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Abstract

Extracting structured data from visually rich
documents like invoices, receipts, financial
statements, and tax forms is key to automat-
ing many business workflows. Building ex-
traction models in this space typically requires
a large number of high-quality training exam-
ples. We propose a novel data-augmentation
technique called FieldSwap for such extrac-
tion problems. FieldSwap converts a candidate
for a source field into a candidate for a tar-
get field by replacing a key phrase indicative
of the source field with a key phrase indica-
tive of the target field. Using experiments on
five different datasets, we show that training
on data augmented with FieldSwap improves
performance by 1-11 F1 points at low data
setting (10-100 documents). We demonstrate
that FieldSwap is effective when key phrases
are manually specified or inferred automati-
cally from the training data.

1 Introduction

Visually rich documents like invoices, receipts,
paystubs, insurance statements, and tax forms are
pervasive in business workflows. Processing these
documents continues to involve manually extract-
ing relevant structured information, which is both
tedious and error-prone. Consequently, several
recent papers have tackled the problem of auto-
matically extracting structured information from
such documents (Lee et al., 2022; Garncarek et al.,
2021a; Xu et al., 2020; Wu et al., 2018; Sarkhel and
Nandi, 2019). Given a target document type with
an associated set of fields of interest, as well as a
set of human-annotated training documents, these
systems learn to automatically extract the values
for these fields from unseen documents of the same
type.

While recent models have shown impressive per-
formance (Jaume et al., 2019; Park et al., 2019;
Huang et al., 2019; Stanistawek et al., 2021), a
major hurdle in the development of high-quality
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Figure 1: Example of FieldSwap on a paystub docu-
ment. The source field S is current.salary ($3,308.62)
and has key phrase “Base Salary”. FieldSwap gener-
ates two synthetic examples. At bottom left, the phrase
is replaced with “Base”, another key phrase of cur-
rent.salary, the field label for the instance ($3,308.62)
is retained. At bottom right, the phrase is replaced
with “Overtime”, the key phrase of another field, cur-
rent.overtime, and the field label for the instance is
changed to current.overtime.

extraction models is the large cost of acquiring and
annotating training documents. In this paper, we
examine the question of improving the data effi-
ciency for this task especially when only a small
number of labeled training documents is available.
We propose a novel data augmentation technique
called FieldSwap loosely inspired by the success of
mixing approaches in the image domain (Naveed,
2021). We exploit the observation that most fields
in a document are indicated by a short key phrase
(like “Amount Due” for the total due field in an
invoice or “SSN” for the Social Security number
field in a US tax form). FieldSwap generates syn-
thetic examples for a target field 7" from examples
for a source field S by replacing the key phrase
associated with S with the key phrase for 7.
Figure 1 illustrates FieldSwap on a snippet of
a paystub document with typical fields like salary
and bonus for both current pay period and year-to-
date. The FieldSwap algorithm generates synthetic
examples by replacing key phrases in one field
with key phrases in another field. This can help



to regularize the model by presenting the same
field with different values and surrounding contexts.
However, it is important to choose the source-target
pairs carefully. Note that multiple fields may have
the same key phrase. For example, substitute the
key phrase “Base Salary” to “Overtime” for the
instance of the year_to_date.salary field would turn
it into an instance of year_to_date.overtime and not
an instance of current.overtime.

The key questions are: (a) how do we infer the
key phrases corresponding to each field, and (b)
what field pairs should be considered for generat-
ing these synthetic examples? We show that having
a human expert supply a few key phrases works sur-
prisingly well. The challenge then becomes how to
infer key phrases automatically when only a small
number of labeled examples are present. We show
that a small model pre-trained for an extraction task
on an out-of-domain corpus can be effectively used
to identify the key phrases. To find good field pairs
for the swap, we show that simply considering all
pairs of fields of the same base type (e.g. date,
money) can work quite effectively. Experiments on
a diverse set of corpora show that FieldSwap can
produce an improvement of 1-11 F1 points (i.e.,
1-19% over the baseline). For context, novel ar-
chitecture and pre-training objectives in this space
resulted in increases of 1-1.5 F1 points (Huang
et al., 2022). We believe this is an exciting step
towards better data efficiency in extraction tasks
for visually-rich documents that is orthogonal to
larger models and larger pre-training corpora.

