-10: Each curve corresponds to a pixel

learn different noise schedules for different in-
. . . . 500
put dimensions and different inputs z ~ py(z).
In Fig. 2, we take our best model trained on 400
CIFAR-10 and we visualize the variance of the 7}
noise schedule at each point in time for different 3 300
pixels, where the variance is taken over 128 sam-  ~ 5qq
ples z ~ py(z). We note increased variation in &
the early portions of the noise schedule. However, 1001
on an absolute scale, the variance of this noise is ol 4 ]
smaller than we expected. We also tried to visual- oo o o 0B o
ize noise schedules across different dataset images t

and across different areas of the same image. We

also generated synthetic datasets in which each Figure 2: Noise schedule visualizations for MU-

datapoint contained only high frequencies or only LAN on CIFAR-10. In this figure, we plot the

low frequencies. Surprisingly, none of these ex- variance of v4(z,t) across different z ~ py(z)

periments revealed human-interpretable patterns where each curve represents the SNR correspond-
ing to an input dimension.
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in the learned schedule, although we did observe

clear differences in likelihood estimation. We hy-

pothesize that other architectures and other forms of conditioning may reveal interpretable patterns of
variation; however, we leave this exploration to future work.

5 RELATED WORK AND DISCUSSION

Diffusion models have emerged in recent years as powerful tools for modeling complex distributions
(Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al., 2020). The noise schedule, determining
the amount and type of noise added at each step, plays a critical role in diffusion models. Chen
(2023) emphasize that different noise schedules can significantly impact image quality in generated
outputs, though they do not learn these schedules but evaluate models under various handcrafted noise
schedules. Kingma et al. (2021) showed that the likelihood of a diffusion model remains invariant
to the noise schedule with a scalar noise schedule. We also take inspiration from the principles of
physics (Spinney & Ford, 2012) and show that the ELBO is no longer invariant to multivariate noise
schedules.

Recent works, including Hoogeboom & Salimans (2022); Rissanen et al. (2022); Pearl et al. (2023),
have explored per-pixel noise schedules, yet none have delved into learning or conditioning the
noise schedule on the input data itself. Yang & Mandt (2023); Wang et al. (2023) have explored
diffusion models with an auxiliary latent space, where the denoising network is conditioned on a
latent distribution. In contrast, our model conditions the noise schedule on the latent distribution,
promoting the clustering of inputs that would benefit from similar noise processes.

Song et al. (2020) show that the continuous formulation of the diffusion process Kingma et al.
(2021) can be modeled using a stochastic differential equation (SDE) and the marginals of the
corresponding reverse process for this SDE can be modeled using an equivalent ODE called the
diffusion ODE.Notably, diffusion ODEs represent special formulations of neural ODEs, akin to
continuous normalizing flows (Chen et al., 2018; Si et al., 2022; 2023). Some train diffusion ODEs
using the exact likelihood evaluation formula of ODE (Grathwohl et al., 2018). Given the expensive
ODE simulations, another approach involves training neural ODEs by matching their trajectories to
a predefined path, such as the diffusion process (Song et al., 2020; Lu et al., 2022; Lipman et al.,
2022; Liu et al., 2022). Zheng et al. (2023) train a diffusion model with a flow-matching objective
and importance sampling, differing from the approach used in VDM (Kingma et al., 2021).

6 CONCLUSION

In this study, we introduce MUL AN, a context-adaptive noise process that applies Gaussian noise
at varying rates across the input data. We present theoretical arguments challenging the prevailing
notion that the likelihood of diffusion models remains independent of the noise schedules. We
contend that this independence only holds true for univariate schedules, and in the case of multivariate
schedules like MUL AN, different diffusion trajectories yield distinct likelihood estimates. Our
evaluation of MULAN spans multiple image datasets, where it outperforms state-of-the-art generative
diffusion models. We anticipate that our approach will stimulate further research into the design of
noise schedules, not only for improving likelihood estimation but also for enhancing image quality
generation (Parmar et al., 2018; Song et al., 2020); a stronger fit to the data distribution also holds
promise to improve downstream applications of generative modeling, e.g., decision making or causal
effect estimation (Nguyen & Grover, 2022; Deshpande et al., 2022; Deshpande & Kuleshov, 2023;
Rastogi et al., 2023). Broadly speaking, MULAN represents a promising avenue for advancing
generative modeling.
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A STANDARD DIFFUSION MODELS

We have a Gaussian diffusion process that begins with the data x(, and defines a sequence of
increasingly noisy versions of xg which we call the latent variables x;, where ¢ runs from ¢t = 0 (least
noisy) to ¢t = 1 (most noisy). Given, 7', we discretize time uniformly into 7" timesteps each with a
width 1/T. We define ¢(¢) = 4/T and s(i) = (: — 1)/T.

