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Abstract: Robotic manipulation systems operating in diverse, dynamic environ-1

ments must exhibit three critical abilities: multitask interaction, generalization to2

unseen scenarios, and spatial memory. While significant progress has been made3

in robotic manipulation, existing approaches often fall short in generalization to4

complex environmental variations and addressing memory-dependent tasks. To5

bridge this gap, we introduce SAM2Act, a multi-view robotic transformer-based6

policy that leverages multi-resolution upsampling with visual representations from7

large-scale foundation model. SAM2Act achieves a state-of-the-art average success8

rate of 86.8% across 18 tasks in the RLBench benchmark, and demonstrates robust9

generalization on The Colosseum benchmark, with only a 4.3% performance10

gap under diverse environmental perturbations. Building on this foundation, we11

propose SAM2Act+, a memory-based architecture inspired by SAM2, which in-12

corporates a memory bank, an encoder, and an attention mechanism to enhance13

spatial memory. To address the need for evaluating memory-dependent tasks, we14

introduce MemoryBench, a novel benchmark designed to assess spatial memory15

and action recall in robotic manipulation. SAM2Act+ achieves an average success16

rate of 94.3% on memory-based tasks in MemoryBench, significantly outper-17

forming existing approaches and pushing the boundaries of memory-based robotic18

systems.19

Keywords: Robotics Manipulation, Multiview Robotics Transformer, Imitation20

Learning, Memory-based Architecture, Behavior Cloning, Generalization21

1 Introduction22

Figure 1: SAM2Act is a multi-view, language-conditioned behavior cloning policy trained with fewer
demonstrations. Given a language instruction, it can execute high-precision tasks, such as turning the
tiny knob on the lamp. It also generalizes to various environmental variations, such as changes in
lighting conditions. Through further training with our proposed memory architecture, it now evolves
into SAM2Act+, which is now capable of solving tasks that require implicit spatial memory—such
as remembering where the robot previously stored the pliers, as depicted in the above figure.
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The world in which we live is diverse and constantly changing, encompassing a wide variety of23

objects, scenes, and environmental conditions. Consider the seemingly simple task of following a24

recipe when cooking: we can seamlessly perform the action of picking it up and sprinkling it into25

the pan, recognize salt even if it comes in different types of container, and remember whether we26

have already added salt. Humans excel in such environments because they can interact with their27

surroundings to achieve specific goals, generalize to unseen scenarios, and retain knowledge from28

past experiences [1]. These abilities—multitask interaction, generalization, and memory—serve29

as guiding principles for developing robotic systems capable of operating in similarly complex30

environments.31

Significant progress has been made in robotic manipulation through prior work. Early methods,32

such as the Transporter Network [2] and CLIPort [3], demonstrated effective 2D action-centric33

manipulation but were limited in their ability to handle spatially complex tasks. More recent34

approaches, such as PerAct [4] and RVT [5], have pushed toward 3D-based manipulation. PerAct35

employs a multitask transformer that interprets language commands and predicts keyframe poses,36

achieving strong results across a variety of tasks. RVT builds on this foundation by adopting a 2.5D37

representation, improving training efficiency and inference speed. Its successor, RVT-2, further38

enhances performance with a coarse-to-fine strategy, increasing precision for high-accuracy tasks.39

Despite these advances, important challenges remain, including improving multitask performance,40

enhancing generalization to novel environment configurations, and integrating memory mechanisms41

for tasks requiring episodic recall.42

We introduce SAM2Act, a multi-view robotics transformer-based policy that enhances feature rep-43

resentation by integrating multi-resolution upsampling with visual embeddings from large-scale44

foundation models. Built on the RVT-2 multi-view transformer, SAM2Act achieves strong multitask45

success and generalization. Building on this foundation, we introduce SAM2Act+, which incorpo-46

rates a memory-based architecture inspired by SAM2’s approach. Using a memory bank, an encoder,47

and an attention mechanism, SAM2Act+ enables episodic recall to solve spatial memory-dependent48

manipulation tasks. We evaluate SAM2Act and SAM2Act+ using MemoryBench, a new benchmark49

suite that tests policies’ spatial memory capabilities and the ability to retain and recall past actions.50

SAM2Act+ achieves an average success rate of 94.3% across all tasks on MemoryBench, with an aver-51

age accuracy of 94.3%, outperforming next highest baseline by a huge margin of 39.3%. Furthermore,52

we assess the generalization capabilities of SAM2Act on The Colosseum [6], a benchmark designed53

to test robotic manipulation under various environmental perturbations. SAM2Act demonstrates54

robust performance on The Colosseum with an average decrease of 4.3% across all perturbations,55

highlighting its ability to generalize effectively in diverse and challenging scenarios. Lastly, our56

approach outperforms the baseline methods in real-world evaluations while exhibiting comparable57

generalization and spatial memory capabilities.58

In summary, this work makes three key contributions. First, we introduce a novel model formulation59

that leverages visual foundation models to solve high-precision, memory-dependent manipulation60

tasks. Second, we propose MemoryBench, a evaluation benchmark for assessing spatial memory61

in behavior cloning models. Finally, we present empirical results and insights on the model’s62

performance across both simulation and real-world tasks. Note that we list the related work section63

in Appendix A.64

2 MemoryBench: A Memory Benchmark for Robotic Manipulation65

We introduce MemoryBench, a benchmark designed to systematically evaluate the spatial memory66

capabilities of robotic manipulation policies. In subsection 2.1, we begin by outlining the logic and67

rules behind task design. We will then describe the tasks we have developed in subsection 2.2.68

2.1 Task Design69

Unlike standard RLBench tasks [7], many of which involve long-horizon scenarios, our tasks are70

specifically designed to require spatial memory. Without such memory, the agent would be forced to71
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Figure 2: Simulation and Real Tasks. We demonstrate the effectiveness of SAM2Act+ in solving
memory-based tasks by evaluating it against baselines on the three benchmark memory tasks (shown
at the top). Additionally, we validate our approach using a Franka Panda robot on four real-world
tasks (shown at the bottom), including tests under out-of-distribution perturbations.

rely on random actions. To create these tasks, we intentionally violate the Markov assumption, which72

states that in a Markov Decision Process (MDP), the next observation depends solely on the current73

observation and action:74

P
(
ot+1 | o1, a1, . . . , ot, at

)
= P

(
ot+1 | ot, at

)
.

This assumption implies that knowing only ot and at is sufficient to predict ot+1. However, in our75

tasks, we design scenarios where two distinct action histories lead to the same observation ot, but76

require different subsequent actions. This forces the agent to recall which action history led to ot to77

perform the correct next action. Furthermore, we standardized the language instructions to prevent78

unintentional leakage of spatial information that could aid the model in memory-based tasks. These79

principles guided the development of our spatial memory-based tasks.80

2.2 Spatial Memory-based Tasks81

MemoryBench extends the RLBench simulator to provide scripted demonstrations for three spatial82

memory tasks: reopen_drawer, put_block_back, and rearrange_block. Each task is designed83

to evaluate a specific aspect of spatial memory and adheres to the principles outlined in Section 2.1.84

To introduce complexity, these tasks include two to four variations and additional steps—such as85

pressing a button mid-sequence—that disrupt the Markov property. This forces the agent to rely on86

memory rather than solely on immediate observations.87

The reopen_drawer task evaluates the agent’s ability to recall 3D spatial information along the88

z-axis. Initially, one of three drawers (top, middle, or bottom) is open. The agent must close the open89

drawer, press a button on the table, and then reopen the same drawer. After the button is pressed,90

all drawers are closed, and the scene becomes visually indistinguishable, requiring the agent to use91

memory to identify the correct drawer. This task tests the agent’s ability to recall spatial states over92

a temporal sequence. The put_block_back task tests the agent’s ability to remember 2D spatial93

information on the x-y plane. Four red patches are placed on a table, with a block initially positioned94

on one of them. The agent should move the block to the center of the patches, press a button, and95

return the block to its original position. The agent must rely on its memory of the block’s initial96

location to succeed, demonstrating its capability to encode and retrieve 2D spatial information.97

