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Abstract

Extracting structured data from visually rich001
documents like invoices, receipts, financial002
statements, and tax forms is key to automat-003
ing many business workflows. Building ex-004
traction models in this space typically requires005
a large number of high-quality training exam-006
ples. We propose a novel data-augmentation007
technique called FieldSwap for such extrac-008
tion problems. FieldSwap converts a candidate009
for a source field into a candidate for a tar-010
get field by replacing a key phrase indicative011
of the source field with a key phrase indica-012
tive of the target field. Using experiments on013
five different datasets, we show that training014
on data augmented with FieldSwap improves015
performance by 1–11 F1 points at low data016
setting (10–100 documents). We demonstrate017
that FieldSwap is effective when key phrases018
are manually specified or inferred automati-019
cally from the training data.020

1 Introduction021

Visually rich documents like invoices, receipts,022

paystubs, insurance statements, and tax forms are023

pervasive in business workflows. Processing these024

documents continues to involve manually extract-025

ing relevant structured information, which is both026

tedious and error-prone. Consequently, several027

recent papers have tackled the problem of auto-028

matically extracting structured information from029

such documents (Lee et al., 2022; Garncarek et al.,030

2021a; Xu et al., 2020; Wu et al., 2018; Sarkhel and031

Nandi, 2019). Given a target document type with032

an associated set of fields of interest, as well as a033

set of human-annotated training documents, these034

systems learn to automatically extract the values035

for these fields from unseen documents of the same036

type.037

While recent models have shown impressive per-038

formance (Jaume et al., 2019; Park et al., 2019;039

Huang et al., 2019; Stanisławek et al., 2021), a040

major hurdle in the development of high-quality041

Figure 1: Example of FieldSwap on a paystub docu-
ment. The source field S is current.salary ($3,308.62)
and has key phrase “Base Salary”. FieldSwap gener-
ates two synthetic examples. At bottom left, the phrase
is replaced with “Base”, another key phrase of cur-
rent.salary, the field label for the instance ($3,308.62)
is retained. At bottom right, the phrase is replaced
with “Overtime”, the key phrase of another field, cur-
rent.overtime, and the field label for the instance is
changed to current.overtime.

extraction models is the large cost of acquiring and 042

annotating training documents. In this paper, we 043

examine the question of improving the data effi- 044

ciency for this task especially when only a small 045

number of labeled training documents is available. 046

We propose a novel data augmentation technique 047

called FieldSwap loosely inspired by the success of 048

mixing approaches in the image domain (Naveed, 049

2021). We exploit the observation that most fields 050

in a document are indicated by a short key phrase 051

(like “Amount Due” for the total due field in an 052

invoice or “SSN” for the Social Security number 053

field in a US tax form). FieldSwap generates syn- 054

thetic examples for a target field T from examples 055

for a source field S by replacing the key phrase 056

associated with S with the key phrase for T . 057

Figure 1 illustrates FieldSwap on a snippet of 058

a paystub document with typical fields like salary 059

and bonus for both current pay period and year-to- 060

date. The FieldSwap algorithm generates synthetic 061

examples by replacing key phrases in one field 062

with key phrases in another field. This can help 063
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to regularize the model by presenting the same064