A.1 FORWARD PROCESS

q(xt]xs) = N(ayx0, 07, 1) (13)
where
s = = (14)
Qs
2
Qg
=0t~ (1)

A.2 REVERSE PROCESS

Kingma et al. (2021) show that the distribution ¢(xs|x¢, X¢) is also gaussian,

9 2 2 2
Q|50 g o-t\sas USUt|s
Q(Xs|xt7x0) =N Hqg = 5—X¢ + 520, z:q = 72177, (16)
g% g% Oy

Since during the reverse process, we don’t have access to xp, we approximate it using a neural
network xg(x¢, t) with parameters 6. Thus,

2 2 2 2
Q|50 O1s%s 0504
po(Xalxt) = N [ sy = —50%, + —1° o (x4, 1), Bp = ——L1,, (17)
0% Ot 0%

A.3 VARIATIONAL LOWER BOUND

. . . . . T
This corruption process ¢ is the following markov-chain as ¢(x0.1) = ¢(x0) (Hi:l q(X¢ (i) \xs(i))).
In the reverse Rrocess, or the denoising process, py, a neural network (with parameters 6)
is used to denoise the noising process q. The reverse Rrocess factorizes as: py(xg.1) =
po(X1) HiTzl Po(Xs(i)[Xe(iy)- Let Xo(x¢,t) be the reconstructed input by a neural network from
x¢. Similar to Sohl-Dickstein et al. (2015); Kingma et al. (2021) we decompose the negative lower
bound (VLB) as:
Po(Xe(0):4(T))
e (Xe(1):t(1)|%0)
= ]Ext(l)NQ(xt(l)lx())[i Ingg(Xo|Xt(1))]
T

+ Z Extm Ix0) DKL [po (Xs(z‘) |Xt(z')) HQ¢(Xs(i) |Xt(i)a Xo)]
=2

+ Dkr[po (x1)]q¢ (x1]%0)]
= B, 1y ~axeqay Ix0) [~ 108 Do (X0 |%¢(1))]

—logpy(x0) < Eg, {— log

Lrecons

T
+ 5B (0,1, im0 12,7y DRLPO (i) X0 106 (s 3) a2 X0)]

L dgiffusion
+ Dk[po(x1) [l g (x1[x0)] (18)
L:prior
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The prior loss, Lpyrior, and reconstruction loss, Lrecons, can be (stochastically and differentiably)
estimated using standard techniques; see Kingma & Welling (2013). The diffusion loss, Laitusion,
varies with the formulation of the noise schedule. We provide an exact formulation for it in the
subsequent sections.

A.4 DIFFUSION LoOSS

For brevity, we use the notation s for s(¢) and ¢ for ¢(7). From Eq. 27 and Eq. 28 we get the following
expression for q(x|x¢,Xp):

D (q(x¢s %1, %0) [[po (%s[x1))

1 _ - 12|
1 _

= i(ﬂq - Hp)Tzo 1(,uq — Hp)

Substituting feq, 34, tp, 2 from equation 17 and equation 16; for the exact derivation see Kingma et al. (2021)
1

= 5 (v(s) = (1) l|(x0 = xo(x2, )3 (19)

Thus Ediffusion is giVCIl by

Ldiftusion

. T
= lim EIEeNN(O,I,,L),i~U{2,T}DKL[pa(xs(i)|Xt(i))HQ¢(xs(i)|Xt(i)7XO)]

T—o0

T—>o<>2‘

T
. 1
= Jim 2 S Beion (005) — u(0) o — xo0x0, )3
=2

T
1 .
= gEewiony | 3 (/) = v(0) o = ol t>|§]
1 [ a 1
— SEeentony | Jlim ST (0(s) = w(8) o — xo(xes )
L 1=2
d
Substituting Tlim T(v(s) —v(t)) = @V(t) = 1/ (t); see Kingma et al. (2021)
—00
1 e / 2
= iEENN(O,In) V(t)|lxo — xo(x¢,t)||5 ]| dt (20)
LJO
In practice instead of computing the integral is computed by MC sampling.
1
= _iEeNN(O,In),tNU[O,l] [V (t)]|x0 — Xe(Xt,t)H%] 2n

B MULTIVARIATE NOISE SCHEDULE

For a multivariate noise schedule we have o, o € R"*™ where t € [0, 1]. o, o are diagonal
matrices. The timesteps s, ¢ satisfy 0 < s < ¢t < 1. Furthermore, we use the following notations
where arithmetic division represents element wise division between 2 diagonal matrices:

(0%
= —* (22)
(o7
2
at s
O't2|8 = 0'? — 0_‘2 (23)
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B.1 FORWARD PROCESS

slabes) = (e 3,) o

We can write x; explicitly in terms of the signal-to-noise ratio, v(t), and

Change of variables.
input x¢ in the following manner:

o
Vi = 2
i
We know o = 1 — o for Variance Preserving process; see Sec. 2.

