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ABSTRACT

We introduce TimeSeriesGym, a scalable benchmarking framework for evaluat-
ing Artificial Intelligence (AI) agents on time series machine learning engineering
challenges. Existing benchmarks lack scalability, focus narrowly on model building
in well-defined settings, and evaluate only a limited set of research artifacts (e.g.,
CSV submission files). To make Al agent benchmarking more relevant to the
practice of machine learning engineering, our framework scales along two critical
dimensions. First, recognizing that effective ML engineering requires a range of
diverse skills, TimeSeriesGym incorporates challenges from diverse sources
spanning multiple domains and tasks. We design challenges to evaluate both iso-
lated capabilities (including data handling, understanding research repositories, and
code translation) and their combinations, and rather than addressing each challenge
independently, we develop tools that support designing multiple challenges at scale.
Second, we implement evaluation mechanisms for multiple research artifacts, in-
cluding submission files, code, and models, using precise numeric measures and
optionally LLM-based qualitative assessments. This strategy complements objec-
tive evaluation with subjective assessment when appropriate. Although our initial
focus is on time series applications, our framework can be readily extended to other
data modalities, broadly enhancing the comprehensiveness and practical utility of
agentic Al evaluation. We open—sourceﬂ our benchmarking framework to facilitate
future research on the ML engineering capabilities of Al agents.

1 INTRODUCTION

Al agents (95 [11) have shown growing promise in automating machine learning (ML) and data science
(DS) workflows. Fueled by large language models (LLMs), they can reason about context, adapt to
diverse tasks, and iteratively refine solutions over long horizons. Such capabilities have the potential
to significantly reduce the mundane, mostly manual efforts in ML engineering and improve the
overall productivity of ML practice. To measure progress in this area, several benchmarks (95 3; 12}
175 225 115 1205 [18)) have been proposed to evaluate Al agents on ML and DS tasks.

However, existing benchmarks have important limitations. First, many of them source ML challenges
primarily from popular competitions such as Kaggle, which are well-structured and do not fully
capture the complexity of real-world ML tasks. Second, evaluations are typically outcome-based,
focusing on overall task completion or eventual model performance metrics such as accuracy, while
combining and obfuscating the impact of multiple component skills that jointly determine the
outcomes, such as effective data wrangling or code quality improvement capabilities. Third, current
benchmarks lack scalability, as tasks have to be manually curated and cannot be developed at scale.

To enable efficient evaluation of Al agents in realistic ML scenarios, we propose TimeSeriesGym,
a scalable and agent-agnostic benchmarking framework for evaluating Al agents on time series
ML engineering tasks. TimeSeriesGym currently consists of 33 challenges that span 8 unique
time series problems (forecasting, classification, time series understanding), from more than 15
domains (healthcare, finance, epidemiology). Our benchmark covers both Kaggle-style challenges

'https://anonymous.4open.science/r/TimeSeriesGym-9CF6/
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Figure 1: TimeSeriesGym is a scalable benchmarking environment for ML engineering agents. It
currently features 33 time series challenges across 8 unique time series problems, spanning more than
15 domains. Challenges are either carefully designed based on real-world ML practice, or sourced
from Kaggle competitions and GitHub repositories. TimeSeriesGym includes key mechanisms to
enable efficient and scalable generation of new challenges. Our evaluation methodology complements
precise quantitative metrics with optional qualitative assessment, and provides specialized tools to
grade various artifacts generated during ML engineering. TimeSeriesGym is compatible with
many different agent types, even those with fundamentally distinct designs.
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and original tasks carefully designed based on real-world ML engineering practice. While we focus
on time series analytics due to its prevalence in applications and under-representation in existing
agent benchmarks, our framework is modality-agnostic in principle and can be easily extended to
handling other data modalities (e.g., images, text, audio) via the accompanying tools for scalable task
generation. TimeSeriesGym provides an interactive gym environment compatible with various
types of agent scaffolding, allowing seamless evaluation of agents of different types and collection
of their trajectories. Beyond benchmarking, this allows TimeSeriesGym to also serve as a data
flywheel for future agent improvement through post-training using the collected trajectory data.

Our contributions are as follows:

1. We propose TimeSeriesGym, the first open source benchmark for Al agents on time
series ML engineering tasks (Fig. [I). Beyond benchmarking, TimeSeries“Gym" can be
easily used as a data flywheel to post-train the next generation of ML engineering agents.

2. TimeSeriesGym offers a scalable task generation mechanism that reduces manual efforts
in task curation and ensures long-term sustainability of the benchmark.

3. TimeSeriesGym provides a comprehensive framework that evaluates multimodal agent
outputs (e.g., prediction files, models, code) across specific ML skills (e.g., data handling,
model improvement), using a holistic approach that complements quantitative metrics (e.g.,
accuracy) with optional qualitative assessment (e.g., LLM-as-a-judge for code utility).

2 RELATED WORK

Machine learning agent benchmarks. Several benchmarks have been proposed to evaluate LLM
agents on automating ML and DS tasks. These benchmarks are typically structured around three key
components: (1) task curation, (2) agent capabilities being evaluated, and (3) evaluation protocol.
Benchmarks differ in how they curate ML/DS tasks. For example, MLE-bench (3) and DSBench (12)
compile tasks from online competition platforms such as Kaggle, while other benchmarks source
tasks from ML-related GitHub repositories (1};20) or hand-craft tasks based on ML research problems
or engineering workflows (95 [17; 225 [18). With regard to agent capabilities, some benchmarks (3 9}
17; 1225 [12)) focus on comprehensive ML science skills by evaluating agents on end-to-end problem
solving skills, while others (1;120;|18) focus on more modular engineering-oriented capabilities within
the ML pipeline, such as using GitHub repositories or integrating APIs. Evaluation protocols also
differ in output formats and granularity. MLE-bench (3) and DSBench (12) require agents to output
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Table 1: Comparison of TimeSeriesGym with existing ML/DS agent benchmarks. Categories
include Number: total and time series (TS) tasks in each benchmark, where each task corresponds
to a unique data source (e.g., a single Kaggle competition or GitHub repository); Source: task
origins (K: Kaggle, G: GitHub, H: Hand-crafted); ML Capability: coverage of ML science tasks
(e.g., modeling, open-ended research) and engineering tasks (e.g., repository utilization, API in-
tegration); and Evaluation: capabilities for evaluating multimodal outputs (e.g., prediction files,
model artifacts), specific ML skills (e.g., data handling, model improvement), and from a holistic
perspective (including both quantitative metrics (e.g., accuracy, mean absolute error) and qualitative
evaluation (e.g., code review)). We use "+" to indicate TimeSeriesGym’s scalability which enables
the generation of an unlimited number of new challenges using the tools provided.
‘ Number ‘ Source ‘ ML Capability Evaluation

Total TS | K G H | Science Engineering | Multimodal Skill-based Holistic
MLE-bench (3) 75 3 o X X v X X X X
MLAgentBench (9) 13 1 R S v X v X X
MLGym (17) 13 0 v X 7 v X v X X
RE-Bench (22) 7 0 X X v v X v X X
DSBench*|(12) | 74 5 v X X v X X X X
SUPER’|(I) | 45 0 X v X X v X X v
ML-Bench (20) 18 1 X v X X v X X X
ML-Dev-Bench (18) 30 0 X X v X v v v X
TimeSeriesGym(Ours) | 23+ 23+ |/ V V/ v v v v v

results in specific formats (e.g., CSV files) that can be directly scored using predefined metrics such as
accuracy, while other benchmarks (95 17; 22) allow for more flexible outputs in addition to prediction
files, such as model artifacts and code. ML-Dev-Bench (18) further extends the evaluation by specific
skills (e.g., data handling, model improvement), while SUPER (1) provides a more holistic evaluation
by combining outcome-based evaluation with qualitative code inspection to assess agents’ progress
towards completing the tasks. TimeSeriesGym is most similar to MLE-Bench in sourcing Kaggle
competitions, but uniquely emphasizes time series modeling (an underrepresented modality), includes
original ML engineering challenges beyond competitions, and provides granular skill assessment,
and holistic holistic multi-artifact evaluation (see difference in Sec. D).

Scalable dynamic benchmarks and holistic evaluation. Scalable benchmarks reduce manual data
curation efforts by generating target problems at scale using carefully designed templates (2; 23)) or
data engines (8), among which TimeSeriesExam (2)) further improves problem sample quality by
applying Item Response Theory (IRT) (4; [7) to intelligently select questions with contextualized
difficulty and appropriate discrimination. To remain effective against data contamination from LLM
pretraining, dynamic benchmarks such as GAIA (16) and LiveCodeBench (10) propose to continually
incorporate problems newly released after LLM training cut-offs. While most benchmarks target
specific capabilities, holistic evaluation (13} |5) provides a comprehensive picture through evaluating
models on a wide range of datasets and tasks across diverse domains using multiple complementary
metrics, to capture both the breadth and depth of model capabilities.

3 TIMESERIESGYM

TimeSeriesGym is envisioned as a scalable benchmarking environment for time series machine
learning engineering. The current version features 33 challenges from 23 unique data sources across
8 unique time series problems, spanning more than 15 domains. These challenges evaluate Al
agents on a range of realistic ML engineering skills beyond just model development, including data
labeling, model selection, and the utilization, improvement, and migration of research code (Tab. .
TimeSeriesGym also provides tools for rapidly developing new challenges to test specific skills
and for evaluating the diverse artifacts commonly generated during ML engineering processes.

Each challenge in TimeSeriesGym is organized with a consistent structure: (1) resources including
datasets, code repositories, related paper(s) and documentation relevant to the challenge; (2) a

"For DSBench, we include only data modeling tasks, while excluding data analysis tasks as they are not
directly relevant to our work.
2For SUPER, we include repositories used to create the Expert and Masked sets of the benchmark.
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description file that outlines the challenge parameters, available resources, and provides specific
instructions and hints for successful completion; and (3) challenge-specific grading functions to
evaluate agent submissions. Some challenges also include leaderboards to rank agent submissions
against human performance. These leaderboards are readily available for, e.g., challenges derived
from Kaggle competitions.

The challenges in TimeSeriesGym are derived from Kaggle competitions (currently, n = 13) and
popular benchmarks and research code repositories for time series modeling (TimeSeriesGym
Originals, n = 14). We prioritized challenges that reflect core skills that are regularly exercised by
ML engineers, researchers, and data scientists.

Each challenge is specifically chosen or designed to evaluate one or more of the following skills:
(1) Data Handling: Ability to handle missing data, use data labeling tools, and utilize multi-source
data for model building. (2) Modeling: Ability to develop useful time-series ML models, tune
hyperparameters, perform model selection, and understand, utilize, migrate and improve the quality
of research code. (3) Benchmarking: Training and rigorously evaluating ML models using standard
benchmarks. In selecting these challenges, we aimed at a broad coverage across diverse domains (e.g.,
healthcare, finance, epidemiology) and time series problems (forecasting, classification, time series un-
derstanding). Tab.[d]provides a comprehensive overview of each challenge within TimeSeriesGym,
including its domain, core problem, evaluation metric, and the skills required to address it.

To identify Kaggle challenges for inclusion in TimeSeriesGym, we began with the Meta Kaggle
dataset (19), focusing specifically on Featured and Research competitions. Featured competitions
are real-world ML challenges that pose difficult, commercially oriented prediction problems, while
Research competitions focus on problems that may not have clean or straightforward solutionsﬂ
We employed Gemini 2.0 Flash to analyze competition descriptions and titles, identifying
453 competitions that likely involve time series data. Subsequently, we ranked these competitions
by participant count, maximum reward, and presence of a public leaderboard. Then from top 100
ranked high-quality competitions (see Tab. [§), we manually selected a diverse set of competitions to
ensure comprehensive coverage across problem type (e.g., forecasting, classification), domain (e.g,
finance, healthcare), and research or engineering complexity (e.g., organization of datasets), while
also requiring public data availability, and a permissive license.