The rearrange_block task evaluates the agent’s ability to perform backward reasoning by recalling98

and reversing prior actions. Initially, one block is placed on one of two red patches, while the other99

3



Figure 3: Overview of the SAM2Act (top) and SAM2Act+ (bottom) architectures. The SAM2Act
architecture leverages the SAM2 image encoder to generate prompt-conditioned, multi-resolution
embeddings, fine-tuned with LoRA for efficient adaptation to manipulation tasks. A multi-view
transformer aligns spatial coordinates with language instructions, while a cascaded multi-resolution
upsampling mechanism refines feature maps and generates accurate translation heatmaps. SAM2Act+
extends this architecture by incorporating memory-based components, including the Memory Encoder,
Memory Attention, and Memory Bank, into the coarse branch. Observations are reconstructed into
point clouds, rendered into three virtual images, and lifted into 3D translation points, enabling precise
spatial reasoning across both architectures.

patch remains empty. A second block is positioned at the center of both patches. The agent must100

move the second block to the empty patch, press a button, and then relocate the first block off its101

patch. Successfully completing this task requires the agent to determine which block to move without102

having interacted with the correct one in previous actions, thereby testing its capacity for backward103

spatial memory reasoning. These tasks collectively evaluate both forward and backward spatial104

reasoning across 3D (z-axis) and 2D (x-y plane) spaces. By introducing non-Markovian elements,105

they emphasize the need for memory representations to solve complex sequential decision-making106

problems (more details in Appendix I).107

3 Method108

Our method, SAM2Act, enables precise 3D manipulation with strong generalization across environ-109

mental and object-level variations. Building upon the RVT-2 framework [8], SAM2Act introduces110

key architectural innovations that enhance visual feature representation and task-specific reasoning.111

The architecture reconstructs a point cloud of the scene, renders it from virtual cameras at orthogonal112

views, and employs a two-stage multi-view transformer (coarse-to-fine) to predict action heatmaps.113

The coarse branch generates zoom-in heatmaps to localize regions of interest, while the fine branch114

refines these into precise action heatmaps. SAM2Act leverages the pre-trained SAM2 encoder [9] to115

extract multi-resolution image embeddings, which are further refined through the multi-resolution116

upsampling technique to predict accurate translation heatmaps with minimal information loss. To ad-117

dress tasks requiring spatial memory, SAM2Act+ extends the SAM2Act architecture by incorporating118

memory-based components. These include Memory Bank, Memory Encoder, and Memory Attention,119

enabling the model to encode historical actions and condition current observations. This memory-120

based policy enhances the agent’s ability to predict actions based on past contextual information,121

significantly improving performance in tasks that require sequential decision-making.122

In the following sections, we detail the SAM2Act architecture (subsection 3.1), including its multi-123

resolution upsampling mechanism (Figure 4). We also present the SAM2Act+ extension, which124

integrates memory-based components for solving spatial memory tasks (subsection 3.2).125
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Figure 4: SAM2Act Module and multi-resolution upsampling mechanism. A cascade of three
convex upsamplers processes feature maps at increasing resolutions, integrating multi-resolution
embeddings from the SAM2 image encoder through elementwise addition and layer normalization.
The upsamplers progressively refine features, doubling spatial dimensions at each stage, to generate
accurate translation heatmaps while capturing fine-grained spatial details for manipulation tasks.

3.1 SAM2Act: Multi-Resolution Upsampling for Enhanced Visual Feature Representation126

A distinctive feature of SAM2Act is the incorporation of the SAM2Act Module into the manipulation127

backbone for training, as illustrated in Figure 4. The coarse and fine SAM2Act Modules share128

the same architecture, with the fine branch generating additional features to predict actions beyond129

translation, while the coarse branch focuses exclusively on translation. Point-cloud representations130

are reconstructed from raw image inputs, and virtual images are generated from three viewpoints131

using virtual cameras. Instead of directly inputting these images into the multi-view transformer,132

their RGB channels are duplicated and processed by the SAM2 [9] image encoder, which produces133

object-centric multi-resolution embeddings. These embeddings, generated at three resolution levels,134

are combined with virtual images containing RGB, depth, 3D translation coordinates, and language135

instructions before being fed into the multi-view transformer. Details of how we adapt the MVT can136

be found in Appendix C.137

To adapt the SAM2 image encoder to our domain, we fine-tune it using Low-Rank Adaptation (LoRA)138

[10] with a default rank of 16, which enables domain adaptation with minimal computational cost139

while maintaining model efficiency. Additionally, to fully leverage the multi-resolution embeddings140

produced by the SAM2 image encoder, we introduce a multi-resolution upsampling method. This141

method uses the embeddings as auxiliary inputs to enhance the generation of translation heatmaps,142

thereby improving spatial precision and overall system performance. The multi-resolution upsampling143

mechanism, also detailed in Figure 4, leverages cascaded convex upsamplers to progressively refine144

feature maps across resolutions. Let X l ∈ RB×Cl×Hl×W l

denote the feature maps at stage l and145

El ∈ RB×Cl×Hl×W l

the corresponding multi-resolution embedding from SAM2. Also let U(·)146

denote the upsampling operator that doubles the spatial dimensions. The feature maps are updated at147

each stage as follows:148

X l+1 = LayerNorm
(
U(X l) ⊕ El

)
,

where ⊕ represents element-wise addition. The upsampling operator U is defined as:149

U : RB×Cl×Hl×W l

→ RB×(Cl/2)×(2Hl)×(2W l).

At each stage, the output of the upsampler is combined with the corresponding multi-resolution150

embedding El from the SAM2 encoder, ensuring alignment between the multi-resolution features and151

the decoder’s spatial refinement process. A layer normalization step follows each addition to stabilize152

training and maintain feature coherence. This results in direct integration of the embeddings into153

the translation heatmap generation process. The cascading structure refines features across multiple154

resolutions, capturing fine-grained spatial details critical for manipulation tasks.155
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Algorithm 1 Forward Pass of SAM2Act+ Module
1: Initialize: Number of steps N , maximum number of memories M , number of views V , empty

memory bank Q with V separate FIFO queues, input X
2: for i = 1 to N do
3: for j = 1 to V do
4: Get embeddings Eraw from MVT Tmv(Xj)
5: Retrieve past memoriesMold from Q[j]
6: Get memory-conditioned embeddings Emem from Memory Attention Tmem(Eraw,Mold)
7: Predict translation heatmapH with upsampler U(Emem)
8: Encode new memoryMnew using Memory Encoder Emem(H, Eraw)
9: Store new memory Q[j]← Q[j] ∪ {Mnew}

10: if |Q[j]| = M then
11: Q[j]← Q[j]2:n
12: end if
13: end for
14: end for

3.2 SAM2Act+: Action Memory Architecture for Improved Spatial Awareness in Past156

Observations157

To extend the SAM2Act architecture (subsection 3.1) with memory-based capabilities inspired by158

SAM2, we introduce SAM2Act+, a task-specific variant designed for solving memory-based tasks.159

SAM2Act+ integrates the three core memory components from SAM2—Memory Attention, Memory160

Encoder, and Memory Bank—into the coarse branch of SAM2Act. Originally developed for object161

tracking in SAM2, these components are adapted to align with the needs of SAM2Act+, enabling162

the agent to retain prior actions and observations for sequential decision-making. In SAM2, the163