1— o} _
o? t
2 2 Vi

Oy 1 and oy 1+v, (25)

+ vy

Thus, we write x; in terms of the signal-to-noise ratio in the following manner:

Xy (t) =uXo + orer; € ~ N(0,1,)

v(t) 1 .
= X0 + € Using Eq. 25 (26)
1+v(t) 1+wv(t)
B.2 REVERSE PROCESS
The distribution of x; given x; is given by:
oy .02 o2 oy olo?
q(xs]x¢, %0) = N (uq = e+ 1 x, 3, = diag | ——° Q27)
g o} g

Let x¢(x¢, t) be the neural network approximation for xo. Then we get the following reverse process:

« 50-3 0'28(15 . 0-50'25
po(Xs|xt) =N | pp = tl Xt + d 5—Xg(x¢, 1), 3, = diag ;l (28)
g g g
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B.3 DIFFUSION LOSS

For brevity we use the notation s for s(¢) and ¢ for ¢(i). From Eq. 27 and Eq. 28 we get the following
expression for q(x|x¢,Xo):

D (q(xs]x¢, %0) ||[po(Xs|x¢))

1
2

2

- _ b))
=35 ((l"q - Np)—rza 1(“(] — p) U1 (Eq2p1 - In) — log | q)

3

1 _
= -(pq — l‘p)—rze l(ﬂq — Hp)

Substituting ptq, pp, 2, from equation 28 and equation 27.

2
1 o-t|sa5
= — XO
2\ o}

t t t

T -1
2 22 2 2
atlsasx (xt,t) | diag Zs%tls atlsasx at‘sasx (x¢,1)
- o(x¢ 0~ o(X¢
o? ’ o? o? o? ’

1 o’f‘ a\ 0'2o't2| - a’f‘ o
_ - ¢ Td. s di s s di s S . ¢
2(x0 xg(X¢,t)) ' diag < o ) iag < o ) iag ( = ) (x0 — xg(x¢,t))

1

1
2

t

2 9 2
[ o’ T35 Qs

o S
:2(x0—xe(xt,t))Tdiag< t“z O =50 5 )(xo—xo(Xt,t))

o; oo
2

o2«
= —(xo — xe(xt,t))Tdiag < ;20_;> (x0 — xg(x¢,t))
tYs

Simplifying the expression using eq. 22 and eq. 23 we get,

1 . (a2 o
= 5(xo — xp(x, 1)) " diag (o’f — 022) (x0 — xg(x¢, 1))
Using the relation v(t) = a} /o} we get,
1 .
= §(X0 — xg (x4, 1)) Tdiag (v(s) — v(t)) (x0 — X¢ (%, 1)) (29)

Like Kingma et al. (2021) we train the model in the continuous domain with T" — oc.

Ldiftusion
T

. 1
= lim =Y Eeon(o,0,) DrL(@(Xs(s) [Xe (i) X0) o (Xs(i) [Xe(2)))
=2

T—>o<>24

T

.1 . .
= lim =Y Eeono,1,) (X0 — Xo (%), £(i))) T diag (Vi) — vig)) (%0 — Xo(Xe(), 1)

T—o0 2 4
=2

1

— —E ~
2 € N(Ovln)

1
= §Ee~/\/(o,1n)
Let jlglloo T(l/s(i)

1
= —K ~
2 e~N(0,1,,)

— Vi) =

T—o00 4
=2
d 1

lim T(Xo — Xg(Xt(Z-), t(z’)))Tdiag (Vs(i) — Vt(i)) (XO — Xg(Xt(Z-), t))*

T—o00 4 T
=2

B T
lim Z(Xo — xg(Xe(3), £(0))) T diag (Vo) — Vi) (X0 — Xo(Xe(s), t))]

all(t) denote the scalar derivative of the vector v () w.r.t ¢

:/Ol(Xo — xp(x, 1)) " diag (Zju(t)) (xo — Xa(Xt,t))dt} (30)

In practice instead of computing the integral is computed by MC sampling.

1 . d
= _iEewN(O,In),th[O,l] [(Xo — xg(x, 1)) " diag (dtu(t)> (x0 — XG(Xt»t)):| 3D
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Vmax T

Vmin 1 :

Vmin Vmax
Figure 3: Caption

B.4 VECTORIZED REPRESENTATION OF THE DIFFUSION LOSS

Let v(t) be the vectorized representation of the diagonal entries of the matrix v(t). We can rewrite
the integral in eq. 30 in the following vectorized form where ® denotes element wise multiplication
and (, ) denotes dot product between 2 vectors.

/01<x0 — xg(xi, 1) ding <§tv<t>) (0 =9 xe, 1)t

1! d
=3 / ((xp — xp(x¢, 1)) ® (%0 — Xg(x¢, 1)), d—u(t))dt
0 t
Using change of variables as mentioned in Sec. 3.2 we have
1! ~ ~ d
=5 [ {600 = Rt () © (k0 = Rl w0). Gl

Let f5(x0, (1)) = (%0 — Xo(Xp (1), ¥(t))) © (X0 — Ko (Xp (1), V(1))

— [ ol v(0). o) 32
0

t

Thus Lgifrusion can be interpreted as the amount of work done along the trajectory v(0) — v(1) in the
presence of a vector field fy(xg, v(z, t)). From the perspective of thermodynamics, this is precisely
equal to the amount of heat lost into the environment during the process of transition between 2
equilibria via the noise schedule specified by v(¢).

