TIMESERIESGYM: A SCALABLE BENCHMARK FOR (TIME SERIES) MACHINE LEARNING ENGINEERING AGENTS

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031 032 033

034

037

038

040 041

042

043

044

046

047

051

052

Paper under double-blind review

ABSTRACT

We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using precise numeric measures and optionally LLM-based qualitative assessments. This strategy complements objective evaluation with subjective assessment when appropriate. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.

1 Introduction

AI agents (9; 11) have shown growing promise in automating machine learning (ML) and data science (DS) workflows. Fueled by large language models (LLMs), they can reason about context, adapt to diverse tasks, and iteratively refine solutions over long horizons. Such capabilities have the potential to significantly reduce the mundane, mostly manual efforts in ML engineering and improve the overall productivity of ML practice. To measure progress in this area, several benchmarks (9; 3; 12; 17; 22; 1; 20; 18) have been proposed to evaluate AI agents on ML and DS tasks.

However, existing benchmarks have important limitations. First, many of them source ML challenges primarily from popular competitions such as Kaggle, which are well-structured and do not fully capture the complexity of real-world ML tasks. Second, evaluations are typically outcome-based, focusing on overall task completion or eventual model performance metrics such as accuracy, while combining and obfuscating the impact of multiple component skills that jointly determine the outcomes, such as effective data wrangling or code quality improvement capabilities. Third, current benchmarks lack scalability, as tasks have to be manually curated and cannot be developed at scale.

To enable efficient evaluation of AI agents in realistic ML scenarios, we propose TimeSeriesGym, a scalable and agent-agnostic benchmarking framework for evaluating AI agents on time series ML engineering tasks. TimeSeriesGym currently consists of 33 challenges that span 8 unique time series problems (forecasting, classification, time series understanding), from more than 15 domains (healthcare, finance, epidemiology). Our benchmark covers both Kaggle-style challenges

¹https://anonymous.4open.science/r/TimeSeriesGym-9CF6/

Figure 1: TimeSeriesGym is a scalable benchmarking environment for ML engineering agents. It currently features 33 time series challenges across 8 unique time series problems, spanning more than 15 domains. Challenges are either carefully designed based on real-world ML practice, or sourced from Kaggle competitions and GitHub repositories. TimeSeriesGym includes key mechanisms to enable efficient and scalable generation of new challenges. Our evaluation methodology complements precise quantitative metrics with *optional* qualitative assessment, and provides specialized tools to grade various artifacts generated during ML engineering. TimeSeriesGym is compatible with many different agent types, even those with fundamentally distinct designs.

and original tasks carefully designed based on real-world ML engineering practice. While we focus on time series analytics due to its prevalence in applications and under-representation in existing agent benchmarks, our framework is modality-agnostic in principle and can be easily extended to handling other data modalities (e.g., images, text, audio) via the accompanying tools for scalable task generation. TimeSeriesGym provides an interactive gym environment compatible with various types of agent scaffolding, allowing seamless evaluation of agents of different types and collection of their trajectories. Beyond benchmarking, this allows TimeSeriesGym to also serve as a data flywheel for future agent improvement through post-training using the collected trajectory data.

Our contributions are as follows:

- 1. We propose TimeSeriesGym, the first open source benchmark for AI agents on time series ML engineering tasks (Fig. 1). Beyond benchmarking, TimeSeries"Gym" can be easily used as a data flywheel to post-train the next generation of ML engineering agents.
- 2. TimeSeriesGym offers a scalable task generation mechanism that reduces manual efforts in task curation and ensures long-term sustainability of the benchmark.
- 3. TimeSeriesGym provides a comprehensive framework that evaluates **multimodal agent outputs** (e.g., prediction files, models, code) across **specific ML skills** (e.g., data handling, model improvement), using a **holistic approach** that complements quantitative metrics (e.g., accuracy) with *optional* qualitative assessment (e.g., LLM-as-a-judge for code utility).

2 Related Work

Machine learning agent benchmarks. Several benchmarks have been proposed to evaluate LLM agents on automating ML and DS tasks. These benchmarks are typically structured around three key components: (1) task curation, (2) agent capabilities being evaluated, and (3) evaluation protocol. Benchmarks differ in how they curate ML/DS tasks. For example, MLE-bench (3) and DSBench (12) compile tasks from online competition platforms such as Kaggle, while other benchmarks source tasks from ML-related GitHub repositories (1; 20) or hand-craft tasks based on ML research problems or engineering workflows (9; 17; 22; 18). With regard to agent capabilities, some benchmarks (3; 9; 17; 22; 12) focus on comprehensive ML science skills by evaluating agents on end-to-end problem solving skills, while others (1; 20; 18) focus on more modular engineering-oriented capabilities within the ML pipeline, such as using GitHub repositories or integrating APIs. Evaluation protocols also differ in output formats and granularity. MLE-bench (3) and DSBench (12) require agents to

Table 1: Comparison of TimeSeriesGym with existing ML/DS agent benchmarks. Categories include Number: total and time series (TS) tasks in each benchmark, where each task corresponds to a unique data source (e.g., a single Kaggle competition or GitHub repository); Source: task origins (K: Kaggle, G: GitHub, H: Hand-crafted); ML Capability: coverage of ML science tasks (e.g., modeling, open-ended research) and engineering tasks (e.g., repository utilization, API integration); and Evaluation: capabilities for evaluating multimodal outputs (e.g., prediction files, model artifacts), specific ML skills (e.g., data handling, model improvement), and from a holistic perspective (including both quantitative metrics (e.g., accuracy, mean absolute error) and qualitative evaluation (e.g., code review)). We use "+" to indicate TimeSeriesGym's scalability which enables the generation of an unlimited number of new challenges using the tools provided.