Memory Encoder processes predicted object masks, while the Memory Attention module fuses image164

embeddings with positional information from previous frames. SAM2Act+ adopts a similar structure:165

the predicted heatmaps, which serve as binary indicators of spatial positions in the image, function166

analogously to object masks. This conceptual alignment ensures a seamless integration of memory167

mechanisms, allowing the agent to leverage stored information to predict subsequent actions based168

on historical context. A detailed description of the Memory Attention and Memory Encoder modules169

can be found in Appendix C.170

Architecture. The SAM2Act+ architecture is illustrated in Figure 3. After pretraining SAM2Act in171

Stage 1, we freeze the SAM2 image encoder and the multi-view transformer in the coarse branch,172

as these components effectively generate robust embeddings for multi-view images in manipulation173

tasks. We also freeze the entire fine branch, given its proven ability to predict fine-grained actions174

accurately. The reason why we only fine-tune the coarse branch is because it focuses on generating175

heatmaps that provide richer contextual information for recalling past actions. The fine branch,176

in contrast, primarily emphasizes small objects or localized regions, which typically contain less177

information relevant to memory-based tasks.178

Training. To train SAM2Act+, we fine-tune the coarse branch by integrating the three memory179

components (and train them from scratch) with the multi-resolution upsampling module. During fine-180

tuning, consecutive action keyframes are sampled as input, training the multi-resolution upsampler181

to predict new translations conditioned on memory. The memory components function similarly182

to their implementation in SAM2 for object tracking, with one key distinction: the input to the183

Memory Encoder. Instead of using image embeddings from the SAM2 image encoder, we input184

feature embeddings generated by the multi-view transformer (not conditioned by memory). This185

adaptation ensures that memory encoding incorporates multi-view information while maintaining186

independence in handling stored representations. Virtual images are treated independently during187

memory encoding and attention, with each view’s memory encoded separately. Feature embeddings188

from each view are attended to using their corresponding stored memories, preserving spatial and189

contextual alignment while leveraging fused multi-view information. This structured approach190

prevents cross-view interference and enhances the model’s ability to reason over sequential tasks.191

The memory-based forward pass for SAM2Act+ is outlined in Algorithm 1. By incorporating the192

memory mechanism, SAM2Act+ enhances performance in scenarios requiring long-term reasoning,193

enabling the agent to make informed decisions based on historical context.194
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4 Experiments195

We study SAM2Act and SAM2Act+ in both simulated and real-world environments, where all the196

experiment setups are in Appendix B. Specifically, we are interested in answering the following197

questions:198

§ 4.1 How does SAM2Act compare with state-of-the-art 3D manipulation policies?199

§ 4.2 Can SAM2Act generalize across object and environmental perturbations?200

§ 4.3 Can SAM2Act+ solve spatial memory-based tasks that other baselines cannot?201

§ 4.4 How well does SAM2Act and SAM2Act+ perform on real-world tasks?202

4.1 Performances Across 18 RLBench Tasks203

Table 1 compares SAM2Act with prior keyframe-based 3D BC methods on the RLBench benchmark.204

Overall, SAM2Act achieves an average success rate of 86.8%±0.5, surpassing the previous best205

(RVT-2) by 5.4%. Also, SAM2Act ranks first in 9 out of 18 tasks and remains highly competitive206

in 7 others. The largest margin of improvement occurs in Insert Peg and Sort Shape. Both207

tasks require precise manipulation, underscoring the effectiveness of SAM2Act’s multi-resolution208

upsampling strategy. These results establish SAM2Act as a leading policy for complex 3D tasks,209

highlighting its ability to handle high-precision manipulations - an area where prior methods have210

struggled. Ablation studies are performed on SAM2Act in Appendix G.211

Table 1: Multi-Task Performance on RLBench. We evaluate 18 RLBench tasks [7], reporting
success rates across all tasks among 3D keyframe-based behavior cloning (BC) policies. We report
stats of 4 evaluations for SAM2Act. Our method, SAM2Act, outperforms all baselines. See full
comparisons in Appendix E.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons
PerAct [4] 49.4 ± 4.3 4.6 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8 92.8 ± 3.0
RVT [5] 62.9 ± 3.7 3.6 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2 100.0 ± 0.0
RVT-2 [8] 81.4 ± 3.1 1.9 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3 100.0 ± 0.0
SAM-E [11] 70.6 ± 0.7 2.6 82.4 ± 3.6 100.0 ± 0.0 18.4 ± 4.6 95.2 ± 3.3 95.2 ± 5.2 0.0 ± 0.0 94.4 ± 4.6 100.0 ± 0.0
SAM2Act (Ours) 86.8 ± 0.5 1.8 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0
Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap
PerAct [4] 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
RVT [5] 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 [8] 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7
SAM-E [11] 64.0 ± 2.8 92.0 ± 5.7 95.2 ± 3.3 78.4 ± 3.6 95.2± 1.8 34.4 ± 6.1 26.4 ± 4.6 0.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
SAM2Act (Ours) 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

4.2 Semantic Generalization across Tasks212

The results evaluated in subsection 4.1 were obtained by training and testing models within the213

same environment. However, to truly assess generalization performance, policies must remain214

robust against both environmental and object-level perturbations. We therefore trained SAM2Act215

and the baseline methods on 20 tasks from The Colosseum benchmark and tested them under 13216

different perturbation categories over three runs. SAM2Act exhibits the smallest performance217

drop compared to the baselines, with an average decrease of 4.3% (standard deviation of 3.59%).218

Notably, it proves particularly robust to environmental perturbations – such as changes in lighting,219

table color/texture, the addition of distractors, and even camera pose – while also maintaining220

competitive performance under object-level perturbations (see more analysis in subsection G.2).221

Table 2: The Colosseum results. Task-average success rate percentage change for SAM2Act
and other baselines across 13 perturbation factors from The Colosseum, relative to evaluations
without perturbations. Results of 3 evaluations are reported for all models. Our approach, SAM2Act,
demonstrates the lowest average percentage change across all perturbations. The full result table is
shown in Appendix F.

Method Average ↑ MO-Color ↑ RO-Color ↑ MO-Texture ↑ RO-Texture ↑ MO-Size ↑ RO-Size ↑
RVT-2 [8] -19.5±2.8 -20.7±1.0 -11.8±0.8 -13.3±4.6 -11.4±3.7 -13.2±3.1 -17.7±0.1
SAM2Act (SAM2→ SAM) -20.7±1.2 -26.1±0.7 -15.7±2.9 -15.0±3.3 -16.5±6.2 -18.7±1.9 -19.8±1.3
SAM2Act (w/o Multi-res Input) -19.1±4.5 -15.5±6.4 -13.5±4.6 -20.4±0.5 -16.6±6.1 -21.3±7.5 -12.6±7.5
SAM2Act (Ours) -4.3±3.6 -1.1±2.5 -0.7±7.2 -3.3±2.4 24.72±6.1 -15.9±5.0 0.9±6.8
Method Light Color ↑ Table Color ↑ Table Texture ↑ Distractor ↑ Background Texture ↑ Camera Pose ↑ All Perturbations ↑
RVT-2 [8] -15.6±1.3 -26.5±4.4 -14.6±4.4 -4.9±5.3 -4.4±4.0 -19.5±2.8 -77.9±1.7
SAM2Act (SAM2→ SAM) -16.3±1.2 -23.5±5.3 -12.3±3.1 0.6±2.9 -5.4±3.2 -20.7±1.2 -79.5±2.5
SAM2Act (w/o Multi-res Input) -7.2±3.6 -18.3±6.1 -17.5±3.3 -4.6±3.5 -5.7±3.5 -19.1±4.5 -73.8 ±2.2
SAM2Act (Ours) 4.5±4.4 1.1±2.5 -3.7±5.2 1.7±1.7 -1.5±2.7 -4.3±3.6 -58.3±4.4
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4.3 Performance on MemoryBench222

In Table 3, we evaluate SAM2Act+ against SoTA 3D BC model, RVT-2 on MemoryBench, training all223

models in a single-task setting to isolate memory-related challenges (e.g., opening the wrong drawer224

rather than unrelated mid-task failures). This setup ensures that performance differences stem from225

memory capabilities. For a random agent, the expected success rates are determined by the number226

of possible choices per task: 33% for reopen_drawer (three drawers), 25% for put_block_back227

(four patches), and 50% for rearrange_block (two blocks). However, variations in task complexity,228

fixed training data, and imbalanced task distributions lead to slight deviations from these baselines.229

Our proposed memory-based model, SAM2Act+, demonstrates a strong understanding of spatial230

memory, achieving an average success rate of 94.3% across all tasks. It outperforms SAM2Act231

(without memory) by a huge margin of 39.3% on MemoryBench, highlighting the significant232

impact of explicit memory modeling.233

Table 3: Performance on MemoryBench. We report the success rates for the three spatial memory
tasks in MemoryBench. Our method, SAM2Act+, significantly outperforms all baseline methods that
lack an explicit memory mechanism, achieving an average improvement of 37.6% across all three
tasks. Note that there is an update with MemoryBench, see more in Appendix J.