field with different values and surrounding contexts.065

However, it is important to choose the source-target066

pairs carefully. Note that multiple fields may have067

the same key phrase. For example, substitute the068

key phrase “Base Salary” to “Overtime” for the069

instance of the year_to_date.salary field would turn070

it into an instance of year_to_date.overtime and not071

an instance of current.overtime.072

The key questions are: (a) how do we infer the073

key phrases corresponding to each field, and (b)074

what field pairs should be considered for generat-075

ing these synthetic examples? We show that having076

a human expert supply a few key phrases works sur-077

prisingly well. The challenge then becomes how to078

infer key phrases automatically when only a small079

number of labeled examples are present. We show080

that a small model pre-trained for an extraction task081

on an out-of-domain corpus can be effectively used082

to identify the key phrases. To find good field pairs083

for the swap, we show that simply considering all084

pairs of fields of the same base type (e.g. date,085

money) can work quite effectively. Experiments on086

a diverse set of corpora show that FieldSwap can087

produce an improvement of 1–11 F1 points (i.e.,088

1–19% over the baseline). For context, novel ar-089

chitecture and pre-training objectives in this space090

resulted in increases of 1–1.5 F1 points (Huang091

et al., 2022). We believe this is an exciting step092

towards better data efficiency in extraction tasks093

for visually-rich documents that is orthogonal to094

larger models and larger pre-training corpora.095

Note that FieldSwap differs from simple text096

augmentation such as random swap or synonym097

replacement (Wei and Zou, 2019), which we argue098

is not effective for form extraction tasks since form099

extraction relies heavily on anchoring on specific100

key phrases in the document that define each form101

field. However, key phrases are not annotated, and102

thus, finding and swapping them is non-trivial.103

We make the following contributions in this pa-104

per:105

• We introduce a data augmentation strategy106

called FieldSwap that generates synthetic ex-107

amples for a field T using examples from108

another field S. To our knowledge, this is109

the first data augmentation strategy designed110

specifically for visually rich documents.111

• We present simple algorithms for automati-112

cally inferring key phrases and field pairs for113

generating synthetic examples.114

• Through experiments on several real-world 115

datasets, we show that FieldSwap is effective— 116

improving average F1 scores by 1–11 points 117

completely automatically even with small 118

training sets (10–100 documents). 119

• With simple human expert inputs like key 120

phrases, we observe improvement up to 14 121

F1 points. 122

2 FieldSwap 123

FieldSwap exploits the property that form fields 124

are very often indicated by key phrases (Majumder 125

et al., 2020). For example, the total due field on an 126

invoice document is often designated by phrases 127

such as “total” or “amount due”. We leverage this 128

observation to generate synthetic examples by tak- 129

ing an instance of a source field, S, substituting 130

associated key phrase with a key phrase of an in- 131

tended target field, T , and relabeling the instance as 132

an example of the target field. This augmentation 133

is governed by two inputs: 134

1. The set of valid key phrases for each field. For 135

example, “total” and “amount due” are valid 136

key phrases for a total due field in invoices. 137

2. A list of source-to-target field pairs for which 138

key phrases can be swapped and result in a 139

valid synthetic example for the target field. 140

These settings can be specified manually or they 141

can be inferred automatically. We find that manu- 142

ally specifying these settings works surprising well 143

(see results in Section 4.3.2). The main challenge 144

is in automatically inferring these settings using 145

only a few examples from a small dataset. Below, 146

we present methods for automatically inferring key 147

phrases and field mappings. 148

2.1 Automatically Inferring Key Phrases 149

We observe most fields have short key phrases, 150

meaning only a few tokens in the neighborhood of 151

a field instance matters. We thus define a method 152

for measuring neighbor importance and identify 153

important tokens. We infer important phrases from 154

important tokens and then aggregate them to infer 155

a set of key phrases for the field. 156

2.1.1 Neighbor Importance Measurement 157

We use the binary classifier architecture described 158

in (Majumder et al., 2020) for the purpose of mea- 159

suring neighbor importance. In this architecture 160

(Figure 2), base type candidates are first extracted 161

from an OCR’ed document using common-off-the- 162
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Figure 2: Architecture of the candidate-based extrac-
tion model. Neighboring tokens of a current.salary
candidate (e.g. $3, 308.62) are fed into a Transformer-
based encoder and a max-pooling layer to generate a
Neighborhood Encoding, which is concatenated with a
candidate position embedding to make a binary predic-
tion for the target field. We use the model’s intermedi-
ate output of each individual neighbor token encoding
and the Neighborhood Encoding for neighbor impor-
tance measurement.