To complement the selected Kaggle challenges, we include 14 TimeSeriesGym Origi-
nal challenges, manually curated from existing open-source time series datasets and GitHub
repositories based on recommendations from experienced ML engineers and researchers (see
Tab. [5] for the original and modified source codes and licenses). These challenges are
specifically designed to evaluate advanced skills that Kaggle competitions typically cannot
easily assess, yet are essential for effective ML engineering. Examples include utilizing
state-of-the-art models (e.g., Tmplement the MOMENT (&) time series foundation
model for anomaly detection), migrating frameworks (e.g., Convert ResNet-1D
classification models from TensorFlow to PyTorch), and improving research
code quality (e.g., Improve PTB-XL ECG Classification Code). These capabilities rep-
resent critical competencies of skilled ML engineers that extend beyond the scope of standard
Kaggle-like competitions.

Running experiments on TimeSeriesGym can be resource-intensive and costly. Therefore, we pro-
pose TimeSeriesGym—-Lite, a carefully selected subset of six challenges designed to efficiently
evaluate Al agents on critical ML engineering skills while maintaining coverage across multiple
domains and time series problems, with statistically similar difficulty to TimeSeriesGym (Sec.[B).
This collection enables rapid and cost-effective assessment of novel Al agents without sacrificing the
diversity of skills being tested (see Tab. [6).

Multimodal, skill-based, holistic evaluation. Existing benchmarks typically summarize agent
performance using metrics such as accuracy, completion rate, or competition rankings (3. Although
these metrics provide useful summaries, they do not offer much actionable feedback for improvement.
TimeSeriesGym addresses this limitation through an evaluation framework designed to provide
specific actionable feedback through multiple complementary approaches. First, we design chal-
lenges that isolate and test specific skills, such as handling missing data (e.g., Opt iver Realized
Volatility Prediction with Missing Data). Poor performance on such challenges

*nttps://www.kaggle.com/docs/competitions
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clearly indicates potential skill gaps, enabling developers to focus their efforts on specific skills. Sec-
ond, we develop fine-grained evaluation tools that assess multiple dimensions of performance simul-
taneously. For example, in code migration tasks (e.g., Convert ResNet from Tensorklow
to PyTorch), our evaluation tools examine whether an agent follows instructions and naming con-
ventions, completes all required function definitions, in addition to successful execution— providing a
multidimensional performance profile rather than a binary success/failure indicator.

Our evaluation methodology deliberately combines multiple assessment approaches: quantitative
metrics (accuracy, mean absolute error), programmatic analysis (regular expression matching, code
inspection), and optional qualitative evaluation (LLM-as-a-judge) (see Appendix |G]). Each challenge
in TimeSeriesGym is evaluated using quantitative metrics (based on rules) and optionally subjec-
tive metrics (LLM judge). Although LLM-based evaluation offers valuable insight, especially for
open-ended tasks such as research code enhancement, we recognize that LLMs can be inconsistent
and prone to hallucination. Therefore, we primarily rely on quantitative metrics and strategically
complement them with subjective assessments, creating a holistic evaluation system that leverages
the strengths of both approaches. This hybrid approach mimics code reviews in software engineering
practice, which includes both tests based on static analysis and human code reviews.

Furthermore, TimeSeriesGym provides specialized tools to grade diverse artifacts generated
throughout the ML engineering life cycle— from submission files (CSV, H5, etc.) to source code (. py)
and trained models (. pth, . pk1)- enabling comprehensive assessment of the entire development
process rather than focusing solely on final outputs.

Generating challenges at scale. We provide key mechanisms that enable scalable generation of
new challenges. Here, scalability refers not only to adding new challenges efficiently, but more
importantly to the flexibility to support multiple design choices across various components of the
benchmark. By design, TimeSeriesGym scales along several key dimensions: (1) Skill-specific
competitions: We provide specialized tools (e.g., missing data simulator) that can be paired with any
"base" competition to create a large variety of targeted, skill-specific competitions. (2) Agent outputs:
Our grading tools support the evaluation of diverse agent outputs, including prediction files, model
artifacts, and code, allowing easy assessment across many task types. (2) Agentic scaffolds: Unlike
existing benchmarks such as MLGym (17/), TimeSeriesGym is agnostic to agent implementations,
enabling a wide range of agent scaffolds to be integrated with minimal effort. (4) Data sources:
TimeSeriesGym accommodates both Kaggle-style and non-Kaggle datasets (such as datasets in
TimeSeriesGym Original challenges), making it straightforward for practitioners to introduce new
datasets regardless of source or formaf’} Additionally, we offer clear and detailed documentation for
adding new challenges to the benchmark, which has already enabled members of our community
(outside our research team) to contribute a new challenge within 2 hours. Together, these design
choices ensure that TimeSeriesGym can continuously grow and adapt as time series machine
learning techniques continue to advance.

3.1 DESIGN CHOICES

Focus on time series tasks. We focused on time series modeling tasks for two key reasons. First,
time series data is ubiquitous and critical in domains such as healthcare and economics, yet existing
agentic Al benchmarks include relatively few time series challenges (Tab. [I). Second, compared
to text and images, time series data require modest resources for storage and modeling, making
TimeSeriesGym efficient to run. Moreover, modeling time-series data remains relatively un-
derexplored outside specialized research communities, meaning that LLMs are less likely to have
encountered such data and tasks during training. This characteristic, combined with the fact that
TimeSeriesGym evaluates general machine learning skills, makes it an excellent testbed to evalu-
ate Al agent capabilities. Although focused on time series, our benchmark can be be readily extended
to other modalities, and already includes multimodal challenges, such as TimeSeriesExam (time
series + text) and OSIC Pulmonary Fibrosis Progression (time series + images).

How much freedom should the agents be given?  When designing challenges for
TimeSeriesGym, we had to strike a fine balance between giving agents freedom to solve problems

>TimeSeriesGym is designed to be extensible while maintaining high standards of correctness, difficulty,
and non-triviality. To support benchmark growth without compromising quality, we implement a category-
specific quality-assurance pipeline, outlined in Sec|E|
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creatively while keeping enough structure in place to allow for a precise and fine-grained eval-
uation. For example, in the PTR-XI, ECG Classification with Hyper-parameter
Optimization challenge, we required agents to use a PyTorch-based neural network and save
their models, files and code before and after tuning. This allowed us to inspect models and code to
check if the hyper-parameters changed, and measure how these changes improved performance.

Agent-agnostic design. TimeSeriesGym is agnostic to specific agent implementations. Following
MLE-bench (3), it is easy to add new challenges and agentic scaffolds. To illustrate this flexibil-
ity, we include the latest implementations of 3 different scaffolds, AIDE (11), MLAgentBench
(MLAB) (9), and OpenHands (21) with fundamentally different designs. Unlike MLGym (17), we do
not advocate for a default agentic scaffold, as we believe that agent designs will continue to evolve
and no single scaffold will work best for all ML engineering tasks.

4 EXPERIMENTS AND RESULTS

Table 2: Main Results. Each experiment was run with 3 random seeds, with results showing
mean =+ standard deviation. The table compares scaffold types (AIDE, OpenHands, MLAB), model
choices (GPT-4.1, 03, Claude 3.7), resource allocations (4/50 to 12/150 hours/steps), and time
utilization approaches. Key findings include: (1) AIDE achieves the best performance as a scaffold,
(2) the reasoning model o3 achieves significantly higher valid submission rates (94.4%) than other
models, (3) Claude 3.7 produces the most reasonable submissions (38.9%), (4) doubling time
resources does not consistently improve performance, and (5) interestingly, removing step-wise
reminders sometimes improves reasonable submission rates.

Resources Valid Reasonable
Lite Model Submission Submission
(hours / steps) (%) (%)
MLAB
v +gpt—-4.1-2025-04-14 4/50 44.44+9.6 27.84+9.6
OpenHands
v +gpt-4.1-2025-04-14 4/50 444+19.3 11.1£9.6
AIDE \
+gpt—-4.1-2025-04-14 66.7+16.7 27.8+9.6
v +03-2025-04-16 944+9.6 33.3+£0.0
+ claude-3-7-sonnet-20250219 4750 50.0 £16.7 38.94+19.3
+ deepseek-reasoner 11.1+9.6 11.1+9.6
+ deepseek-chat 16.7+£ 0.0 16.7£ 0.0
X +gpt-4.1-2025-04-14 4/50 ‘ 58.6 + 7.6 12.14+0
Effect of Scaling Resources
4/50 66.7+16.7 27.8+9.6
v +gpt-4.1-2025-04-14 8/100 72.2+9.6 22.24+9.6
12 /150 61.1+9.6 50.0+0.0
Effective Utilization of Time
v Step-wise reminder 4750 ‘ 66.7+16.7 27.8+9.6

No reminder 55.6 £9.6 33.3+0.0

Setting. We run agents in an Ubuntu 20.04 Docker container with all necessary resources (datasets,
code repositories, etc.) and basic Python packages useful for ML engineering. Agents can access the
internet and install additional packages as needed. For each challenge, agents have a maximum of 4
hours and 50 steps (9518} [17) and use a machine with 128 vCPUs, 503 GB RAM, 1.8 TiB SSD, and
a single NVIDIA A100-SXM4-80GB GPUEI Unless otherwise specified, we repeat each experiment
with 3 different seeds (0, 1, and 2) to calculate mean and standard deviation.

81n practice, agents share this machine as we run multiple challenges in parallel. This represents a realistic
setting similar to how ML engineers routinely share computing resources. We found no instances where this
sharing might have disadvantaged any agent.
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Cost. On average, it cost us USD 63.00 to run AIDE with gpt-4.1-2025-04~-14 for a maximum
of 4 hours and 50 steps on TimeSeriesGym. In contrast, the Lite benchmark was much more
affordable at USD 8.00 per run. Given that TimeSeriesGym —Lite preserves coverage across
domains and problem types while being much more time- and cost-effective, we conducted most of
our experiments on TimeSeriesGym —Lite to accommodate our resource constraints.

Metrics. We report the raw scores achieved by AIDE on every challenge (Tab.[I3). Although these
scores are useful for tracking progress on individual challenges, they cannot be easily combined
across different challenges. To measure the performance of agents at a high level, we report two
key metrics: the percentage of challenges where the agent made a (1) valid, and (2) reasonable
submission (Tab.[2). A submission is valid if the grader returns any non-null score. What counts
as a reasonable attempt varies by challenge type. For Kaggle challenges, we define it as scoring
above median on the competition’s public leaderboard. For the remaining challenges, we consider a
submission reasonable if it made a genuine[] modeling attempt rather than hallucinating an output
that matches the submission format. For example, simply loading and re-saving the provided sample
submission file without any model inference or data processing is deemed unreasonable.

4.1 OBSERVATIONS

AIDE is the better open-source scaffold. We evaluated GPT-4.1 (gpt—-4.1-2025-04-14) with
three open-source scaffolds: AIDE (11)), MLAB (9) and OpenHands (21). Following MLE-bench,
we make minor modifications to adapt these scaffolds to our benchmark (see Appendix [C). Results in
Tab. 2] confirm prior findings: AIDE with GPT-4. 1 yields the highest proportion of valid (66.7%)
and reasonable (27.8%) submissions. This is expected as AIDE is specifically designed for data
science tasks, which account for the majority of TimeSeriesGym challenges.

Reasoning models produce substantially more valid submissions. To identify the best base
model, we evaluated the strongest scaffold (AIDE) with two state-of-the-art proprietary LLMs:
GPT-4.1and Claude 3.7 (claude-3-7-sonnet-20250219), and a reasoning model 03
(03-2025-04-16). As shown in Tab. 2] our experiments on TimeSeriesGym-Lite revealed
that 03 created significantly more valid submissions than other models, while Claude 3.7 pro-
duced the highest number of reasonable attempts (38.9%). We noticed a significant gap between
valid and reasonable submissions for 03. While 03 can generate valid submission files for most
challenges by following the instructions provided, it was also prone to hallucination. In some cases,
it produced a submission file without any genuine modeling attempt (e.g., simply outputting a zero
array). An illustration of this failure mode is provided in Appendix [F4]

Challenges in TimeSeriesGym are hard for state-of-the-art agents. We tested AIDE with
GPT-4.1 onall TimeSeriesGym challenges (see Tab.[I3)) and found poor overall performance.
The agent produced valid submissions for only 58.6% of challenges and reasonable submissions
for only 12.1% on average. We found that the agent especially struggled with TimeSeriesGym
original challenges, where it only produced valid submissions for 5 out of 14 challenges. These results
show that even the best agents struggle with ML engineering tasks, particularly those that go beyond
standard Kaggle data science challenges and involve working with multi-file code repositories.