Methods / Tasks Avg. Success ↑ (a) Reopen Drawer (b) Put Block Back (c) Rearrange Block

RVT-2 54.0 ± 5.3 60.0 ± 0.0 50.0 ± 2.3 52.0 ± 3.3
SAM2Act (Ours) 55.0 ± 24.3 48.0 ± 0.0 35.0 ± 3.8 82.0 ± 2.3

SAM2Act+ (Ours) 94.3 ± 9.0 84.0 ± 0.0 100.0 ± 0.0 99.0 ± 2.0

4.4 Real-robot Evaluations234

Table 4 presents our real-world experiment results, where our method achieves a 75% task success235

rate, compared to 43% for RVT-2. SAM2Act significantly outperforms the baseline in high-precision236

tasks (60% vs 0%). It excels in memory-based tasks, such as (d) Push the same button, which237

requires recalling the button’s previous location. Here, SAM2Act achieves 70% success, while RVT-2,238

relying on random guessing, scores 40%. We also test models’ generalization against perturbations239

like lighting changes, distractors, and position variations. Additional details are in the Appendix K,240

with real-world rollout videos available on our project website.241

Table 4: Real-world results. We compare RVT2 against SAM2Act for the first three tasks and
SAM2Act+ on the last real-world tasks (indicated with *), evaluating performance both in-distribution
and out-of-distribution during test time.

In-Distribution Out-Distribution
Task RVT-2 SAM2Act RVT-2 SAM2Act
(a) turn on the lamp 0/10 6/10 0/10 6/10
(b) push button sequence 4/10 9/10 1/10 9/10
(c) stack cubes 8/10 8/10 3/10 3/10
(d) push the same button * 4/10 7/10 2/10 6/10

5 Conclusion & Limitation242

We introduce SAM2Act, a multi-view, language-conditioned behavior cloning policy for 6-DoF243

3D manipulation, enabling high-precision manipulations while generalizing effectively to unseen244

perturbations. Building on this foundation, we propose SAM2Act+, a memory-based multi-view245

language-conditioned robotic transformer-based policy that equips the agent with spatial memory246

awareness, allowing it to solve spatial memory-based tasks. While both SAM2Act and SAM2Act+247

achieve SOTA performance across multiple benchmarks, challenges remain in extending them to248

dexterous continuous control. Additionally, SAM2Act+ relies on a fixed memory window length,249

which differs from task to task, limiting its adaptability to tasks of varying length. We also examined250

whether our memory architecture could retain semantic information (e.g., color), but unfortunately, it251

appears to be limited to storing spatial information. Despite these challenges, we believe SAM2Act+252

is an important step towards memory-based generalist manipulation policies.253
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A Related Work421

A.1 3D-based Robotic Transformer for Manipulation422

2D-based methods [12, 13, 2, 14, 3] are effective for simple pick-and-place tasks due to fast training,423

low hardware requirements, and minimal computational cost. However, they depend on pretrained424

image encoders and fail in tasks requiring high precision, robust spatial interaction, or resilience425

to environmental and camera variations [6]. Recent work addresses these limitations with 3D426

perception. Methods like PolarNet [15], M2T2 [16], and Manipulate-Anything [17] reconstruct point427

clouds, while C2F-ARM [18] and PerAct [4] use voxel-based 3D representations. Act3D [19] and428

ChainedDiffuser [20] adopt multi-scale 3D features. RVT [5] introduces 2.5D multi-view images for429

faster training, refined by RVT-2 [8] with a coarse-to-fine architecture for improved precision. Our430

work, SAM2Act, combines RVT-2’s spatial reasoning with enhanced virtual images from the SAM2431

visual encoder, achieving high precision and generalization across diverse tasks.432

A.2 Visual Representations for Robot Learning433

Robotics research heavily relies on visual representations from computer vision to process high-434

dimensional inputs and improve policy learning. Visual representations are integrated into robot435

learning through pre-training [21, 22, 23], co-training [24, 25, 26, 27], or frozen encoders [28, 29, 11],436

all of which effectively support policy training. These representations also enhance invariance,437

equivariance, and out-of-distribution generalization [30, 6, 31]. Notably, object-centric visual repre-438

sentations (e.g. from SAM) are shown to be even more useful and relevant for robotic manipulation439

and control [32, 33]. Specifically, SAM-E [11] demonstrates the use of a pre-trained SAM encoder440

for robotic manipulation by leveraging image embeddings for policy learning. Expanding on this, our441

approach employs the SAM2 visual encoder to generate image embeddings for robotic transformers442

and utilizes its multi-resolution features to improve convex upsampling for next-action prediction.443

A.3 Memory in Robotics444

Memory is a fundamental component of human cognition, and equipping generalist robotic agents445

with episodic and semantic memory is crucial for enabling them to perform complex tasks effec-446

tively [34]. Early research on memory in robotics primarily addressed navigation tasks, relying on447

semantic maps that were often constrained in scope [35, 36, 37]. Other work explicitly model the448

memory and its representation for a robot cognitive architecture [38]. Recent advancements leverage449

representations derived from vision-language models (VLMs) and Large Vision Models (LVMs),450

utilizing voxel maps or neural feature fields to encode, store, and retrieve information [39, 40, 17, 41].451

Alternative methods represent semantic memory for manipulation tasks using Gaussian splats to452

encode spatial information [42, 43]. Recent work [44] employs transformer-based relational memory453

on partial-view point clouds—augmented with object discovery and tracking—to robustly handle454

occlusions, novel and reappearing objects, and diverse distractors, outperforming implicit-memory455

baselines in both simulation and real-world experiments. In contrast, our approach draws inspiration456

from the framework of Partially Observable Markov Decision Processes (POMDPs) [45], incorporat-457

ing memory directly into the training process. By integrating spatial memory from past actions into458

the agent’s belief state, we enhance the robustness and adaptability of learned policies.459

B Experimental Setup460

We benchmark SAM2Act in both simulated and real-world environments. The simulated environ-461

ments serve as a controlled platform to ensure reproducible and fair comparisons. The real-world462

experiments demonstrate the applicability of the method to real-world settings. Section B details463

our experimental setup and outlines the evaluation methodology. Training details can be found in464

Appendix D.465
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Simulation Setup. All simulated experiments were conducted in the CoppeliaSim environment466

via PyRep, using a 7-DoF Franka Emika Panda robot in a tabletop setting. Observations were467

captured from five RGB-D cameras—front, left shoulder, right shoulder, overhead and wrist—each at468

128 px× 128 px. The robot receives a keyframe specifying translation and quaternion orientation469

and utilizes an OMPL-based motion planner to move to the target pose.470

Real-robot Setup. We validate SAM2Act in real-world scenarios using a Franka Emika Panda471

robot with a Robotiq 2F-85 gripper and a exocentric Intel RealSense D455 depth sensor (more in472