	Number Source			ML Capability		Evaluation				
	Total	TS	K	G	Н	Science	Engineering	Multimodal	Skill-based	Holistic
MLE-bench (3)	75	3	1	Х	Х	/	Х	X	Х	Х
MLAgentBench (9)	13	1	1	X	1	1	X	1	X	X
MLGym (17)	13	0	1	X	1	✓	X	✓	X	×
RE-Bench (22)	7	0	X	X	1	✓	X	✓	X	×
DSBench ² (12)	74	5	1	X	X	✓	X	X	X	×
SUPER ³ (1)	45	0	X	1	X	Х	✓	X	X	✓
ML-Bench (20)	18	1	X	1	X	X	✓	X	X	X
ML-Dev-Bench (18)	30	0	X	X	1	X	✓	/	✓	X
TimeSeriesGym (Ours)	23+	23+	1	1	1	✓	✓	1	✓	✓

output results in specific formats (e.g., CSV files) that can be directly scored using predefined metrics such as accuracy, while other benchmarks (9; 17; 22) allow for more flexible outputs in addition to prediction files, such as model artifacts and code. ML-Dev-Bench (18) further extends the evaluation by specific skills (e.g., data handling, model improvement), while SUPER (1) provides a more holistic evaluation by combining outcome-based evaluation with qualitative code inspection to assess agents' progress towards completing the tasks.

Scalable dynamic benchmarks and holistic evaluation. Scalable benchmarks reduce manual data curation efforts by generating target problems at scale using carefully designed templates (2; 23) or data engines (8), among which TimeSeriesExam (2) further improves problem sample quality by applying Item Response Theory (IRT) (4; 7) to intelligently select questions with contextualized difficulty and appropriate discrimination. To remain effective against data contamination from LLM pretraining, dynamic benchmarks such as GAIA (16) and LiveCodeBench (10) propose to continually incorporate problems newly released after LLM training cut-offs. While most benchmarks target specific capabilities, holistic evaluation (13; 5) provides a comprehensive picture through evaluating models on a wide range of datasets and tasks across diverse domains using multiple complementary metrics, to capture both the breadth and depth of model capabilities.

3 TIMESERIESGYM

TimeSeriesGym is envisioned as a scalable benchmarking environment for time series machine learning engineering. The current version features 33 challenges from 23 unique data sources across 8 unique time series problems, spanning more than 15 domains. These challenges evaluate AI agents on a range of realistic ML engineering skills beyond just model development, including data labeling, model selection, and the utilization, improvement, and migration of research code (Tab. 4). TimeSeriesGym also provides tools for rapidly developing new challenges to test specific skills and for evaluating the diverse artifacts commonly generated during ML engineering processes.

Each challenge in TimeSeriesGym is organized with a consistent structure: (1) **resources** including datasets, code repositories, related paper(s) and documentation relevant to the challenge; (2) a **description file** that outlines the challenge parameters, available resources, and provides specific instructions and hints for successful completion; and (3) **challenge-specific grading functions** to evaluate agent submissions. Some challenges also include leaderboards to rank agent submissions

¹For DSBench, we include only data modeling tasks, while excluding data analysis tasks as they are not directly relevant to our work.

²For SUPER, we include repositories used to create the Expert and Masked sets of the benchmark.

against human performance. These leaderboards are readily available for, e.g., challenges derived from Kaggle competitions.

The challenges in TimeSeriesGym are derived from Kaggle competitions (currently, n = 13) and popular benchmarks and research code repositories for time series modeling (TimeSeriesGym Originals, n = 14). We prioritized challenges that reflect core skills that are regularly exercised by ML engineers, researchers, and data scientists.

Each challenge is specifically chosen or designed to evaluate one or more of the following skills: (1) <u>Data Handling</u>: Ability to handle missing data, use data labeling tools, and utilize multi-source data for model building. (2) <u>Modeling</u>: Ability to develop useful time-series ML models, tune hyperparameters, perform model selection, and understand, utilize, migrate and improve the quality of research code. (3) <u>Benchmarking</u>: Training and rigorously evaluating ML models using standard benchmarks. In selecting these challenges, we aimed at a broad coverage across diverse domains (e.g., healthcare, finance, epidemiology) and time series problems (forecasting, classification, time series understanding). Tab. 4 provides a comprehensive overview of each challenge within TimeSeriesGym, including its domain, core problem, evaluation metric, and the skills required to address it.

To identify Kaggle challenges for inclusion in <code>TimeSeriesGym</code>, we began with the Meta Kaggle dataset (19), focusing specifically on Featured and Research competitions. Featured competitions are real-world ML challenges that pose difficult, commercially oriented prediction problems, while Research competitions focus on problems that may not have clean or straightforward solutions⁴. We employed <code>Gemini 2.0 Flash</code> to analyze competition descriptions and titles, identifying 453 competitions that likely involve time series data. Subsequently, we ranked these competitions by participant count, maximum reward, and presence of a public leaderboard. Then from top 100 ranked high-quality competitions (see Tab. 8), we manually selected a diverse set of competitions to ensure comprehensive coverage across problem type (e.g., forecasting, classification), domain (e.g., finance, healthcare), and research or engineering complexity (e.g., organization of datasets), while also requiring public data availability, and a permissive license.