shelf annotators like date and number annotators.163

For each candidate, the model encodes each neigh-164

bor token by concatenating its text embedding and165

relative position embedding. Then, it employs166

self-attention and max-pooling to generate a sin-167

gle representation of the candidate’s neighborhood168

(i.e., Neighborhood Encoding), which is used along169

with other features to make a binary prediction for170

field(s) in question. This representation is easy to171

manipulate for the purpose of finding important172

neighbors. To measure the importance scores of173

each neighbor tokens for a candidate, we calculate174

cosine similarity between the model’s intermediate175

output on the encoding of each individual neighbor176

token and candidate Neighborhood Encoding.177

We train the model on a large out-of-domain178

dataset and use it directly to get candidate Neigh-179

borhood Encoding on the target domain. The intu-180

ition is that the neighbor’s relative position plays a181

critical role in identifying important neighbors and182

those positional signals are usually shared across183

domains. Empirical results show that the model184

identifies a reasonable set of important neighbors185

for each candidate. For our purpose, we are only in-186

terested in positive candidates of target domain, so187

we generate candidates from ground truth instances188

of fields directly.189

2.1.2 Inferring Important Phrases190

After obtaining the importance scores of each191

neighbor for each candidate, we apply Sparse-192

max (Martins and Astudillo, 2016) across the im-193

portance scores to get a sparse output of the neigh- 194

bors with non-zero scores. We consider these neigh- 195

bors as the set of important neighbor tokens. We 196

use an OCR service1 that detects characters, tokens, 197

and lines in the document. Lines are groups of to- 198

kens on the same y-axis that are typically separate 199

from other lines by way of visual features (e.g. ver- 200

tical bars in a table) or long horizontal stretches of 201

whitespace. Using these signals we form important 202

phrases by concatenating all tokens on the same 203

OCR line as long as one token is considered an 204

important neighbor token. This is based on our 205

observation that a key phrase is usually short and 206

lies in a single line. Leveraging OCR lines to in- 207

fer important phrases also makes the process more 208

tolerant to the model’s recall loss on important 209

neighbor tokens. As long as the model finds one 210

important token, we’ll be able to infer the longer 211

phrase, if it exists. We define phrase importance 212

score as the average token importance score in the 213

phrase. 214

2.1.3 Aggregation and Ranking by Field 215

Once all important phrases and importance scores 216

have been gathered for all candidates, we aggregate 217

the results by field and phrase. For any field F , we 218

use Score(F, P,Ci) to denote the phrase impor- 219

tance score for a F candidate Ci that has impor- 220

tant phrase P . We calculate Importance(F, P ) = 221

1 − exp(Σilog(1 − Score(F, P,Ci))) as the mea- 222

surement of how P relates to F . This measurement 223

prefers phrases with higher importance scores and 224

frequency across F candidates. For each field, we 225

rank all phrases by their Importance and select the 226

top k phrases as the key phrases for the field, where 227

k is a tunable hyperparameter. 228

2.1.4 Fields without Key Phrases 229

Not all fields necessarily have key phrases. Fields 230

such as company name, company address, and 231

statement date often appear in the top corners of 232

documents without any specific phrase indicators. 233

When trying to infer key phrases for such fields, 234

the model may output wrong phrases (usually with 235

low importance scores). For example, the model 236

might infer “LLC” as a key phrase for the com- 237

pany address field since it may often find many 238

company names with “LLC” directly above the 239

company address field value. However, the val- 240

ues of other fields cannot be part of the key phrase 241

of another field because field values are variable 242

1https://cloud.google.com/vision
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across different documents while key phrases are243