TODO

B.5 LOG LIKELIHOOD AND NOISE SCHEDULES: A THERMODYNAMICS PERSPECTIVE

A diffusion model characterizes a quasi-static process that occurs between two equilibrium distri-
butions: ¢(x¢) — ¢(z1), via a stochastic trajectory (Sohl-Dickstein et al., 2015). According to

17



Under review as a conference paper at ICLR 2024

Spinney & Ford (2012), it is demonstrated that the diffusion schedule or the noising process plays
a pivotal role in determining the "measure of irreversibility" for this stochastic trajectory which is

Iligg‘l’;g Pr(x0.1) represents the probability of observing the forward path xg.;

and Pp(x1.0) represents the probability of observing the reverse path x.¢. It’s worth noting that

log % corresponds precisely to the ELBO Eq. | that we optimize when training a diffusion

model. Consequently, thermodynamics asserts that the noise schedule indeed has an impact on the
log-likelihood of the diffusion model which contradicts Kingma et al. (2021).

expressed as log

C MULTIVARIATE NOISE SCHEDULE CONDITIONED ON CONTEXT

Let’s say we have a context variable ¢ € R"™ that captures high level information about xg.
ay(c), o¢(c) € R™™"™ are diagonal matrices. The timesteps s, ¢ satisfy 0 < s < ¢ < 1. Furthermore,
we use the following notations:

t(c)a ! (c) (33)
2(c) — af(c)o;*(c) (34)

The forward process for such a method is given as:

46 05:[%5,€) = N (@)%, 0%, () (35)

The distribution of x; given x is given by (the derivation is similar to Hoogeboom & Salimans
(2022)):

CM)(XS |Xt7 X0, C)

2 o2 (c)as(c o2(c)o? (¢
=N<Nq= atls(g)as(c)xt+ t\s(2) ( )X07 %, — diag <5()2t|5()>> (36)

o7 (c) oi(c) o;(c)

C.1 CONTEXT IS AVAILABLE DURING THE INFERENCE TIME.

Even though c represents the input x, it could be available during during inference. For example
c could be class labels (Dhariwal & Nichol, 2021) or prexisting embeddings from an auto-encoder
(Preechakul et al., 2022).

C.1.1 REVERSE PROCESS: APPROXIMATE

Let x¢(x¢, ¢; t) be an approximation for xg. Then we get the following reverse process (for brevity
we write Xg(X¢, ¢; t) as Xg):

po(Xs|xs,¢) = N (Mp _ atls(z)as (c) - at|s(02)(a;(c) o, 3, — ding (W))

oi(c) oi(c c

(37)
C.1.2 DIFFUSION LoSss
Similar to the derivation of multi-variate Lgifusion in Eq. 29 we can derive Lgifysion for this case too:
1 T d
Lgittusion = —§]E5~N(o,1n),twu[o,1] (%0 — xg(x¢, c5t))  diag aV(t) (x0 — xg(x¢, ¢ 1))
(33)
C.1.3 LIMITATIONS OF THIS METHOD

This approach is very limited where the diffusion process is only conditioned on class labels. Using
pre-existing embeddings like Diff-AE (Preechakul et al., 2022) is also not possible in general and is
only limited to tasks such as attribute manipulation in datasets.

18



Under review as a conference paper at ICLR 2024

C.2 CONTEXT ISN’T AVAILABLE DURING THE INFERENCE TIME.

If the context, c is an explicit function of the input x, things become challenging because xg isn’t
available during the inference stage. For this reason, Eq. 36 can’t be used to parameterize p,, X, in
po(xs|x¢). Let po(xs|xt) = N (pp(x¢, 1), Bp(x¢t, ) where p,,, 3, are parameterized directly by a
neural network. Using Eq. 4 we get the following diffusion loss:

Laitrusion = T Eiovrjo, 71Dk (0(Xs(5) [Xe(i)» X0) [P0 (X56) [%e(3)))

T

_ T _ >
=E,, §(l‘q - IJ’P)TEG 1(#q — pp) + b (tr (qup t— In) — log |Eq||) (39)
p

term 1 term 2

C.2.1 REVERSE PROCESS: APPROXIMATE

Due to the challenges associated with parameterizing pt,,, 3, directly using a neural network we
parameterize c using a neural network that approximates c in the reverse process. Let xg(x¢, t) be an
approximation for xg. Then we get the following reverse Rrocess (for brevity we write x¢ (X, t) as
Xy, and cg denotes an approximation to c in the reverse process.):

po(Xs|x¢)

Y (/J'p _ aus(ca)oilen) "f\s(c")o‘s(‘”)xg, %, — diag (‘W)) (40)

a?(ce) o?(ce) a7 (co)

Consider the limiting case where 1" — oo. Let’s analyze the 2 terms in Eq. 39 separately.

Using Eq. 4 and Eq. 6, term 1 in Eq. 39 simplifies in the following manner:

. T _
lim —(pg — NP)TEO I(Nq — Hp)

T—oo0 2
d

T ()i — (Bp)i)?