Appendix K). We study four manipulation tasks, aligning three with RVT-2 for comparison and473

introducing a new memory-based task. We use the software stack as in [46]. For each task, we474

collect 10–15 demonstrations via kinesthetic teaching and scripted execution with scene and object475

variations. As in Figure 2, we evaluate SAM2Act against RVT-2 for tasks (a)–(c) and SAM2Act+ for476

memory task (d). Each task undergoes 10 in-distribution and 10 out-of-distribution trials, including477

environmental perturbations, measuring total success.478

18 RLBench & MemoryBench Tasks. To evaluate the general performance of SAM2Act and the479

memory capabilities of SAM2Act+, we conducted simulation experiments on two benchmarks: a480

subset of 18 tasks from RLBench and MemoryBench. RLBench is a standard multi-task manipulation481

benchmark, from which we selected 18 tasks well-studied in prior work. MemoryBench is a curated482

set of three tabletop manipulation tasks in CoppeliaSim that require the trained policy to have both483

semantic and spatial memory of past scenes and actions. In both benchmarks, each task is defined484

by a language instruction with 2–60 variations (e.g., handling objects, locations, and colors). We485

collected 100 demonstrations per task for training and held out 25 unseen demonstrations per task for486

testing. All policies are evaluated four times to obtain standard deviations. Tasks details can be found487

in Appendix H and Appendix I.488

3D Baselines. We benchmark SAM2Act and SAM2Act+ against the current state-of-the-art 3D489

next-best-pose prediction model, RVT-2. RVT-2 is a multi-view robotics transformer that leverages a490

coarse-to-fine approach on the constructed point cloud to predict the next best action heatmap. We491

also compare with RVT [5], PerAct [4], and SAM-E [11].492

C Model Architecture493

We will explain our model architecture in detail, including Multi-View Transformer, Memory At-494

tention, Memory Encoder, and Memory Bank. The multi-resolution is already explained in subsec-495

tion 3.1.496

Multi-View Transformer. The two MVTs used in the coarse and fine branches have the same497

architecture. Very similar to the MVT proposed by [5], the input to the transformer consists of a498

language description of the task, virtual images of the scene point cloud, and the image embeddings499

(at the lowest resolution) generated by the SAM2 image encoder. The text is transformed into token500

embeddings using the pre-trained CLIP [47] model, while the virtual images are converted into501

token embeddings through patchify and projection operations. Similarly, the image embeddings are502

converted into token embeddings via a projection layer. For each virtual image, tokens corresponding503

to the same image are processed through four attention layers. Finally, the processed image tokens,504

along with the language tokens, are jointly processed using an additional four attention layers. The505

resulting image tokens are then used to infer the 3D action.506

Memory Attention. Akin to the memory attention in SAM2 [9], the purpose of this module is to507

condition the current observation features on both past observation features and predicted actions,508

specifically translation. Notably, features from each view are processed independently. We stack four509

transformer blocks, with the first one taking the image embedding output of MVT from the current510

observation as input. Each block applies self-attention, followed by cross-attention to memories of511

past observation features and predicted actions, stored in a memory bank (described below), and512

ends with a multi-layer perceptron (MLP). For both self- and cross-attention, we use vanilla attention513

operations, enabling us to leverage recent advances in efficient attention kernels [48]. In addition to514
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sinusoidal absolute positional embeddings, 2D spatial Rotary Positional Embedding (RoPE) [49, 50]515

are incorporated in both self-attention and cross-attention layers. We also reduce the dimension size516

from the original 256 to 128 to align with the image embedding dimension of the MVT output.517

Memory Encoder. The memory encoder constructs memory features by downsampling the output518

translation heatmap using a convolutional module and summing it element-wise with the uncondi-519

tioned observation embedding from the multi-view transformer (not shown in Figure 3). This is520

followed by lightweight convolutional layers to integrate the information. Instead of employing an521

additional image encoder, our memory encoder reuses the image embeddings produced by the MVT522

(not the SAM2 image encoder) and fuses them with the predicted translation information to generate523

memory features. This design enables the memory features to leverage rich representations that524

incorporate language, semantic, and spatial features from multiple views, making them more suitable525

for encoding action memories. Originally, this module was designed to encode an image embedding526

with multiple object masks within the same frame. However, we do not utilize this functionality.527

Instead, we encode one memory per view, where each memory is generated by encoding a single528

heatmap with a corresponding image embedding from each view.529

Memory Bank. The memory bank preserves past translation predictions associated with previous530

observations in the video by maintaining a FIFO queue of up to N recent memories. Each view has531

its own independent memory bank, as memories are stored and retrieved separately for different532

views. These memories are represented as spatial feature maps. Additionally, in our memory bank,533

the memory features are projected to a dimension of 64.534

D Training Implementation535

All models are trained on 32 NVIDIA H100/A100 GPUs. In some cases, we also train on 16 or 8536

NVIDIA H100/A100 GPUs, but we ensure fairness by maintaining the same total batch size across537

all settings.538

D.1 SAM2Act539

We use the same way to data and demo augmentation methods and training pipeline as in RVT2 [8]540

to train SAM2Act (stage 1). The training hyperparameters are shown in Table 5. We use this set of541

hyperparameters to train on RLBench and The Colosseum.542

Table 5: Training Hyperparameters of SAM2Act on RLBench and The Colosseum. The batch
size stands for total batch size across all GPUs. For the learning rate, we follow the scaling strategy
used in RVT2 [8], where the learning rate is scaled by the batch size as 1.25e− 5× bs.

Hyperparameters SAM2Act Training

batch size 256
learning rate 3.2e-3

optimizer LAMB
learning rate schedule cosine decay

weight decay 1e-4
warmup steps 2000
training steps 56.25K

training epochs 90
LoRA rank 16

D.2 SAM2Act+543

We use a different strategy for sampling a batch of data for training. Previous sampling strategies544

randomly select a batch of independent observations, allowing the model to predict the next action545

based on each observation independently. However, for SAM2Act+, we aim for the agent to predict546

the next action based on both the current and past observations. To achieve this, we must sample547

a batch of data that is spatio-temporally consistent. To implement this, we randomly sample n548
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consecutive observations from a random episode. The forward pass is then performed sequentially549

from the first to the last observation. The details of the forward pass are provided in Algorithm 1.550

When adopting this new sampling method during training, one immediate effect is a significant551

reduction in data diversity per batch. This can be detrimental, especially when dealing with tasks552

with numerous variations. We attempted to train the standard SAM2Act model on RLBench tasks553

using this new sampling method, but the convergence time was excessively long. To address this, we554

propose a new training pipeline: first, we pre-train the model using the previous sampling method,555

then fine-tune it with the new sampling approach. This strategy effectively mitigates the issue of slow556

convergence, significantly reducing training time.557

As mentioned in subsection 4.3, we train all methods on MemoryBench in a single-task setting.558

However, finding a training configuration that optimizes all tasks is challenging. To address this,559

we use a universal set of hyperparameters for training but evaluate models across all epochs and560

select the best-performing one for evaluation. We follow the same approach to determine the optimal561

pre-trained weights for SAM2Act before fine-tuning on SAM2Act+. In addition, the window size of562

the memory mechanism is also decided to be different for each task in MemoryBench. We keep the563

batch size the same as the window size during training, and thus the learning rate will be a bit different564

as they are related with batch size. The detailed training hyperparameters are listed in Table 6.565

Table 6: Training Hyperparameters of SAM2Act and SAM2Act+ on MemoryBench. Note
that the batch size refers to the total batch size across all GPUs. For SAM2Act+ training on the
reopen_drawer task, we use a maximum window size of 8, resulting in a per-GPU batch size of 8
and a total batch size of 256. Similarly, for the other two tasks, where the maximum window size
is 10, the total batch size is 10× 32 = 320 in total. The learning rate follows the same scaling rule
mentioned in Table 5.