Agents do not improve with more time. We wondered if the agents perform poorly on
TimeSeriesGym simply because they need more time. To test this, we ran AIDE with GPT-4.1
on TimeSeriesGym —Lite and gave it 2-3x more hours and steps per challenge. Our results
show that extra time does not always improve performance (Tab.[14). Even with the maximum time
(12 hours and 150 steps), the agent only made reasonable submissions in about 50% of challenges—
not very impressive given that the bar for a “reasonable” submission is quite low.

Agents do not utilize time effectively. We suspected that agents do not improve with more time
because they do not use it well. To test this idea, we compared two settings: the default approach
of reminding the agent about remaining time (and steps) before each step, versus removing these
reminders completely. Surprisingly, we did not find significant differences between these settings. In
fact, agents without time reminders produced more reasonable submissions. This may suggest that

"We assess this by manually inspecting whether a modeling attempt was made. Since this is inherently a
subjective judgment, reasonable attempts are reported ONLY as a study of agentic skills. The benchmark score
itself ultimately depends on the objective metric we defined for each challenge.
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agents do not use their time wisely— they tend to rush toward solutions instead of carefully exploring
promising options, especially towards the end of the experiment. This raises important research
questions about how to design agents that use their time and resources more strategically.

Frontier LLM challenges. Since frontier LLMs are pretrained on large-scale public data, there is
arisk that they may have encountered and memorized content from public challenges, e.g., online
Kaggle competition discussions or solutions, which can potentially inflate benchmark performance
and limit its generalizability. To assess this risk, we followed the approach used by MLE-bench
to measure GPT—4 . 1’s familiarity with TimeSeriesGym challenges and compared the familiar-
ity score distribution to that of MLE-bench (see Appendix [E4). GPT-4.1 exhibited a similar
level of familiarity with TimeSeriesGym challenges as with MLE-bench challenges (with Kol-
mogorov—Smirnov (KS) Test (15) p-value = 0.363, indicating no significant difference). Given that
MLE-bench found no systematic impact of LLM familiarity on experiment results, GPT-4 . 1’s fa-
miliarity with TimeSeriesGym is within a reasonable range and does not compromise its integrity.

TimeSeriesGym can be an effective diagnostic tool for agentic skill development. We stratify
the results in Tab. [2]in terms of core ML skills that each challenge tests (Tab.[3]). For example, we
found that agents struggle in hyper-parameter tuning— 2 out of the 3 scaffolds (OpenHands and
MLAB) failed to produce valid submissions. While all scaffolds perform similarly on code migration,
AIDE achieved the best performance on handling missing data, likely due to its specific design for
data science tasks. A similar analysis for base models is provided in Appendix [E.3]

Table 3: Performance of agent scaffolds with GPT-4 .1 (Best@3 / Avg@3) on different ML skills.
Arrows indicate whether lower ({) or higher (1) values are better. Agents struggle with hyper-
parameter tuning.

ML Skill Metric AIDE OpenHands MLAB

Handling Data Missingness ~ Root Mean Square Percentage Error (})  0.33/0.33 0.64/0.64 0.42/0.89
Code Migration Percentage of Test Cases Passed (1) 0.56/0.56 0.56/0.44 0.56/0.56
Hyper-parameter Tuning Improvement in Accuracy (1) 0.08/0.03 N/A / N/A N/A /N/A

Summary. This section provides a focused illustration of how TimeSeriesGym enables efficient
and cost-effective experimentation with Al agents, helping researchers uncover actionable insights
about agent capabilities and limitations. Our findings demonstrate TimeSeriesGym’s value for
advancing generic ML engineering agents.

5 DISCUSSION, OPEN QUESTIONS AND OPPORTUNITIES

Key limitations of existing scaffolds. Agentic scaffolds such as AIDE and OpenHands provide
structured workflows that excel in single-shot, self-contained benchmarks (e.g., Kaggle compe-
titions) but reveal significant limitations in repository-level challenges that require multiple file
edits and iterative reasoning. AIDE’s one-step solution strategy and fixed action set—restricted to
predefined operations such as “data preview" when debugging—often lead to unsuccessful attempts
in large codebases, as the agent’s attention is diluted across irrelevant files and fails to identify critical
information. Conversely, OpenHands supports multi-step trajectories yet suffers from a greedy
exploitation bias: it commits fully to a single approach without exploring alternative solution paths
or revisiting earlier decisions when trajectories prove unfruitful. The planning algorithm of the
CodeAct agent used by OpenHands is similarly greedy and short-horizon, limiting adaptation
to complex multistage development workflows. These findings highlight the need for more adap-
tive scaffolds that dynamically expand their action repertoire, balance exploration and exploitation
through parallel solution threads, and support nested workflows reflective of real-world machine
learning engineering tasks. We provide illustrations of agent failures in Appendix [

Data leakage and plagiarism. In designing TimeSeriesGym, we identify two key risks related
to data leakage and plagiarism that could compromise the integrity of the benchmark: (1) Pretraining
contamination: Current LLMs may have been exposed to public content from existing challenges
(e.g., Kaggle competitions), including task descriptions, data, or shared solutions. This can lead to
memorization and inflated performance that overstates agents’ true capabilities, and (2) Future LLM
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leakage: Once the benchmark is public, future LLMs may be pretrained on its content, making the
benchmark less effective in evaluating real generalization.

To address such risks, we present both empirical findings and mitigation strategies. For case (1), we
have two key observations. First, in both Kaggle-based and original challenges in TimeSeriesGym,
agents either performed poorly or did not produce valid output, suggesting minimal benefit from
any potential LLM contamination. Second, we conducted a formal analysis using available tools to
assess agents’ familiarity with all competitions in this benchmark. The results show no evidence
of systematic prior exposure or memorization, further supporting the integrity of the benchmark in
its current state. For case (2), the scalability of TimeSeriesGym enables efficient generation of
new challenges and skill-specific variations. This allows the benchmark to evolve continuously and
remain effective even if the current version is eventually included in future LLM pretraining.

Finally, we raise a broader question around plagiarism and code reuse. Several TimeSeriesGym
challenges, such as leveraging MOMENT (6) for anomaly detection, require agents to use existing code
repositories to solve open-ended ML tasks, making plagiarism difficult to assess. For example, if an
agent cites the code it uses, should it be considered plagiarism or appropriate reuse, similar to how
human ML practitioners build on public code with proper reference? As the ability to effectively
and properly leverage existing resources is important in real-world ML practice, we believe that it is
crucial to develop clear, legally correct definitions and evaluation criteria for data contamination and
plagiarism in the context of Al agents. We highlight this as an important direction for future work.

Defining and measuring success. What does it mean for an agent to be successful? For Kaggle tasks,
while comparing an agent’s performance against human leaderboards seems intuitive, it presents
challenges. TimeSeriesGym utilizes different training and testing splits and re-implements the
grading mechanisms from the original Kaggle competitions (as original Kaggle test sets are private),
making direct leaderboard comparisons potentially misleading. Additionally, in challenges like code
migration, real-world utility does not always require perfect, bug-free code: partial, buggy solutions
may still accelerate development when iterated by human engineers. Thus, our current evaluation
approaches have inherent limitations.

We propose several desiderata for improving the success metrics. These metrics should be rigorous
and objective, yet flexible enough to preserve agent creativity and autonomy. They should also
yield actionable insights, helping identify specific deficiencies and guide future improvements in
agent design. In this work, we take a step in this direction by enabling skill-based and holistic
evaluations, offering a more comprehensive understanding of agent capabilities and limitations.
Moving forward, we believe that the development of robust, holistic and diagnostic success metrics
remains an important research direction and requires community discussion.

Optimal resource allocation. Consistent with previous work, agents were given 4 hours and 50 steps
to solve each challenge - but is this sufficient? Alternative frameworks like MLE-bench provide
substantially more resources (24 hours and approximately 2000 steps). Our scaling experiments,
which gave agents up to 12 hours and 150 steps for a subset of challenges, did not reveal significant
performance improvements. Therefore, we believe that further increasing resources is an option, but
practical academic budget constraints make such approaches largely infeasible. This raises important
questions about how to balance resource limitations with fair opportunities to assess Al agents.

Societal impact. Al agents promise to substantially reduce manual effort in ML engineering while
expanding the productivity and accessibility of ML tools. This automation presents several social
implications worth considering. First, by lowering technical barriers, these agents could democratize
ML capabilities, allowing users without an extensive programming background to leverage advanced
analytics. Second, automated ML workflows can accelerate scientific discovery across multiple
domains, including healthcare, climate science, and materials research. However, several challenges
require careful attention from the community. The primary concern is proper attribution when agents
repurpose existing code, potentially obscuring original authorship and violating licenses. Furthermore,
automated ML systems can perpetuate or amplify existing biases in training data without human
oversight. Furthermore, these agents might generate plausible but flawed solutions that appear
correct to non-experts, leading to undetected errors in critical applications. The resource-intensive
nature of running sophisticated agents could also exacerbate computational divides between well-
resourced and under-resourced organizations. As we advance agent capabilities through benchmarks
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like TimeSeriesGym, the community must simultaneously develop frameworks for responsible
deployment that address these challenges while maximizing societal benefits.

6 CONCLUSION

We propose TimeSeriesGym, a scalable and agent-agnostic benchmarking framework for eval-
uating Al agents (with various scaffoldings) on time series ML engineering tasks. By curating
tasks that reflect real-world ML practice from diverse sources, enabling scalable task generation,
and supporting multimodal, skill-based, holistic evaluation, TimeSeriesGym provides a practical
and extensible testbed for advancing Al agents in ML engineering. Our experiments show that
while frontier LLMs combined with AIDE scaffolding (11) can achieve moderate to high success
rates in producing valid submissions, they still do not generate reasonable solutions, particularly on
TimeSeriesGym original challenges that emulate the complexity of real-world time series tasks.
This highlights current limitations in agent capabilities to effectively understand and solve realistic
time series tasks. By open-sourcing TimeSeriesGym, we aim to facilitate a deeper understanding
of the ML engineering capabilities of Al agents, provide actionable insights on future development,
and support the collection of agent interaction trajectories to drive continuous improvement of Al
agents through post-training and refinement.

REPRODUCIBILITY STATEMENT

We provide TimeSeriesGym as an open-source project under the permissive MIT License:
https://anonymous.4open.science/r/TimeSeriesGym—9CF6/. The repository in-
cludes detailed documentation on running experiments, adding new challenges, and incorporating
different agentic scaffolds. Tab.[4]lists all challenges in TimeSeriesGym, while Tab. [5| provides
their sources and licenses. We describe our exact experimental settings and compute resources in
Sec. |4 with scaffold hyperparameters detailed in Tab. The cost to run each experiment is reported
in Tab. 7

REFERENCES

[1] Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and executing tasks
from research repositories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 12622-12645, Miami, Florida, USA, November 2024. Association for Computational
Linguistics.

[2] Yifu Cai, Arjun Choudhry, Mononito Goswami, and Artur Dubrawski. TimeSeriesExam: A
time series understanding exam. NeurIPS’24 Time Series in the Age of Large Models Workshop,
2024.

[3] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng.
MLE-bench: Evaluating machine learning agents on machine learning engineering. In The
Thirteenth International Conference on Learning Representations, 2025.

[4] Susan E Embretson and Steven P Reise. Item response theory for psychologists. Psychology
Press, 2013.