Note that FieldSwap differs from simple text
augmentation such as random swap or synonym
replacement (Wei and Zou, 2019), which we argue
is not effective for form extraction tasks since form
extraction relies heavily on anchoring on specific
key phrases in the document that define each form
field. However, key phrases are not annotated, and
thus, finding and swapping them is non-trivial.

We make the following contributions in this pa-
per:

e We introduce a data augmentation strategy
called FieldSwap that generates synthetic ex-
amples for a field 7" using examples from
another field S. To our knowledge, this is
the first data augmentation strategy designed
specifically for visually rich documents.

o We present simple algorithms for automati-
cally inferring key phrases and field pairs for
generating synthetic examples.

o Through experiments on several real-world
datasets, we show that FieldSwap is effective—
improving average F1 scores by 1-11 points
completely automatically even with small
training sets (10—100 documents).

e With simple human expert inputs like key
phrases, we observe improvement up to 14
F1 points.

2 FieldSwap

FieldSwap exploits the property that form fields
are very often indicated by key phrases (Majumder
et al., 2020). For example, the fotal due field on an
invoice document is often designated by phrases
such as “total” or “amount due”. We leverage this
observation to generate synthetic examples by tak-
ing an instance of a source field, .S, substituting
associated key phrase with a key phrase of an in-
tended target field, 7', and relabeling the instance as
an example of the target field. This augmentation
is governed by two inputs:

1. The set of valid key phrases for each field. For
example, “total” and “amount due” are valid
key phrases for a fotal due field in invoices.

2. A list of source-to-target field pairs for which
key phrases can be swapped and result in a
valid synthetic example for the target field.

These settings can be specified manually or they
can be inferred automatically. We find that manu-
ally specifying these settings works surprising well
(see results in Section 4.3.2). The main challenge
is in automatically inferring these settings using
only a few examples from a small dataset. Below,
we present methods for automatically inferring key
phrases and field mappings.

2.1 Automatically Inferring Key Phrases

We observe most fields have short key phrases,
meaning only a few tokens in the neighborhood of
a field instance matters. We thus define a method
for measuring neighbor importance and identify
important tokens. We infer important phrases from
important tokens and then aggregate them to infer
a set of key phrases for the field.

2.1.1 Neighbor Importance Measurement

We use the binary classifier architecture described
in (Majumder et al., 2020) for the purpose of mea-
suring neighbor importance. In this architecture
(Figure 2), base type candidates are first extracted
from an OCR’ed document using common-off-the-
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Figure 2: Architecture of the candidate-based extrac-
tion model. Neighboring tokens of a current.salary
candidate (e.g. $3,308.62) are fed into a Transformer-
based encoder and a max-pooling layer to generate a
Neighborhood Encoding, which is concatenated with a
candidate position embedding to make a binary predic-
tion for the target field. We use the model’s intermedi-
ate output of each individual neighbor token encoding
and the Neighborhood Encoding for neighbor impor-
tance measurement.

shelf annotators like date and number annotators.
For each candidate, the model encodes each neigh-
bor token by concatenating its text embedding and
relative position embedding. Then, it employs
self-attention and max-pooling to generate a sin-
gle representation of the candidate’s neighborhood
(i.e., Neighborhood Encoding), which is used along
with other features to make a binary prediction for
field(s) in question. This representation is easy to
manipulate for the purpose of finding important
neighbors. To measure the importance scores of
each neighbor tokens for a candidate, we calculate
cosine similarity between the model’s intermediate
output on the encoding of each individual neighbor
token and candidate Neighborhood Encoding.