consistent across the documents (belonging to the244

same template). To avoid such spurious correla-245

tions, we explicitly exclude tokens that are part of246

the ground truth for any field in the document. We247

also set a threshold θ to filter out any inferred key248

phrases with importance score below the threshold,249

where θ is a tunable hyperparameter.250

2.2 Field Pair Mappings251

We explored three options to determine which252

fields can be swapped with each other.253

Field-to-Field swap. The simplest and most254

straightforward option is to swap only examples be-255

longing to the same field. In this case, source field,256

S, and target field, T , denote the same field. With257

this approach, we are less likely to generate out-of-258

distribution synthetic examples. The downside is259

that we are usually unable to generate a sizeable260

number of synthetic examples unless the field has261

a lot of key phrase variation.262

Type-to-Type swap. Each field is associated with263

a general base type such as date, number, or ad-264

dress. A simple heuristic is to map fields that are265

similar, so considering pairs of fields that have the266

same base type is a natural idea. We can generate267

synthetic examples for a target field (e.g. salary)268

from other same-type fields (e.g. bonus, overtime)269

by swapping the key phrases. Note that our imple-270

mentation of type-to-type mapping implies that a271

field will also be mapped to itself. This approach272

allows us to generate more synthetic examples for273

rare fields by utilizing examples from other fre-274

quent fields. It also regularizes the model against275

spurious correlations with nearby non-related text.276

However, we might generate bad synthetic277

examples if there exist contradictory fields278

with the same type. For example, cur-279

rent.bonus and year_to_date.bonus have the same280

key phrase “bonus”, and current.vacation and281

year_to_date.vacation have the same key phrase282

“vacation”. FieldSwap would generate contradic-283

tory synthetic examples when swapping between284

the four fields, such as by creating a synthetic cur-285

rent.vacation example using a year_to_date.bonus286

example.287

All-to-All swap. We also considered swapping288

between any pair of fields, but found that this was289

nearly always worse than type-to-type swaps.290

Figure 3: Overall processing procedures. In step 1,
key phrases of all fields are inferred from the train-
ing dataset. In step 2, either field-to-field or type-to-
type FieldSwap augmentation is applied to the train-
ing dataset. In step 3, a form extraction model (such
as sequence labeling model) is trained on the union of
the original training documents and the synthetic docu-
ments.

2.3 Generating Synthetic Documents 291

We generate FieldSwap augmentations at document 292

level, so that it is agnostic to the architecture of the 293

extraction model. However, this brings extra com- 294

plexity to the implementation of the FieldSwap 295

augmentation since there could be a number of 296

constraints introduced by different model architec- 297

tures. 298

For examples, for approaches like sequence la- 299

beling (Xu et al., 2020; Lee et al., 2022), every 300

token on the document is an input to the model. 301

When swapping the key phrases for a pair of fields, 302

should we also swap the values for these fields so 303

that the model is not confused by the augmented 304

examples having values too different from the orig- 305

inal examples? For instance, the values of fields 306

such as tax due and total due have different rela- 307

tive magnitudes, which might need to be preserved. 308

Furthermore, should we preserve certain document- 309

level semantics? For example, some fields should 310

occur only once in a document, shall we ensure 311

FieldSwap does not introduce multiple instances in 312

a document for such fields? Will there be other in- 313

stances of fields which do not belong to the source 314

field but are also affected by phrase change? 315

In this work, we want to keep the implementation 316

as simple as possible. We generate one augmenta- 317

tion at a time by swapping only one pair of fields 318

so that the augmented data has very slight distur- 319

bances. We only change the label for source fields 320

for simplicity – we leave the values unchanged. We 321

treat all fields as they could appear multiple times 322

in the document during training time, and only ap- 323
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ply the schema constraints at inference time. We324