[5] Mononito Goswami, Vedant Sanil, Arjun Choudhry, Arvind Srinivasan, Chalisa Udompanyawit,
and Artur Dubrawski. Aqua: A benchmarking tool for label quality assessment. Advances in
Neural Information Processing Systems, 36:79792-79807, 2023.

[6] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.

MOMENT: A family of open time-series foundation models. In International Conference on
Machine Learning, pages 16115-16152. PMLR, 2024.

10


https://anonymous.4open.science/r/TimeSeriesGym-9CF6/

Under review as a conference paper at ICLR 2026

[7] Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated
evaluation of retrieval-augmented language models with task-specific exam generation. In
Forty-first International Conference on Machine Learning, 2024.

[8] Cherie Ho, Jiaye Zou, Omar Alama, Sai Mitheran Jagadesh Kumar, Cheng-Yu Chiang, Taneesh
Gupta, Chen Wang, Nikhil Keetha, Katia Sycara, and Sebastian Scherer. Map it anywhere: Em-
powering bev map prediction using large-scale public datasets. Advances in Neural Information
Processing Systems, 37:64433-64453, 2024.

[9] Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentbench: Evaluating language
agents on machine learning experimentation. In Forty-first International Conference on Machine
Learning, 2024.

[10] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[11] Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Ja-
cenko, and Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint
arXiv:2502.13138, 2025.

[12] Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. DSBench: How far are data science agents from becoming
data science experts? In The Thirteenth International Conference on Learning Representations,
2025.

[13] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
language models. arXiv preprint arXiv:2211.09110, 2022.

[14] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
Nlg evaluation using gpt-4 with better human alignment. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 2511-2522, 2023.

[15] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68-78, 1951.

[16] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom.
GAIA: a benchmark for general ai assistants. In The Twelfth International Conference on
Learning Representations, 2023.

[17] Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vin-
cent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach,
William Yang Wang, and Roberta Raileanu. MLGym: A new framework and benchmark for
advancing ai research agents, 2025.

[18] Harshith Padigela, Chintan Shah, and Dinkar Juyal. ML-Dev-Bench: Comparative analysis of
ai agents on ml development workflows. arXiv preprint arXiv:2502.00964, 2025.

[19] Megan Risdal and Timo Bozsolik. Meta kaggle, 2022.

[20] Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng,
Helan Hu, Kaikai An, Ruijun Huang, et al. ML-Bench: Evaluating large language models and
agents for machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835,
2023.

[21] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2024.

11



Under review as a conference paper at ICLR 2026

[22] Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence
Chan, Michael Chen, Josh Clymer, Jai Dhyani, et al. Re-bench: Evaluating frontier ai r&d
capabilities of language model agents against human experts. arXiv preprint arXiv:2411.15114,
2024.

[23] Wen Ye, Yizhou Zhang, Wei Yang, Lumingyuan Tang, Defu Cao, Jie Cai, and Yan Liu. Beyond
forecasting: Compositional time series reasoning for end-to-end task execution. arXiv preprint
arXiv:2410.04047, 2024.

12



Under review as a conference paper at ICLR 2026

A TIMESERIESGYM CHALLENGES

Challenge ‘ Problem Domain Skills Evaluation Metric
Kaggle Challenges
AMP-Parkinson’s Diseas: . . S tric Mean Absolut
ar ‘mson s . 1>}e4>e Time-to-Event Regression Healthcare ymmetne Mean Absolite
Progression Prediction Percentage Error
. . Root Mean Square
ASHRAE - Great Energy Predictor IIT Forecasting Energy 0 . © N q_u
Logarithmic Error
Event Detection
Child Mind Institute— Detect Sleep States Classification Healthcare L_ N
Average Precision
Google Brain - Ventilator Pressure Prediction Regression Healthcare Data Handling Mean Absolute Error
- . - Dealing with Missing Values, Area Under
G2Net Gravitational Wave Detection Classification Geology (Dealing with Missing rea b nder
Utilize Multi-Source Data) ROC Curve
HMS - Harmful Brain Activity Classification Classification Healthcare KL Divergence
LANL Earthquake Prediction | Time-to-Event Regression Geology Modeling Mean Absolute Error
Hyper-parameter Tunin; Weighted Root Mean Squared
MS5 Forecasting - Accuracy Forecasting Sales (Hyper-p Tuning ¢ 4
& Model Selection) Scaled Error
Root Mean S
Online Product Sales Forecasting Sales 00! . enn‘ Juare
Logarithmic Error
Root Mean Squz
Optiver Realized Volatility Prediction Forecasting Finance 00 Bean Square
Percentage Error
OSIC Pulmonary Fibrosis Progression Forecasting Healthcare Laplace Log Likelihood
Recruit Visitor Fe F Sales Root ]\‘/Iean‘ Square
Logarithmic Error
i : Root Mean Squz
Sberbank Russian Housing Market Forecasting Housing 00! . edn. quare
Logarithmic Error
TimeSeriesGym Originals
Convert ResNet TensorFlow . .
. Classification
Implementation to PyTorch
Convert STOMP Algorithm - Algorithm Code Migration Custom Code Grading
L. Data Mining
Implementation in R to Python
Evaluate MOIRATI time series foundation model
on the Context Is Key (CiK) benchmark Climatology, Economics, Energy,
Evaluate Chronos time series foundation model | Context-aided Forecasting ~ Mechanics, Public Safety, Retail, Resolved (Binary)
on the NN5 dataset within Context Is Key Synthetic, Transportation
(CiK) benchmark
Impl t & Evaluate CSDI to Impute PM2.5 Data .
mplerent & Bvaluate o "mpute ata Imputation Weather Mean Absolute Error
Train & Evaluate CSDI to Impute PM2.5 Data
Nature, Web, CloudOps,
GIFT-EVAL: A Benchmark for General Time Series . # ure‘ e' ouops
. . Forecasting Economics/Finance, Energy, Mean Absolute Percentage Error
Forecasting Model Evaluation . .
Sales, Transportation, Modeling

Hexagon ML UCR Time Series Anomaly Detection

Long Horizon Time Series Forecasting
using Time Series Library

Long-Horizon Weather Forecasting using
Time Series Library’s Itransformer
MIT-BIH ECG Arrhythmia Detection
MOMENT for Anomaly Detection

on UCR datasets

Anomaly Detection

Forecasting

Forecasting
Classification

Anomaly Detection

Healthcare, Gait, Energy,
Synthetic, Devices

Energy, Epidemiology, Finance,

Transportation, Weather
Weather

Healthcare
Healthcare, Gait, Energy,
Synthetic, Devices

(Using Research Code)

Adjusted Best
F1 Score
Mean Squarred
Error

Exact Match
Accuracy

Exact Match

PTB-XL ECG Classification Classification Healthcare Accuracy
TimeSeriesExam: A Time Series Understanding Exam | Time Series Understanding Synthetic Time Series Understanding Accuracy
Derived Challenges

Data Handli Mean Absolut
Google Brain - Ventilator Pressure Prediction Regression Healthcare . B a‘ a"_ "_]g can Absolute
(Dealing with missing data) Error
Code Enhancement
Improve PTB-XL ECG Classification Code Classification Healthcare (Experiment Tracking,
Readability, Reproducibility)
MIT-BIH Arrhythmia Detection P Data Handling
A cu Classification Healthcare nding Accuracy
with Weak Supervision (Labeling)
Data Handli Root Mean S
Optiver Realized Volatility Prediction Forecasting Finance . B av anv "_‘g oot Vean Square
(Dealing with missing data) Percentage Error
Optiver Realized Volatility Prediction . . Improvement in Root Mean
ith Hyper-parameter Optimization Forecasting Finance Square Percentage Error
wi |
L s Clp o Modeling (Hyper-parameter q ¢
- assification P . . .
pssiicatio Classification Healthcare Tuning & Model Selection) Improvement in Accuracy

with Hyperparameter Optimization

Table 4: This table presents the TimeSeriesGym benchmark’s diverse collection of time series
challenges across three categories: Kaggle Challenges, TimeSeriesGym Originals, and Derived
Challenges. The challenges span multiple domains (healthcare, finance, energy, weather, transporta-
tion), problem types (classification, regression, forecasting, anomaly detection), and required skills
(data handling, model building, code migration). Each challenge uses appropriate evaluation metrics
for its task type. The benchmark combines established Kaggle competitions with novel custom tasks,
creating a comprehensive testbed for evaluating ML engineering agents across realistic scenarios that
practitioners face in real-world applications.
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Challenge Source License
Kaggle Challenges
AMP-Parkinson’s Diseas
d,r mnson s .1sedse Kaggle Subject to Competition Rules
Progression Prediction
ASHRAE - Great Energy Predictor III Kaggle Subject to Competition Rules
Child Mind Institute—
1 Mind Institute Kaggle CC BY-NC-SA 4.0
Detect Sleep States
Google Brain - Ventilat
oogle ram' 'en Hator Kaggle Subject to Competition Rules
Pressure Prediction
G2Net Gravitational
¢ rav1. ationa Kaggle Subject to Competition Rules
Wave Detection
HMS - Harmful Brai
> - Parmiu’ Bram Kaggle CCBY-NC4.0
Activity Classification
LANL Earthquake Prediction Kaggle Subject to Competition Rules
MS5 Forecasting - Accuracy Kaggle Subject to Competition Rules
Online Product Sales Kaggle Subject to Competition Rules
Optiver Realized
P 1vAeAr ca lz,e X Kaggle Subject to Competition Rules
Volatility Prediction
OSIC Pulmon:
. . " mondry. Kaggle Subject to Competition Rules
Fibrosis Progression
R it Rest t
f:c.rm e aure'm Kaggle Subject to Competition Rules
Visitor Forecasting
Sberbank Russi
e .an ussian Kaggle Subject to Competition Rules
Housing Market
TimeSeriesGym Originals
C t ResNet T Fl
onver es' et tensorriow GitHub GNU General Public License v3.0
Implementation to PyTorch
t STOMP Algorith
Convert STO gontum GitHub Apache License 2.0

Implementation in R to Python
Evaluate MOIRAI time series
foundation model on the GitHub Apache License 2.0
Context Is Key (CiK) benchmark

Evaluate Chronos time series

foundation model on the NN5 dataset - Apache License 2.0
within Context Is Key (CiK) benchmark
Implement & Evaluate CSDI to

GitHub MIT License
Impute PM2.5 Data
Train & Evaluate CSDI to Impute PM2.5 Data  — MIT License
GIFT-EVAL: A Benchmark for General
e enemart for senera’ GitHub Apache License 2.0
Time Series Forecasting Model Evaluation
H ML UCR Time Seri
exagon . fme series UCR Not available
Anomaly Detection
Long Horizon Time Series F sti
o-ng -OI'IZOH ‘1rne. eries Forecasting GitHub MIT License
using Time Series Library
Long-Horizon Weather Fi ti
gng 'onzon \ eal . er Forecasting B MIT License
using Time Series Library’s Itransformer
MIT-BIH ECG Arrhythmia Detection PhysioNet Open Data Commons Attribution License v1.0
MOMENT for A ly Detecti
or Anomaly Letection GitHub MIT License
on UCR datasets
PTB-XL ECG Classification PhysioNet Creative Commons Attribution 4.0 International Public License

TimeSeriesExam: A Time Seri
ime erles' Xam ime Series Hugging Face| MIT License
Understanding Exam