Hyperparameters SAM2Act Training SAM2Act+ Training

batch size 256 256 (reopen_drawer), 320 (other two)
learning rate 3.2e-3 3.2e-3 (reopen_drawer), 4e-3 (other two)

optimizer LAMB LAMB
learning rate schedule cosine decay cosine decay

weight decay 1e-4 1e-4
warmup steps 2000 2000
training steps 6.25K 12.5K

training epochs 10 20
LoRA rank 16 16

E Full Comparisons for RLBench 18 Tasks566

The full comparisons of SAM2Act with existing approaches on RLBench 18 tasks are shown in567

Table 7.568

F Full Results for The Colosseum569

The full results of SAM2Act on The Colosseum are shown in Table 8.570

G Ablation on SAM2Act571

G.1 RLBench572

We conduct ablation experiments on the proposed SAM2Act, focusing on two key aspects: the573

SAM2 image Encoder and multi-resolution upsampling. We evaluate the model under three different574

configurations:575

(i) Replacing the SAM2 image encoder with the SAM image encoder and removing the multi-576

resolution upsampling, as the SAM image encoder does not produce multi-resolution outputs. (ii)577
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Table 7: Full Comparisons of Multi-Task Performance on RLBench. We evaluate 18 RLBench
tasks [7], reporting success rates across all tasks among all existing approaches, not limited to 3D
keyframe-based behavior cloning (BC) policies. We report stats of 4 evaluations for SAM2Act. Our
method, SAM2Act, outperforms all baselines, achieving a performance margin of 1.9% over ARP+

[51], the prior state-of-the-art approach.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons
Image-BC (CNN) [52] 1.3 12.4 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0
Image-BC (ViT) [52] 1.3 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2F-ARM-BC [53] 20.1 11.5 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0
HiveFormer [54] 45.3 9.6 52.0 76.0 0.0 100.0 52.0 0.0 80.0 84.0
PolarNet [15] 46.4 9.1 36.0 92.0 4.0 100.0 84.0 0.0 40.0 96.0
PerAct [4] 49.4 ± 4.3 8.9 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8 92.8 ± 3.0
Act3D [19] 65.0 6.8 92.0 92.0 27.0 94.0 93.0 3.0 80.0 99.0
RVT [5] 62.9 ± 3.7 6.9 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2 100.0 ± 0.0
RVT-2 [8] 81.4 ± 3.1 3.7 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3 100.0 ± 0.0
3D Diffuser Actor [55] 81.3 3.9 96.0 ± 2.5 100.0 ± 0.0 65.6 ± 4.1 96.8 ± 1.6 89.6 ± 4.1 24.0 ± 7.6 93.6 ± 4.8 98.4 ± 2.0
3D-LOTUS [56] 83.1 3.7 96.0 ± 0.0 100.0 ± 0.0 69.6 ± 3.6 98.4 ± 2.2 85.6 ± 7.3 40.8 ± 12.1 91.2 ± 6.6 100.0 ± 0.0
ARP+ [51] 84.9 3.2 95.2 99.2 78.4 97.6 92.8 48.8 96.0 100.0
SAM-E [11] 70.6 ± 0.7 4.8 82.4 ± 3.6 100.0 ± 0.0 18.4 ± 4.6 95.2 ± 3.3 95.2 ± 5.2 0.0 ± 0.0 94.4 ± 4.6 100.0 ± 0.0
SAM2Act (Ours) 86.8 ± 0.5 3.1 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0
Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap
Image-BC (CNN) [52] 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Image-BC (ViT) [52] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0
C2F-ARM-BC [53] 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0
HiveFormer [54] 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80.0
PolarNet [15] 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80.0
PerAct [4] 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
Act3D [19] 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94.0
RVT [5] 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 [8] 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7
3D Diffuser Actor [55] 85.6 ± 4.1 96.0 ± 3.6 97.6 ± 2.0 82.4 ± 2.0 97.6 ± 3.2 44.0 ± 4.4 68.3 ± 3.3 47.2 ± 8.5 84.0 ± 4.4 99.2 ± 1.6
3D-LOTUS [56] 78.4 ± 4.6 97.6 ± 3.6 95.2 ± 3.4 88.8 ± 3.4 99.2 ± 1.8 34.4 ± 4.6 58.4 ± 8.3 75.2 ± 7.7 96.0 ± 2.8 90.4 ± 4.6
ARP+ [51] 69.6 98.4 86.4 89.6 92.8 46.4 63.2 80.0 97.6 96.0
SAM-E [11] 64.0 ± 2.8 92.0 ± 5.7 95.2 ± 3.3 78.4 ± 3.6 95.2 ± 1.8 34.4 ± 6.1 26.4 ± 4.6 0.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
SAM2Act (Ours) 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

Table 8: Full Results of SAM2Act for Various Perturbations on The Colosseum. Mean and std
of 3 evaluations are reported.