found this simple implementation works surpris-325

ingly well with the sequence labeling model we326

evaluated on. We leave it to future work to adapt327

FieldSwap for more complex situations.328

2.3.1 Implementation Details329

For each document in the training data, we iterate330

through all source-to-target pairs in the FieldSwap331

configuration, if the document contains the source332

field S and any key phrases for S, we replace all333

matching source key phrases with target key phrase,334

relabel all S instances to T and generate one syn-335

thetic document corresponding to each key phrase336

of target field T .337

Note that if no phrases in the document match338

a source phrase in the configuration, then no syn-339

thetic documents are generated. Furthermore, if, af-340

ter replacing the source key phrase with the target’s,341

we are left with an unchanged document, we also342

omit the synthetic document. This helps prevent343

us from creating semantically incorrect synthetics,344

such as the case previously described in Section345

2.2, when two fields have the same key phrase but346

are semantically different (e.g., current.bonus vs.347

year_to_date.bonus).348

3 Human Expert349

A human familiar with a given document type can350

easily provide additional inputs in lieu of additional351

labeled examples. For instance, a human can pro-352

vide typical key phrases that indicate a field as well353

as mark potential pairs of fields that should be used354

for FieldSwap. This idea draws on the literature in355

rule-based augmentations where rules are provided356

in addition to training examples.357

We design a human expert approach by devis-358

ing a FieldSwap configuration with human inputs.359

Instead of relying only on the automatically de-360

tected key phrases and field pairs, we apply hu-361

man inputs to protect FieldSwap from some error-362

prone situations. For example, in configuring key363

phrases, some fields, such as company_name and364

company_address, do not have clear key phrases,365

so we skip these fields for FieldSwap entirely in the366

human expert setup. Other fields, particularly rare367

fields, might not have enough labeled examples368

in the train set, so we rely on domain knowledge369

to supply additional key phrases. When config-370

uring field pairs, we start with type-to-type field371

pairs, then prune those that most likely to appear372

in different tables or sections in the document. We373

believe using FieldSwap with this setting produce 374

more useful synthetic documents than field-to-field 375

setting, and less bad synthetic documents than type- 376

to-type setting. 377

4 Experiments 378

4.1 Dataset 379

We evaluate FieldSwap on 5 datasets of form-like 380

documents, including two public datasets (FCC 381

Forms(Wang et al., 2022), FARA(Wang et al., 382

2022)) and three proprietary datasets (Earnings, 383

Brokerage Statements, Loan Payments). Each 384

dataset corresponds to a different document type. 385

We herein also refer to document types as domains. 386

All field types are defined in the schema and as- 387

signed with one of the five base types: string, ad- 388

dress, money, date and number. For each domain, 389

we evaluate on a fixed hold-out test set. Dataset 390

statistics are summarized in Table 2 of Appendix A. 391

4.2 Experimental Setup 392

Automatically inferring key phrases. We use the 393

model architecture described in Section 2.1.1 for 394

automatically inferring key phrases. The model is 395

trained on an out-of-domain document type (in- 396

voices) with approximately 5000 training docu- 397

ments. We tune the hyperparameters using grid 398

search and use the most performant values. In all 399

our experiments, we use top 3 important phrases 400

as the key phrases for each field. We set the impor- 401

tance score threshold θ at 0.2. 402

Human expert. One of the authors of this paper 403

examined approximately 10 training documents in 404

domain of interest and recorded the key phrases 405

they observed for each field. For fields that doesn’t 406

exist in the training documents they inspected, they 407

rely on domain knowledge to come up with a hand- 408

ful of key phrases. The same person also con- 409

structed the field mappings using the method de- 410

scribed in Section 3, which avoids contradictory 411

field pairs. 412

Backbone form extraction model. FieldSwap is 413

designed to be agnostic to any architecture for 414

form extraction task. In our experiment, we use 415

the sequence labeling model described in (Lee 416

et al., 2022) and follow the same unsupervised pre- 417

training procedure. We first pretrain the model on 418

approximately 30k unlabeled out-of-domain form 419

documents, then fine-tune the model on the training 420

documents in the target domain. When training the 421
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model on the target domain, we split the dataset422