Table 5: This table provides transparency about the source and licensing information for each
challenge in the TimeSeriesGym benchmark. For the Kaggle challenges, most are subject to
Kaggle’s competition rules, with a few under Creative Commons licenses. The TimeSeriesGym
Original challenges come from diverse sources including GitHub repositories, HuggingFace, etc.
with various open-source licenses (Apache, MIT, GPL, Creative Commons). This diversity of sources
and licenses demonstrates the benchmark’s foundation in accessible, reusable datasets and code while
ensuring proper attribution and compliance with original creators’ terms.
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https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction
https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/rules#7.-competition-data.
https://www.kaggle.com/competitions/ashrae-energy-prediction
https://www.kaggle.com/competitions/ashrae-energy-prediction/rules#7.-competition-data.
https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/overview
https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/rules#7.-competition-data.
https://www.kaggle.com/competitions/ventilator-pressure-prediction
https://www.kaggle.com/competitions/ventilator-pressure-prediction/rules#7.-competition-data.
https://www.kaggle.com/competitions/g2net-gravitational-wave-detection
https://www.kaggle.com/competitions/g2net-gravitational-wave-detection/rules#7-competition-data
https://www.kaggle.com/competitions/hms-harmful-brain-activity-classification
https://www.kaggle.com/competitions/hms-harmful-brain-activity-classification/rules#7.-competition-data.
https://www.kaggle.com/competitions/LANL-Earthquake-Prediction
https://www.kaggle.com/competitions/LANL-Earthquake-Prediction/rules#7-competition-data
https://www.kaggle.com/competitions/m5-forecasting-accuracy
https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules#7-competition-data
https://www.kaggle.com/c/online-sales/overview
https://www.kaggle.com/competitions/online-sales/rules#7-competition-data
https://www.kaggle.com/competitions/optiver-realized-volatility-prediction
https://www.kaggle.com/competitions/optiver-realized-volatility-prediction/rules#7-competition-data
https://www.kaggle.com/competitions/osic-pulmonary-fibrosis-progression
https://www.kaggle.com/competitions/osic-pulmonary-fibrosis-progression/rules##7-competition-data
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting
https://www.kaggle.com/competitions/recruit-restaurant-visitor-forecasting/rules#7-competition-data
https://www.kaggle.com/competitions/sberbank-russian-housing-market/data
https://www.kaggle.com/competitions/sberbank-russian-housing-market/rules#7-competition-data
https://github.com/hfawaz/dl-4-tsc/blob/master/classifiers/resnet.py
https://github.com/hfawaz/dl-4-tsc/blob/master/LICENSE
https://github.com/matrix-profile-foundation/tsmp
https://github.com/matrix-profile-foundation/tsmp/blob/master/LICENSE.md
https://github.com/ServiceNow/context-is-key-forecasting
https://github.com/ServiceNow/context-is-key-forecasting/blob/main/LICENSE.md
https://github.com/ServiceNow/context-is-key-forecasting/blob/main/LICENSE.md
https://github.com/ermongroup/CSDI
https://github.com/ermongroup/CSDI/blob/main/LICENSE
https://github.com/ermongroup/CSDI/blob/main/LICENSE
https://github.com/SalesforceAIResearch/gift-eval
https://github.com/SalesforceAIResearch/gift-eval/blob/main/LICENSE.txt
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Time-Series-Library/blob/main/LICENSE
https://github.com/thuml/Time-Series-Library/blob/main/LICENSE
https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/mitdb/view-license/1.0.0/
https://github.com/moment-timeseries-foundation-model/moment
https://github.com/moment-timeseries-foundation-model/moment/blob/main/LICENSE
https://physionet.org/content/ptb-xl/1.0.3/
https://physionet.org/content/ptb-xl/view-license/1.0.3/
https://huggingface.co/datasets/AutonLab/TimeSeriesExam1
https://github.com/moment-timeseries-foundation-model/TimeSeriesExam/blob/main/LICENSE
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Table 6: TimeSeriesGym —Lite is a streamlined collection of six diverse time series challenges
carefully selected to evaluate Al agents while balancing comprehensiveness with efficiency. The
challenges cover essential ML engineering skills including basic data science, handling missing/multi-
source data, code migration, hyperparameter optimization, modeling using research code, and data
labeling. The collection spans multiple domains (healthcare, finance, algorithms) and various time
series tasks (classification, forecasting, anomaly detection, code migration). This cost-effective subset
allows researchers to quickly benchmark agent capabilities across critical ML engineering skills
without the resource requirements of the full TimeSeriesGym benchmark.

Challenge Required Skills Time Series Task Domain
Child Mind Institute - Ba51c.data science . Classification Healthcare
Detect Sleep States | (data handling and modeling)
Optiver Realized Handli issi d
;.)'wer 62'1 1%6 an 1T1g missing an Forecasting Finance
Volatility Prediction multi-source data
C.onvert ResNet TensorFlow Classification Code Migration Algorithm
implementation to PyTorch
PTB—).(L E'CG Hyperparameter opt1.mlzat10n Classification Healthcare
Classification & model selection
MOMENT Anomaly Modeling . Healthcare, Gait,
) . Anomaly Detection ) .
Score Calculation (Using research code) Synthetic, Energy, Devices
MIT-BIH Arrhythmi
rrhyt r.ma Data labeling Classification Healthcare
Detection

Table 7: Average cost to run experiments on a single seed in the default evaluation setup i.e. AIDE
with gpt-4.1-2025-04-14 with a maximum of 4 hours and 50 steps.

Benchmark Averge Cost (USD)

TimeSeriesGym

TimeSeriesGym -Lite

62.12
7.96

Table 8: The 100 shortlisted Kaggle competitions. Competitions marked

with * denote that the data is no longer available.

Competition # Participants Reward  Category
MS Forecasting - Accuracy 7022 50,000  Featured
LANL Earthquake Prediction 5454 50,000  Research
Jane Street Market Prediction* 4884 100,000 Featured
Optiver Realized Volatility Prediction 4395 100,000  Featured
Optiver - Trading at the Close 4374 100,000  Featured
ASHRAE - Great Energy Predictor ITI 4342 25,000  Featured
Zillow Prize: Zillow’s Home Value Prediction (Zestimate) 4241 1,200,000 Featured
GoDaddy - Microbusiness Density Forecasting 3834 60,000  Featured
Rossmann Store Sales 3735 35,000 Featured
Sberbank Russian Housing Market 3658 25,000 Featured
HMS - Harmful Brain Activity Classification 3507 50,000  Research
Google Brain - Ventilator Pressure Prediction 3118 7,500  Research
University of Liverpool - Ion Switching 3004 25,000  Research
Ubiquant Market Prediction* 2949 100,000  Featured
Enefit - Predict Energy Behavior of Prosumers 2715 50,000  Featured
OSIC Pulmonary Fibrosis Progression 2530 55,000  Featured
Child Mind Institute - Detect Sleep States 2436 50,000  Featured
Recruit Restaurant Visitor Forecasting 2426 25,000  Featured

Continued on next page
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Competition # Participants Reward  Category
G-Research Crypto Forecasting 2398 125,000  Featured
Two Sigma Financial Modeling Challenge* 2317 100,000  Featured
Grupo Bimbo Inventory Demand 2263 25,000  Featured
AMP®-Parkinson’s Disease Progression Prediction 2197 60,000 Featured
Corporacién Favorita Grocery Sales Forecasting 1868 30,000  Featured
Driver Telematics Analysis 1861 30,000 Featured
Parkinson’s Freezing of Gait Prediction 1688 100,000 Research
COVID19 Global Forecasting (Week 1) 640 0 Research
Heritage Health Prize* 1656 500,000  Featured
Cornell Birdcall Identification 1630 25,000 Research
TensorFlow Speech Recognition Challenge 1591 25,000  Featured
Google - American Sign Language Fingerspelling Recognition 1529 200,000  Research
G2Net Gravitational Wave Detection 1501 15,000 Research
COVID19 Global Forecasting (Week 4) 388 0 Research
Indoor Location & Navigation 1446 10,000  Research
West Nile Virus Prediction 1445 40,000 Featured
BirdCLEF 2023 1397 50,000  Research
Rainforest Connection Species Audio Detection 1385 15,000  Research
COVID19 Global Forecasting (Week 3) 290 0 Research
COVID19 Global Forecasting (Week 2) 263 0 Research
Google Analytics Customer Revenue Prediction 1369 45,000  Featured
COVID19 Local US-CA Forecasting (Week 1) 216 0 Research
Google - Isolated Sign Language Recognition 1340 100,000  Research
Ist and Future - Player Contact Detection 1334 100,000  Featured
JPX Tokyo Stock Exchange Prediction 1324 63,000  Featured
Google Research Football with Manchester City F.C. 1288 6,000  Featured
Lyft Motion Prediction for Autonomous Vehicles 1254 30,000  Featured
BirdCLEF 2024 1198 50,000  Research
COVID19 Global Forecasting (Week 5) 93 0 Research
G2Net Detecting Continuous Gravitational Waves 1181 25,000  Research
Peking University/Baidu - Autonomous Driving 1105 25,000  Featured
iWildcam 2021 - FGVC8 65 0  Research
Eye Movements Verification and Identification Competition 50 0  Research
MS5 Forecasting - Uncertainty 1101 50,000  Featured
March Machine Learning Mania 2023 1098 50,000 Featured
Multi-label Bird Species Classification - NIPS 2013 39 0  Research
Google Cloud & NCAA® ML Competition 2018-Men’s 1061 50,000  Featured
iWildCam 2022 - FGVC9 29 0  Research
NFL Health & Safety - Helmet Assignment 1028 100,000  Featured
March Machine Learning Mania 2022 - Men’s 1025 25,000 Featured
BirdCLEF 2022 1009 10,000  Research
BirdCLEF 2021 - Birdcall Identification 1001 5,000 Research
Google Smartphone Decimeter Challenge 985 10,000  Research
SETI Breakthrough Listen - E.T. Signal Search 979 15,000  Research
LEAP - Atmospheric Physics using AI (ClimSim) 877 50,000  Research
Bengali.AI Speech Recognition 866 53,000  Research
The Winton Stock Market Challenge 829 50,000  Featured
Two Sigma: Using News to Predict Stock Movements 813 100,000  Featured
Accelerometer Biometric Competition 770 5,000 Research
How Much Did It Rain? II 691 500  Research
Google Smartphone Decimeter Challenge 2022 684 10,000  Research
American Epilepsy Society Seizure Prediction Challenge 653 25,000  Research
Melbourne University AES/MathWorks/NTH Seizure Prediction 645 20,000  Research
DFL - Bundesliga Data Shootout 610 25,000  Featured
NFL Ist and Future - Impact Detection 573 75,000 Featured

Continued on next page
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Competition # Participants Reward  Category
Kore 2022 537 15,000 Featured
MLB Player Digital Engagement Forecasting 495 50,000  Featured
ECML/PKDD 15: Taxi Trajectory Prediction (I) 459 250  Research
Grasp-and-Lift EEG Detection 451 10,000 Research
The Big Data Combine Engineered by BattleFin 424 18,500  Research
‘Web Traffic Time Series Forecasting 424 25,000  Research
Draper Satellite Image Chronology 422 75,000  Featured
ECML/PKDD 15: Taxi Trip Time Prediction (IT) 418 250 Research
Online Product Sales 412 22,500 Featured
Halite by Two Sigma 1291 0  Featured
RTA Freeway Travel Time Prediction 376 10,000  Featured
How Much Did It Rain? 349 500  Research
The 3rd YouTube-8M Video Understanding Challenge 340 25,000  Research
Benchmark Bond Trade Price Challenge 316 17,500  Featured
BCI Challenge @ NER 2015 311 1,000 Research
The Marinexplore and Cornell University Whale Detection Challenge 309 10,000  Featured
DecMeg2014 - Decoding the Human Brain 301 5,000  Research
U.S. Census Return Rate Challenge 290 25,000  Featured
dunnhumby’s Shopper Challenge 287 10,000  Featured
KDD Cup 2012, Track 2 275 8,000  Featured
UPenn and Mayo Clinic’s Seizure Detection Challenge 241 8,000  Research
GE Flight Quest 234 250,000  Featured
The Random Number Grand Challenge 206 1,000  Featured
AMS 2013-2014 Solar Energy Prediction Contest 199 1,000  Research
Global Energy Forecasting Competition 2012 - Wind Forecasting 197 7,500  Research
Belkin Energy Disaggregation Competition 194 25,000  Featured
CVPR 2018 WAD Video Segmentation Challenge 188 2,500  Research
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B REPRESENTATIVENESS OF TIMESERIESGYM—LITE

To ensure that TimeSeriesGym-Lite provides broad coverage of machine learning capabilities
while enabling low-cost evaluation, we construct the subset by selecting a diverse set of tasks from the
full TimeSeriesGym benchmark. We further validate this selection through statistical comparisons
of domain coverage and task difficulty distributions between the two benchmarks.

