
Published as a conference paper at ICLR 2023

Hebbian Deep Learning Without Feedback

Adrien Journé1, Hector Garcia Rodriguez1, Qinghai Guo2, Timoleon Moraitis1*
{adrien.journe, hector.garcia.rodriguez, guoqinghai, timoleon.moraitis}@huawei.com

Abstract

Recent approximations to backpropagation (BP) have mitigated many of
BP’s computational inefficiencies and incompatibilities with biology, but
important limitations still remain. Moreover, the approximations signifi-
cantly decrease accuracy in benchmarks, suggesting that an entirely different
approach may be more fruitful. Here, grounded on recent theory for Hebbian
learning in soft winner-take-all networks, we present multilayer SoftHebb,
i.e. an algorithm that trains deep neural networks, without any feedback,
target, or error signals. As a result, it achieves efficiency by avoiding
weight transport, non-local plasticity, time-locking of layer updates, iter-
ative equilibria, and (self-) supervisory or other feedback signals – which
were necessary in other approaches. Its increased efficiency and biological
compatibility do not trade off accuracy compared to state-of-the-art bio-
plausible learning, but rather improve it. With up to five hidden layers
and an added linear classifier, accuracies on MNIST, CIFAR-10, STL-10,
and ImageNet, respectively reach 99.4%, 80.3%, 76.2%, and 27.3%. In
conclusion, SoftHebb shows with a radically different approach from BP
that Deep Learning over few layers may be plausible in the brain and in-
creases the accuracy of bio-plausible machine learning. Code is available at
https://github.com/NeuromorphicComputing/SoftHebb.

1 Introduction: Backpropagation and its limitations

The core algorithm in deep learning (DL) is backpropagation (BP), which operates by first
defining an error or loss function between the neural network’s output and the desired output.
Despite its enormous practical utility (Sejnowski, 2020), BP requires operations that make
training a highly expensive process computationally, setting limits to its applicability in
resource-constrained scenarios. In addition, the same operations are largely incompatible with
biological learning, demanding alternatives. In the following we describe these limitations and
their significance for DL, neuromorphic computing hardware, and neuroscience. Notably, after
the preprint of this paper, Hinton (2022) presented an algorithm with similar considerations.

Weight transport. Backpropagating errors involves the transpose matrix of the forward
connection weights. This is not possible in biology, as synapses are unidirectional. Synaptic
conductances cannot be transported to separate backward synapses either. That is the
weight transport problem (Grossberg, 1987; Crick, 1989), and it also prevents learning on
energy-efficient hardware substrates (Crafton et al., 2019) such as neuromorphic computing
hardware, which is one of the most researched approaches to overcoming the efficiency
and scaling bottlenecks of the von Neumann architecture that underlies today’s computer
chips (Indiveri, 2021). A key element of the neuromorphic strategy is to place computation
within the same devices that also store memories, akin to the biological synapses, which
perform computations but also store weights (Sebastian et al., 2020; Sarwat et al., 2022a;b).
However, in BP, the transposition of stored memories is necessary for weight transport,
and this implies significant circuitry and energy expenses, by preventing the full in-memory
implementation of neuromorphic technology (Crafton et al., 2019).
Non-local plasticity. BP cannot update each weight based only on the immediate activa-
tions of the two neurons that the weight connects, i.e. the pre- and post-synaptic neurons, as

1Huawei Zurich Research Center, Switzerland 2Huawei ACS Lab, Shenzhen, China
*Corresponding author

1

https://github.com/NeuromorphicComputing/SoftHebb

Published as a conference paper at ICLR 2023

Table 1: Accuracies on CIFAR-10, and qualities of biological plausibility and computational
efficiency, for various algorithms. SoftHebb’s type of algorithm has all four efficient and
plausible qualities. SoftHebb also achieves the highest accuracy, except for backprop, and
its unsupervised learning only involved a single epoch. Note, our literature search was not
limited by number of layers, but its results are.

Qualities Accuracy Layers Algorithm Reference

99.4 152 Kolesnikov et al. 2020

84.0 4

Backprop (cross-entropy)

Backprop (cross-entropy) Ours

71.8 5 Feedback Alignment Frenkel et al. 2021

∼60 6 Predictive Coding Millidge et al. 2020

13.4 5 Equilibrium Propagation (2-phase) Laborieux et al. 2021

78.5 5 EP (2-phase, random sign) Laborieux et al. 2021

79.9 5 Burstprop Payeur et al. 2021

61.0 5 BurstCCN Greedy et al. 2022

70.5 5 Direct Feedback Alignment Frenkel et al. 2021

71.5 5 DFA (untrained convs) Frenkel et al. 2021

65.6 5 Direct Random Target Projection Frenkel et al. 2021

69.0 5 DRTP (untrained convs) Frenkel et al. 2021

73.1 5 Single Sparse DFA Crafton et al. 2019

53.5 11 Latent Predictive Learning Halvagal and Zenke 2022

73.7 4 Self Organising Maps Stuhr and Brauer 2019

72.2 2 Hard WTA Grinberg et al. 2019

64.6 4 Hard WTA Miconi 2021

W
e
ig

h
t-

tr
a
n

sp
o
rt

-f
re

e

L
o
c
a
l

p
la

st
ic

it
y

U
p

d
a
te

-u
n

lo
ck

e
d

U
n

su
p

e
rv

is
e
d

80.3 4 SoftHebb (1 epoch) Ours

it requires the error signal, which is computed at a different point in time and elsewhere
in the network, i.e. at the output. That makes BP non-local in space and time, which is a
critical discrepancy from the locality that is generally believed to govern biological synaptic
plasticity (Baldi et al., 2017). This non-locality implies further computational inefficien-
cies. Specifically, forward-passing variables must be memorized, which increases memory
requirements (Löwe et al., 2019). Moreover, additional backward signals must be computed
and propagated, which increases operations and electrical currents. It is noteworthy that
these aspects are not limiting only future neuromorphic technologies, but even the hardware
foundation of today’s DL, i.e. graphical processing units (GPUs), which have their own
constraints in memory and FLOPS.
Update locking. The error credited by BP to a synapse can only be computed after the
information has propagated forward and then backward through the entire network. The
weight updates are therefore time-locked to these delays (Czarnecki et al., 2017; Jaderberg
et al., 2017; Frenkel et al., 2021). This slows down learning, so that training examples
must be provided at least as slowly as the time to process the propagation through the
two directions. Besides this important practical limitation of BP for DL, it also does not
appear plausible that multiple distant neurons in the brain coordinate their processing and
learning operations with such precision in time, nor that the brain can only learn from slow
successions of training examples.
Global loss function. BP is commonly applied in the supervised setting, where humans
provide descriptive labels of training examples. This is a costly process, thus supervised
BP cannot exploit most of the available data, which is unlabelled. In addition, it does
not explain how humans or animals can learn without supervisors. As a result, significant
research effort has been dedicated to techniques for learning without labels, with increasing
success recently, especially from self-supervised learning (SSL) (Chen et al., 2020; Mitrovic
et al., 2020; Lee et al., 2021; Tomasev et al., 2022; Scherr et al., 2022). In SSL, BP can also
use certain supervisory signals generated by the model itself as a global error. Therefore,
while BP does not require labels per se, it does require top-down supervision in the form
of a global loss function. The drawback of this is that learning then becomes specialized
to the particular task that is explicitly defined by the minimization of the loss function, as

2

Published as a conference paper at ICLR 2023

opposed to the learning of generic features. Practically, this is expressed in DL as overfitting,
sensitivity to adversarial attacks (Madry et al., 2017; Moraitis et al., 2021), and limited
transferability or generalizability of the learned features to other tasks or datasets (Lee
et al., 2021). Moreover, a global optimization scheme such as BP cannot be considered
a plausible model of all learning in the brain, because learning in ML tasks does emerge
from highly biological plasticity rules without global (self-)supervision, e.g. unsupervised
and Hebbian-like (Diehl and Cook, 2015; Moraitis et al., 2020; 2021; Rodriguez et al., 2022).

2 Alternatives to backpropagation and their limitations

Figure 1: First successful
multilayer results. Soft-
Hebb’s CIFAR-10 accuracy
increases with depth (hid-
den layers), compared with
prior work.