into 90%-10% training-validation sets. We train423

the models for approximately 6 hours and pick the424

checkpoint with the highest accuracy on all entities425

in the validation split.426

Evaluation. We train baseline form extraction427

models on the training set without synthetic docu-428

ments. We add the synthetic documents generated429

with FieldSwap to the training set and train new430

form extraction models follow the same procedure.431

We compare end-to-end F1 scores of the trained432

models to evaluate the effectiveness of FieldSwap433

augmentation.434

We vary the training set sizes (i.e. 10, 50, 100) to435

plot learning curves. In order to capture the inher-436

ent variability that may arise in experiments with437

such small dataset sizes, we repeat our experiments438

across two different axes. For a given domain and439

dataset size N , we repeat the experiment using440

(i) 3 different random collections of N documents441

from the domain’s large pool of documents (see442

Table 2 of Appendix A), and (ii) 3 model training443

trials. This amounts to a total of 9 experiments for444

a given domain and train set size. Each data point445

we report on the learning curve corresponds to the446

average performance across these 9 experiments on447

the fixed hold-out test set.448

4.3 Results449

Our experiments aim at answering the following450

questions: (1) Is FieldSwap effective in its fully451

automatic version? (2) Does it work better with452

human-supplied inputs? (3) How do improvements453

vary across document types and field types?454

4.3.1 Automatic FieldSwap455

We test both field-to-field and type-to-type field456

mappings with automatically inferred key phrases.457

As shown in Figure 4, FieldSwap, in general, leads458

to neutral or better performance of all datasets and459

across all train set sizes we evaluated on. For in-460

stance, FieldSwap improves average macro-F1 by461

1–4 points on FCC Forms, by 2–5 points on Broker-462

age Statements, and by 4–11 points on Earnings.463

Field-to-Field vs Type-to-Type. We observed464

type-to-type swap performs better than field-to-465

field swap when training set size is small (10 doc-466

uments), as training set size increases (50–100467

documents), field-to-field swap catches up or wins468

over. As shown in Table 4 of Appendix B, type-to-469

type generally creates 3-10× more synthetic docu-470

ments than field-to-field. However, it also has more 471

chances to generate contradictory synthetic exam- 472

ples, as discussed in Section 2.2. When the training 473

set is small, larger amount of synthetic documents 474

helps more. However, as the training set size in- 475

creases, field-to-field swap becomes more effective 476

as it gets enough source examples to produce syn- 477

thetics and is less likely to create bad synthetics 478

that might harm the model. 479

Macro-F1 vs Micro-F1. Current form extraction 480

models perform poorly for rare fields when there 481

is only a small amount of labeled data. We be- 482

lieve FieldSwap is most helpful in this situation 483

since it can use the labeled training examples from 484

other frequent fields to generate synthetic training 485

examples for rare fields. Therefore, we focus on 486

macro-F1. 487

However, we also observe that similar improve- 488

ments hold when evaluating using Micro-F1. As 489

shown in Figure 5 of Appendix C, the same pat- 490

tern of results still holds. For instance, FieldSwap 491

improves the average micro-F1 by 2–5 points for 492

Earnings domain, and by 1–5 points for Brokerage 493

Statements domain. The improvement gain is less 494

than what we see with macro-F1 though, indicating 495

that the most improvement have come from rare 496

fields, which aligns with our hypothesis. 497

4.3.2 FieldSwap with Human Expert 498

We compare the performance between automatic 499

FieldSwap and FieldSwap using human expert- 500

curated phrases and field pair mappings on two 501

domains. As shown in Figure 4, better key phrases 502

and field pair mappings generally lead to better 503

performance. Human inputs further improves the 504

performance by 4–5 F1 points for Earnings at 50– 505

100 document, and 4 points for Loan Payments at 506

10 document. 507

The gap is mostly attributed to rare 508

fields, as shown in Table 1. For example, 509

year_to_date.sales_pay field has particularly 510

low frequency, it only exists in 3.9% of train 511

documents. In a low data setting, it’s possible that 512

there are no or very few labeled examples for such 513

rare fields, leading to few-shot or even zero-shot 514

scenarios. Relying on an expert to supply key 515

phrases that are not present in the small training 516

set results in a substantial advantage over the 517

automatic approach. In practice, the decision of 518

whether or not to use human input depends on 519

specific scenarios. 520
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(a) Public Datasets

(b) Proprietary Datasets

Figure 4: Experiment results on different domains with different train doc sizes. Under each setting, we repeat the
experiments with different random seeds as mentioned in Section 4.2. We report the average Macro-F1 scores.

Field Frequency
F1 (FieldSwap,

automatic)
F1 (FieldSwap,
human expert) ∆F1

year_to_date.sales_pay 3.9% 27.91 56.27 28.36
current.sales_pay 2.85% 17.97 46.23 28.26
year_to_date.pto_pay 15.9% 50.3 66.78 16.48
current.pto_pay 9.5% 14.36 28.18 13.82

Table 1: Fields with the largest mean F1 score gaps be-
tween automatic (field-to-field) and human expert set-
ting when trained on 50 documents for Earnings do-
main. Frequency refers to the fraction of documents
that contain said field in a pool of 2000 documents.