Domain Coverage. Table 0] summarizes the domain distributions of TimeSeriesGym and
TimeSeriesGym-Lite. A Chi-square test indicates no significant difference between the two
distributions (p = 0.92, x2 = 1.99), demonstrating that the Lite subset maintains the same domain
diversity as the full benchmark.

Domain TimeSeriesGym TimeSeriesGym-Lite
Healthcare 11 3
Multi-domain 7 1
Commerce & Finance 6 1
Weather 3 0
Geology 2 0
Housing 1 0
Energy 1 0

Table 9: Domain distributions of TimeSeriesGymand TimeSeriesGym-Lite.

Task Difficulty. We additionally compare task difficulty levels between the two benchmarks, shown
in Table A Chi-square test again reveals no significant difference (p = 0.95, x> = 0.09),
indicating that the Lite subset preserves the difficulty profile of the full benchmark.

Difficulty TimeSeriesGym TimeSeriesGym-Lite

Low 13 2
Medium 15 3
High 5 1

Table 10: Difficulty distributions of TimeSeriesGymand TimeSeriesGym-Lite.

Summary. These statistical tests confirm that TimeSeriesGym—-Lite is a representative sub-
set of TimeSeriesGym in both domain diversity and task difficulty. This ensures that the Lite
benchmark provides reliable, low-cost evaluation while preserving the characteristics of the full task
suite.
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C IMPLEMENTATION DETAILS FOR SCAFFOLDS

Table 11: Scaffold hyperparameters. STARGET_MODEL denotes the model being evaluated.

ATDE

agent .code.model STARGET_MODEL
agent . feedback.model gpt-4.1-2025-04-14
agent.steps 50

agent .search.max_debug_depth 20
agent.search.debug_prob 1
agent.time_limit 14400
exec.timeout 32400
OpenHands

agent CodeActAgent
model STARGET_MODEL
max_time_in_hours 4
max_steps 50

MLAgentBench (MLAB)

1lm—name STARGET_MODEL
edit-script-llm—name STARGET_MODEL
fast-llm—name gpt—-4.0-mini
max—steps 50

max—time 14400

Tab. [TT] summarizes the hyperparameters used for the three scaffolds: AIDE (1), OpenHands’
CodeAct (21), and MLAgentBench (9). We did not directly use the MLE-bench (3)) modifications
to the agentic scaffolds for two main reasons. First, the official scaffold implementation has undergone
updates since MLE-bench. Second, certain changes made in MLE-bench were not applicable to our
benchmark, which involves more diverse modes of evaluation. Therefore, we modified the latest
version of the agentic scaffolds to enhance robustness, improve execution stability, and support a
broader range of competitions.

C.1 AIDE
We forked the original AIDE repository in May 2025 and added useful changes from the MLE-bench

project. These include better API calls and support for more API providers. Our key modifications
are summarized below:

1. Updated instructions to cover all types of tasks, not just Kaggle challenges

2. Modified the prompt to work with different file types, since our tasks use many input/output
formats

3. Fixed the interpreter handling to prevent timeouts and system hangs

C.2 OPENHANDS
We forked the original OpenHands repository from tag v0.34 .0 (May 2025). We reduced the

RAM allowance to 10 GiB (from 100 GiB) as we did not observe any memory-related issues during
our tests.

C.3 MLAGENTBENCH

We forked the MLE-bench version of MLAgentBench with no modifications.
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Figure 2: The prompt we use to initialize all scaffolds, adapted from MLE-bench (3).

# Machine Learning Engineer Challenge: TimeSeriesGym Competition

## Your Role

You are a Machine Learning Engineer tasked with solving complex ML problems in the

<« TimeSeriesGym offline competition. This competition tests your ability to understand
<~ problems, follow instructions, and build/train/evaluate ML models.

## Core Requirements
- You must solve each task by training a model and generating predictions on the test set
- Hand-labeling the data to produce submissions is strictly prohibited

## Environment Setup

### Critical Files and Locations

- xxCompetition Instructionssx: Located at ~/home/data/description.md™ - This is your primary
— reference for understanding the specific problem

- xxDataset*x: All data files are in ~/home/data/® directory

- xxSubmission Pathxx: Your final submission MUST be saved to ~/home/submission/” in the

— format specified in the instructions

- x*Environment Instructionsx*: These general instructions can be found at

< “/home/instructions.txt”

### Test Dataset Information

- We've created our own train/test splits for evaluation purposes

- The data in °~/home/data/" may differ slightly from what's described in the competition
— instructions

— Use the provided train/test splits for your work

## Submission Instructions

### File Format and Location

— Your submission MUST be saved to the exact path: ~/home/submission/"

— The file format must strictly follow the specifications in “description.md”
- Failing to use the correct path or format will result in a failed evaluation

### Validation Process

Before finalizing your submission, validate its format using the validation server

Use the command: “curl —-X POST -F "file=QS${SUBMISSION_FILE}"
http://localhost:5000/validate”

Alternatively, use the provided script: ~/home/validate_submission.sh”

The validator will confirm if your submission format is valid (but won't provide a score)

Make corrections if needed and revalidate until you receive a confirmation

aEwyre

### Final Submission

— Once validated, ensure your final submission file remains at °~/home/submission/~
- Only the last file in this location will be evaluated

- Double-check that your model's predictions cover the entire test set

— Review the submission format requirements one last time before completing

## Evaluation Criteria

— Your submission will be graded based on the metric specified in the competition
— 1nstructions

- Your goal is to achieve the highest possible score

## Important Rules

- Viewing or copying others' solutions is prohibited and will result in disqualification
— In case of conflicts between these instructions and ~/home/data/description.md”, these
— general instructions take priority
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D TIMESERIESGYM VERSUS MLE-BENCH

MLE-Bench (3)) is a recent data machine learning engineering benchmark that curates 75 Kaggle
competitions of varying complexity and evaluates agent performance by grading prediction outputs
submitted in CSV files. While TimeSeriesGym also incorporates Kaggle competitions, it addresses
a broader scope: comprehensive ML engineering capabilities, of which competition solving represents
one important component. This section details the key distinctions between the two benchmarks. We
highlight key differences below.

Time Series Coverage. As shown in Table 1 of the main paper, TimeSeriesGym contains sub-
stantially more time series modeling challenges than any existing ML engineering benchmark. Time
series represents an important yet underrepresented modality in agent evaluation. We demonstrate
that complex real-world time series problems (e.g., PTB-XL ECG classification) can be reformulated
into fully automated, agentic evaluation pipelines—a capability not established by prior benchmarks.

Task Diversity Beyond Competitions. While MLE-Bench exclusively sources its 75 tasks from
Kaggle competitions, TimeSeriesGym combines three sources: Kaggle competitions, GitHub
repositories, and original hand-crafted challenges. Kaggle competitions alone do not capture the
full spectrum of real-world ML engineering tasks. Critical capabilities such as hyperparameter
search strategies, repository utilization, and API integration are not isolated or directly measured by
competition-based benchmarks. Our original challenges, designed from years of ML engineering
experience, represent these realistic workflows. Additionally, our extensive documentation framework
facilitates community contributions of both Kaggle-based and original challenges.

Granular Skill Assessment. TimeSeriesGym provides skill-specific simulators (e.g., missing
data handling, hyperparameter optimization, feature engineering) that enable targeted evaluation
of individual agent capabilities. These modular assessments allow researchers to diagnose specific
strengths and weaknesses of LLM agents, rather than only measuring end-to-end performance.

Benchmark Difficulty. TimeSeriesGym poses substantial challenges for state-of-the-art sys-
tems. At the time of MLE-Bench publication, ol-preview with the AIDE scaffold achieved
medal performance in 16.9% of the 75 challenges. In contrast, our evaluation reveals that AIDE
+ GPT-4o achieved above-median performance (percentile score >0.5) in only 3 of 13 Kaggle
competitions (23%), indicating significant gaps in current agents’ time series modeling and ML
engineering capabilities.

Multi-Artifact Evaluation. Unlike MLE-Bench, which evaluates only CSV prediction files,
TimeSeriesGym assesses multiple output types: prediction files, model artifacts (e.g., trained
models, checkpoints), and code implementations. This multi-artifact approach better reflects real-
world ML engineering practice, where deliverables extend beyond final predictions.

Holistic Assessment Methodology. Our evaluation protocol combines three complementary ap-
proaches: (1) quantitative metrics (e.g., accuracy, MAE, F1-score), (2) programmatic analysis (e.g.,
regex matching, code structure inspection), and (3) optional qualitative assessment via LLM-as-a-
judge. This multi-faceted evaluation provides comprehensive insight into agent capabilities beyond
single-metric performance.

The following table summarizes the key differences between MLE-Bench and TimeSeriesGym
across three dimensions: task source, ML capability coverage, and evaluation protocol.

In summary, while MLE-Bench provides valuable evaluation of agents on 75 competition-style
ML problems using standardized CSV outputs, TimeSeriesGym complements and extends this
evaluation paradigm by emphasizing time series modeling, incorporating diverse task types that
reflect real-world engineering workflows, and providing granular skill assessment alongside holistic
multi-artifact evaluation.

21



Under review as a conference paper at ICLR 2026

Table 12: Comparison of MLE-Bench and TimeSeriesGym

Dimension MLE-Bench TimeSeriesGym
Task Source 75 Kaggle competitions only Kaggle + GitHub + hand-crafted
ML Capability Cover- Primarily ML science (modeling) ML science + engineering (repo uti-
age lization, API integration)
Evaluation Protocol CSYV prediction files, objective met- Multiple artifacts (CSV, code, mod-
rics only els) + skill-specific + holistic assess-
ment

E DETAILED EVALUATION RESULTS

E.1 FULL BENCHMARK EVALUATION RESULT

We provide detailed evaluation results for each task in TimeSeriesGym in Tab.[I3] Each task was
executed with three random seeds; we report both the average and best scores across these runs.
Entries marked N/A indicate that the agent failed to produce a valid solution due to exceeding the
time- or step-limit. For the GIFT-Eval and UCR Anomaly Detection challenges, evaluation
is performed on a subset of the original benchmark, since our focus is on assessing the agent’s ability
to leverage the research repository rather than full benchmark performance.