Unsupervised Hebbian learning in cortex. Hebbian-like
are those plasticity rules that depend only on the activity of pre-
and post-synaptic neurons. If such plasticity is combined with
between-neuron competition that suppresses weakly activated
neurons in a layer, e.g. as an argmax, it can lead to learning of
useful features in the absence of any (self-)supervision (Sanger,
1989; Linsker, 1992). This is a radically different approach
from BP. It is not governed by a global optimization process,
but rather emerges from local synaptic plasticity as a purely
bottom-up self-organization. Without supervision, feedbacks,
or targets, competitive Hebbian learning circumvents all five
limitations of BP, as it does not require any back-propagating
signals. Namely, it is free of weight transport, non-localities,
locking problems, and global losses. These are significant
practical advantages. Moreover, these properties make Hebbian
learning much more plausible biologically. Besides, there is
abundant evidence for Hebbian-like plasticity in the brain, in
forms based on the spiking type of biological neuron activations
(Sjöström et al., 2001; Markram et al., 2011; Feldman, 2012).
Even the competitive network connectivity that leads to useful learning through such
plasticity is strongly supported by biological observations. Specifically, competition between
neurons emerges from lateral inhibition and this is found throughout the cortical sheet of
the mammalian brain (Douglas et al., 1989; Douglas and Martin, 2004; Binzegger et al.,
2004; 2009), and are commonly described as winner-take-all (WTA). Furthermore, such
competitive learning has been deeply studied computationally and theoretically for a long
time under various forms (Von der Malsburg, 1973; Nessler et al., 2013; Diehl and Cook,
2015; Krotov and Hopfield, 2019; Moraitis et al., 2020). All these aspects would be important
advantages if such learning could underlie DL. However, unsupervised Hebbian learning
has only been effective in shallow networks. To be precise, adding layers has failed to show
significant improvements in standard benchmarks (Amato et al., 2019; Lagani et al., 2021),
except to a certain degree in Miconi (2021) (Fig. 1). Arguably, this has been the case
because emergent bottom-up learning from plasticity is hard to reconcile with top-down
learning from a loss function, and the latter approach has been the backbone of DL. Those
competitive Hebbian approaches that were normative, i.e. that derived a plasticity rule from
an optimization principle, were based on principles that do not appear compatible with
successful DL techniques, either because of dramatically different network types (Nessler
et al., 2009; 2013) or loss functions (Pehlevan and Chklovskii, 2015).

SoftHebb. Recent work, however, has advanced the theory behind Hebbian WTA learning
in terms that are more compatible with DL. Specifically, Moraitis et al. (2021) used a simple
softmax to implement a soft WTA (Equation (1)), which lends a Bayesian interpretation to
the network and its learning (see also Nessler et al. (2009; 2013)). Moraitis et al. (2021) also
derived a Hebbian-like plasticity rule (Equation (2)) that minimizes the Kullback-Leibler
divergence of the model’s probability distribution from the input’s, and cross-entropy from
the labels under certain assumptions, without having access to those labels. In one-layer
networks, SoftHebb showed increased learning speed and significantly higher robustness to
noise and adversarial attacks. Its theoretical results seem important towards deeper networks,
but they were not sufficient for a practical demonstration. Here (Section 3), we provide a
SoftHebb-based setup that does achieve a certain depth in Hebbian learning.

3

Published as a conference paper at ICLR 2023

Approximations of backpropagation. Alternatives that are not radically different from
BP but rather approximate it, while mitigating some of its issues, have attracted heavy
research interest with increasing success. For example, self-supervised learning enables
BP to learn without labels (Hadsell et al., 2006), with instances such as SimCLR (Chen
et al., 2020) and follow-ups (Mitrovic et al., 2020; Grill et al., 2020; He et al., 2020; Caron
et al., 2020; Tomasev et al., 2022) reaching rather high performance. A different approach,
Feedback Alignment (FA), (Lillicrap et al., 2016; Frenkel et al., 2021), solves the weight-
transport problem. Direct Feedback Alignment (Nøkland, 2016; Frenkel et al., 2021) as an
extension of FA, also avoids non-local computations for weight updates. The spatial non-
locality of backpropagation has also been addressed by other algorithms such as predictive
coding (Hadsell et al., 2006; Chen et al., 2020), equilibrium propagation (Scellier and Bengio,
2017; Laborieux et al., 2021), burstprop (Payeur et al., 2021). The work of Löwe et al. (2019),
and CLAPP by Illing et al. (2021) are self-supervised algorithms that avoid not only reliance
on labels but also spatially non-local learning. However, they require contrasting of examples
known to be of different type. A very recent self-supervised approach avoids this requirement
by adding a Hebbian term to learning (Halvagal and Zenke, 2022). This makes it a rather
plausible algorithm for the brain, but it still relies on comparisons between distinctly different
views of each individual input. Moreover, its performance is significantly worse on CIFAR-10
and STL-10 than this paragraph’s previous references. In fact, all aforementioned approaches
cause significant drop in accuracy compared to BP, and most cases are not applicable to
datasets as complex as ImageNet (Bartunov et al., 2018). An algorithm that avoids the non-
locality of end-to-end BP and also achieves quite high accuracy in CIFAR-10 was proposed
by Nøkland and Eidnes (2019). However, it relies on an auxiliary trained network added
to each layer, which increases complexity, and supervision, which requires labels. Other
works have achieved learning with local plasticity, while avoiding weight transport and the
update-locking problem (Crafton et al., 2019; Frenkel et al., 2021). However, they suffer
from large performance drops and rely on supervision. Clearly, significant progress compared
to standard BP has been made through multiple approaches, but important limitations
remain (Table 1). These limitations would be surmounted if a competitive Hebbian algorithm
performed well in multilayer networks and difficult tasks. Here, we explore the potential
of SoftHebb (Moraitis et al., 2021), i.e. the recent algorithm that seems fitting to this
goal. Our results in fact demonstrate a multilayer learning setup, reaching relatively high
performance for bio-plausible algorithms on difficult tasks, with high efficiency and tight
biological constraints. In the next section we describe this setup.

3 Overview of multilayer SoftHebb

The key elements of the multilayer SoftHebb model and algorithm that achieve good accuracy
without compromising its efficiency and biological-plausibility are the following.

SoftHebb (Moraitis et al., 2021) in a layer of K neurons realizes a soft WTA competition
through softmax, parametrized by a base b or equivalently a temperature τ :

yk =
buk∑K
l=1 b

ul
=

e
uk
τ∑K

l=1 e
ul
τ

, (1)

where uk is the k-th neuron’s total weighted input, and yk is its output after accounting
for competition from neurons l. The second key aspect in the SoftHebb algorithm is the
plasticity rule of synaptic weights and neuronal biases. Biases represent prior probabilities in
the probabilistic model realized by the network. In our experiments here we omitted them,
presuming a fixed uniform prior. The plasticity defined for a synaptic weight wik from a
presynaptic neuron i with activation xi to a neuron k is

∆w
(SoftHebb)
ik = η · yk · (xi − uk · wik) . (2)

Notably, all variables are temporally and spatially local to the synapse. The rule provably
optimizes the model to perform Bayesian inference of the hidden causes of the data (Moraitis
et al., 2021) (see also Section 2).

Soft anti-Hebbian plasticity. Previous Hebbian-like algorithms have found anti-
Hebbian terms in the plasticity to be helpful in single-layer competitive learning (Krotov and

4

Published as a conference paper at ICLR 2023

Hopfield, 2019; Grinberg et al., 2019). However, such plasticity matched the assumptions
of a hard WTA, as opposed to SoftHebb’s distributed activation, and involved additional
hyperparameters. Here we introduce a new, simple form of anti-Hebbian plasticity for soft
WTA networks, that simply negates SoftHebb’s weight update (Equation (2)) in all neurons
except the maximally activated one.

Convolutions. Towards a multilayer architecture, and to represent input information
of each layer in a more distributed manner, we used a localized representation through
convolutional kernels. The plasticity rule is readily transferable to such an architecture.
Convolution can be viewed as a data augmentation, where the inputs are no longer the
original images but are rather cropped into smaller patches that are presented to a fully
connected SoftHebb network. Convolution with weight sharing between patches is efficient
for parallel computing platforms like GPUs, but in its literal sense it is not biologically
plausible. However, this does not fundamentally affect the plausibility of convolutions,
because the weights between neurons with different localized receptive fields can become
matching through biologically plausible rules (Pogodin et al., 2021).

Alternative activations for forward propagation. In addition to the softmax involved
in the plasticity rule, different activation functions can be considered for propagation to each
subsequent layer. In biology, this dual type of activation may be implemented by multiplexing
overlapping temporal or rate codes of spiking neurons, which have been studied and modelled
extensively (Naud et al., 2008; Kayser et al., 2009; Akam and Kullmann, 2014; Herzfeld et al.,
2015; Moraitis et al., 2018; Payeur et al., 2021). We settled on a combination of rectified
polynomial unit (RePU) (Krotov and Hopfield, 2016; 2019), with Triangle (Appendix A.3.1),
which applies lateral inhibition by subtracting the layer’s mean activity. These perform
well (Coates et al., 2011; Miconi, 2021), and offer tunable parametrization.