We train the model on a large out-of-domain
dataset and use it directly to get candidate Neigh-
borhood Encoding on the target domain. The intu-
ition is that the neighbor’s relative position plays a
critical role in identifying important neighbors and
those positional signals are usually shared across
domains. Empirical results show that the model
identifies a reasonable set of important neighbors
for each candidate. For our purpose, we are only in-
terested in positive candidates of target domain, so
we generate candidates from ground truth instances
of fields directly.

2.1.2 Inferring Important Phrases

After obtaining the importance scores of each
neighbor for each candidate, we apply Sparse-
max (Martins and Astudillo, 2016) across the im-

portance scores to get a sparse output of the neigh-
bors with non-zero scores. We consider these neigh-
bors as the set of important neighbor tokens. We
use an OCR service! that detects characters, tokens,
and lines in the document. Lines are groups of to-
kens on the same y-axis that are typically separate
from other lines by way of visual features (e.g. ver-
tical bars in a table) or long horizontal stretches of
whitespace. Using these signals we form important
phrases by concatenating all tokens on the same
OCR line as long as one token is considered an
important neighbor token. This is based on our
observation that a key phrase is usually short and
lies in a single line. Leveraging OCR lines to in-
fer important phrases also makes the process more
tolerant to the model’s recall loss on important
neighbor tokens. As long as the model finds one
important token, we’ll be able to infer the longer
phrase, if it exists. We define phrase importance
score as the average token importance score in the
phrase.

2.1.3 Aggregation and Ranking by Field

Once all important phrases and importance scores
have been gathered for all candidates, we aggregate
the results by field and phrase. For any field F', we
use Score(F, P,C;) to denote the phrase impor-
tance score for a F' candidate C; that has impor-
tant phrase P. We calculate Importance(F, P) =
1 — exp(X;log(1 — Score(F, P,C;))) as the mea-
surement of how P relates to F'. This measurement
prefers phrases with higher importance scores and
frequency across F' candidates. For each field, we
rank all phrases by their Importance and select the
top k phrases as the key phrases for the field, where
k is a tunable hyperparameter.

2.1.4 Fields without Key Phrases

Not all fields necessarily have key phrases. Fields
such as company name, company address, and
statement date often appear in the top corners of
documents without any specific phrase indicators.
When trying to infer key phrases for such fields,
the model may output wrong phrases (usually with
low importance scores). For example, the model
might infer “LLC” as a key phrase for the com-
pany address field since it may often find many
company names with “LLC” directly above the
company address field value. However, the val-
ues of other fields cannot be part of the key phrase
of another field because field values are variable
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across different documents while key phrases are
consistent across the documents (belonging to the
same template). To avoid such spurious correla-
tions, we explicitly exclude tokens that are part of
the ground truth for any field in the document. We
also set a threshold @ to filter out any inferred key
phrases with importance score below the threshold,
where 6 is a tunable hyperparameter.

2.2 Field Pair Mappings

We explored three options to determine which
fields can be swapped with each other.

Field-to-Field swap. The simplest and most
straightforward option is to swap only examples be-
longing to the same field. In this case, source field,
S, and target field, T, denote the same field. With
this approach, we are less likely to generate out-of-
distribution synthetic examples. The downside is
that we are usually unable to generate a sizeable
number of synthetic examples unless the field has
a lot of key phrase variation.

Type-to-Type swap. Each field is associated with
a general base type such as date, number, or ad-
dress. A simple heuristic is to map fields that are
similar, so considering pairs of fields that have the
same base type is a natural idea. We can generate
synthetic examples for a target field (e.g. salary)
from other same-type fields (e.g. bonus, overtime)
by swapping the key phrases. Note that our imple-
mentation of type-to-type mapping implies that a
field will also be mapped to itself. This approach
allows us to generate more synthetic examples for
rare fields by utilizing examples from other fre-
quent fields. It also regularizes the model against
spurious correlations with nearby non-related text.