4.3.3 Discussions521

In this section, we try to answer the question of522

how FieldSwap improves across different fields523

and document types.524

Effect of field type. We associate fields with five525

base types (i.e. address, date, money, number,526

string) in our settings. Among the 5 datasets we527

evaluated on, there are only two fields with number528

type (each in different domain), making the results529

not representative. Thus, we only study the effect530

of the remaining 4 base types. We believe number531

type shall have similar pattern with money type, as532

they are somewhat alike.533

We study the effect of FieldSwap on different534

field types in Loan Payments domain across all535

train set sizes. As shown in Figure 6 of Appendix D,536

we observe the improvement of FieldSwap mainly537

come from date and money fields, while we see 538

negative effects on address and string fields. Re- 539

call that string and address fields usually do not 540

have indicative key phrases, FieldSwap should not 541

generate augmentations. For the most part, our im- 542

plementation does exactly this, however at times it 543

does fail and find spurious phrases for these fields. 544

This leads to bad synthetic documents that harm the 545

model. In our human expert setting, we explicitly 546

exclude FieldSwap for fields that do not have key 547

phrases. We see the negative effect dissipates. 548

Effect of document type. As shown in Figure 4, 549

the biggest improvement we observe is on the Earn- 550

ings domain. Compared to other document types, 551

most of the fields in Earnings are in tabular format, 552

with similar base type (i.e. money, date), and have 553

clear and succinct phrase indicators. We believe 554

FieldSwap is most helpful when dealing with docu- 555

ment types with such characteristics. Furthermore, 556

since ordering of fields in these tables is unim- 557

portant, FieldSwap is particularly well-aligned for 558

augmenting these structures. That being said, the 559

Earnings domain also poses a challenge since many 560

field pairs can easily yield bad synthetic examples, 561

as discussed in Section 2.2. Yet, even in the pres- 562

ence of these potentially contradicting pairs, type- 563

to-type mapping still improves the performance 564
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across all train set sizes we evaluated on. This565