Weight-norm-dependent adaptive learning rate. We introduce a per-neuron adaptive
learning rate scheme that stabilizes to zero as neuron weight vectors converge to a sphere
of radius 1, and is initially big when the weight vectors’ norms are large compared to 1:
ηi = η ·(ri−1)q, where q is a power hyperparameter. This per-neuron adaptation based on the
weights remains a local operation and is reminiscent of another important adaptive learning
rate scheme that is individualized per synapse, has biological and theoretical foundations
and speeds up learning (Aitchison, 2020; Aitchison et al., 2021). Ours is arguably simpler,
and its relevance is that it increases robustness to hyperparameters and initializations, and,
combined with the Bayesian nature of SoftHebb (Section 2), it speeds up learning so that a
mere single learning epoch suffices (Section 4).

Width scaling. Each new layer halves the image resolution in each dimension by a pooling
operation, while the layer width, i.e. the number of convolutional neurons, is multiplied by a
“width factor” hyperparameter. Our reported benchmarks used a factor of 4.

(A) Layer 1 (B) Layer 2 (C) Layer 3 (D) Layer 4

Figure 2: Example SoftHebb receptive fields, learned from STL-10. More in Appendix B.6.

The most crucial elements for deep representation learning are the soft competition
and the corresponding Hebbian plasticity rule that underpin SoftHebb (Figures 3 and B.2),
the similarly soft anti-Hebbian plasticity that we introduced (Fig. B.2), the convolutional
neurons, and the width scaling architecture that involves a depth-wise diminishing output
resolution (Fig. 4). The adaptive learning rate significantly speeds up the training (Fig. B.3B),
such that we only use a single unsupervised learning epoch for the deep network. The
specific activation function and its tunable parametrization are less crucial but do improve

5

Published as a conference paper at ICLR 2023

performance (Appendix B). We arrived at this novel setup grounded on Moraitis et al. (2021)
and through a literature- and intuition-guided search of possible additions.

4 Results

Summary of experimental protocol. The first layer used 96 convolutional neurons to
match related works (Fig. 1), except our ImageNet experiments that used 48 units. The
width of the subsequent layers was determined by the width factor (see previous section).
Unsupervised Hebbian learning received only one presentation of the training set, i.e. epoch.
Each layer was fully trained and frozen before the next one, a common approach known as
greedy layer-wise training in such local learning schemes (Bengio et al., 2006; Tavanaei and
Maida, 2016; Löwe et al., 2019). Batch normalization (Ioffe and Szegedy, 2015) was used,
with its standard initial parameters (γ = 1, β = 0), which we did not train. Subsequently,
a linear classifier head was trained with cross-entropy loss, using dropout regularization,
with mini-batches of 64 examples, and trained for 50, 50, 100, and 200 supervised epochs
for MNIST, CIFAR-10, STL-10, and ImageNet accordingly. We used an NVIDIA Tesla
V100 32GB GPU. All details to the experimental methods are provided in Appendix A, and
control experiments, including the hyperparameters’ impact in Appendix B.

Fully connected baselines. The work of Moraitis et al. (2021) presented SoftHebb
mainly through theoretical analysis. Experiments showed interesting generative and
Bayesian properties of these networks, such as high learning speed and adversarial ro-
bustness. Reported accuracies focused on fully connected single-hidden-layer networks,
showing that it was well applicable to MNIST and Fashion-MNIST datasets reaching ac-
curacies of (96.94 ± 0.15)% and (75.14 ± 0.17)%, respectively, using 2000 hidden neurons.

(A) CIFAR-10 (B) CIFAR-100

(C) STL-10 (D) ImageNette

Figure 3: Depth-wise performance for various training
setups and for untrained random weights, in 4 datasets.
Number of hidden layers is indicated.

Starting from that work, we found
that when moving to more com-
plex datasets such as CIFAR-10
or STL-10, SoftHebb performance
was not competitive. Specif-
ically, the same shallow fully-
connected network’s accuracies
reached (43.9 ± 0.18)% and (36.9
± 0.19)% accordingly. Compared
to BP’s (55.7 ± 0.13)% and (50.0
± 0.16)%, this suggested that
single-hidden-layer networks were
insufficient for extraction of mean-
ingful features and separation of
input classes. We then stacked
two such fully connected Heb-
bian WTA layers. This network
actually performed worse, reach-
ing (32.9 ± 0.22)% and (31.5 ±
0.20)% on these tasks. Convo-
lutional baselines. Recent re-
search has applied Hebbian plas-
ticity to convolutional hard-WTA
neural networks (CNN) (Miconi,
2021; Lagani et al., 2021; Amato
et al., 2019). However, it has not
achieved significant, if any, im-
provement through the addition of layers (Fig. 1, green curves). In our control experiments,
we found that these networks with the plasticity rules from the literature do not learn
helpful features, as the fixed random weights performed better than the learned ones, also
in agreement with results from Miconi (2021). Indeed, we find that the features learned by
such hard-WTA networks are simple Gabor-like filters in the first layer (Fig. B.5A) and in
deeper ones (see also Miconi (2021)).
A new learning regime. One way to learn more complex features is by adding an anti-

6

Published as a conference paper at ICLR 2023

Hebbian term to the plasticity of WTA networks (Krotov and Hopfield, 2019; Grinberg
et al., 2019). Notably, this method was previously tested only with hard-WTA networks
and their associated plasticity rules and not with the recent SoftHebb model and plasticity.
In those cases, anti-Hebbian plasticity was applied to the k-th most active neuron. Here,
we introduced a new, soft type of anti-Hebbian plasticity (see Section 3). We studied its
effect first by proxy of the number of “R1” features (Moraitis et al., 2021), i.e. the weight
vectors that lie on a unit sphere, according to their norm. Simple Gabor-like filters emerge
without anti-Hebbian terms in the plasticity (Fig. B.5A) and are R1. Even with anti-Hebbian
plasticity, in hard WTA networks, the learned features are R1 (Krotov and Hopfield, 2019).
In the case of SoftHebb with our soft type of anti-Hebbian plasticity, we observed that less
standard, i.e. non-R1, features emerge (Fig. B.1 & B.5B). By measuring the accuracy of
the SoftHebb network while varying the temperature, we discovered a regime around τ = 1
(Fig. B.1) where R1 and non-R1 features co-exist, and accuracy is highest. This regime only
emerges with SoftHebb. For example, on CIFAR-10 with a single convolutional layer and an
added linear classifier, SoftHebb accuracy (71.10 ± 0.06)% significantly outperformed hard
WTA (62.69 ± 0.47)% and random weights (63.93 ± 0.22)%, almost reaching the accuracy
of BP (72.42 ± 0.24)% on the same two-layer network trained end-to-end.
Convergence in a single epoch. Adaptive learning rate. By studying convergence
through R1 features and by experimenting with learning rates, we conceived an adaptive
learning rate that adapts to the norm of each neuron’s weight vector (Section 3). We found
that it also speeds up learning compared to more conventional learning schedules (Fig. B.3B)
with respect to the number of training iterations. The extent of the speed-up is such that we
only needed to present the training dataset once, before evaluating the network’s performance.
All results we report on SoftHebb are in fact after just one epoch of unsupervised learning.
The speed-up is in agreement with observations of Moraitis et al. (2021) that attributed the
speed to SoftHebb’s Bayesian nature. Moreover, we found that with our adaptive learning
rate, convergence is robust to the initial conditions, to which such unsupervised learning
schemes are usually highly sensitive (Fig. B.3A & B.3B).

Figure 4: CIFAR-10
layer-wise performance
of SoftHebb, for differ-
ent width factors. Soft-
Hebb enables depth-
scaling when the width
of deep layers scales suf-
ficiently. Factors (1x,
2x, or 4x) indicate layer-
wise increase in the num-
ber of neurons.