However, we might generate bad synthetic
examples if there exist contradictory fields
with the same type. For example,
rent.bonus and year_to_date.bonus have the same
key phrase “bonus”, and current.vacation and
year_to_date.vacation have the same key phrase
“vacation”. FieldSwap would generate contradic-
tory synthetic examples when swapping between
the four fields, such as by creating a synthetic cur-
rent.vacation example using a year_to_date.bonus
example.

Cur-

All-to-All swap. We also considered swapping
between any pair of fields, but found that this was
nearly always worse than type-to-type swaps.
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Figure 3: Overall processing procedures. In step 1,
key phrases of all fields are inferred from the train-
ing dataset. In step 2, either field-to-field or type-to-
type FieldSwap augmentation is applied to the train-
ing dataset. In step 3, a form extraction model (such
as sequence labeling model) is trained on the union of
the original training documents and the synthetic docu-
ments.

2.3 Generating Synthetic Documents

We generate FieldSwap augmentations at document
level, so that it is agnostic to the architecture of the
extraction model. However, this brings extra com-
plexity to the implementation of the FieldSwap
augmentation since there could be a number of
constraints introduced by different model architec-
tures.

For examples, for approaches like sequence la-
beling (Xu et al., 2020; Lee et al., 2022), every
token on the document is an input to the model.
When swapping the key phrases for a pair of fields,
should we also swap the values for these fields so
that the model is not confused by the augmented
examples having values too different from the orig-
inal examples? For instance, the values of fields
such as fax due and total due have different rela-
tive magnitudes, which might need to be preserved.
Furthermore, should we preserve certain document-
level semantics? For example, some fields should
occur only once in a document, shall we ensure
FieldSwap does not introduce multiple instances in
a document for such fields? Will there be other in-
stances of fields which do not belong to the source
field but are also affected by phrase change?

In this work, we want to keep the implementation
as simple as possible. We generate one augmenta-
tion at a time by swapping only one pair of fields
so that the augmented data has very slight distur-
bances. We only change the label for source fields
for simplicity — we leave the values unchanged. We
treat all fields as they could appear multiple times
in the document during training time, and only ap-



ply the schema constraints at inference time. We
found this simple implementation works surpris-
ingly well with the sequence labeling model we
evaluated on. We leave it to future work to adapt
FieldSwap for more complex situations.

2.3.1 Implementation Details

For each document in the training data, we iterate
through all source-to-target pairs in the FieldSwap
configuration, if the document contains the source
field S and any key phrases for S, we replace all
matching source key phrases with target key phrase,
relabel all S instances to 7" and generate one syn-
thetic document corresponding to each key phrase
of target field T'.

Note that if no phrases in the document match
a source phrase in the configuration, then no syn-
thetic documents are generated. Furthermore, if, af-
ter replacing the source key phrase with the target’s,
we are left with an unchanged document, we also
omit the synthetic document. This helps prevent
us from creating semantically incorrect synthetics,
such as the case previously described in Section
2.2, when two fields have the same key phrase but
are semantically different (e.g., current.bonus vs.
year_to_date.bonus).

3 Human Expert

A human familiar with a given document type can
easily provide additional inputs in lieu of additional
labeled examples. For instance, a human can pro-
vide typical key phrases that indicate a field as well
as mark potential pairs of fields that should be used
for FieldSwap. This idea draws on the literature in
rule-based augmentations where rules are provided
in addition to training examples.