E.2 ABLATION STUDY EVALUATION RESULT
E.3 EVALUATION ON SPECIFIC ML SKILLS FOR DIFFERENT BASE MODELS

Similar to Tab. |3] we stratify results by core ML skills across different base models. As shown in
Tab. [T3] with the AIDE scaffold, Claude 3.7 performs best on handling data missingness and
code migration, while o3 performs best on hyper-parameter tuning but struggles with handling data
missingness (highest error).
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Challenge Evaluation Metric Best @3  Average @ 3  Percentile Best @ 3
Kaggle Challenges
AMP-Parklnson s l.)ls.ease Symmetric Mean Absolute 1122 120.50 0.01385
Progression Prediction Percentage Error
ASHRAE - Great Energy Predictor Il Root Mean Square 1.02 1.92 0.68234
Logarithmic Error
. . . Event Detecti
Child Mind Institute Detect Sleep States vent Batection 0.02 0.01 0.07082
Average Precision
Google Brain - Ventilator Pressure Prediction Mean Absolute Error 0.58 5.40 0.13896
G2Net Gravitational Wave Detection Area Under 0.51 0.50 0.26372
ROC Curve
HMS - Harmful Brain Activity Classification KL Divergence 1.16 1.56 0.03831
LANL Earthquake Prediction Mean Absolute Error 2.18 2.89 1.0
MS Forecasting - Accuracy eighted Root Mean Squared 0.82 313 065532
Scaled Error
Online Product Sales Root Mean Square 091 1.08 0.20000
Logarithmic Error
Optiver Realized Volatility Prediction Root Mean Square 028 030 0.20425
Percentage Error
OSIC Pulmonary Fibrosis Progression Laplace Log Likelihood -7.39 -12.87 0.89318
Recruit Restaurant Visitor Forecasting Root Mean Square 0.55 0.60 029532
Logarithmic Error
Root Mean Square
Sberbank Russian Housing Market 0.39 0.40 0.12221
Logarithmic Error
TimeSeriesGym Originals
?onven Resl\{el TensorFlow Custom Code Grading Test Cases 59 519 0
implementation to PyTorch
_ Convert STOMP Algorithm | (1 code Grading Test Cases 214 1.6/4 0
implementation in R to Python
Evaluate MOIRALI time series foundation model
. Resol Bina N/A N/A
on the Context Is Key (CiK) benchmark esolved (Binary) I/ I 0
Evaluate Chronos time series foundation model
on the NN5 dataset within Context Is Key Resolved (Binary) N/A N/A 0
(CiK) benchmark
Implement & Evaluate CSDI to Impute PM2.5 Data Mean Absolute Error N/A N/A 0
Train & Evaluate CSDI to Impute PM2.5 Data Mean Absolute Error N/A N/A 0
GIFT-EVAL: A Benchmark for General Time Series™ |y aplue percentage Emor — N/A N/A 0
Forecasting Model Evaluation
) ) ) Adjusted Best
Hexagon ML UCR Time Series Anomaly Detection* 0.38 0.38 0
F1 Score
Long Horizon Time Series Forecasting Mean Squarred
Using Time Series Library Error N/A N/A 0
Long-l—lf)rlzon V.Vea&h.er Fm:ecasung using Exact Match (Binary) N/A N/A 0
Time Series Library’s Itransformer
MIT-BIH ECG Arrhythmia Detection Accuracy 0.87 0.84 0
MOMENT for Anomaly Detection .
on UCR datasets Exact Match (Binary) N/A N/A 0
PTB-XL ECG Classification Accuracy 0.81 0.80 0
TimeSeriesExam: A Time Series Understanding Exam Accuracy N/A N/A 0
Derived Challenges
Google Brain - Ventilator Pressure Prediction
With Missingness Mean Absolute 272 6.66 0.15047
Error
Code Enhancement
Improve PTB-XL ECG Classification Code (Experiment Tracking, N/A N/A 0
Readability, Reproducibility)
MIT-BIH Arrhythmia Detection
with Weak Supervision Accuracy 0.87 077 0
Optiver Realized Volatility Prediction
With Missingness Root Mean Square 033 0.33 0.13888
Percentage Error
Optiver Realized Volatility Prediction Improvement in Root Mean
R N -0.01 -0.15 0
with Hyper-parameter Optimization Square Percentage Error
. PTB-XL ECG Clas.slffcalfon Improvement in Accuracy 0.08 0.03 0
with Hyperparameter Optimization

Table 13: Comprehensive performance metrics for Al agents on all TimeSeriesGym challenges,
including best and average scores from three runs. Agents struggle to solve TimeSeriesGym Origi-
nal challenges. Derived challenges demonstrate how added complexity (missingness, hyperparameter
optimization) affects performance. These results highlight both the capabilities and limitations of
current ML engineering agents across diverse time series tasks.
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Challenge 8 hours / 12 hours/  OpenHands MLAB 03 claude-3-7 No
100 steps 150 steps Reminder
Child Mind Institute— 002/002  0.00/000  0.00/0.00 N/A 0.11/0.11 N/A N/A
Detect Sleep States
Optiver Realized Volatility 032/033  031/031  0.64/0.64 042/089  042/043  025/025  032/032
Prediction with Missingness
Convert ResNet TensorFlow to ~ 0.56/0.56  0.89/0.89  056/044  0.56/0.56  0.56/056  0.89/0.78  0.56/0.56
PyTorch
PTB-XL ECG Classification with
CG Classification with 155> 045/0.10 N/A N/A 0.14/0.10  0.09/0.06  0.05/0.03
Hyperparameter Search
MOMENT Anomaly Score N/A N/A 0.00/0.00  0.00/0.00  0.00/0.00 N/A N/A
Calculation
MIT-BIH Arrhythmia Detecti
rrythma Deection (637056 0.80/0.60  0.73/0.72 N/A 053/045  0.79/0.66  0.74/0.68

with Weak Supervision

Table 14: This table presents detailed ablation study results comparing agent performance across seven
different configurations on the TimeSeriesGym-Lite benchmark. Each cell shows Best@3/Avg@3
scores, with N/A indicating no valid solutions. The experiments compare time variations (8 hours/100
steps vs. 12 hours/150 steps), scaffold differences (OpenHands, MLLAgentBench), model types (03,
claude-3-7), and whether agents are reminded of remaining time. Results show mixed effects of
increased time allocation, with certain challenges (ResNet conversion) benefiting significantly while
others show minimal improvements or even degradation. Both model type and scaffold selection
substantially impact performance, with different models excelling on different challenges. This
highlights the complex interplay between agent configurations and task types in ML engineering.

Table 15: Performance of base models with AIDE (Best@3 / Avg@3) on different ML skills. Arrows

indicate whether lower ({) or higher (1) values are better.

ML Skill Metric GPT-4.1 03 Claude 3.7
Handling Data Missingness ~ Root Mean Square Percentage Error ()  0.33/0.33 0.42/0.43 0.25/0.25
Code Migration Percentage of Test Cases Passed (1) 0.56/0.56 0.56/0.56 0.89/0.78
Hyper-parameter Tuning Improvement in Accuracy (1) 0.08/0.03 0.14/0.10 0.09/0.06
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E.4 GPT-4.1’S FAMILIARITY WITH TIMESERIESGyYM CHALLENGES

20
[ MLE-bench
TimeSeriesGym
154
>
E=
210
9]
(a)

5 )
\

N

0.0 0.1 0.2 0.3 0.4
Familiarity

Figure 3: GPT—-4.1’s familiarity with TimeSeriesGym challenges, compared to its familiarity
with MLE-bench.

E.5 RESULTS STRATIFIED BY DIFFICULTY & TASK TYPE

We categorize the difficulty levels of challenges using the structural complexity of the input data,
which directly determines the level of reasoning required for an agent:

* Low: Single CSV input. Requires standard file processing and schema understanding.

* Medium: Inputs spanning multiple files or nested directories. Requires reasoning over file
hierarchies and synthesizing information across different data structures.

* High: Multiple files or directories from heterogeneous sources or modalities. Requires
cross-modal reasoning in addition to handling multiple files/directories.

To enable more fine-grained comparison across tasks with different metric scales (e.g., RMSE vs.

LogLoss), we also introduce a novel metric: normalized Percentile Score, defined as 1— %
otal participants

where 1.0 represents the first place on the leaderboard. For TimeSeriesGym original tasks, we
establish “research leaderboards" that include the top 10 performances from the 100 most-cited papers
for each dataset.

Table [T6]illustrates the performance of the default agent (AIDE + GPT-40), indicating substantial
headroom across all complexity levels, especially for high-complexity tasks requiring multi-source or
multi-modality reasoning.

Difficulty Number of Tasks Average Normalized Percentile Score (Best@3)

Low 13 0.174
Medium 15 0.162
High 5 0.035

Table 16: Default agent performance stratified by difficulty levels.

In addition, we also stratify the agent performance by task types. Results in Table[T7]indicate that
performance gains primarily come from Kaggle challenges, which aligns with AIDE’s specific design
for data science tasks. In contrast, TimeSeriesGym originals and derived tasks that require more
flexible ML engineering skills (e.g., repository utilization, hyperparameter tuning) are challenging
even for state-of-the-art agents.
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Task Type Number of Tasks Average Normalized Percentile Score (Best@3)
Kaggle Challenges 13 0.35£0.34
TimeSeriesGym Originals 14 0+0

Derived Challenges 6 0.05 £0.07

Table 17: Default agent performance stratified by task types.

F FAILURE MODE ILLUSTRATION

F.1 AGENTS MISS IMPORTANT INFORMATION

As illustrated in Fig.[d] OpenHands spends five consecutive steps scanning to the end of the model
file in an attempt to discover the correct import method for MOMENT. This behavior reveals two
critical shortcomings. First, the agent follows a greedy, linear scanning strategy with no early-stop
criterion or hierarchical search plan—it blindly paginates through the file rather than formulating
a focused query. Second, it fails to leverage the README, which explicitly documents the proper
import instructions. Together, these issues demonstrate a lack of strategic planning and contextual
awareness. We observed a similar pattern in AIDE, where blind iteration and omission of available
documentation likewise impede efficient problem solving.

step 19

FileReadAction (path="'/home/data/moment /moment fm/models/moment .py",
start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
view_range=[1, 60])

step 20

FileReadAction (path='/home/data/moment /moment fm/models/moment .py"',
start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
view_range=[61, 120])

step 25

FileReadAction (path="'/home/data/moment /moment fm/models/moment.py"',
start=0, end=-1, thought='"', action=<ActionType.READ: 'read'>,
security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
view_range=[361, 420]

Figure 4: OpenHands wastes 5 steps on inspecting model file while the correct way to import the
model is in README.
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F.2 AIDE INTERPRETER EXECUTION CAN TRIGGER UNDESIRABLE BEHAVIOR

As shown in Fig. 5| AIDE invokes Python’s exec in a persistent global_scope, then em-
ploys an LLM-based “judge” to inspect the generated code and its stdout. Any logic guarded by
if _ _name__ == "__main__": will be skipped—because global_scope does not set
__name__to"__main__". Asaresult, the judge may erroneously declare such runs valid, even
when critical execution paths never occur, and further retries or debug steps cannot correct this

oversight.

global_scope: dict = {}
while True:
code = code_ing.get ()
os.chdir(str(self.working_dir))
with open(self.agent_file_name, "w") as f:
f.write (code)

event_outg.put (("state:ready",))
try:

exec (compile (code, self.agent_file_name, "exec"), global_scope)
except BaseException as e:

Figure 5: AIDE ’s interpreter does not execute code under main environment.
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F.3 AIDE’S SINGLE-FILE APPROACH IS ERROR-PRONE

As shown in Fig.[] AIDE encapsulates the entire forecasting workflow in a single script. Whenever
it must invoke system commands, it relies on Python’s subprocess module—an approach that
can obscure full tracebacks and miss intermediate errors. Furthermore, to import modules from the
research repository, AIDE repeatedly alters the Python search path or changes the working directory

(e.g., via sys.path.append), which is inefficient and brittle.

import
import
import
import
import

os
subprocess
sys

shutil
numpy as np

def install_requirements (tsl_dir):
req_file = os.path.Jjoin(tsl_dir, "requirements.txt")
req _file_abs = os.path.abspath(req_file)
print (f"Installing requirements from {req_file_abs} ...")
try:
subprocess.run (
[sys.executable, "-m",

"pip", "install",

)

subprocess.run([sys.executable, "-m", "pip", "install",
subprocess.run (
[sys.executable, "-m", "pip", "install", "-r"

check=True,
cwd=tsl_dir,
)
except subprocess.CalledProcessError as e:
print ("Failed to install requirements!")
print ("Output:", e.output if hasattr (e,
sys.exit (1)

"output")

def prepare_weather_data(tsl_dir, input_dir):
dataset_dir = os.path.join(tsl_dir, "dataset",
os.makedirs (dataset_dir, exist_ok=True)
src_weather = os.path.join(input_dir, "weather.csv")
dst_weather = os.path.join(dataset_dir, "weather.csv")
if not os.path.exists(dst_weather):

print (f"Copying {src_weather} to {dst_weather}")

shutil.copy (src_weather, dst_weather)
else:

print (f"{dst_weather} already exists.")