The architecture’s impact. The multilayer architecture uses
a pooling operation of stride 2, which halves each dimension
of the resolution after each layer. We stop adding layers when
the output resolution becomes at most 4 × 4. The layer where
this occurs depends on the original input’s resolution. Thus,
the multilayer network has three hidden convolutional layers for
MNIST or CIFAR-10, four layers for STL-10, and five layers
for ImageNet at a resolution setting of 160 × 160 px. We used
four times more neurons in each layer than in the previous layer.
This architecture on its own, with random initial weights, shows
inconsistent increases in classification accuracy, up to a variable
depth (Fig. 3). The performance increases caused by the addition
of random layers seem surprising but are consistent with the
literature where random weights often outperform biologically-
plausible learning rules (Miconi, 2021; Frenkel et al., 2021). Indeed,
by using the more common hard-WTA approach to train such a
network, performance not only deteriorated compared to random
weights but also failed to increase with added depth (Fig. 3).

Classification accuracy (see Tables 1 & 2). We report that
with SoftHebb and the techniques we have described, we achieve
Deep Learning with up to 5 hidden layers. For example, layer-wise
accuracy increases on CIFAR-10 are visible in Fig. 1. Learning
does occur, and the layer-wise accuracy improvement is not merely
due to the architecture choice. That is testified, first, by the fact
that the weights do change and the receptive fields that emerge
are meaningful (Fig. 5). Second, and more concretely, for the end-point task of classification,
accuracy improves significantly compared to the untrained random weights, and this is
true in all datasets (Fig. 3). SoftHebb achieves test accuracies of (99.35 ± 0.03)%, (80.31
± 0.14)%, (76.23 ± 0.19)%, 27.3% and (80.98 ± 0.43)% on MNIST, CIFAR-10, STL-10,
the full ImageNet, and ImageNette. We also evaluated the same networks trained in a

7

Published as a conference paper at ICLR 2023

fully label-supervised manner with end-to-end BP on all datasets. Due to BP’s resource
demands, we could not compare with BP directly on ImageNet but we did apply BP to the
ImageNette subset. The resulting accuracies are not too distant from SoftHebb’s (Fig. 3).
The BP-trained network reaches (99.45 ± 0.02)%, (83.97 ± 0.07)%, (74.51 ± 0.36)% and
(85.30 ± 0.45)% on MNIST, CIFAR-10, STL-10, and ImageNette respectively. Notably, this
performance is very competitive (see Tables 1 & 2).

A B

C D

planes
birds

`vehicles' `furry animals'

Layer 1 Layer 4

Layer 1 Layer 4

neuron p1

neuron q1

neuron r1

neuron s1

neuron t1

neuron p4

neuron q4

neuron r4

neuron s4

neuron t4

Figure 5: Indications for hierarchical representations learned by SoftHebb on STL-10. A, B:
UMAP projection of the test set after passing through 1 or 4 SoftHebb layers. The learned
4-layer embedding is visibly more organized by input class and classes are better separated.
C, D: Images and patches (red bounding boxes) that best activate 5 random neurons from
each layer. The 1st layer’s neurons (C) have become receptive to small patches with simple
features (note the very small red bounding boxes), and are unspecific to the pictured object.
The 4th layer’s neurons (D) are receptive to patches with larger and complex features, and
specific object types. Plastic synapses produce this apparent hierarchy in the absence of
non-local signals, label-related information, other top-down supervision, or self-supervision.

Evidence for hierarchical representations. One central question concerning SoftHebb
was its capacity to build a hierarchical representation of features, i.e. features that increase
in semantic abstraction with increasing depth, and also become more useful for downstream
tasks such as object classification. One source of evidence for hierarchy is the layer-wise
increase in accuracy that we observe, which shows that the added layers are increasingly
useful Fig. 1. By also using a method from Illing et al. (2021), we found further evidence
(Fig. 5). In the UMAP projection (McInnes et al., 2018), the classes of inputs appear better
separated after four layers than after one (Fig. 5A, B). Moreover we found the patches in
the dataset that maximally activate hidden neurons. These too appear increasingly complex
and abstract (Fig. 5C, D). Further, we visualized the neurons’ receptive field, by numerically
optimizing the input to maximize hidden activations, through projected gradient descent,
similar to Le et al. (2012) (see Appendix A for methods). Again, depth appears to increase
the complexity and potential usefulness of the learned features (Fig. 2 and Appendix).

SoftHebb as unsupervised multilayer learning. In STL-10, SoftHebb (76.23 ± 0.19)%
outperforms fully supervised BP (74.51 ± 0.36)% (Fig. 3C). The very few labelled examples
in the training set do not suffice to learn good representations through only-supervised
BP. By fine-tuning SoftHebb with end-to-end BP on the few labelled STL-10 examples,
SoftHebb’s accuracy further improves to (78.5 ± 0.35)%. This shows that the objective
that is implicitly optimized by SoftHebb’s learning is compatible with the explicit objective
of cross-entropy, as was more formally theorized and predicted in Moraitis et al. (2021).
Comparisons with other important algorithms for learning without labels show that SoftHebb
in 4- or 5-hidden-layers-deep networks outperforms the partly biologically-plausible prior
work (Table 2). Of course, BP in more complex models significantly outperforms SoftHebb.

8

Published as a conference paper at ICLR 2023

Table 2: STL-10 & ImageNet top-1 accuracy (%) of un- or self-supervised (blue frame) &
partly bio-plausible networks (green frame). Bold indicates the best-performing biologically-
plausible row, i.e. SoftHebb. SoftHebb’s unsupervised learning only involved 1 epoch.

Training algorithm Model STL-10 ImageNet Reference

S-TEC (1000/100 epochs) ResNet-50 91.6 66.3 Scherr et al. 2022

SimCLR (1000 epochs) ResNet-50 91.5 76.5 Scherr et al. 2022; Chen et al. 2020

SimCLR (100 epochs) ResNet-18 86.3 30.0 Chen et al. 2020 (our repr.)

Greedy InfoMax ResNet-50 81.9 n.a. Löwe et al. 2019

None (Random chance) None 10.0 0.1 Chance

None (Random weights) SoftHebb 68.2 14.0 Ours

Hebbian Hard WTA 54.8 n.a. Ours

SoftHebb (1 epoch) SoftHebb 76.2 27.3 Ours

CLAPP VGG-6 73.6 n.a. Illing et al. 2021

LPL VGG-11 61.9 n.a. Halvagal and Zenke 2022

u
n

-
o
r

se
lf

-
su

p
e
rv

is
e
d

K-means K-means 74.1 n.a. Dundar et al. 2015

Feedback Alignment 5-layer CNN n.a. 6.9 Bartunov et al. 2018

Direct Feedback Alignment AlexNet n.a. 6.2 Crafton et al. 2019

Single Sparse DFA AlexNet n.a. 2.8 Crafton et al. 2019

b
io

lo
g
ic

a
lly

p
la

u
sib

le

5 Discussion

SoftHebb’s accuracy and applicability in difficult tasks challenges several other biologically-
constrained DL algorithms. Arguably it is also a highly biologically plausible and computa-
tionally efficient method, based on it being free of weight-transport, non-local plasticity, and
time-locking of weight updates, it being fully unsupervised, It is also founded on physiological
experimental observations in cortical circuits, such as Hebbian plasticity and WTA structure.
Importantly, such Hebbian WTA networks enable non-von Neumann neuromorphic learning
chips (Qiao et al., 2015; Kreiser et al., 2017; Sebastian et al., 2020; Indiveri, 2021; Sarwat
et al., 2022a). That is an extremely efficient emerging computing technology, and SoftHebb
makes high performance with such hardware more likely. The algorithm is applicable in
tasks such as MNIST, CIFAR-10, STL-10 and even ImageNet where other algorithms with
similar goals were either not applicable or have underperformed SoftHebb (Fig. 1, Table 1,
Table 2, & Bartunov et al. (2018)). This is despite the fact that most alternatives only
address subsets of SoftHebb’s goals of efficiency and plausibility (Section 2 & Table 1). Löwe
et al. (2019) and Burstprop (Payeur et al., 2021) results on STL-10 and ImageNet are not
included in Table 2, because the ResNet-50 of Löwe et al. (2019) used standard BP through
modules of at least 15 layers, and because Payeur et al. (2021) did not report ImageNet top-1
accuracy. SoftHebb did outperform Burstprop and its successor BurstCCN (Greedy et al.,
2022) on CIFAR-10 (Table 1). Beyond neural networks, K-means has also been applied to
CIFAR-10 (Coates et al., 2011), however, without successful stacking of K-means “layers”.