We design a human expert approach by devis-
ing a FieldSwap configuration with human inputs.
Instead of relying only on the automatically de-
tected key phrases and field pairs, we apply hu-
man inputs to protect FieldSwap from some error-
prone situations. For example, in configuring key
phrases, some fields, such as company_name and
company_address, do not have clear key phrases,
so we skip these fields for FieldSwap entirely in the
human expert setup. Other fields, particularly rare
fields, might not have enough labeled examples
in the train set, so we rely on domain knowledge
to supply additional key phrases. When config-
uring field pairs, we start with type-to-type field
pairs, then prune those that most likely to appear
in different tables or sections in the document. We

believe using FieldSwap with this setting produce
more useful synthetic documents than field-to-field
setting, and less bad synthetic documents than type-
to-type setting.

4 Experiments

4.1 Dataset

We evaluate FieldSwap on 5 datasets of form-like
documents, including two public datasets (FCC
Forms(Wang et al., 2022), FARA(Wang et al.,
2022)) and three proprietary datasets (Earnings,
Brokerage Statements, Loan Payments). Each
dataset corresponds to a different document type.
We herein also refer to document types as domains.
All field types are defined in the schema and as-
signed with one of the five base types: string, ad-
dress, money, date and number. For each domain,
we evaluate on a fixed hold-out test set. Dataset
statistics are summarized in Table 2 of Appendix A.

4.2 Experimental Setup

Automatically inferring key phrases. We use the
model architecture described in Section 2.1.1 for
automatically inferring key phrases. The model is
trained on an out-of-domain document type (in-
voices) with approximately 5000 training docu-
ments. We tune the hyperparameters using grid
search and use the most performant values. In all
our experiments, we use top 3 important phrases
as the key phrases for each field. We set the impor-
tance score threshold 6 at 0.2.

Human expert. One of the authors of this paper
examined approximately 10 training documents in
domain of interest and recorded the key phrases
they observed for each field. For fields that doesn’t
exist in the training documents they inspected, they
rely on domain knowledge to come up with a hand-
ful of key phrases. The same person also con-
structed the field mappings using the method de-
scribed in Section 3, which avoids contradictory
field pairs.

Backbone form extraction model. FieldSwap is
designed to be agnostic to any architecture for
form extraction task. In our experiment, we use
the sequence labeling model described in (Lee
et al., 2022) and follow the same unsupervised pre-
training procedure. We first pretrain the model on
approximately 30k unlabeled out-of-domain form
documents, then fine-tune the model on the training
documents in the target domain. When training the



model on the target domain, we split the dataset
into 90%-10% training-validation sets. We train
the models for approximately 6 hours and pick the
checkpoint with the highest accuracy on all entities
in the validation split.

Evaluation. We train baseline form extraction
models on the training set without synthetic docu-
ments. We add the synthetic documents generated
with FieldSwap to the training set and train new
form extraction models follow the same procedure.
We compare end-to-end F1 scores of the trained
models to evaluate the effectiveness of FieldSwap
augmentation.

We vary the training set sizes (i.e. 10, 50, 100) to
plot learning curves. In order to capture the inher-
ent variability that may arise in experiments with
such small dataset sizes, we repeat our experiments
across two different axes. For a given domain and
dataset size N, we repeat the experiment using
(1) 3 different random collections of N documents
from the domain’s large pool of documents (see
Table 2 of Appendix A), and (ii) 3 model training
trials. This amounts to a total of 9 experiments for
a given domain and train set size. Each data point
we report on the learning curve corresponds to the
average performance across these 9 experiments on
the fixed hold-out test set.

4.3 Results

Our experiments aim at answering the following
questions: (1) Is FieldSwap effective in its fully
automatic version? (2) Does it work better with
human-supplied inputs? (3) How do improvements
vary across document types and field types?

4.3.1 Automatic FieldSwap

We test both field-to-field and type-to-type field
mappings with automatically inferred key phrases.
As shown in Figure 4, FieldSwap, in general, leads
to neutral or better performance of all datasets and
across all train set sizes we evaluated on. For in-
stance, FieldSwap improves average macro-F1 by
1-4 points on FCC Forms, by 2-5 points on Broker-
age Statements, and by 4-11 points on Earnings.