To complement the selected Kaggle challenges, we include 14 TimeSeriesGym Original challenges, manually curated from existing open-source time series datasets and GitHub repositories based on recommendations from experienced ML engineers and researchers (see Tab. 5 for the original and modified source codes and licenses). These challenges are specifically designed to evaluate advanced skills that Kaggle competitions typically cannot easily assess, yet are essential for effective ML engineering. Examples include utilizing state-of-the-art models (e.g., Implement the MOMENT (6) time series foundation model for anomaly detection), migrating frameworks (e.g., Convert ResNet-1D classification models from TensorFlow to PyTorch), and improving research code quality (e.g., Improve PTB-XL ECG Classification Code). These capabilities represent critical competencies of skilled ML engineers that extend beyond the scope of standard Kaggle-like competitions.

Running experiments on TimeSeriesGym can be resource-intensive and costly. Therefore, we propose TimeSeriesGym-Lite, a carefully selected subset of six challenges designed to efficiently evaluate AI agents on critical ML engineering skills while maintaining coverage across multiple domains and time series problems. This collection enables rapid and cost-effective assessment of novel AI agents without sacrificing the diversity of skills being tested (see Tab. 6).

Multimodal, skill-based, holistic evaluation. Existing benchmarks typically summarize agent performance using metrics such as accuracy, completion rate, or competition rankings (3). Although these metrics provide useful summaries, they do not offer much actionable feedback for improvement. TimeSeriesGym addresses this limitation through an evaluation framework designed to provide specific actionable feedback through multiple complementary approaches. First, we design challenges that isolate and test specific skills, such as handling missing data (e.g., Optiver Realized Volatility Prediction with Missing Data). Poor performance on such challenges clearly indicates potential skill gaps, enabling developers to focus their efforts on specific skills. Second, we develop fine-grained evaluation tools that assess multiple dimensions of performance simultaneously. For example, in code migration tasks (e.g., Convert ResNet from TensorFlow to PyTorch), our evaluation tools examine whether an agent follows instructions and naming con-

⁴https://www.kaggle.com/docs/competitions

ventions, completes all required function definitions, in addition to successful execution—providing a multidimensional performance profile rather than a binary success/failure indicator.

Our evaluation methodology deliberately <u>combines</u> multiple assessment approaches: quantitative metrics (accuracy, mean absolute error), programmatic analysis (regular expression matching, code inspection), and optional qualitative evaluation (LLM-as-a-judge) (see Appendix E). Each challenge in <code>TimeSeriesGym</code> is evaluated using quantitative metrics (based on rules) and optionally subjective metrics (LLM judge). Although LLM-based evaluation offers valuable insight, especially for openended tasks such as research code enhancement, we recognize that LLMs can be inconsistent and prone to hallucination. Therefore, we primarily rely on quantitative metrics and strategically complement them with subjective assessments, creating a holistic evaluation system that leverages the strengths of both approaches. This hybrid approach mimics code reviews in software engineering practice, which includes both tests based on static analysis and human code reviews.

Furthermore, TimeSeriesGym provides specialized tools to grade diverse artifacts generated throughout the ML engineering life cycle– from submission files (CSV, H5, etc.) to source code (.py) and trained models (.pth, .pkl)— enabling comprehensive assessment of the entire development process rather than focusing solely on final outputs.

Generating challenges at scale. We provide key mechanisms to enable efficient and scalable generation of new challenges. First, we offer clear and detailed documentation that explains how to add new challenges to the benchmark. Second, we provide specialized tools to create skill-specific challenges (e.g., simulating missing data) and evaluate them. Using these resources, our team successfully created several new challenges in two hours of effort, each testing specific ML engineering skills. This scalability ensures that TimeSeriesGym can grow and adapt as time series machine learning techniques continue to advance.

3.1 DESIGN CHOICES

Focus on time series tasks. We focused on time series modeling tasks for two key reasons. First, time series data is ubiquitous and critical in domains such as healthcare and economics, yet existing agentic AI benchmarks include relatively few time series challenges (Tab. 1). Second, compared to text and images, time series data require modest resources for storage and modeling, making TimeSeriesGym efficient to run. Moreover, modeling time-series data remains relatively underexplored outside specialized research communities, meaning that LLMs are less likely to have encountered such data and tasks during training. This characteristic, combined with the fact that TimeSeriesGym evaluates general machine learning skills, makes it an excellent testbed to evaluate AI agent capabilities. Although focused on time series, our benchmark can be be readily extended to other modalities, and already includes multimodal challenges, such as TimeSeriesExam (time series + text) and OSIC Pulmonary Fibrosis Progression (time series + images).

How much freedom should the agents be given? When designing challenges for <code>TimeSeriesGym</code>, we had to strike a fine balance between giving agents freedom to solve problems creatively while keeping enough structure in place to allow for a precise and fine-grained evaluation. For example, in the <code>PTB-XL ECG Classification</code> with <code>Hyper-parameter Optimization</code> challenge, we required agents to use a PyTorch-based neural network and save their models, files and code before and after tuning. This allowed us to inspect models and code to check if the hyper-parameters changed, and measure how these changes improved performance.

Agent-agnostic design. TimeSeriesGym is agnostic to specific agent implementations. Following MLE-bench (3), it is easy to add new challenges and agentic scaffolds. To illustrate this flexibility, we include the *latest* implementations of 3 different scaffolds, AIDE (11), MLAgentBench (MLAB) (9), and OpenHands (21) with fundamentally different designs. Unlike MLGym (17), we do not advocate for a default agentic scaffold, as we believe that agent designs will continue to evolve and no single scaffold will work best for all ML engineering tasks.