From the perspective of neuroscience, our results suggest that Deep Learning up to a few
layers may be plausible in the brain not only with approximations of BP (Payeur et al.,
2021; Illing et al., 2021; Greedy et al., 2022), but also with radically different approaches.
Nevertheless, to maximize applicability, biological details such as spiking neurons were
avoided in our simulations. In a ML context, our work has important limitations that
should be noted. For example, we have tested SoftHebb only in computer vision tasks. In
addition, it is unclear how to apply SoftHebb to generic deep network architectures, because
thus far we have only used specifically width-scaled convolutional networks. Furthermore, our
deepest SoftHebb network has only 6 layers in the case of ImageNet, deeper than most bio-
plausible approaches (see Table 1), but limited. As a consequence, SoftHebb cannot compete
with the true state of the art in ML (see e.g. ResNet-50 SimCLR result in Table 2). Such
networks have been termed “very deep” (Simonyan and Zisserman, 2014) and “extremely
deep” (He et al., 2016). This distinguishes from the more general term “Deep Learning” that
was originally introduced for networks as shallow as ours (Hinton et al., 2006) has continued
to be used so (see e.g. Frenkel et al. (2021) and Table 1), and its hallmark is the hierarchical
representation that appears to emerge in our study. We propose that SoftHebb is worth
practical exploitation of its present advantages, research around its limitations, and search
for its possible physiological signatures in the brain.

9

Published as a conference paper at ICLR 2023

Acknowledgments

This work was partially supported by the Science and Technology Innovation 2030 – Major
Project (Brain Science and Brain-Like Intelligence Technology) under Grant 2022ZD0208700.

The authors would like to thank Lukas Cavigelli, Renzo Andri, Édouard Carré, and the rest
of Huawei’s Von Neumann Lab, for offering compute resources. TM would like to thank
Yansong Chua, Alexander Simak, and Dmitry Toichkin for the discussions.

References

Aitchison, L. (2020). Bayesian filtering unifies adaptive and non-adaptive neural network
optimization methods. Advances in Neural Information Processing Systems, 33:18173–
18182.

Aitchison, L., Jegminat, J., Menendez, J. A., Pfister, J.-P., Pouget, A., and Latham, P. E.
(2021). Synaptic plasticity as bayesian inference. Nature neuroscience, 24(4):565–571.

Akam, T. and Kullmann, D. M. (2014). Oscillatory multiplexing of population codes
for selective communication in the mammalian brain. Nature Reviews Neuroscience,
15(2):111–122.

Amato, G., Carrara, F., Falchi, F., Gennaro, C., and Lagani, G. (2019). Hebbian learning
meets deep convolutional neural networks. In International Conference on Image Analysis
and Processing, pages 324–334. Springer.

Baldi, P., Sadowski, P., and Lu, Z. (2017). Learning in the machine: The symmetries of the
deep learning channel. Neural Networks, 95:110–133.

Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton, G. E., and Lillicrap, T. (2018). As-
sessing the scalability of biologically-motivated deep learning algorithms and architectures.
Advances in neural information processing systems, 31.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19.

Binzegger, T., Douglas, R. J., and Martin, K. A. (2004). A quantitative map of the circuit
of cat primary visual cortex. Journal of Neuroscience, 24(39):8441–8453.

Binzegger, T., Douglas, R. J., and Martin, K. A. (2009). Topology and dynamics of the
canonical circuit of cat v1. Neural Networks, 22(8):1071–1078.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020). Unsuper-
vised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR.

Coates, A., Ng, A., and Lee, H. (2011). An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings.

Crafton, B., West, M., Basnet, P., Vogel, E., and Raychowdhury, A. (2019). Local learning
in rram neural networks with sparse direct feedback alignment. In 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), pages 1–6.
IEEE.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337(6203):129–132.

Czarnecki, W. M., Świrszcz, G., Jaderberg, M., Osindero, S., Vinyals, O., and Kavukcuoglu, K.
(2017). Understanding synthetic gradients and decoupled neural interfaces. In International
Conference on Machine Learning, pages 904–912. PMLR.

10

Published as a conference paper at ICLR 2023

Diehl, P. U. and Cook, M. (2015). Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in computational neuroscience, 9:99.

Douglas, R. J. and Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev.
Neurosci., 27:419–451.

Douglas, R. J., Martin, K. A., and Whitteridge, D. (1989). A canonical microcircuit for
neocortex. Neural computation, 1(4):480–488.

Dundar, A., Jin, J., and Culurciello, E. (2015). Convolutional clustering for unsupervised
learning. arXiv preprint arXiv:1511.06241.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-layer features
of a deep network. University of Montreal, 1341(3):1.

Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron, 75(4):556–571.

Frenkel, C., Lefebvre, M., and Bol, D. (2021). Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks. Frontiers in
neuroscience, page 20.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572.

Greedy, W., Zhu, H. W., Pemberton, J., Mellor, J., and Costa, R. P. (2022). Single-phase
deep learning in cortico-cortical networks. arXiv preprint arXiv:2206.11769.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own latent-a
new approach to self-supervised learning. Advances in neural information processing
systems, 33:21271–21284.

Grinberg, L., Hopfield, J., and Krotov, D. (2019). Local unsupervised learning for image
analysis. arXiv preprint arXiv:1908.08993.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance.
Cognitive science, 11(1):23–63.

Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE.

Halvagal, M. S. and Zenke, F. (2022). The combination of hebbian and predictive plasticity
learns invariant object representations in deep sensory networks. bioRxiv.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsu-
pervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778.

Herzfeld, D. J., Kojima, Y., Soetedjo, R., and Shadmehr, R. (2015). Encoding of action by
the purkinje cells of the cerebellum. Nature, 526(7573):439–442.

Hinton, G. (2022). The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554.

Illing, B., Ventura, J., Bellec, G., and Gerstner, W. (2021). Local plasticity rules can learn
deep representations using self-supervised contrastive predictions. Advances in Neural
Information Processing Systems, 34.

11

Published as a conference paper at ICLR 2023

Indiveri, G. (2021). Introducing” neuromorphic computing and engineering”. Neuromorphic
Computing and Engineering.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D., and
Kavukcuoglu, K. (2017). Decoupled neural interfaces using synthetic gradients. In
International conference on machine learning, pages 1627–1635. PMLR.

Kayser, C., Montemurro, M. A., Logothetis, N. K., and Panzeri, S. (2009). Spike-phase
coding boosts and stabilizes information carried by spatial and temporal spike patterns.
Neuron, 61(4):597–608.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and Houlsby, N.
(2020). Big transfer (bit): General visual representation learning. In European conference
on computer vision, pages 491–507. Springer.

Kreiser, R., Moraitis, T., Sandamirskaya, Y., and Indiveri, G. (2017). On-chip unsupervised
learning in winner-take-all networks of spiking neurons. In BioCAS, pages 1–4.

Krotov, D. and Hopfield, J. J. (2016). Dense associative memory for pattern recognition.
Advances in neural information processing systems, 29:1172–1180.

Krotov, D. and Hopfield, J. J. (2019). Unsupervised learning by competing hidden units.
Proceedings of the National Academy of Sciences, 116(16):7723–7731.

Laborieux, A., Ernoult, M., Scellier, B., Bengio, Y., Grollier, J., and Querlioz, D. (2021).
Scaling equilibrium propagation to deep convnets by drastically reducing its gradient
estimator bias. Frontiers in neuroscience, 15:129.

Lagani, G., Falchi, F., Gennaro, C., and Amato, G. (2021). Hebbian semi-supervised learning
in a sample efficiency setting. Neural Networks, 143:719–731.

Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., and Ng, A.
(2012). Building high-level features using large scale unsupervised learning. In Langford,
J. and Pineau, J., editors, Proceedings of the 29th International Conference on Machine
Learning (ICML-12), ICML ’12, pages 81–88, New York, NY, USA. Omnipress.

Lee, H., Lee, K., Lee, K., Lee, H., and Shin, J. (2021). Improving transferability of
representations via augmentation-aware self-supervision. Advances in Neural Information
Processing Systems, 34.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications,
7(1):1–10.

Linsker, R. (1992). Local synaptic learning rules suffice to maximize mutual information in
a linear network. Neural Computation, 4(5):691–702.

Löwe, S., O’Connor, P., and Veeling, B. (2019). Putting an end to end-to-end: Gradient-
isolated learning of representations. Advances in neural information processing systems,
32.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A history of spike-timing-dependent
plasticity. Frontiers in synaptic neuroscience, 3:4.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426.

12

Published as a conference paper at ICLR 2023

Miconi, T. (2021). Multi-layer hebbian networks with modern deep learning frameworks.
arXiv preprint arXiv:2107.01729.

Millidge, B., Tschantz, A., and Buckley, C. L. (2020). Predictive coding approximates
backprop along arbitrary computation graphs. arXiv preprint arXiv:2006.04182.