Field-to-Field vs Type-to-Type. We observed
type-to-type swap performs better than field-to-
field swap when training set size is small (10 doc-
uments), as training set size increases (50-100
documents), field-to-field swap catches up or wins
over. As shown in Table 4 of Appendix B, type-to-
type generally creates 3-10x more synthetic docu-

ments than field-to-field. However, it also has more
chances to generate contradictory synthetic exam-
ples, as discussed in Section 2.2. When the training
set is small, larger amount of synthetic documents
helps more. However, as the training set size in-
creases, field-to-field swap becomes more effective
as it gets enough source examples to produce syn-
thetics and is less likely to create bad synthetics
that might harm the model.

Macro-F1 vs Micro-F1. Current form extraction
models perform poorly for rare fields when there
is only a small amount of labeled data. We be-
lieve FieldSwap is most helpful in this situation
since it can use the labeled training examples from
other frequent fields to generate synthetic training
examples for rare fields. Therefore, we focus on
macro-F1.

However, we also observe that similar improve-
ments hold when evaluating using Micro-F1. As
shown in Figure 5 of Appendix C, the same pat-
tern of results still holds. For instance, FieldSwap
improves the average micro-F1 by 2—5 points for
Earnings domain, and by 1-5 points for Brokerage
Statements domain. The improvement gain is less
than what we see with macro-F1 though, indicating
that the most improvement have come from rare
fields, which aligns with our hypothesis.

4.3.2 FieldSwap with Human Expert

We compare the performance between automatic
FieldSwap and FieldSwap using human expert-
curated phrases and field pair mappings on two
domains. As shown in Figure 4, better key phrases
and field pair mappings generally lead to better
performance. Human inputs further improves the
performance by 4-5 F1 points for Earnings at 50—
100 document, and 4 points for Loan Payments at
10 document.

The gap is mostly attributed to rare
fields, as shown in Table 1. For example,
year_to_date.sales_pay field has particularly
low frequency, it only exists in 3.9% of train
documents. In a low data setting, it’s possible that
there are no or very few labeled examples for such
rare fields, leading to few-shot or even zero-shot
scenarios. Relying on an expert to supply key
phrases that are not present in the small training
set results in a substantial advantage over the
automatic approach. In practice, the decision of
whether or not to use human input depends on
specific scenarios.
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Figure 4: Experiment results on different domains with different train doc sizes. Under each setting, we repeat the
experiments with different random seeds as mentioned in Section 4.2. We report the average Macro-F1 scores.

F1 (FieldSwap,
automatic)

F1 (FieldSwap,

human expert) | AF1
56.27 28.36
46.23 28.26
66.78 16.48
28.18 13.82

Field
year_to_date.sales_pay
current.sales_pay
year_to_date.pto_pay
current.pto_pay

Frequency
3.9% 2791
2.85% 17.97
15.9% 50.3
9.5% 14.36

Table 1: Fields with the largest mean F1 score gaps be-
tween automatic (field-to-field) and human expert set-
ting when trained on 50 documents for Earnings do-
main. Frequency refers to the fraction of documents
that contain said field in a pool of 2000 documents.

4.3.3 Discussions

In this section, we try to answer the question of
how FieldSwap improves across different fields
and document types.

Effect of field type. We associate fields with five
base types (i.e. address, date, money, number,
string) in our settings. Among the 5 datasets we
evaluated on, there are only two fields with number
type (each in different domain), making the results
not representative. Thus, we only study the effect
of the remaining 4 base types. We believe number
type shall have similar pattern with money type, as
they are somewhat alike.

We study the effect of FieldSwap on different
field types in Loan Payments domain across all
train set sizes. As shown in Figure 6 of Appendix D,
we observe the improvement of FieldSwap mainly

come from date and money fields, while we see
negative effects on address and string fields. Re-
call that string and address fields usually do not
have indicative key phrases, FieldSwap should not
generate augmentations. For the most part, our im-
plementation does exactly this, however at times it
does fail and find spurious phrases for these fields.
This leads to bad synthetic documents that harm the
model. In our human expert setting, we explicitly
exclude FieldSwap for fields that do not have key
phrases. We see the negative effect dissipates.