"weather")

def run_itransformer (tsl_dir, submission_dir):

runpy = os.path.join(tsl_dir, "run.py")
pred_file = os.path.abspath(os.path.join (submission_dir,
# Set label_len to 96 as per the competition instructions
cmd = [

sys.executable,

runpy,

"-—task_name",
"long_term_forecast",
#skip to save space

.

if name__ == "_ _main :
main ()

"--upgrade",

"pip"], check=True

"wheel"], check=True)

req_file_abs],

else "No output")

"pred.npy"))

Figure 6: AIDE’s solution for utilizing Time-Series-Library repository.
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F.4 03 CAN HALLUCINATE SUBMISSION FILES

As shown in Fig. [/| for the MOMENT for Anomaly Detection challenge, o3 generates a
submission file by simply producing a zero array that matches the format of the sample submission
file, without any genuine modeling attempt.

import os
import numpy as np

1. paths
INPUT_PATH = "./input/data.npy"
SUBMISSION_DIR = "./submission"

SUBMISSION_FILE = os.path.join (SUBMISSION_DIR, "anomaly_score.npy")
os.makedirs (SUBMISSION_DIR, exist_ok=True)

# 2. load data
data = np.load (INPUT_PATH) # (1000, 512)

assert data.shape == (1000, 512)
# 3. offline-safe reconstruction (identity) -> anomaly score = 0
reconstruction = data.copy () # exact reconstruction

anomaly_score = np.zeros_like(data, dtype=np.float32)

# 4. simple “metric” on a held-out split (expected to be 0)
val_idx = np.arange (data.shape[0]) [::5] # 20 % indices
val_mse = anomaly_score[val_idx] .mean () # always 0
print (f" [check] mean MSE on validation subset: {val_mse:.6f}")

# 5. save submission

np.save (SUBMISSION_FILE, anomaly_score)

print (f"Saved anomaly scores to {SUBMISSION_FILE}
— shape={anomaly_score.shapel}l")

Figure 7: 03 generates a zero array as the anomaly score that matches sample submission file format
without modeling attempt.
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G TwO-FACETED GRADING APPROACH

We implemented a dual grading methodology to provide comprehensive evaluation of submitted solu-
tions. This section introduces the general concept of our two complementary evaluation approaches:
exact grading and judge-based grading.

G.1 GRADING METHODOLOGIES
G.1.1 EXACT GRADING METHODOLOGY

The exact grading approach represents a deterministic, checklist-based evaluation focused on verifying
specific required components. This objective method evaluates submissions against explicit criteria
with binary pass/fail outcomes, providing clear feedback on technical requirements. The exact
grading methodology emphasizes quantifiable metrics and compliance with predefined specifications.

Key aspects of exact grading include:

* Binary verification of required components (present/absent)
* Point-by-point scoring against a predefined checklist
* Focus on technical compliance with specifications

* Reproducible results with minimal subjective interpretation

G.1.2 JUDGE-BASED QUALITATIVE METHODOLOGY

The judge-based approach provides a nuanced evaluation that assesses artifacts beyond mere presence
of required components. This method employs large language models (LLMs) as judges to evaluate
submissions against custom criteria with chain-of-thought reasoning.

Key aspects of judge grading include:

* Scoring on a continuous scale
 Evaluation of code quality, architecture design, and implementation elegance
* Detailed reasoning explaining score justification

* Ability to recognize exceptional implementations that exceed basic requirements

G.2 IMPLEMENTATION FOR PTB-XL CLASSIFICATION CHALLENGE
G.2.1 EXACT GRADING IMPLEMENTATION

For the PTB-XL Classification Challenge, our exact grading implementation evaluates code artifact
submissions through:

1. Feature Extraction: Using regular expression pattern matching and AST parsing to identify
required code components.

2. Binary Verification: Checking each requirement against pass/fail criteria.
3. Static Analysis: Using linting tools to check against PEP 8 standards.

4. File Structure Validation: Verifying required files and directories.

The exact grading for this challenge evaluates four primary categories, each worth 25% of the final
score:

* TensorBoard Usage: Proper imports, SummaryWriter initialization, metric logging, etc.

* Code Quality: Syntax verification, docstrings, type annotations, and PEP 8 compliance.

* Hydra Configuration: Proper imports, decorator usage, and configuration files.

* Model Accuracy: Prediction accuracy against ground truth labels.
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G.2.2 JUDGE-BASED IMPLEMENTATION

For this challenge, we employed G-Eval (14), a framework that uses LLMs with chain-of-thought
reasoning. The implementation evaluates code through:

1. Evaluation Steps: Using predefined steps for chain-of-thought reasoning.

2. Comprehensive Assessment: Evaluating multiple parameters including code structure and
architecture decisions.

3. Score Calculation: Generating normalized scores on a 0.0-1.0 scale.

4. Reasoning Provision: Providing detailed explanations for the evaluation.

G.3 COMPARATIVE ANALYSIS

The two approaches serve complementary purposes:

Aspect | Exact Grading \ Judge Grading
Objectivity High (deterministic) Moderate (LLM-based)
Granularity Binary (present/absent) Continuous (quality scores)

Feedback Detail | Limited (requirement verification) | Rich (explanatory reasoning)
Reproducibility High (automated) Moderate (LLM consistency)
Evaluation Scope Technical compliance Code quality, effectiveness
Methodology Rule-based checks LLM with chain-of-thought
Scalability Low (manual rule design) High (natural language criteria)

Table 18: Transposed Comparison of Exact and Judge-Based Grading Approaches

G.4 CoOMBINED GRADING BENEFITS
Using both approaches provides several advantages:

 Ensures baseline technical requirements are met (exact grading)

* Rewards exceptional implementations and identifies subtle weaknesses (judge grading)
* Balances objective verification with subjective quality assessment

* Provides comprehensive feedback on both technical compliance and code quality

* Creates a fair and holistic evaluation system

G.5 GRADING EXAMPLES FOR PTB-XL CHALLENGE

Below are example outputs from both grading systems applied to the same submission for the PTB-XL
Classification Challenge.

G.5.1 EXACT GRADING OUTPUT

TensorBoard Usage (25% of total score)

TensorBoard SummaryWriter is properly imported: 0.2/0.2
SummaryWriter is initialized: 0.2/0.2

Metrics are logged with add_scalar: 0.2/0.2

Model graph is logged with add_graph: 0.2/0.2

Found 2 log files in runs/

TensorBoard log files are present: 0.2/0.2

Final score: 1.00/1.00

Code Quality and Documentation (25% of total score)
Syntax check passed: 0.1/0.1
Model file has module docstring: 0.1/0.1
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Training file has module docstring: 0.1/0.1
Both files have type annotations: 0.1/0.1
Model classes have docstrings: 0.05/0.05
Functions have docstrings: 0.1/0.1
Docstrings have Args/Returns sections: 0.1/0.1
Linting score: 0.25/0.25

Model file has no PEP 8 violations

Training file has no PEP 8 violations

Model file follows style guidelines
Training file follows style guidelines
Final score: 0.90/0.90

Hydra Configuration Usage (25% of total score)
Hydra is properly imported: 0.2/0.2

@hydra.main decorator is used: 0.2/0.2
OmegaConf/DictConfig is used: 0.2/0.2

Config is used for model parameters: 0.2/0.2
Config file exists with model parameters: 0.2/0.2
Final score: 1.00/1.00

Model Accuracy (25% of total score)
Model prediction accuracy: 1.0/1.0

Evaluation Summary

TensorBoard score: 1.00/1.0 (25% weight)
Code quality score: 1.00/1.0 (25% weight)
Hydra config score: 1.00/1.0 (25% weight)
Model accuracy: 1.0 (25% weight)

Overall score: 1.00/1.0

G.5.2 JUDGE-BASED GRADING OUTPUT

File: example/model.py
Type: Model Script

- Code Quality and Documentation

Score: 0.90

Reason: The module has clear docstrings explaining the model's purpose
and architecture. Function parameters and return types are
well-annotated. Class and method docstrings include accurate Args
and Returns sections. The code adheres to PEP 8, with proper
spacing and naming conventions. The architecture is logically
structured, but the module-level docstring could be more detailed.

R A

— Model Architecture Design

Score: 0.93

Reason: The model utilizes configuration parameters effectively.
Architecture includes convolutional layers suitable for ECG
classification. Implements an efficient forward method and utility
functions like parameter counting. Supports hyperparameter
flexibility. Minor issue: model summary function could be better
integrated.

Feeid

- Model Configuration Handling
Score: 0.86
Reason: Configuration object is accepted with fallback defaults.
— Parameters are correctly extracted from config. Compatible with
— Hydra; well-documented parameter usage. Lacks explicit
— demonstration of usage with multiple configurations.

File: example/train.py
Type: Training Script
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- TensorBoard Usage
Score: 1.00
Reason: SummaryWriter is correctly imported and initialized. Metrics
— are logged with add_scalar. Model graph is logged with add_graph.
— Writer is closed properly after training.

- Code Quality and Documentation
Score: 0.93
Reason: Clear module-level docstring and good use of type annotations.
— Functions are well-documented with Args and Returns. Adheres to
— PEP 8. Code structure is logical, variable naming is clear. Minor
— improvements possible in consistency.

- Hydra Configuration Usage
Score: 1.00
Reason: Hydra is imported and used with @hydra.main. OmegaConf and
— DictConfig are correctly used. Configuration passed to model with
< appropriate config_path/config_name.

- Model Training Completeness
Score: 0.96
Reason: Includes full training pipeline: data loading, preprocessing,
< training/validation loops. Implements loss calculation, optimizer,
— LR scheduling, checkpointing, and final predictions.
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H QUALITY CONTROL FOR NEW CHALLENGES

TimeSeriesGym is designed to be extensible while maintaining high standards of correctness,
difficulty, and non-triviality. To support benchmark growth without compromising quality, we
implement a category-specific quality-assurance pipeline. The benchmark contains three types of
challenges—Kaggle-sourced challenges, TimeSeriesGym Originals, and derived challenges—
each governed by its own validation process.

Kaggle-Sourced Challenges. Kaggle’s “Features” and “Research” competitions include rigorous,
built-in quality controls, such as data validation, submission correctness checks, and oversight from
competition hosts Building on this foundation, TimeSeriesGym applies additional filters to
ensure that only high-quality, informative tasks are incorporated. These include requiring: (i) a clear
problem specification; (ii) evidence of non-triviality (e.g., meaningful rewards or well-populated
leaderboards); (iii) high participant engagement; and (iv) a history of reliable, informative public
submissions. These signals collectively ensure that selected challenges are well-specified, empirically
sound, and provide meaningful difficulty.

TimeSeriesGym Originals. Original tasks developed specifically for the benchmark undergo a
dedicated review process conducted by benchmark maintainers. This pipeline includes:

* Data quality checks: validation of temporal consistency, label correctness, absence of
leakage, and general data integrity.

 Task clarity and specification: verification of well-defined objectives, metrics, evaluation
logic, and reference implementations.

* Difficulty and non-triviality assessment: ensuring that baseline agents cannot trivially
solve the task and that the task requires meaningful time series reasoning.

* Reproducibility and code review: confirming that the task can be executed deterministically
from end to end.

We are also developing public contribution guidelines, including templates, validation scripts, and
minimum acceptance criteria, to ensure that future community-submitted tasks meet the same
standards.

Derived Challenges. Derived challenges apply systematic, programmatic transformations to exist-
ing Kaggle or Original tasks (e.g., format shifts, partial observability, modified prediction horizons).
Although derived tasks inherit the semantic foundation of their base challenge, additional checks
ensure quality:

* confirming that the transformation preserves the semantic intent of the original task;

* validating that the modified task is non-degenerate (e.g., altered horizons do not trivialize
predictions);

* re-evaluating baseline agents to verify that the resulting task maintains the expected difficulty
and informativeness.

Because the derivation process is standardized, these checks are consistent and repeatable across all
derived tasks.

Summary. Together, these pipelines ensure that any new challenge—whether sourced, orig-
inal, or derived—meets strict criteria for correctness, difficulty, and non-triviality, allowing
TimeSeriesGym to grow without sacrificing benchmark quality.

8See: https://www.kaggle.com/c/about/host
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