Mitrovic, J., McWilliams, B., Walker, J., Buesing, L., and Blundell, C. (2020). Representation
learning via invariant causal mechanisms. arXiv preprint arXiv:2010.07922.

Moraitis, T., Sebastian, A., and Eleftheriou, E. (2018). Spiking neural networks enable
two-dimensional neurons and unsupervised multi-timescale learning. In 2018 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Moraitis, T., Sebastian, A., and Eleftheriou, E. (2020). Short-term synaptic plasticity
optimally models continuous environments.

Moraitis, T., Toichkin, D., Chua, Y., and Guo, Q. (2021). Softhebb: Bayesian inference in
unsupervised hebbian soft winner-take-all networks. arXiv preprint arXiv:2107.05747.

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in the adaptive
exponential integrate-and-fire model. Biological cybernetics, 99(4):335–347.

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation emerges
in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS computa-
tional biology, 9(4):e1003037.

Nessler, B., Pfeiffer, M., and Maass, W. (2009). Stdp enables spiking neurons to detect hidden
causes of their inputs. Advances in neural information processing systems, 22:1357–1365.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 427–436.

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural networks.
Advances in neural information processing systems, 29.

Nøkland, A. and Eidnes, L. H. (2019). Training neural networks with local error signals. In
International conference on machine learning, pages 4839–4850. PMLR.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of
mathematical biology, 15(3):267–273.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and Naud, R. (2021). Burst-dependent
synaptic plasticity can coordinate learning in hierarchical circuits. Nature neuroscience,
24(7):1010–1019.

Pehlevan, C. and Chklovskii, D. (2015). A normative theory of adaptive dimensionality
reduction in neural networks. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Pogodin, R., Mehta, Y., Lillicrap, T. P., and Latham, P. E. (2021). Towards biologically
plausible convolutional networks. arXiv preprint arXiv:2106.13031.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., and Indiveri,
G. (2015). A reconfigurable on-line learning spiking neuromorphic processor comprising
256 neurons and 128k synapses. Frontiers in neuroscience, 9:141.

Rauber, J., Zimmermann, R., Bethge, M., and Brendel, W. (2020). Foolbox native: Fast
adversarial attacks to benchmark the robustness of machine learning models in pytorch,
tensorflow, and jax. Journal of Open Source Software, 5(53):2607.

13

Published as a conference paper at ICLR 2023

Rodriguez, H. G., Guo, Q., and Moraitis, T. (2022). Short-term plasticity neurons learning
to learn and forget. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and
Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 18704–18722. PMLR.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural networks, 2(6):459–473.

Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P., and Sebastian, A. (2022a).
Phase-change memtransistive synapses for mixed-plasticity neural computations. Nature
Nanotechnology, pages 1–7.

Sarwat, S. G., Moraitis, T., Wright, C. D., and Bhaskaran, H. (2022b). Chalcogenide
optomemristors for multi-factor neuromorphic computation. Nature communications,
13(1):1–9.

Scellier, B. and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in computational neuroscience, 11:24.

Scherr, F., Guo, Q., and Moraitis, T. (2022). Self-supervised learning through efference
copies.

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020). Memory
devices and applications for in-memory computing. Nature nanotechnology, 15(7):529–544.

Sejnowski, T. J. (2020). The unreasonable effectiveness of deep learning in artificial intelli-
gence. Proceedings of the National Academy of Sciences, 117(48):30033–30038.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Sjöström, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and cooperativity
jointly determine cortical synaptic plasticity. Neuron, 32(6):1149–1164.

Stuhr, B. and Brauer, J. (2019). Csnns: Unsupervised, backpropagation-free convolutional
neural networks for representation learning. In 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), pages 1613–1620. IEEE.

Tavanaei, A. and Maida, A. S. (2016). Bio-inspired spiking convolutional neural network
using layer-wise sparse coding and stdp learning. arXiv preprint arXiv:1611.03000.

Tomasev, N., Bica, I., McWilliams, B., Buesing, L., Pascanu, R., Blundell, C., and Mitrovic,
J. (2022). Pushing the limits of self-supervised resnets: Can we outperform supervised
learning without labels on imagenet? arXiv preprint arXiv:2201.05119.

Von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate
cortex. Kybernetik, 14(2):85–100.

14

Published as a conference paper at ICLR 2023

A Details to the methods

A.1 Weight initialization

A.1.1 Choosing distribution family

We tested three probability distribution families for initializing the weights randomly; normal,
positive, and negative (Equation (3)).

normal = N (µ = 0, σ2) positive = U(0, range) negative = U(0, −range), (3)

where U is a uniform distribution. We found that they perform similarly to each other in
the case of long experiments, where the extensive training examples achieve to align the
weights with the input. However, for shorter experiments, where speed is needed, we found
that the positive distribution was better for raw data (input values between 0-1) and normal
distribution for data that was normalized into standard scores. The clustering property of
SoftHebb learning (Moraitis et al., 2021), where learned features are centroids of clusters
in the input space may explain this. In practice, we used normalized data for the reported
results, and therefore we used normal distribution for the initial random weights.

A.1.2 Choosing distribution parameters

By varying the distribution parameters, we observed that the norm of the weight vectors i.e.
the “radius” R is very instructive. We identify three regions of disparate learning (Fig. B.3A);
for R smaller than 1, there is no learning with random weight update; for R bigger than
1 and smaller than approximately 2.5, there is a partial leaning with only a percentage of
neurons winning and converging while the others stay random; for R bigger than 2.5, all
neurons learn. The learning change around 1 comes from the fact that the weight tends to
converge to a radius of 1 (Moraitis et al., 2021).

Determining the initial radius from the weight distribution parameters: We can
then derive the distribution parameters from the optimal initial radius using the distribution
moment calculation.

Ri = E(

√√√√ N∑
j=0

Wij
2) = E(

√√√√ N∑
j=0

w2) = E(
√
N · w2) = E(

√
N · |w|) =

√
N · E(|w|) (4)

Where i is the index of a neuron, j is the index of this neuron’s synapses, N is number of
synapses of that neuron, E() is the expected value and so E(|w|) is the first absolute moment

of distribution. Thus, for the normal distribution E(|w|) = σ ·
√

2/π ⇒ σ = R ·
√

π
2N and

positive distribution E(|w|) = E(w) = range/2⇒ range = R ·
√

2
N .

A.2 Learning-rate adaptation

Learning rates that decay linearly with the number of training examples have been extensively
used in Hebbian learning (Krotov and Hopfield, 2019; Grinberg et al., 2019; Miconi, 2021;
Lagani et al., 2021; Amato et al., 2019). It is a simple scheduler, reaching convergence
with a sufficient amount of training example. The linear decay ties the learning rate’s value
throughout learning to the proportion of the training examples that have been seen, and
it does so uniformly across neurons. However, the weights may theoretically be able to
converge before the full training set’s presentation, and they may do so at different stages
across neurons. To address this, we tied the learning rate ηi to each neuron’s i convergence.
Convergence was assessed by the norm ri of the neuron’s weights. Based on previous work
on similar learning rules (Oja, 1982; Krotov and Hopfield, 2019) including SoftHebb itself
(Moraitis et al., 2021), and on our own new observations, the convergence of the neuronal
weights is associated with a convergence to a norm of 1, in case of simple learned features at
least. Therefore, we used a learning rate that stabilizes to zero as neuron weight vectors

15

Published as a conference paper at ICLR 2023

converge to a sphere of radius 1, and is initially big when the weight vectors are large
compared to 1:

ηi = η · (ri − 1)q, (5)

where q is a power hyperparameter. Note that this adaptivity has no explicit time-dependence,
but as learning proceeds towards convergence, η does decay with time. To account for the
case of complex features that do not converge to a norm of 1, a time-dependence can be
added on top, e.g. as usual with a linearly decaying factor, multiplying the norm-dependent
learning rate. In our experiments we only used the norm-dependence and simply stopped
learning after the first training epoch, i.e. the first presentation of the full training set in
most cases, or earlier. In practice, our adaptive rate reaches convergence faster (Fig. B.3B)
than the linear time-dependence, by maintaining a separate learning rate for each neuron
and adapting it based on each neuron’s own convergence status.