Effect of document type. As shown in Figure 4,
the biggest improvement we observe is on the Earn-
ings domain. Compared to other document types,
most of the fields in Earnings are in tabular format,
with similar base type (i.e. money, date), and have
clear and succinct phrase indicators. We believe
FieldSwap is most helpful when dealing with docu-
ment types with such characteristics. Furthermore,
since ordering of fields in these tables is unim-
portant, FieldSwap is particularly well-aligned for
augmenting these structures. That being said, the
Earnings domain also poses a challenge since many
field pairs can easily yield bad synthetic examples,
as discussed in Section 2.2. Yet, even in the pres-
ence of these potentially contradicting pairs, type-
to-type mapping still improves the performance



across all train set sizes we evaluated on. This
demonstrates that the proposed method tolerates
a small number of these contradictory synthetic
examples.

The improvement gain on FARA domain is very
small. This is because this corpus contains only a
handful of fields, 4 of the total 6 fields are string
type, which FieldSwap does not work well. The
other 2 fields belong to different base types and
are thus not swappable. However, FieldSwap still
maintain neutral or slightly better results through-
out the learning curve.

5 Related Work

Data augmentation is a class of techniques for ac-
quiring additional training examples automatically.
Two main categories of data augmentation are rule-
based and model-based techniques, which use hard-
coded data transformations or pre-trained models
(typically language models), respectively. Rule-
based techniques—such as EDA (Wei and Zou,
2019)—are easier to implement but have limited
benefit, whereas model-based techniques—such as
back-translation (Sennrich et al.) and example ex-
trapolation (Lee et al., 2021)—are more difficult to
develop but offer greater benefit (Feng et al., 2021).
FieldSwap contains elements of both categories,
as it changes (possibly automatically inferred) key
phrases based on a set of swap rules.

Feng et al. (2021) suggest that “the distribution
of augmented data should neither be too similar
nor too different from the original”. FieldSwap
achieves this balance by placing known key phrases
in the contexts of other key phrases, which in-
creases diversity in a controlled way. The use
of schema field types in FieldSwap is similar to
the use of entity types for mention replacement in
named entity recognition, which is effective espe-
cially in low-data settings (Dai and Adel, 2020).

Other data augmentation techniques have been
used for multimodal tasks that combine text and
vision, such as image captioning (Atliha and Se3ok,
2020) and visual question answering (Kafle et al.,
2017; Yokota and Nakayama, 2018). FieldSwap,
like these other approaches, focuses on modifying
the textual component of each input rather than
the visual component; that is, the key phrase is
replaced but the spatial layout remains the same.

Perhaps the most similar prior work to ours is
(Andreas, 2020). The main idea of that work is
that if two items appear in similar contexts, then

they can be interchanged wherever one of them
occurs to generate new examples. In our work, the
items we change are key phrases associated with
schema fields, and we determine interchangeability
based on the identity or type of the field. Rather
than generate new labeled examples by changing
the value of the field, we generate examples by
changing the surrounding context (via key phrases).

Approaches for extracting information from
form-like documents typically rely on multimodal
features: text, spatial layout, and visual patterns.
Models often make use of pre-trained encoders that
incorporate such multimodal signals (Appalaraju
et al., 2021; Garncarek et al., 2021b; Huang et al.,
2022), but these encoders require a large amount
of pre-training data, although they do exhibit good
downstream task data efficiency during fine-tuning
(Sage et al., 2021). Large amounts of training data
are also required by span classification approaches
(Majumder et al., 2020; Tata et al., 2021), sequence
labeling approaches (Aggarwal et al., 2020; Lee
et al.), and end-to-end approaches (Cheng et al.,
2022). Rather than suggest a new model architec-
ture, we propose a method for augmenting form
extraction data.