4 EXPERIMENTS AND RESULTS

Setting. We run agents in an Ubuntu 20.04 Docker container with all necessary resources (datasets, code repositories, etc.) and basic Python packages useful for ML engineering. Agents can access the internet and install additional packages as needed. For each challenge, agents have a maximum of 4

Table 2: **Main Results**. Each experiment was run with 3 random seeds, with results showing mean \pm standard deviation. The table compares scaffold types (AIDE, OpenHands, MLAB), model choices (GPT-4.1, 03, Claude 3.7), resource allocations (4/50 to 12/150 hours/steps), and time utilization approaches. Key findings include: (1) AIDE achieves the best performance as a scaffold, (2) the reasoning model 03 achieves significantly higher valid submission rates (94.4%) than other models, (3) Claude 3.7 produces the most reasonable submissions (38.9%), (4) doubling time resources does not consistently improve performance, and (5) interestingly, removing step-wise reminders sometimes improves reasonable submission rates.

Lite	Model	Resources (hours / steps)	Valid Submission (%)	Reasonable Submission (%)
	MLAB			
✓	+gpt-4.1-2025-04-14	4 / 50	44.4 ± 9.6	27.8 ± 9.6
	OpenHands			
✓	+gpt-4.1-2025-04-14	4 / 50	44.4 ± 19.3	11.1 ± 9.6
	AIDE			
✓	+ gpt-4.1-2025-04-14 + o3-2025-04-16 + claude-3-7-sonnet-20250219	4 / 50	$ \begin{vmatrix} 66.7 \pm 16.7 \\ \mathbf{94.4 \pm 9.6} \\ 50.0 \pm 16.7 \end{vmatrix} $	27.8 ± 9.6 33.3 ± 0.0 38.9 ± 19.3
X	+gpt-4.1-2025-04-14	4/50	58.6 ± 7.6	12.1 ± 0
Effect o	f Scaling Resources			
/	+gpt-4.1-2025-04-14	4 / 50 8 / 100 12 / 150	$ \begin{vmatrix} 66.7 \pm 16.7 \\ 72.2 \pm 9.6 \\ 61.1 \pm 9.6 \end{vmatrix} $	27.8 ± 9.6 22.2 ± 9.6 50.0 ± 0.0
Effectiv	e Utilization of Time			
✓	Step-wise reminder No reminder	4 / 50	$ \begin{vmatrix} 66.7 \pm 16.7 \\ 55.6 \pm 9.6 \end{vmatrix} $	27.8 ± 9.6 33.3 ± 0.0

hours and 50 steps (9; 18; 17) and use a machine with 128 vCPUs, 503 GB RAM, 1.8 TiB SSD, and a single NVIDIA A100-SXM4-80GB GPU⁵. Unless otherwise specified, we repeat each experiment with 3 different seeds (0, 1, and 2) to calculate mean and standard deviation.

Cost. On average, it cost us USD 63.00 to run AIDE with gpt-4.1-2025-04-14 for a maximum of 4 hours and 50 steps on TimeSeriesGym. In contrast, the Lite benchmark was much more affordable at USD 8.00 per run. Given that TimeSeriesGym-Lite preserves coverage across domains and problem types while being much more time- and cost-effective, we conducted most of our experiments on TimeSeriesGym-Lite to accommodate our resource constraints.

Metrics. We report the raw scores achieved by AIDE on every challenge (Tab. 10). Although these scores are useful for tracking progress on individual challenges, they cannot be easily combined across different challenges. To measure the performance of agents at a high level, we report two key metrics: the percentage of challenges where the agent made a (1) *valid*, and (2) *reasonable* submission (Tab. 2). A submission is valid if the grader returns any non-null score. What counts as a reasonable attempt varies by challenge type. For Kaggle challenges, we define it as scoring above median on the competition's public leaderboard. For the remaining challenges, we consider a submission reasonable if it made a genuine⁶ modeling attempt rather than hallucinating an output that matches the submission format. For example, simply loading and re-saving the provided sample submission file without any model inference or data processing is deemed unreasonable.

⁵In practice, agents share this machine as we run multiple challenges in parallel. This represents a realistic setting similar to how ML engineers routinely share computing resources. We found no instances where this sharing might have disadvantaged any agent.

⁶We assess this by manually inspecting whether a modeling attempt was made. Since this is inherently a subjective judgment, reasonable attempts are reported ONLY as a study of agentic skills. The benchmark score itself ultimately depends on the objective metric we defined for each challenge.

4.1 Observations

AIDE is the better open-source scaffold. We evaluated GPT-4.1 (gpt-4.1-2025-04-14) with three open-source scaffolds: AIDE (11), MLAB (9) and OpenHands (21). Following MLE-bench, we make minor modifications to adapt these scaffolds to our benchmark (see Appendix B). Results in Tab. 2 confirm prior findings: AIDE with GPT-4.1 yields the highest proportion of valid (66.7%) and reasonable (27.8%) submissions. This is expected as AIDE is specifically designed for data science tasks, which account for the majority of TimeSeriesGym challenges.

Reasoning models produce substantially more valid submissions. To identify the best base model, we evaluated the strongest scaffold (AIDE) with two state-of-the-art proprietary LLMs: GPT-4.1 and Claude 3.7 (claude-3-7-sonnet-20250219), and a reasoning model o3 (o3-2025-04-16). As shown in Tab. 2, our experiments on TimeSeriesGym-Lite revealed that o3 created significantly more valid submissions than other models, while Claude 3.7 produced the highest number of reasonable attempts (38.9%). We noticed a significant gap between valid and reasonable submissions for o3. While o3 can generate valid submission files for most challenges by following the instructions provided, it was also prone to hallucination. In some cases, it produced a submission file without any genuine modeling attempt (e.g., simply outputting a zero array). An illustration of this failure mode is provided in Appendix D.4.