1 - q/t P 41
75 2 ; (Z0): “D
Substituting 1/ T as §

d 1

lim X
50+ z:zl §0:2(xg,t — 6) (1 _ vi(xe,t) )

vi(xg,t—9)

[ai(x,t_é) Vi(x’t) Zt+ai(xvt76) (11}1()(’t)6)> "

a;(x,t) vi(x,t—0) vi(x,t—

B ai()(e’t — 5) I/i(X.97t) Zi + ai(X97t _ (5) (1 _ I/z(XQ,t)(S)) (l‘g);| 42)

a;(xg,t) vi(xg,t—9) vi(xg,t —

Consider the scalar case: substituting 6 = 1/T,

1
lim

X
020 502 (xp,t — 0) (1 — 711(”)2:9;)6))

alx,t—96) v(x,t) v(x,t)
[ a(x,t) V(x,t—6)zt+a(x’t_§) (1_1/(x,t—5)>x
2
a(xg,t —0) v(xg,t) v(xg,t)
B a(xg,t) V(xa,t—é)zt+a(xe’t_5) (1 - V(Xgﬂf—é)) Xa] “3)
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Notice that this equation is in indeterminate for when we substitute § = 0. One can apply L’'Hospital
rule twice or break it down into 3 terms below. For this reason let’s write it as

expression 1: lim

lxla(x,t—é) v(x,t) Zt—l—a(x,t—é)(l—yy(x’t) )X

506 alx,t) v(x,t—20) (x,t —0)
—af&ibayéi?”®%+a@%t—®(l—Véi?“a>”1 m“
‘agaibauéi?ﬂ®“+“““t‘®(l‘uéf?ﬂ®>x42 "

Applying L’Hospital rule in expression 1 we get,

Cv(x,t) —v(x,t)d (x,t) + a(x, )V (x,1)

d (a(x,t—a) v(x,t) )

s\ alx,t) v(x,t—20) 5o a(x,t) v2(x,t)
= (x,t)  V(x,t)
= 46
a(x,t) + v(x,t) (46)
d v(x,t) (x,1)
il t—0([1- ——"2Y =— t 47
et =9) ( V(x, t —5)) . ) “7)
—a/ 7t ! at ! 7t ' at
o), VD) | dGat) V00, s
a(x,t) v(x,t)  a(xg,t) v(xg,t)
2
V'(x,t) V' (xg,t) v(x,t)
—a(x, ) 20 Xt 49
R ey S S BT 49
Thus the final result:
d - (th) V/(X,t) Otl-/(Xg,t) Vil(x97t)
> + + — z
P a;(x,t) vi(x,t)  ai(xe,t) vi(xg,t)
2
v (x,1) v’ (xp,t) vi(x,t)
— &y 7t 7 at
T Ty R B
t)
_ATq v(x,
g(w@¢>
B —a’(x,t) v/ (x,t) o’ (xg,t) B v/ (xg,t) Z — ool v/ (x, t)x alx V'(xg,t)x
where A = {( (x. 1) + V1) + (%0, %) V(xe,t)) t (x,t) v(x D) + ox(xg, t) T 6 (50)

For the second term we have the following:
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. T —1 |Eq|
Tlgnoo 5 (tr (qup — In) — 10g ‘Eip|

steps todo
g (om0 (568 fo e (1 228) 1)

diag (02(C75)(1 - ZEE?))) ‘ ]

— log

diag (02(09, s)(1 - 55223>) ‘

d [ oi(c,s) (1 — '”(c’t))

v,(c,s)

i=1 Ui2(097 S) (1 B %)

_2 _ Vi(C,t)
g; (C,S) (1 yi(c?s))

o (1)
02(cs.5) (1 - o)

—1—1log

(52)

2 _vi(et)
o;°(c,s) (1 U:(C,S) >

0’12(0978)(1—752523:3

Letp; =

The sequence lim7_, o % Zle (pi — 1 — log p;) converges iff limy_, oo Zle(pi —1—logp;) =0.

Notice that the function f(z) =z — 1 —logz > 0 Vz € R and the equality holds for + = 1. Thus,
the condition limp_, o % Z?Zl(pi — 1 —logp;) holds iff limy_, oo p; =0 Vi € {1,...,d}. Thus,

i pi =1
[ o) (1-2EY)
— lim

vi(ce,s)

T—00 0'2‘2((30; 8) (1 . w(ce,t))
Substituting 1/T as §,
' o2(c,t — ) (1 _ ;;;;fg))
— lim

§—0t O'iQ(Cg,t _ é‘) (1 __vi(ce,t) )

vi(co,t—0)

=1

v,(c,t)
olet) o (1 ween)

o:%(co,t) 550+ 1_%

Applying L’Hospital rule,

0’,‘2<C,t) %C(?)t))
i2(cp,t) | =vileot)

ai*(co, 1) Vv:(Ceyet)

O'iQ(C,t) ( Vi/(cat)'/i(c97t) ) -1 (53)

0:2(co,t) \wi(e, t)vi'(co,t))

=1

—

-

In the vector form the above equation can be written as,
o?(c)vi(cy)Viv(e,t)

2 (con(e)Vlent) (54)

Eq. 54 holds if:

* Ty = xg i.e. the unet can perfectly map x; to x¢ V¢ € [0, 1] which is unrealistic.
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9
c = class labels, T=1k

8 —— € =Xg, T=100k
z —— ¢=x0, T=10k
oS 71 c=Xg, T=1k
~ —— VDM
]
56
(%]
w0
O 51
i
E a4l

3<

0 50k 100k 150k 200k 250k
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Figure 4: For ¢ = “class labels” or ¢ = x( the likelihood estimates are worse than VDM. For ¢ = x
we see that the VLB degrades with increasing T whereas for VDM and MULAN it improves for
increasing T; see Kingma et al. (2021). This empirical observation is consistent with our mathematical
insights earlier. As these models consistently exhibit inferior performance w.r.t VDM, in line with
our initial conjectures, we refrain from training them beyond 300k iterations due to the substantial
computational cost involved.