A.3 Layer architecture

Each convolutional layer includes a succession of batch normalization, a SoftHebb convolution,
a pooling operation, and then an activation function. The SoftHebb convolution stride is
fixed at 1. Padding is added to the input of the convolutional filters to guarantee that
their output has the same size as the unpadded input. The pooling stride was fixed at 2,
halving each dimension of the resolution after each layer. In all experiments, the first layer
had a width of 96 convolutional kernels (Miconi, 2021; Lagani et al., 2021; Amato et al.,
2019), except ImageNet experiments where we used 48 kernels. The number of kernels in
the subsequent layers was determined according to our width-scaling method, with a width
factor of 4 (see Appendix A.5).

A.3.1 Activation function

Softmax, i.e. the output of the soft winner-take-all was used as the postsynaptic variable
y in SoftHebb’s plasticity. However, for forward propagation to the subsequent layer, we
considered three activation functions; Rectified polynomial unit (RePU), triangle, and softmax.
RePU (Equation (6)) was proposed by Krotov and Hopfield (2016) as a generalization of
rectified linear units (ReLU) and was also used in follow-up works (Krotov and Hopfield,
2019; Grinberg et al., 2019). Triangle activation was introduced by Coates et al. (2011)
for k-means clustering and also appears useful for Hebbian networks in (Miconi, 2021). It
subtracts the mean activation calculated over all channels at each position and then applies
a ReLU. Here we generalize Triangle by combining it with RePU (instead of ReLU) through
Equation (7):

RePU(u) =

{
up, for u > 0

0, for u 6 0
(6) Triangle(uj) = RePU(uj − u) (7)

A.4 Hyperparameter optimization

We systematically investigated the best set of hyperparameters at each hidden layer, based
on the validation accuracy of a linear classifier trained directly on top of that hidden layer.
All grid searches were performed on three different random seeds, varying the batch sampling
and the validation set (20% of the training dataset). The classifier is a simple linear classifier
with a dropout of 0.5 and no other regularisation term. For all searches and final results, we
used 96 kernels in the first layer. Subsequent layers scaled with a fw = 4 (see Appendix A.5).
However, based on our observations, only the optimal temperature depends on the fw.

For each added layer, grid search was performed in three stages: For the first two stages we
used square convolutional kernels with a size of 5, a max-pooling with a square kernel of size
2, and a Triangle with a power of 1 as forward activation function.

1. In this stage we performed a grid search over the remaining hyperparameters
(nbepochs, batch size, η and q of the learning rate scheduler, and temperature τ of the
SoftHebb softmax). We varied the nb epochs ∈ {1, 10, 50, 100, 1000}, batch size ∈

16

Published as a conference paper at ICLR 2023

layer operation hyperparmeters searched range found optimum

1
conv

η [0.001-0.12], 0.08
q [0.25, 0.5, 0.75] 0.5
kernel size [3, 5, 7, 9] 5
1/τ [0.1-100] 1

pooling
type [AvgPooling, MaxPooling], MaxPooling
kernel size [2, 3, 4] 4

activation
function [Softmax, RePU, Triangle] Triangle
power [0.1-10] 0.7

2
conv

η [0.001-0.12], 0.005
q [0.25, 0.5, 0.75] 0.5
kernel size [3, 5, 7, 9] 3
1/τ [0.1-100] 0.65

pooling
type [AvgPooling, MaxPooling], MaxPooling
kernel size [2,3,4] 4

activation
function [Softmax, RePU, Triangle] Triangle
power [0.1-10] 1.4

3
conv

η [0.001-0.12], 0.01
q [0.25, 0.5, 0.75] 0.5
kernel size [3, 5, 7, 9] 3
1/τ [0.1-100] 0.25

pooling
type [AvgPooling, MaxPooling], AvgPooling
kernel size [2,3,4] 2

activation
function [Softmax, RePU, Triangle] Triangle
power [0.1-10] 1

Table 3: Network architecture and hyper-parameters search, and best results on CIFAR-10.
More details are provided in section A.4.

{10, 100, 1000}, η ∈ {0.001, 0.004, 0.008, 0.01, 0.04, 0.08, 0.12}, q ∈ {0.25, 0.5, 0.75}
and the 1/τ ∈ {0.25, 0.5, 0.75, 1, 2, 5, 10}.

2. A finer grid search over 1/τ ∈ {0.15, 0.25, 0.35, 0.5, 0.6, 0.75, 0.85, 1, 1.2, 1.5, 2} and
conv kernel size ∈ {3, 5, 7, 9} using the best result from the previous search.

3. A final grid search over the pooling: pool type ∈ {AvgPooling,MaxPooling},
pool kernel size ∈ {2, 3, 4}, and the activation function: function ∈
{RePU, Triangle, Softmax} with for power ∈ {0.1, 0.35, 0.7, 1, 1.4, 2, 5, 10} (for
RePU or Triangle) and τ ∈ {0.1, 0.5, 1, 2, 5, 10, 50, 100} (for softmax) using the best
result from the two previous searches.

A.5 Multilayer architecture

The pooling of stride 2 halves each dimension of the resolution after each layer. We stop
adding layers when the output resolution becomes at most 4 × 4. The layer where this
occurs depends on the original input’s resolution. Thus, the multilayer network has three
convolutional layers for MNIST or CIFAR-10, four layers for STL-10, and five layers for
ImageNet at a resolution setting of 160× 160 px (Table 4).

A width factor fw characterizes the multilayer network. fw links the width of each layer to
that of the previous layer, thus determining the depth-dependent architecture. Specifically,
the number of filters #Fl in the hidden layer l is fw times the number of filters at layer l− 1:
#Fl = fw ·#Fl−1. The first hidden layer has 96 filters in order to compare with Miconi
(2021); Lagani et al. (2021); Amato et al. (2019). We then explored, using CIFAR-10, the
impact of fw on performance. We tried three different values for fw ∈ {1, 2, 4}. A value of 1
keeps the same number of filters in all layers, while a value of 4 keeps the number of features
provided to the classifier head equal to the number of features at the input layer (due to
the pooling stride of 2 in each layer). A fw bigger than four would substantially increase

17

Published as a conference paper at ICLR 2023

layer MNIST/CIFAR STL10 ImageNet

1

Batchnorm
5Ö5 conv96
Triangle
4Ö4 MaxPool

Batchnorm
5Ö5 conv96
Triangle
4Ö4 MaxPool

Batchnorm
5Ö5 conv48
Triangle
4Ö4 MaxPool

2

Batchnorm
3Ö3 conv384
Triangle
4Ö4 MaxPool

Batchnorm
3Ö3 conv384
Triangle
4Ö4 MaxPool

Batchnorm
3Ö3 conv192
Triangle
4Ö4 MaxPool

3

Batchnorm
3Ö3 conv1536
Triangle
2Ö2 AvgPool

Batchnorm
3Ö3 conv1536
Triangle
4x4 MaxPool

Batchnorm
3Ö3 conv768
Triangle
4Ö4 MaxPool

4

Batchnorm
3Ö3 conv6144
Triangle
2Ö2 AvgPool

Batchnorm
3Ö3 conv3072
Triangle
4Ö4 MaxPool

5

Batchnorm
5Ö5 conv12288
Triangle
2Ö2 AvgPool

Table 4: Network architecture (all pooling layers use a stride of 2). The number of channels
is also defined, e.g. conv96 means 96 channels. More details can be found in Appendix A.5.

the size of the network, and is impractical for deeper networks. We found that to increase
performance with depth, the network needs to also grow in width (Fig. 4).

A.6 Training and evaluation protocols

Each experiment was performed 4 times, with random initializations, on all datasets except
the full ImageNet where only one random seed was tried.

A.6.1 SoftHebb training

The optimal number of SoftHebb weight update iterations is around 5000 based on CIFAR-10
experiments. Thus, for CIFAR-10 and MNIST (50k training examples), unsupervised training
was performed in one epoch with a mini-batch of 10 and 20 for STL-10 unlabelled training
set (100k training example). Because of the large number of training examples, we randomly
select 10% of the ImageNet dataset with a mini-batch of 20. The accuracies we report
for SoftHebb are for layers that are trained successively, meaning each SoftHebb layer was
trained, and then frozen, before the subsequent layer was trained. However, the results are
very similar for simultaneous training of all layers, where each training example updates all
layers, as it passes forward through the deep network.

A.6.2 Supervised training

The linear classifier on top uses a mini-batch of 64 and trains on 50 epochs for MNIST
and CIFAR-10, 100 epochs for STL-10, and 200 epochs for ImageNet. For all datasets, the
learning-rate has an initial value of 0.001 and is halved repeatedly at [20%, 35%, 50%, 60%,
70%, 80%, 90%] of the total number of epochs. Data augmentation (random cropping and
flipping) was applied for STL-10 and ImageNet.