Challenges in TimeSeriesGym are hard for state-of-the-art agents. We tested AIDE with GPT-4.1 on all TimeSeriesGym challenges (see Tab. 10) and found poor overall performance. The agent produced valid submissions for only 58.6% of challenges and reasonable submissions for only 12.1% on average. We found that the agent especially struggled with TimeSeriesGym original challenges, where it only produced valid submissions for 5 out of 14 challenges. These results show that even the best agents struggle with ML engineering tasks, particularly those that go beyond standard Kaggle data science challenges and involve working with multi-file code repositories.

Agents do not improve with more time. We wondered if the agents perform poorly on TimeSeriesGym simply because they need more time. To test this, we ran AIDE with GPT-4.1 on TimeSeriesGym -Lite and gave it 2-3× more hours and steps per challenge. Our results show that extra time does not always improve performance (Tab. 11). Even with the maximum time (12 hours and 150 steps), the agent only made reasonable submissions in about 50% of challenges—not very impressive given that the bar for a "reasonable" submission is quite low.

Agents do not utilize time effectively. We suspected that agents do not improve with more time because they do not use it well. To test this idea, we compared two settings: the default approach of reminding the agent about remaining time (and steps) before each step, versus removing these reminders completely. Surprisingly, we did not find significant differences between these settings. In fact, agents without time reminders produced more reasonable submissions. This may suggest that agents do not use their time wisely—they tend to rush toward solutions instead of carefully exploring promising options, especially towards the end of the experiment. This raises important research questions about how to design agents that use their time and resources more strategically.

Frontier LLM challenges. Since frontier LLMs are pretrained on large-scale public data, there is a risk that they may have encountered and memorized content from public challenges, e.g., online Kaggle competition discussions or solutions, which can potentially inflate benchmark performance and limit its generalizability. To assess this risk, we followed the approach used by MLE-bench to measure GPT-4.1's familiarity with TimeSeriesGym challenges and compared the familiarity score distribution to that of MLE-bench (see Appendix C.4). GPT-4.1 exhibited a similar level of familiarity with TimeSeriesGym challenges as with MLE-bench challenges (with Kolmogorov-Smirnov (KS) Test (15) p-value = 0.363, indicating no significant difference). Given that MLE-bench found no systematic impact of LLM familiarity on experiment results, GPT-4.1's familiarity with TimeSeriesGym is within a reasonable range and does not compromise its integrity.

TimeSeriesGym can be an effective diagnostic tool for agentic skill development. We stratify the results in Tab. 2 in terms of core ML skills that each challenge tests (Tab. 3). For example, we found that agents struggle in hyper-parameter tuning—2 out of the 3 scaffolds (OpenHands and MLAB) failed to produce valid submissions. While all scaffolds perform similarly on code migration, AIDE achieved the best performance on handling missing data, likely due to its specific design for data science tasks. A similar analysis for base models is provided in Appendix C.3.

Table 3: Performance of agent scaffolds with GPT-4.1 (Best@3 / Avg@3) on different ML skills. Arrows indicate whether lower (\$\psi\$) or higher (\$\epsi\$) values are better. Agents struggle with hyperparameter tuning.

ML Skill	Metric	AIDE	OpenHands	MLAB
Handling Data Missingness	Root Mean Square Percentage Error (\downarrow)	0.33/0.33	0.64/0.64	0.42/0.89
Code Migration	Percentage of Test Cases Passed (†)	0.56/0.56	0.56/0.44	0.56/0.56
Hyper-parameter Tuning	Improvement in Accuracy (†)	0.08/0.03	N/A / N/A	N/A / N/A

Summary. This section provides a focused illustration of how TimeSeriesGym enables efficient and cost-effective experimentation with AI agents, helping researchers uncover actionable insights about agent capabilities and limitations. Our findings demonstrate TimeSeriesGym's value for advancing generic ML engineering agents.

5 DISCUSSION, OPEN QUESTIONS AND OPPORTUNITIES

Key limitations of existing scaffolds. Agentic scaffolds such as AIDE and OpenHands provide structured workflows that excel in single-shot, self-contained benchmarks (e.g., Kaggle competitions) but reveal significant limitations in repository-level challenges that require multiple file edits and iterative reasoning. AIDE's one-step solution strategy and fixed action set—restricted to predefined operations such as "data preview" when debugging—often lead to unsuccessful attempts in large codebases, as the agent's attention is diluted across irrelevant files and fails to identify critical information. Conversely, OpenHands supports multi-step trajectories yet suffers from a greedy exploitation bias: it commits fully to a single approach without exploring alternative solution paths or revisiting earlier decisions when trajectories prove unfruitful. The planning algorithm of the CodeAct agent used by OpenHands is similarly greedy and short-horizon, limiting adaptation to complex multistage development workflows. These findings highlight the need for more adaptive scaffolds that dynamically expand their action repertoire, balance exploration and exploitation through parallel solution threads, and support nested workflows reflective of real-world machine learning engineering tasks. We provide illustrations of agent failures in Appendix D.

Data leakage and plagiarism. In designing TimeSeriesGym, we identify two key risks related to data leakage and plagiarism that could compromise the integrity of the benchmark: (1) **Pretraining contamination:** Current LLMs may have been exposed to public content from existing challenges (e.g., Kaggle competitions), including task descriptions, data, or shared solutions. This can lead to memorization and inflated performance that overstates agents' true capabilities, and (2) **Future LLM leakage:** Once the benchmark is public, future LLMs may be pretrained on its content, making the benchmark less effective in evaluating real generalization.

To address such risks, we present both empirical findings and mitigation strategies. For case (1), we have two key observations. First, in both Kaggle-based and original challenges in TimeSeriesGym, agents either performed poorly or did not produce valid output, suggesting minimal benefit from any potential LLM contamination. Second, we conducted a formal analysis using available tools to assess agents' familiarity with all competitions in this benchmark. The results show no evidence of systematic prior exposure or memorization, further supporting the integrity of the benchmark in its current state. For case (2), the scalability of TimeSeriesGym enables efficient generation of new challenges and skill-specific variations. This allows the benchmark to evolve continuously and remain effective even if the current version is eventually included in future LLM pretraining.