 Clever parameterizations for o, o, v that ensure Eq. 54 holds.

Because of aforementioned challenges we evaluate this method with finite 7' = 1000. We demonstrate
the performance of the model empirically in Fig. 4.

C.2.2 RECOVERING VDM

If we substitute v;(c),v:(cy) with v(t) (since the SNR isn’t conditioned on the context c),
oi(cy), o+(c) with oy and ai(cg), o (c) with e, Eq. 41 reduces to the intermediate loss in VDM
ie. £(xg —x0) " (Vir(t)) (xo — X0) and Eq. 51 reduces to 0.

C.3 EXPERIMENTAL RESULTS

In Fig. 4 we demonstrate that the multivariate diffusion processes where ¢ = “class labels” or ¢ = x
perform worse than VDM. Since a continuous time formulation i.e. 7" — oo for the case when ¢ = x
isn’t possible (unlike MULAN or VDM) we evaluate these models in the discrete time setting where
we use 7" = 1000. Furthermore we also ablate 7" = 10k, 100k for ¢ = xq to show that the VLB
degrades with increasing T whereas for VDM and MULAN it improves for increasing T; see Kingma
et al. (2021). This empirical observation is consistent with our mathematical insights earlier. As these
models consistently exhibit inferior performance w.r.t VDM, in line with our initial conjectures, we
refrain from training them beyond 300k iterations due to the substantial computational cost involved.

D MULAN: MULTIVARIATE LATENT AUXILIARY VARIABLE NOISE
SCHEDULE

D.1 NOISE REPARAMETERIZATION
Since the forward pass is given by x; = o (z)x¢ + 0+(z)e; we can write the noise €, in terms of
Xg, X in the following manner:

x; — o (z)Xg

€ = T (55)
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Like Dhariwal & Nichol (2021); Kingma et al. (2021), we parameterize the denoising model in terms
of a noise prediction model ey (x;, z, t),

€9(x¢,2,t) = a[l(z) (x¢ — ar(z)xp(x¢,2,1)) (56)

D.2 POLYNOMIAL NOISE SCHEDULE

Reasons for choosing a degree 5 polynomial. Let’s say a scalar-valued polynomial, f(z), we
require it to be monotonically increasing, i.e. % f(x) > 0 for z € R, and for some combination
of its coefficients have its derivative, 4= f(z) = 0 at least twice in # € R. For - f(2) = 0 be at
least twice, its degree has to be at least 2. To ensure - f ( ) > 0, we parameterize -- f(z) in the
following manner: £ f(z) = (az? + bz + ¢)2. This way - f(x) is always positive and can assume

a value of 0 twice for some combination of (a, b, c¢) € R3. Thus f(x) takes the following functional
form:

f(z) = /(ax2 + bx + ¢)?dx

2 b b% +2
:a5 +% 4 % 3 4 bea? 4 o + constant. (57)

~(c,t) as a degree 5 polynomial. For the above-mentioned reasons we (c,t) as a degree 5
polynomial in ¢.

B (e);5 | aleble) 1, o) +2a(EE) 3 () ()2 4 d (o)t
7¢(C7 t) = ’7min+(7max_7min) a25(c) n a(c)Zb(c) n b(c)2+2ga(c)d(c) n b(C)d(C) n d2(c)

(58)
Notice that v4(c, t) has these interesting properties:
* Is an increasing function in ¢ € R which is crucial as mentioned in Sec. 3.5.
* Yp(c,t =0) = Ymin and yg(c, t = 1) = ymax is ideal; see (Zheng et al., 2023).

* Its time-derivative i.e. V;74(c,t) can be zero twice in ¢ € [0,1]. This isn’t a necessary
condition but it’s nice to have a flexible noise schedule whose slope w.r.t ¢ can be O at the
beginning and the end of the diffusion process.

and its time derivative, V;7y4(c, t) can assume a value of 0 twice:

Thus ~,4(c, ) can be written as:

c,t) = Vi o~ a(c)t® +B( )t4+d(c) é(C)t2+f'(c)t
Y6(C,t) = Ymin + (Ymax 'Ymm)< a(c) + b(c) + d(c) + €'(c) + f'(c) )

where

a(c) = aZéc)

be) = 2L

o) = DO+ (e

&(c) = b(c)d(c)

f(c) = d?(c)

D.3 SuM OF GAMMA DISTRIBUTION

Niepert et al. (2021) show that z ~ pg(z; 6) is equivalent to z = arg max,cy (6 + €4, y) where €, is
a sample from Sum-of-Gamma distribution given by

SoG(k, T, s) <Z Gamma( k) log s) (59)
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where s is a positive integer and Gamma(ca, ) is the Gamma distribution with («, 8) as the shape
and scale parameters.