18

Published as a conference paper at ICLR 2023

A.6.3 Backpropagation-trained networks

Results comparing SoftHebb and Backpropagation are found using the same network archi-
tecture. The only difference is the activation function; we found that triangle or softmax
activation would be detrimental to BP. The activation function we used for BP-trained
networks is ReLU. The learning rate followed the same schedule as described Appendix A.6.2.

A.6.4 Fine-tuning

In the fine-tuning experiment on STL-10, all Hebbian CNN layers learned using SoftHebb
and the large unlabelled training dataset of STL-10; then, an output layer was added and the
entire network was trained end-to-end using BP on the full small labelled training subset.

A.7 Receptive fields

We have visualized the receptive fields (RFs) of hidden layers in the network (Figure 2 and
end of Appendix B). The method that we used is activation maximization (Erhan et al.,
2009; Le et al., 2012; Goodfellow et al., 2014; Nguyen et al., 2015). Specifically, we started
from a square of random pixels, and we optimized the input through gradient descent (or
rather ascent) to maximize the activation of each neuron, under the constraint of an L2
norm of 1, i.e. projection to a unit sphere. That is then a form of projected gradient
descent (PGD), which can also be used as an adversarial attack, if a loss function rather
than the activation function is maximized. For this purpose, we modified a toolbox for
adversarial attacks, named Foolbox (Rauber et al., 2020). We show RFs that maximize
the linear response of the neurons, i.e. the total weighted input. We have tuned the step
size of the descent, and we have validated the approach (a) by verifying that the number
of iterations suffice for convergence, (b) by confirming that its results at the first layer
match the layer’s weights, (c) by verifying that the hidden neurons are strongly active
if the network is fed with inputs that match the neuron’s found RFs, and (d) by seeing
that alternative initializations also converge to the same RF. We also tried an alternative
method that was used by Miconi (2021). Specifically, we used that paper’s available code
(https://github.com/ThomasMiconi/HebbianCNNPyTorch). We found that the RFs found
by PGD activate the neurons more than the RFs found by the alternative method. Moreover,
PGD takes into consideration pooling and activation functions, which the other method does
not. Therefore we chose to present the results from PGD. Example results are presented in
Fig. 2 as well as in extended form with more examples at the end of Appendix B.

19

https://github.com/ThomasMiconi/HebbianCNNPyTorch

Published as a conference paper at ICLR 2023

B Additional results and analyses

B.1 Impact of temperature. SoftHebb leads to a new learning regime.

Figure B.1: SoftHebb’s temperature-dependent regimes in a single-layer CNN trained on
CIFAR-10. With anti-Hebbian plasticity and SoftHebb (but not hard WTA), a regime exists
where R1 and non-R1 features coexist and accuracy is maximal.

Figure B.2: Same as Fig. B.1, but in the 3-hidden-layer network, such that all layers use the
same temperature. R1 features are reported as a percentage over all features of all layers.

20

Published as a conference paper at ICLR 2023

B.2 Impact of adaptive learning rate. It increases learning robustness and
speed.

(A) Robustness to weight initialization of
our norm-dependent adaptive learning rate
scheme, compared to a linear scheduler. The
adaptive scheme achieves high accuracies
for a broad range of weight initializations.
Here the initialization is parametrized by
the radius of the sphere where the weight
vectors lie initially.

(B) Convergence speed of our norm-
dependent adaptive learning rate scheme,
compared to a linear scheduler. With the
adaptive scheme, neuronal weight vectors
converge to a sphere of radius 1 (i.e. become
R1 features) faster.

Figure B.3: Effects of our adaptive learning rate.

We speculate that low initial radius is problematic (Figure B.3A) because in that regime
the balance between excitation (from the input) and inhibition (from the soft WTA) is
overly tilted towards inhibition. Regarding Figure B.3B, see also main text’s Section 3,
“Weight-norm-dependent adaptive learning rate”, and the related paragraph in Section 4.

B.3 Impact of activation function

The choice of activation function for forward propagation through SoftHebb layers is im-
portant. To study this, we compared SoftHebb’s performance on CIFAR-10 for various
activation functions. In each result, all neurons across all layers used the same activation
function hyperparameters, except the case of Triangle. The parameters that were tried were:

� Power of RePU: 0.7*, 1.0, 1.4.

� Temperature of softmax: 4.0*, 1/0.65, 1.0.

These three values were tried because they were good for individual layers in previous
tuning. Asterisk indicates the best parameter value according to validation accuracy. Using
the best values produced the test accuracy results reported below, whereas the remaining
hyperparameters were not tuned to each case, but rather were the same, as found for Triangle
by the process described in Appendix A.4.

� ReLU: (70.68± 1.07)%

� tanh: (56.13± 0.34)%

� RePU: (79.08± 0.13)%

� softmax: (54.05± 0.55)%

� RePU + Triangle: (80.31± 0.14)%

B.4 Impact of width (number of neurons)

The width of the layers is rather impactful, as indicated by varying the width factor of deep
layers while keeping the first layer’s width constant (Fig. 4). To further study that impact,

21

Published as a conference paper at ICLR 2023

we varied the first layer’s width and kept the width factor fixed to 4 (which scales all layers).
The results are presented in Fig. B.4.

Figure B.4: Performance on CIFAR-10 for varying width of the layers. First-layer width is
indicated, while subsequent layers are scaled by the width factor 4 (see Appendix A.5).

For this control experiment, we did not re-tune the hyperparameters to each width, but
rather only to the 96-neuron case. That is in contrast to Fig. 4, where hyperparameters were
tuned to each width factor.

22

Published as a conference paper at ICLR 2023

(A) Hard WTA (B) SoftHebb (C) Backprop

Figure B.5: Receptive fields of the first convolutional layer’s neurons, learned from CIFAR-10
by different algorithms.

B.5 Further study of hidden representations.

As a control, we perform again the experiment that we presented in Fig. 5, this time in
comparison to a network with the initial, untrained, random weights. The results are shown
in Fig. B.6 and Fig. B.7.

(A) Trained weights with SofHebb. (B) Random weights.

Figure B.6: UMAP projection (similar to main text’s Fig. 5, top row) of the test set after
passing through 4 SoftHebb layers. Here, (A) from a trained and (B) from a randomly
initialized, untrained network.

23

Published as a conference paper at ICLR 2023

Layer 4

Layer 1

(A) Trained weights with SofHebb.

Layer 1

Layer 4

(B) Random weights.

Figure B.7: Images and patches that best activate 5 random neurons from SoftHebb Layers
1 and 4 (similar to main text’s Fig. 5, bottom row). Here, (A) from a trained and (B) from
a randomly initialized, untrained network.

B.6 Supplementary receptive fields found through PGD.

For the method, see Appendix A.7. RFs of deeper layers are not all Gabor-like, but rather
also include mixtures of Gabor filters, and also take different shapes and textures. In addition,
RFs do appear increasingly complex with depth. These results could possibly be expected
based on the RFs of the first layer, which are already more complex than the mere Gabor
filters that are learned by other Hebbian approaches, such as hard WTA (Figure B.5A).
Their mixture in subsequent layers then was unlikely to only produce Gabor filters. It is
difficult to interpret each RF precisely, but this is common in the hierarchies of deep neural
networks.

24

Published as a conference paper at ICLR 2023

Figure B.8: All receptive fields of layer 1, learned from STL-10.

25

Published as a conference paper at ICLR 2023

Figure B.9: 250 randomly sampled receptive fields of layer 2, learned from STL-10.

26

Published as a conference paper at ICLR 2023

Figure B.10: 250 randomly sampled receptive fields of layer 3, learned from STL-10.

27

Published as a conference paper at ICLR 2023

Figure B.11: 250 randomly sampled receptive fields of layer 4, learned from STL-10.

28

	Introduction: Backpropagation and its limitations
	Alternatives to backpropagation and their limitations
	Overview of multilayer SoftHebb
	Results
	Discussion
	Details to the methods
	Weight initialization
	Choosing distribution family
	Choosing distribution parameters

	Learning-rate adaptation
	Layer architecture
	Activation function

	Hyperparameter optimization
	Multilayer architecture
	Training and evaluation protocols
	SoftHebb training
	Supervised training
	Backpropagation-trained networks
	Fine-tuning

	Receptive fields

	Additional results and analyses
	Impact of temperature. SoftHebb leads to a new learning regime.
	Impact of adaptive learning rate. It increases learning robustness and speed.
	Impact of activation function
	Impact of width (number of neurons)
	Further study of hidden representations.
	Supplementary receptive fields found through PGD.