6 Conclusions

In this paper, we describe a data-augmentation tech-
nique designed for extraction problems on visually
rich documents. We exploit the fact that many
fields have a “key phrase” to indicate them: we
generate an augmented example for a target field
by taking an example of a source field and replacing
the key phrase with that of the target field. Experi-
ments on a variety of datasets show that this simple
technique is very effective for small training sets
(10-100 documents), with improvements of 1-11
macro-F1 points.

This result opens up two interesting directions
for future work. First, how do we design a ver-
sion of FieldSwap that works better with the com-
plex situation we described in Section 2.3? Sec-
ond, there are several extensions to FieldSwap
that are worth investigating. When does swapping
across document types help? Can we use a pre-
trained LLM instead of a human expert to generate
a set of key phrases given the name or description
of a field? Can we learn information about key
phrases from an unlabeled corpus to enable semi-
supervised learning (Pryzant et al., 2022)?
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A Datasets

Table 2 presents the total number of train docu-
ments available in the pool for each document type,
along with the number of total fields. We select a
subset of documents at random from the pool to
create the training sets for our experiments. Table 3
presents number of fields with different base types
for each document type.

B Augmentation Stats

Number of synthetic documents various across dif-
ferent sampled train sets, for each document type
and train set size, we presents the average number
of synthetic documents generated by FieldSwap
with different settings in Table 4.

C Micro F1 Results

Figure 5 shows the average of micro-F1 scores for
different document types across different train set
sizes.

D Effect of Field Type

Figure 6 shows the F1 score differences of
FieldSwap with different settings over the base-
line for different field types and training set sizes
on Loan Payments domain.



Document Type

‘ # Fields ‘ Train Docs Pool Size ‘ Test Docs

FCC Forms (Wang et al., 2022)

FARA (Wang et al., 2022)

Brokerage Statements
Earnings
Loan Payments

6
13
18
23
35

200

200

294
2000
2000

300
300
186
1847
815

Table 2: Datasets. To plot learning curves we select a subset of documents at random from the corpora’s larger
pool to create the training sets for our experiments.

Field Type
Document Type Address \ Date \ Money | Number ‘ String
FARA (Wang et al., 2022) 0 1 0 1 4
FCC Forms (Wang et al., 2022) 1 4 2 1 5
Brokerage Statements 2 4 5 0 7
Earnings 2 3 15 0 3
Loan Payments 3 5 20 0 7

Table 3: Number of fields with different base types for each document type.

Number of Synthetic Documents
Domain Original Train Set Size | FieldSwap (field-to-field) ‘ FieldSwap (type-to-type) ‘ FieldSwap (human expert)
FARA 10 2 5 -
50 176 374 -
100 592 1616 -
FCC Forms 10 246 842 -
50 1663 5755 -
100 3310 11346 -
Brokerage Statements | 10 256 1266 -
50 1486 7994 -
100 2917 16590 -
Loan Payments 10 435 2378 1136
50 2699 18118 5933
100 6083 38081 11682
Earnings 10 197 1542 366
50 1345 11643 1862
100 2717 26001 3707

Table 4: Average number of FieldSwap synthetic documents at different train set size for each document type.
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(b) Proprietary Datasets

Figure 5: Average of micro-F1 scores on different domains with different train doc sizes. Under each setting, we
repeat the experiments with different random seeds as mentioned in Section 4.2.
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Figure 6: Field F1 score differences of FieldSwap over baseline on Loan Payments domain. The length of each
box plot shows the distance between the upper and lower quartiles. Each whisker extends to the furthest data point
in each wing that is within 1.5 times the IQR. The line in the middle of the boxplot denotes the median. The dots
denote outliers. The horizontal red lines mark y = 0.
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