D.4 VARIATIONAL LOWER BOUND

In this section we derive the VLB. For ease of reading we use the notation x; to denote x;(;) and
X¢—1 to denote X;(;_1) = X,(;) in the following derivation.

— log pe(x0)
[ pg(Z,X():T)
<E —log ———————
= | 7% gy (g, xar[x0)
[ pe(XO;T—1|Z,XT) ]
=K —log——————"——= —lo xr) — lo z
a | 7108 %) g po(x1) — log pe(z)
[ po(X0:7—1|2, XT) 1 }
=K —lo — lo — lo x7) — lo z
a | 7108 T x0) e g po(xr) — log pe(z)
[ po(X0:7—-1|2, XT) po(z) }
=E —log—/———+—""> —lo X log —————
d¢ I g q¢(X1'T|Z,XO) ng( T) g ( |X0
[ po(x1-12, %) po(=)
=K — log——————— —1Io X log —————
@ Z 9o (X¢t|Xt—1,2,%0) gpo(xr) —log ( xo0)
r T
pe(X0|Z X1) Po(Xt—1]2, X¢) po(2)
=E - — log————————— —logpo(x1) — log ————
o |8 o)~ 2% e 1,2, %0) (er) = log ooy
[ pe(xolzxi) o px |2, %1)q6 (%4 1], %0) po(2)
—F _log POX0 1 log 0 (Xt—1 t)qp (Xt—1 0 1o <) —Io 0
o | 718 G 1) 2t G s 2o Gl ) BP0 0B s
[ po(x0|z,%x1) ) po(X¢—1|2, X¢) qo(xt—1]2,%0) po(z)
) _log 2OAROIZ R1) lo L og M—lo x7) — log —£%)
| 7% g (xilx0.2) 2:2 ® G0 (k1 x0, 2, %0) Z Golxilmxe) BRI OB )
[ (x0|z,x1) L Xt—1|2,X¢) (%12, o) (z)
—E,, _logpe 0 1 Zlog Po(Xe—1 ) _log q(X1|z, To — log pe(xr) — log Po
| o (x1]x0,2) = qo(xe-1]x¢,2,%0) g (%72, %0) q¢(2[x0)
[ a p (Xe-1]2,%1) 1 po(2)
=K —lo Xo|z, x ATl i —lo — lo x7) — log —£R2
qd’ 270 (ol x1) ; Go(xi—1lxe,2,%0) © qo(xr]2, X0) Bpo(xr) % 4o (alxo)
[ S px |2, %1) po(xr) po(2)
=K —lo Xo|z,x 01%e—1 t — lo O\ RT —1 o
o |7 loBpobxole x) 2 Go(xiilxe,z, %) ao(xrlzxe) s (zlxo0)
T
= Eq, | —logpe(xo|z,x1) + > Div[pe(xe—1]2, xt)l|gs (xe—1x2, 2, %0)]
l—"l’&COﬂS t:2
L L giffusion
+Eq, | Dxu[pe(x7)llgs (x1|2,%0)] + Dxi[ps(2)|lg(z]x0)] (60)
L:prior lelem
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Switching back to the notation used throughout the paper, the VLB is given as:

— log pa(x0)
T
=E,, | —logpe(xo|z,x1)+ Z Dk [po (Xs (i) |2, Xe(0)) 196 (Xs(6) [Xe (i) > 2, X0)]

Lrecons
L dgiffusion

+Eq, |Dxrlpo(x1)lgs(x7|2,%0)] + Dxi[po(2)[|q(2z]x0)] (61)

Loprior Liatent

D.5 DIFFUSION LOSS

To derive the diffusion loss, Lgirusion in Eq. 9, we first derive an expression for
Dk1.(¢(xs|2, X1, %0)||po(xs|2, %)) using Eq. 4 and Eq. 6 in the following manner (details in

Suppl. D):

Dxr ¢ X5|Z Xt7X0)||p9(X«5IZ Xt))

_ 2, |
( (g, — (N% — pp) (B, %, - L,) —log |Eq¢\
p

(62)

N~ N

((x0 — %) Tdiag(v(z, s) — v(z,t))(x0 — xg))

Let limy_,oo T'(vs(2) — vi(2)) = —Viv(z,t) be the partial derivative of the vector v(z,t) w.r.t
scalar t. Then we derive the diffusion loss, Lifusion, fOr the continuous case in the following manner
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(for brevity we use the notation s for s(i) = (i — 1)/7 and ¢ for t(i) = i/T):

‘Cdiffusion
T

. 1
= Hm 3 Z; Eenr(0,1,,) DL(q(xs[%¢, X0, 2) |po (Xs]x¢, 2))

Using Eq. 62 we get,
T

= Jim D Eenaron, (50 = X1, 1) Tding (+((0) 2) = (1), 2)) (50 = (o0, £0)