Finally, we raise a broader question around plagiarism and code reuse. Several TimeSeriesGym challenges, such as leveraging MOMENT (6) for anomaly detection, require agents to use existing code repositories to solve open-ended ML tasks, making plagiarism difficult to assess. For example, if an agent cites the code it uses, should it be considered plagiarism or appropriate reuse, similar to how human ML practitioners build on public code with proper reference? As the ability to effectively and properly leverage existing resources is important in real-world ML practice, we believe that it is crucial to develop clear, legally correct definitions and evaluation criteria for data contamination and plagiarism in the context of AI agents. We highlight this as an important direction for future work.

Defining and measuring success. What does it mean for an agent to be successful? For Kaggle tasks, while comparing an agent's performance against human leaderboards seems intuitive, it presents challenges. TimeSeriesGym utilizes different training and testing splits and re-implements the grading mechanisms from the original Kaggle competitions (as original Kaggle test sets are private), making direct leaderboard comparisons potentially misleading. Additionally, in challenges like code migration, real-world utility does not always require perfect, bug-free code: partial, buggy solutions may still accelerate development when iterated by human engineers. Thus, our current evaluation approaches have inherent limitations.

We propose several desiderata for improving the success metrics. These metrics should be rigorous and objective, yet flexible enough to preserve agent creativity and autonomy. They should also yield actionable insights, helping identify specific deficiencies and guide future improvements in agent design. In this work, we take a step in this direction by enabling skill-based and holistic evaluations, offering a more comprehensive understanding of agent capabilities and limitations. Moving forward, we believe that the development of robust, holistic and diagnostic success metrics remains an important research direction and requires community discussion.

Optimal resource allocation. Consistent with previous work, agents were given 4 hours and 50 steps to solve each challenge - but is this sufficient? Alternative frameworks like MLE-bench provide substantially more resources (24 hours and approximately 2000 steps). Our scaling experiments, which gave agents up to 12 hours and 150 steps for a subset of challenges, did not reveal significant performance improvements. Therefore, we believe that further increasing resources is an option, but practical academic budget constraints make such approaches largely infeasible. This raises important questions about how to balance resource limitations with fair opportunities to assess AI agents.

Societal impact. AI agents promise to substantially reduce manual effort in ML engineering while expanding the productivity and accessibility of ML tools. This automation presents several social implications worth considering. First, by lowering technical barriers, these agents could democratize ML capabilities, allowing users without an extensive programming background to leverage advanced analytics. Second, automated ML workflows can accelerate scientific discovery across multiple domains, including healthcare, climate science, and materials research. However, several challenges require careful attention from the community. The primary concern is proper attribution when agents repurpose existing code, potentially obscuring original authorship and violating licenses. Furthermore, automated ML systems can perpetuate or amplify existing biases in training data without human oversight. Furthermore, these agents might generate plausible but flawed solutions that appear correct to non-experts, leading to undetected errors in critical applications. The resource-intensive nature of running sophisticated agents could also exacerbate computational divides between well-resourced and under-resourced organizations. As we advance agent capabilities through benchmarks like TimeSeriesGym, the community must simultaneously develop frameworks for responsible deployment that address these challenges while maximizing societal benefits.

6 Conclusion

uating AI agents (with various scaffoldings) on time series ML engineering tasks. By curating tasks that reflect real-world ML practice from diverse sources, enabling scalable task generation, and supporting multimodal, skill-based, holistic evaluation, TimeSeriesGym provides a practical and extensible testbed for advancing AI agents in ML engineering. Our experiments show that while frontier LLMs combined with AIDE scaffolding (11) can achieve moderate to high success rates in producing valid submissions, they still do not generate reasonable solutions, particularly on TimeSeriesGym original challenges that emulate the complexity of real-world time series tasks.

This highlights current limitations in agent capabilities to effectively understand and solve realistic time series tasks. By open-sourcing TimeSeriesGym, we aim to facilitate a deeper understanding of the ML engineering capabilities of AI agents, provide actionable insights on future development, and support the collection of agent interaction trajectories to drive continuous improvement of AI

We propose TimeSeriesGym, a scalable and agent-agnostic benchmarking framework for eval-

agents through post-training and refinement.

REPRODUCIBILITY STATEMENT

We provide TimeSeriesGym as an open-source project under the permissive MIT License: https://anonymous.4open.science/r/TimeSeriesGym-9CF6/. The repository includes detailed documentation on running experiments, adding new challenges, and incorporating different agentic scaffolds. Tab. 4 lists all challenges in TimeSeriesGym, while Tab. 5 provides their sources and licenses. We describe our exact experimental settings and compute resources in Sec. 4, with scaffold hyperparameters detailed in Tab. 9. The cost to run each experiment is reported in Tab. 7.