Task Name No Variations All Variations MO Color RO Color MO Texture RO Texture MO Size RO Size Light Color Table Color Table Texture Distractor Background Texture Camera Pose
basketball_in_hoop 100.0 ± 0.0 30.7 ± 2.3 97.3 ± 2.3 100.0 ± 0.0 97.3 ± 2.3 – 100.0 ± 0.0 86.7 ± 2.3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 94.7 ± 4.6 100.0 ± 0.0 100.0 ± 0.0
close_box 89.3 ± 6.1 61.3 ± 6.1 85.3 ± 6.1 – – – 90.7 ± 6.1 – 90.7 ± 2.3 85.3 ± 2.3 81.3 ± 2.3 93.3 ± 4.6 97.3 ± 4.6 92.0 ± 6.9
close_laptop_lid 96.0 ± 0.0 60.0 ± 0.0 100.0 ± 0.0 – – – 93.3 ± 11.5 – 94.7 ± 4.6 96.0 ± 0.0 84.0 ± 0.0 93.3 ± 2.3 96.0 ± 0.0 96.0 ± 0.0
empty_dishwasher 0.0 ± 0.0 1.3 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 – 0.0 ± 0.0 1.3 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
get_ice_from_fridge 93.3 ± 4.6 41.3 ± 2.3 92.0 ± 0.0 93.3 ± 2.3 89.3 ± 2.3 – 84.0 ± 6.9 81.3 ± 2.3 85.3 ± 9.2 98.7 ± 2.3 94.7 ± 2.3 93.3 ± 2.3 89.3 ± 2.3 100.0 ± 0.0
hockey 16.0 ± 4.0 0.0 ± 0.0 30.7 ± 2.3 14.7 ± 2.3 – 9.3 ± 4.6 18.7 ± 4.6 21.3 ± 2.3 29.3 ± 2.3 52.0 ± 6.9 26.7 ± 4.6 6.7 ± 4.6 21.3 ± 2.3 40.0 ± 6.9
meat_on_grill 98.7 ± 2.3 34.7 ± 2.3 100.0 ± 0.0 100.0 ± 0.0 – – 98.7 ± 2.3 – 62.7 ± 28.9 69.3 ± 9.2 76.0 ± 4.0 100.0 ± 0.0 98.7 ± 2.3 98.7 ± 2.3
move_hanger 1.3 ± 2.3 12.0 ± 0.0 32.0 ± 0.0 0.0 ± 0.0 – – – – 49.3 ± 2.3 64.0 ± 0.0 44.0 ± 6.9 36.0 ± 6.9 0.0 ± 0.0 37.3 ± 18.5
wipe_desk 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 2.3 0.0 ± 0.0
open_drawer 94.7 ± 2.3 70.7 ± 6.1 96.0 ± 0.0 – – – 92.0 ± 0.0 – 88.0 ± 0.0 88.0 ± 0.0 100.0 ± 0.0 85.3 ± 2.3 98.7 ± 2.3 90.7 ± 4.6
slide_block_to_target 12.0 ± 0.0 29.3 ± 11.5 42.7 ± 4.6 – 25.3 ± 4.6 – – – 25.3 ± 4.6 40.0 ± 0.0 90.7 ± 2.3 49.3 ± 9.2 18.7 ± 2.3 24.0 ± 0.0
reach_and_drag 65.3 ± 14.0 1.3 ± 2.3 54.7 ± 4.6 80.0 ± 10.6 51.7 ± 4.0 69.3 ± 2.3 52.0 ± 27.7 37.3 ± 2.3 76.0 ± 6.9 81.3 ± 12.2 70.7 ± 26.6 65.3 ± 8.3 70.7 ± 16.2 58.7 ± 16.2
put_money_in_safe 74.7 ± 2.3 20.0 ± 4.0 54.7 ± 8.3 52.0 ± 10.6 37.3 ± 2.3 66.7 ± 14.0 69.3 ± 2.3 – 73.3 ± 11.5 69.3 ± 2.3 76.0 ± 20.8 77.3 ± 14.0 50.7 ± 23.4 45.3 ± 18.5
place_wine_at_rack_location 98.7 ± 2.3 38.7 ± 4.6 81.3 ± 2.3 85.3 ± 2.3 – 96.0 ± 6.9 90.7 ± 4.6 97.3 ± 4.6 86.7 ± 4.6 88.0 ± 0.0 97.3 ± 4.6 86.7 ± 4.6 92.0 ± 6.9 69.3 ± 39.3
insert_onto_square_peg 88.0 ± 6.9 46.7 ± 39.3 60.0 ± 4.0 98.7 ± 2.3 – 69.3 ± 4.6 58.7 ± 2.3 61.3 ± 6.1 80.0 ± 0.0 82.7 ± 4.6 64.0 ± 4.0 58.7 ± 2.3 90.7 ± 2.3 82.7 ± 2.3
stack_cups 89.3 ± 4.6 1.3 ± 2.3 88.0 ± 0.0 – 78.7 ± 2.3 – 53.3 ± 11.5 – 88.0 ± 0.0 61.3 ± 2.3 46.7 ± 2.3 73.3 ± 25.4 81.3 ± 2.3 84.0 ± 0.0
turn_oven_on 96.0 ± 0.0 72.0 ± 0.0 92.0 ± 6.9 – – – 88.0 ± 0.0 – 89.3 ± 4.6 96.0 ± 0.0 98.7 ± 2.3 96.0 ± 0.0 96.0 ± 0.0 98.7 ± 2.3
straighten_rope 78.7 ± 9.2 6.7 ± 2.3 65.3 ± 4.6 – 70.7 ± 4.6 – – – 84.0 ± 0.0 64.0 ± 0.0 61.3 ± 2.3 49.3 ± 2.3 90.7 ± 9.2 76.0 ± 0.0
setup_chess 10.7 ± 2.3 0.0 ± 0.0 12.0 ± 0.0 18.7 ± 2.3 16.0 ± 0.0 – 26.7 ± 2.3 – 22.7 ± 2.3 34.7 ± 11.5 20.0 ± 6.9 22.7 ± 4.6 28.0 ± 6.9 26.7 ± 2.3
scoop_with_spatula 92.0 ± 6.9 10.7 ± 2.3 96.0 ± 6.9 89.3 ± 2.3 88.0 ± 6.9 92.0 ± 6.9 94.7 ± 9.2 78.7 ± 2.3 78.7 ± 4.6 81.3 ± 4.6 76.0 ± 6.9 64.0 ± 6.9 96.0 ± 0.0 94.7 ± 4.6

Replacing the multi-resolution upsampling with the original convex upsampling from RVT-2 [8]. (iii)578

Removing SAM2’s multi-resolution image embedding inputs to the multi-resolution upsampling579

while keeping the multi-resolution upsampling itself.580

Note that SAM-E [11] proposed a 3D behavior cloning policy that integrates RVT and the SAM581

image encoder, along with an action-sequence policy head. We attempted to extend this method to582

the more powerful RVT2 backbone for comparison. However, its action-sequence policy proved583

incompatible with the coarse-to-fine pipeline, resulting in very slow convergence under SAM-E’s584

training setup. To ensure a fair comparison, we also extended SAM-E while keeping its original585

hyperparameters (notably, a LoRA rank of 4, whereas ours is 16). We trained both versions and found586

that SAM-E’s configuration performed better. Therefore, we adopted their configuration and reported587

the results accordingly, which also applies to subsection 4.2. For all other ablation experiments, the588

training configuration are kept the same.589

Ablation results on RLBench are presented in Table 9. All variants of SAM2Act exhibit lower590

performance than the original version. Removing SAM2’s multi-resolution image embedding inputs591

results in a 1.1% drop in the average success rate. Replacing the entire multi-resolution upsampling592

with the original convex upsampling leads to a 2.6% decrease. Substituting the SAM2 image encoder593

with the SAM image encoder [57] causes a 6.0% drop compared to SAM2Act and a 3.4% drop594

compared to SAM2Act with the original convex upsampling, where the only differences are the595

image encoder and some training hyperparameters. In the same setting, we further replace the SAM2596

image encoder to latest image encoders, DINOv2 [58] and Depth Anything V2 [59], while both of597
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them show a large drop compared to the original SAM2Act. These results indicate that all of our598

architectural innovations significantly enhance the agent’s ability across multiple manipulation tasks.599

Table 9: SAM2Act Abaltion Performance on RLBench. We report the success rates for 18
RLBench tasks [7], along with the average success rate and ranking across all tasks. Table shows that
SAM2Act outperforms all of its variations.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons
SAM2Act (SAM2→ SAM) 80.8 ± 1.9 3.9 96.0 ± 3.3 94.0 ± 4.0 28.0 ± 8.6 98.0 ± 2.3 72.0 ± 7.3 42.0 ± 6.9 95.0 ± 3.8 100.0 ± 0.0
SAM2Act (SAM2→ Depth Anything V2) 81.1 ± 1.2 3.6 100.0 ± 0.0 98.0 ± 2.3 58.0 ± 6.9 99.0 ± 2.0 81.0 ± 3.8 24.0 ± 8.6 93.0 ± 3.8 96.0 ± 0.0
SAM2Act (SAM2→ DINOv2) 82.2 ± 0.5 3.8 97.0 ± 2.0 98.0 ± 2.3 69.0 ± 3.8 99.0 ± 2.0 80.0 ± 3.3 30.0 ± 7.7 89.0 ± 3.8 96.0 ± 0.0
SAM2Act (Original Upsampling) 84.2 ± 0.9 3.4 100.0 ± 0.0 100.0 ± 0.0 91.0 ± 3.8 99.0 ± 2.0 78.0 ± 9.5 29.0 ± 6.0 88.0 ± 5.7 96.0± 0.0
SAM2Act (w/o Multi-res Input) 85.7 ± 0.3 2.7 99.0 ± 2.0 96.0 ± 0.0 86.0 ± 8.3 98.0 ± 2.3 99.0 ± 2.0 43.0 ±10.5 96.0 ± 0.0 100.0 ± 0.0
SAM2Act 86.8 ± 0.5 2.3 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0
Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap
SAM2Act (SAM2→ SAM) 72.0 ± 8.6 94.0 ± 2.3 99.0 ± 2.0 92.0 ± 5.7 97.0 ± 3.8 41.0 ± 3.8 73.0 ± 3.8 71.0 ± 2.0 96.0 ± 3.3 95.0 ± 2.0
SAM2Act (SAM2→ Depth Anything V2) 78.0 ± 2.3 96.0 ± 3.8 95.0 ± 2.0 90.0 ± 2.3 67.0 ± 2.0 45.0 ± 5.0 60.0 ± 3.3 91.0 ± 2.0 100.0 ± 0.0 90.0 ± 4.0
SAM2Act (SAM2→ DINOv2) 80.0 ± 3.3 99.0 ± 2.0 93.0 ± 3.8 89.0 ± 2.0 77.0 ± 2.0 49.0 ± 8.2 69.0 ± 5.0 79.0 ± 6.8 94.0 ± 2.3 92.0 ± 3.3
SAM2Act (Original Upsampling) 69.0 ± 5.0 98.0 ± 2.3 96.0 ± 3.3 84.0 ± 3.3 99.0 ± 2.0 52.0 ± 3.3 71.0 ± 3.8 80.0 ± 3.3 99.0 ± 2.0 87.0 ± 6.0
SAM2Act (w/o Multi-res Input) 72.0 ± 4.6 100.0 ± 0.0 96.0 ± 4.6 87.0 ± 2.0 82.0 ± 5.2 54.0 ± 5.2 74.0 ± 2.3 90.0 ± 6.9 97.0 ± 3.8 92.0 ± 4.6
SAM2Act 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