T
1 . . . . . a1
= tEcovon [Tlggo D7 = ol ) ding (50 2) = (10).)) (50 — s 1)
Using the fact that Tlim T (v(s,z) — v(z,t)) = =V (t, z) we get,

_ —%EtN{O7,,,)1} [0 — X (xe, 1)) T (Vv (2) (x0 — % (2, 1))]

Substituting xo = o *(z)(x; — 0+(2)e;) from Eq. 55 and

Substituting xg (x¢,2;t) = o; *(2)(x: — o+(z)ep (%, ) from Eq. 56 we get,

= —%Em[o,l] {(ét —eo(x, 1)) " (Utz(z) X VtVt(Z)> (er — 69(Xtvt))}

a;(z)

Let v~ ' (z, t) denote the reciprocal of the values in the vector v (z, t).

= 5 Baion [(e0 — colox 1)) Tdiag (17 (1)(2) V() (e — eoxi, )]

Substituting v(z, t) = exp(—~(z, t)) from Sec. D.]

= —%Em[o,l} [(er — €a(x¢, 1)) " diag (exp (¥(z, 1)) Viexp (—v(z, 1)) (e — €a(x4, 1))]

= SErion (60 — colxi, 1)) ding (exp (y(z, 1)) exp ({2, ) Ver(5, 1)) (et — o3, 1)

1

= §]Et~[0,l] I:(Et — Eg(Xt, t))leag (Vt"/(z, t)) (Et — GQ(Xt, t))} (63)

D.6 RECOVERING VDM FROM THE VECTORIZED REPRESENTATION OF THE DIFFUSION LOSS

Notice that we recover the loss function in VDM when v(z, t) = v(t)14 where v; € RT and 14
represents a vector of 1s of size d and the noising schedule isn’t conditioned on z.

1 d !
/0 <f9(xo,l/(z,t))’%’/(t)>dt:/0 (fy(x0, (1)), — (v(t)1n))dl
:A <f0(X07V(t)),1d>%V(t)dt

L q 1
_ / (1) £ (0, (1) I

1
d
= [ e = ot @) (6

fol Ly(t)|l(x0 — Xo(Xu(r), v(t)))||3dt denotes the diffusion 10ss, Lgifiusion, as used in VDM; see
Kingma et al. (2021).

E SUBSET SAMPLING

Sampling a subset of k items from a collection of collection of n items, z1, x,...,xs belongs
to a category of algorithms called reservoir algorithms [TODO]. In weighted reservoir sampling,
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every x; is associated with a weight w; > 0. The probability associated with choosing the sequence
Swrs = [i1,12,...,1] be a tuple of indices. Then the probability associated with sampling this
sequence is

(65)

Efraimidis & Spirakis (2006) give an algorithm for weighted reservoir sampling where each item
1

wy

is assigned a random key ; = u, * where u; is drawn from a uniform distribution [0, 1] and w; is
the weight of item x;. Let TopK(r, k) which takes keys r = [r1, 79, ..., r,] and returns a sequence
[i1,42,...,ig]. Efraimidis & Spirakis (2006) proved that TopK(r, k) is distributed according to
p(Swrs|W)-

Let’s represent a subset S € {0, 1}" with exactly k non-zero elements that are equal to 1. Then the
probability associated with sampling .S is given as,

p(Slw) = Z P(Swrs|W) (66)

Swrs EII(S)

where TI(.5) denotes all possible permutations of the sequence .S. By ignoring the ordering of the ele-
ments in Sy we can sample using the same algorithm. Xie & Ermon (2019) show that this sampling
algorithm is equivalent to TopK(#, k) where # = [, 72, ..., 7] where 7; = — log(—log(r;)) =
log w;+ Gumbel(0, 1). This holds true because the monotonic transformation — log(— log(x))
preserves the ordering of the keys and thus TopK(r, k) = TopK(%, k).

Niepert et al. (2021) show that adding SOG noise instead of Gumbel noise leads to better performance.

And hence, given logits log w, we sample a k-hot vector using TopK(logw + €). We choose a
categorical prior with uniform distribution across n classes. Thus the KL loss term is given by:

- Z w? log (n%) (67)

F MODEL ARCHITECTURE

Our model architecture is extremely similar to VDM. The UNet of our pixel-space diffusion has an
unchanged architecture from Kingma et al. (2021). We change the noise scheduling from a learned
linear one to a fifth degree polynomial as seen in section 3.2.2. We also use a UNet of the per pixel
noising schedule which has an identical architecture to the diffusion models’ UNet while the encoder
is just an MLP. We employ a residual architecture that first learns a scalar global value and then has a
network the predicts a per-pixel delta to that value.
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G VISUALIZATIONS

G.1 CIFAR-10

(a) VDM after 10M training iterations. (b) MULAN with velocity reparameterization after
8M training iterations.

Figure 5: CIFAR-10 samples generated by different methods.

28



Under review as a conference paper at ICLR 2024

G.2 IMAGENET

Figure 6: VDM after 2M training iterations.

29



Under review as a conference paper at ICLR 2024

Figure 7: MULAN with e reparameterization after 2M training iterations.
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