demonstrates that the proposed method tolerates566

a small number of these contradictory synthetic567

examples.568

The improvement gain on FARA domain is very569

small. This is because this corpus contains only a570

handful of fields, 4 of the total 6 fields are string571

type, which FieldSwap does not work well. The572

other 2 fields belong to different base types and573

are thus not swappable. However, FieldSwap still574

maintain neutral or slightly better results through-575

out the learning curve.576

5 Related Work577

Data augmentation is a class of techniques for ac-578

quiring additional training examples automatically.579

Two main categories of data augmentation are rule-580

based and model-based techniques, which use hard-581

coded data transformations or pre-trained models582

(typically language models), respectively. Rule-583

based techniques—such as EDA (Wei and Zou,584

2019)—are easier to implement but have limited585

benefit, whereas model-based techniques—such as586

back-translation (Sennrich et al.) and example ex-587

trapolation (Lee et al., 2021)—are more difficult to588

develop but offer greater benefit (Feng et al., 2021).589

FieldSwap contains elements of both categories,590

as it changes (possibly automatically inferred) key591

phrases based on a set of swap rules.592

Feng et al. (2021) suggest that “the distribution593

of augmented data should neither be too similar594

nor too different from the original”. FieldSwap595

achieves this balance by placing known key phrases596

in the contexts of other key phrases, which in-597

creases diversity in a controlled way. The use598

of schema field types in FieldSwap is similar to599

the use of entity types for mention replacement in600

named entity recognition, which is effective espe-601

cially in low-data settings (Dai and Adel, 2020).602

Other data augmentation techniques have been603

used for multimodal tasks that combine text and604

vision, such as image captioning (Atliha and Šešok,605

2020) and visual question answering (Kafle et al.,606

2017; Yokota and Nakayama, 2018). FieldSwap,607

like these other approaches, focuses on modifying608

the textual component of each input rather than609

the visual component; that is, the key phrase is610

replaced but the spatial layout remains the same.611

Perhaps the most similar prior work to ours is612

(Andreas, 2020). The main idea of that work is613

that if two items appear in similar contexts, then614

they can be interchanged wherever one of them 615

occurs to generate new examples. In our work, the 616

items we change are key phrases associated with 617

schema fields, and we determine interchangeability 618

based on the identity or type of the field. Rather 619

than generate new labeled examples by changing 620

the value of the field, we generate examples by 621

changing the surrounding context (via key phrases). 622

Approaches for extracting information from 623

form-like documents typically rely on multimodal 624

features: text, spatial layout, and visual patterns. 625

Models often make use of pre-trained encoders that 626

incorporate such multimodal signals (Appalaraju 627

et al., 2021; Garncarek et al., 2021b; Huang et al., 628

2022), but these encoders require a large amount 629

of pre-training data, although they do exhibit good 630

downstream task data efficiency during fine-tuning 631

(Sage et al., 2021). Large amounts of training data 632

are also required by span classification approaches 633

(Majumder et al., 2020; Tata et al., 2021), sequence 634

labeling approaches (Aggarwal et al., 2020; Lee 635

et al.), and end-to-end approaches (Cheng et al., 636

2022). Rather than suggest a new model architec- 637

ture, we propose a method for augmenting form 638

extraction data. 639

6 Conclusions 640

In this paper, we describe a data-augmentation tech- 641

nique designed for extraction problems on visually 642

rich documents. We exploit the fact that many 643

fields have a “key phrase” to indicate them: we 644

generate an augmented example for a target field 645

by taking an example of a source field and replacing 646

the key phrase with that of the target field. Experi- 647

ments on a variety of datasets show that this simple 648

technique is very effective for small training sets 649

(10–100 documents), with improvements of 1–11 650

macro-F1 points. 651

This result opens up two interesting directions 652

for future work. First, how do we design a ver- 653

sion of FieldSwap that works better with the com- 654

plex situation we described in Section 2.3? Sec- 655

ond, there are several extensions to FieldSwap 656

that are worth investigating. When does swapping 657

across document types help? Can we use a pre- 658

trained LLM instead of a human expert to generate 659

a set of key phrases given the name or description 660

of a field? Can we learn information about key 661

phrases from an unlabeled corpus to enable semi- 662

supervised learning (Pryzant et al., 2022)? 663
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A Datasets 824

Table 2 presents the total number of train docu- 825

ments available in the pool for each document type, 826

along with the number of total fields. We select a 827

subset of documents at random from the pool to 828

create the training sets for our experiments. Table 3 829

presents number of fields with different base types 830

for each document type. 831

B Augmentation Stats 832

Number of synthetic documents various across dif- 833

ferent sampled train sets, for each document type 834

and train set size, we presents the average number 835

of synthetic documents generated by FieldSwap 836

with different settings in Table 4. 837

C Micro F1 Results 838

Figure 5 shows the average of micro-F1 scores for 839

different document types across different train set 840

sizes. 841

D Effect of Field Type 842

Figure 6 shows the F1 score differences of 843

FieldSwap with different settings over the base- 844

line for different field types and training set sizes 845

on Loan Payments domain. 846
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Document Type # Fields Train Docs Pool Size Test Docs
FARA (Wang et al., 2022) 6 200 300

FCC Forms (Wang et al., 2022) 13 200 300
Brokerage Statements 18 294 186

Earnings 23 2000 1847
Loan Payments 35 2000 815

Table 2: Datasets. To plot learning curves we select a subset of documents at random from the corpora’s larger
pool to create the training sets for our experiments.

Field Type
Document Type Address Date Money Number String
FARA (Wang et al., 2022) 0 1 0 1 4
FCC Forms (Wang et al., 2022) 1 4 2 1 5
Brokerage Statements 2 4 5 0 7
Earnings 2 3 15 0 3
Loan Payments 3 5 20 0 7

Table 3: Number of fields with different base types for each document type.

Number of Synthetic Documents
Domain Original Train Set Size FieldSwap (field-to-field) FieldSwap (type-to-type) FieldSwap (human expert)
FARA 10 2 5 -

50 176 374 -
100 592 1616 -

FCC Forms 10 246 842 -
50 1663 5755 -
100 3310 11346 -

Brokerage Statements 10 256 1266 -
50 1486 7994 -
100 2917 16590 -

Loan Payments 10 435 2378 1136
50 2699 18118 5933
100 6083 38081 11682

Earnings 10 197 1542 366
50 1345 11643 1862
100 2717 26001 3707

Table 4: Average number of FieldSwap synthetic documents at different train set size for each document type.
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(a) Public Datasets

(b) Proprietary Datasets

Figure 5: Average of micro-F1 scores on different domains with different train doc sizes. Under each setting, we
repeat the experiments with different random seeds as mentioned in Section 4.2.
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Figure 6: Field F1 score differences of FieldSwap over baseline on Loan Payments domain. The length of each
box plot shows the distance between the upper and lower quartiles. Each whisker extends to the furthest data point
in each wing that is within 1.5 times the IQR. The line in the middle of the boxplot denotes the median. The dots
denote outliers. The horizontal red lines mark y = 0.

13


	Introduction
	FieldSwap
	Automatically Inferring Key Phrases
	Neighbor Importance Measurement
	Inferring Important Phrases
	Aggregation and Ranking by Field
	Fields without Key Phrases

	Field Pair Mappings
	Generating Synthetic Documents
	Implementation Details


	Human Expert
	Experiments
	Dataset
	Experimental Setup
	Results
	Automatic FieldSwap
	FieldSwap with Human Expert
	Discussions


	Related Work
	Conclusions
	Datasets
	Augmentation Stats
	Micro F1 Results
	Effect of Field Type