G.2 The Colosseum600

We also conducted the same ablation experiments on The Colosseum generalization benchmark, as601

shown in Table 2. The experimental setup remains the same as in Table 9, except that we did not602

test the variant of SAM2Act with the original convex upsampling. The results in Table 9 show that603

removing SAM2’s multi-resolution image embedding inputs leads to a 14.8% drop in performance,604

representing a relative decrease of 344.2%. This highlights the effectiveness of SAM2’s multi-605

resolution image embeddings in providing robust visual representations, significantly enhancing606

SAM2Act’s generalization ability.607

H RLBench Tasks608

We follow the multi-task, multi-variation simulated experiment setup of PerAct [4], RVT [5], and609

RVT-2 [8], using 18 RLBench tasks with 249 unique variations in object placement, color, size,610

category, count, and shape. A summary of the 18 RLBench tasks is provided in Table 10. For a more611

detailed description of each task, please refer to PerAct [4].612

Table 10: The 18 RLBench Tasks for Multi-task Experiment. We report on language template, the
average number of extracted keyframes, the task variations, and the variation type.

Task name Language Template Avg. Keyframes #of Variations Variation Type

put in drawer “put the item in the drawer” 12.0 3 placement
reach and drag “use the stick to drag the cube onto the target” 6.0 20 color
turn tap “turn tap” 2.0 2 placement
slide to target “slide the block to target” 4.7 4 color
open drawer “open the drawer” 3.0 3 placement
put in cupboard “put the in the cupboard” 5.0 9 category
place in shape sorter “put the in the shape sorter” 5.0 5 shape
put money in safe “put the money away in the safe on the shelf” 5.0 3 placement
push buttons “push the button, [then the button]” 3.8 50 color
close jar “close the jar” 6.0 20 color
stack block “stack blocks” 14.6 60 color,count
place cups “place cups on the cup holder” 11.5 3 count
place wine at rack “stack the wine bottle to the of the rack” 5.0 3 placement
screw bulb “screw in the light bulb” 7.0 20 color
sweep to dustpan “sweep dirt to the dustpan” 4.6 2 size
insert peg “put the ring on the spoke” 5.0 20 color
meat off grill “take the off the grill” 5.0 2 category
stack cups “stack the other cups on top of the cup” 10.0 20 color

I MemoryBench Tasks613

In the following we provide details of the MemoryBench tasks.614
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(a) Reopen drawer615

Task Description: The robot is instructed remember the drawer slot that was initially opened, and616

closed it and then press the button on the table, before finding back the previously opened drawer to617

re-open it.618

Success Metric: The task is considered successful once the initial opened drawer has been re-opened.619

Objects: A drawer and button.620

Variation Number: 3621

Keyframes: 8622

Language Instructions: "Close the drawer, then reopened the previously opened drawer while623

pushing the button in between."624

(b) Put block back625

Task Description: The robot is instructed move the block the centre, then push the button, then move626

the block back to its initial position.627

Success Metric: The task is considered successful once the initial block has been moved back to its628

initial pose.629

Objects: Four patch, one block and one button.630

Variation Number: 4631

Keyframes: 11632

Language Instructions: ""Put the block to the centre and then back to its initial position while633

pushing the button in between.""634

(c) Rearrange block635

Task Description: The robot is instructed move the block in the centre to the empty patch, and then636

press the button, and then move the alternative block to the centre..637

Success Metric: The task is considered successful once the alternative block has been moved to the638

centre.639

Objects: Two patch, two blocks and one button.640

Variation Number: 2641

Keyframes: 10642

Language Instructions: "Move the block not on the patch to the empty patch, then press the button,643

then move the block that has not been moved off the patch."644

J MemoryBench Update645

We updated the reopen_drawer task in MemoryBench for the following reasons. During training on646

the original data, we observed that the gripper often collided with the drawer handle when closing the647

drawer. To prevent this, we introduced an additional waypoint for the closing motion, mirroring the648

procedure used for opening the drawer. Consequently, we retrained all policies specifically on this649

updated task. Furthermore, to standardize the memory window size across all three tasks, we also650

retrained SAM2Act+ on this task using a window size of 10, which led to improved performance. All651

results are updated to Table 3.652
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Table 11: Properties of the Real-world Tasks. We report on language template, the average number
of extracted keyframes, the number of items that the robot can interact with, the task variations, and
the variation type.

Task name Language template # keyframes # items # variations variation type

(a) turn on the lamp “turn on the lamp” 4.5 1 1 placement
(b) push buttons in sequence “push the red button, then the green button” 5 3 1 placement
(c) stack cubes “stack the cube on the cube” 4.0 5 3 category,placement
(d) push the right button “push the button closest to the blue block” 6 3 1 color,placement

K Real-world Experiments653

In the following we provide details of the real-world setup and tasks. Figure 5 illustrates the real-world654

setup. Table 11 summarizes the properties of the real-world tasks.655

(a) Turn on the lamp656

Task Description: The robot is instructed to turn on a lamp by rotating its knob.657

Success Metric: The task is considered successful once the lamp has been turned on by rotating the658

knob.659

Objects: A single lamp.660

Coordination Challenges: High precision is required to properly rotate the knob.661

Language Instructions: "Turn on the lamp."662

(b) Push buttons in sequence663

Task Description: The robot must press the red button first and then the blue button.664

Success Metric: The task is considered successful if the buttons are pressed in the specified order:665

red, then blue. A third button is present but should remain unpressed.666

Objects: Three buttons in front of the robot.667

Coordination Challenges: Ensuring the robot presses the correct buttons in sequence without668

pressing the third button.669

Language Instructions: "Push the red button and then the blue button."670

(c) Stack blocks671

Task Description: The robot must place one specified block on top of another specified block.672

Success Metric: The task is successful if the designated block is stacked on the correct target block.673

Objects: Three single-colored blocks.674

Coordination Challenges: Precision in picking and placing, plus correct language understanding to675

identify which block goes where.676

Language Instructions: "Stack the <item> block on the <item> block."677

(d) Push the same button678

Task Description: The robot must first identify and press the button closest to the blue block, then679

press the same button again after the block is removed.680
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Figure 5: Real-world Robot Setup. A Franka Panda robot with a Robotiq Gripper. A RealSense
D455 depth sensor captures the scene.

Success Metric: The task is successful if the robot presses the correct button twice. Pressing the681

other button at any point results in failure.682

Objects: Two buttons and one blue block (marking proximity).683

Coordination Challenges: After the first button press, the blue block is removed; the robot must684

remember the button location to press it again.685

Language Instructions: "Push the button that is closest to the blue block. Press the same button686

again."687
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