REFERENCES

- [1] Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and executing tasks from research repositories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 12622–12645, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
- [2] Yifu Cai, Arjun Choudhry, Mononito Goswami, and Artur Dubrawski. TimeSeriesExam: A time series understanding exam. *NeurIPS'24 Time Series in the Age of Large Models Workshop*, 2024.
- [3] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLE-bench: Evaluating machine learning agents on machine learning engineering. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [4] Susan E Embretson and Steven P Reise. *Item response theory for psychologists*. Psychology Press, 2013.
- [5] Mononito Goswami, Vedant Sanil, Arjun Choudhry, Arvind Srinivasan, Chalisa Udompanyawit, and Artur Dubrawski. Aqua: A benchmarking tool for label quality assessment. *Advances in Neural Information Processing Systems*, 36:79792–79807, 2023.
- [6] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. MOMENT: A family of open time-series foundation models. In *International Conference on Machine Learning*, pages 16115–16152. PMLR, 2024.
- [7] Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated evaluation of retrieval-augmented language models with task-specific exam generation. In Forty-first International Conference on Machine Learning, 2024.
- [8] Cherie Ho, Jiaye Zou, Omar Alama, Sai Mitheran Jagadesh Kumar, Cheng-Yu Chiang, Taneesh Gupta, Chen Wang, Nikhil Keetha, Katia Sycara, and Sebastian Scherer. Map it anywhere: Empowering bev map prediction using large-scale public datasets. Advances in Neural Information Processing Systems, 37:64433–64453, 2024.
- [9] Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentbench: Evaluating language agents on machine learning experimentation. In *Forty-first International Conference on Machine Learning*, 2024.
- [10] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
- [11] Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and Yuxiang Wu. Aide: Ai-driven exploration in the space of code. *arXiv preprint arXiv:2502.13138*, 2025.

- [12] Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, Xinya Du, and Dong Yu. DSBench: How far are data science agents from becoming data science experts? In *The Thirteenth International Conference on Learning Representations*, 2025.
 - [13] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models. *arXiv preprint arXiv:2211.09110*, 2022.
 - [14] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg evaluation using gpt-4 with better human alignment. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 2511–2522, 2023.
 - [15] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. *Journal of the American statistical Association*, 46(253):68–78, 1951.
 - [16] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a benchmark for general ai assistants. In *The Twelfth International Conference on Learning Representations*, 2023.
 - [17] Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach, William Yang Wang, and Roberta Raileanu. MLGym: A new framework and benchmark for advancing ai research agents, 2025.
 - [18] Harshith Padigela, Chintan Shah, and Dinkar Juyal. ML-Dev-Bench: Comparative analysis of ai agents on ml development workflows. *arXiv preprint arXiv:2502.00964*, 2025.
 - [19] Megan Risdal and Timo Bozsolik. Meta kaggle, 2022.
 - [20] Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu, Kaikai An, Ruijun Huang, et al. ML-Bench: Evaluating large language models and agents for machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835, 2023.
 - [21] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers as generalist agents. In *The Thirteenth International Conference on Learning Representations*, 2024.
 - [22] Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan, Michael Chen, Josh Clymer, Jai Dhyani, et al. Re-bench: Evaluating frontier ai r&d capabilities of language model agents against human experts. *arXiv preprint arXiv:2411.15114*, 2024.
 - [23] Wen Ye, Yizhou Zhang, Wei Yang, Lumingyuan Tang, Defu Cao, Jie Cai, and Yan Liu. Beyond forecasting: Compositional time series reasoning for end-to-end task execution. *arXiv* preprint *arXiv*:2410.04047, 2024.

A TIMESERIESGYM CHALLENGES

Challenge	Problem	Domain	Skills	Evaluation Metric
Kaggle Challenges				
AMP-Parkinson's Disease	Time-to-Event Regression	Healthcare		Symmetric Mean Absolute
Progression Prediction	11me-to-Event Regression	Healthcare		Percentage Error
ASHRAE - Great Energy Predictor III	Forecasting	Energy		Root Mean Square
				Logarithmic Error
Child Mind Institute- Detect Sleep States	Classification	Healthcare		Event Detection
Google Brain - Ventilator Pressure Prediction	Regression	Healthcare	Data Handling	Average Precision Mean Absolute Error
_	_		(Dealing with Missing Values,	Area Under
G2Net Gravitational Wave Detection	Classification	Geology	Utilize Multi-Source Data)	ROC Curve
HMS - Harmful Brain Activity Classification	Classification	Healthcare		KL Divergence
LANL Earthquake Prediction	Time-to-Event Regression	Geology	Modeling	Mean Absolute Error
M5 Forecasting - Accuracy	Forecasting	Sales	(Hyper-parameter Tuning	Weighted Root Mean Squared
	į .		& Model Selection)	Scaled Error
Online Product Sales	Forecasting	Sales		Root Mean Square Logarithmic Error
				Root Mean Square
Optiver Realized Volatility Prediction	Forecasting	Finance		Percentage Error
OSIC Pulmonary Fibrosis Progression	Forecasting	Healthcare		Laplace Log Likelihood
Recruit Restaurant Visitor Forecasting	Forecasting	Sales		Root Mean Square
Recount Restaurant Visitor Porecasting	1 orccasting	Sales		Logarithmic Error
Sberbank Russian Housing Market	Forecasting	Housing		Root Mean Square
				Logarithmic Error
TimeSeriesGym Originals				
Convert ResNet TensorFlow	Classification			
Implementation to PyTorch	Classification			
Convert STOMP Algorithm	Data Mining	Algorithm	Code Migration	Custom Code Grading
Implementation in R to Python	Data Mining			
Evaluate MOIRAI time series foundation model				
on the Context Is Key (CiK) benchmark		Climatology, Economics, Energy,		
Evaluate Chronos time series foundation model	Context-aided Forecasting	Mechanics, Public Safety, Retail,		Resolved (Binary)
on the NN5 dataset within Context Is Key		Synthetic, Transportation		
(CiK) benchmark				
Implement & Evaluate CSDI to Impute PM2.5 Data	Imputation	Weather		Mean Absolute Error
Train & Evaluate CSDI to Impute PM2.5 Data				
GIFT-EVAL: A Benchmark for General Time Series	Formantina	Nature, Web, CloudOps,		Mean Absolute Percentage Erro
Forecasting Model Evaluation	Forecasting	Economics/Finance, Energy, Sales, Transportation,	Modeling	Mean Absolute Percentage Erro
		Healthcare, Gait, Energy,	(Using Research Code)	Adjusted Best
Hexagon ML UCR Time Series Anomaly Detection	Anomaly Detection	Synthetic, Devices	(Osnig Research Code)	F1 Score
Long Horizon Time Series Forecasting		Energy, Epidemiology, Finance,		Mean Squarred
using Time Series Library	Forecasting	Transportation, Weather		Error
Long-Horizon Weather Forecasting using				
Time Series Library's Itransformer	Forecasting	Weather		Exact Match
MIT-BIH ECG Arrhythmia Detection	Classification	Healthcare		Accuracy
MOMENT for Anomaly Detection	Anomaly Detection	Healthcare, Gait, Energy,		Exact Match
on UCR datasets	Anomaly Detection	Synthetic, Devices		Exact Materi
PTB-XL ECG Classification	Classification	Healthcare		Accuracy
TimeSeriesExam: A Time Series Understanding Exam	Time Series Understanding	Synthetic	Time Series Understanding	Accuracy
Derived Challenges				
Const. Budg. Mr. Ch. B. B. Ch.	D	TT 103	Data Handling	Mean Absolute
Google Brain - Ventilator Pressure Prediction	Regression	Healthcare	(Dealing with missing data)	Error
			Code Enhancement	
Improve PTB-XL ECG Classification Code	Classification	Healthcare	(Experiment Tracking,	
			Readability, Reproducibility)	
MIT-BIH Arrhythmia Detection	Classification	Healthcare	Data Handling	Accuracy
with Weak Supervision	Ciassification	Heanticale	(Labeling)	-
Optiver Realized Volatility Prediction	Forecasting	Finance	Data Handling	Root Mean Square
			(Dealing with missing data)	Percentage Error
Optiver Realized Volatility Prediction	Forecasting	Finance		Improvement in Root Mean
with Hyper-parameter Optimization		***	Modeling (Hyper-parameter	Square Percentage Error
PTB-XL ECG Classification with Hyperparameter Optimization	Classification	Healthcare	Tuning & Model Selection)	Improvement in Accuracy

Table 4: This table presents the TimeSeriesGym benchmark's diverse collection of time series challenges across three categories: Kaggle Challenges, TimeSeriesGym Originals, and Derived Challenges. The challenges span multiple domains (healthcare, finance, energy, weather, transportation), problem types (classification, regression, forecasting, anomaly detection), and required skills (data handling, model building, code migration). Each challenge uses appropriate evaluation metrics for its task type. The benchmark combines established Kaggle competitions with novel custom tasks, creating a comprehensive testbed for evaluating ML engineering agents across realistic scenarios that practitioners face in real-world applications.

697

698

699

700

701

Challenge	Source	License
Kaggle Challenges		
AMP-Parkinson's Disease	V1 -	Subject to Commentation Dules
Progression Prediction	Kaggle	Subject to Competition Rules
ASHRAE - Great Energy Predictor III	Kaggle	Subject to Competition Rules
Child Mind Institute-	Kaggle	CC BY-NC-SA 4.0
Detect Sleep States	кадыс	CC B1-11C-0/14.0
Google Brain - Ventilator	Kaggle	Subject to Competition Rules
Pressure Prediction	88	
G2Net Gravitational	Kaggle	Subject to Competition Rules
Wave Detection	-	
HMS - Harmful Brain	Kaggle	CC BY-NC 4.0
Activity Classification		
LANL Earthquake Prediction	Kaggle	Subject to Competition Rules
M5 Forecasting - Accuracy	Kaggle	Subject to Competition Rules
Online Product Sales	Kaggle	Subject to Competition Rules
Optiver Realized	Kaggle	Subject to Competition Rules
Volatility Prediction		
OSIC Pulmonary	Kaggle	Subject to Competition Rules
Fibrosis Progression		
Recruit Restaurant	Kaggle	Subject to Competition Rules
Visitor Forecasting		
Sberbank Russian	Kaggle	Subject to Competition Rules
Housing Market		
TimeSeriesGym Originals		
Convert ResNet TensorFlow	GitHub	GNU General Public License v3.0
Implementation to PyTorch	Gittub	GIVE General Fubile Electise V5.0
Convert STOMP Algorithm	GitHub	Apache License 2.0
Implementation in R to Python	Girrub	Tipuelle Election 2.0
Evaluate MOIRAI time series		
foundation model on the	GitHub	Apache License 2.0
Context Is Key (CiK) benchmark		
Evaluate Chronos time series		
foundation model on the NN5 dataset	=	Apache License 2.0
within Context Is Key (CiK) benchmark		
Implement & Evaluate CSDI to	GitHub	MIT License
Impute PM2.5 Data		
Train & Evaluate CSDI to Impute PM2.5 Data	=	MIT License
GIFT-EVAL: A Benchmark for General	GitHub	Apache License 2.0
Time Series Forecasting Model Evaluation		
Hexagon ML UCR Time Series	UCR	Not available
Anomaly Detection		
Long Horizon Time Series Forecasting	GitHub	MIT License
using Time Series Library		
Long-Horizon Weather Forecasting	_	MIT License
using Time Series Library's Itransformer		
MIT-BIH ECG Arrhythmia Detection	PhysioNet	Open Data Commons Attribution License v1.0
MOMENT for Anomaly Detection	GitHub	MIT License
on UCR datasets		
PTB-XL ECG Classification	PhysioNet	Creative Commons Attribution 4.0 International Public Licer
TimeSeriesExam: A Time Series	Hugging Face	MIT License
Understanding Exam		

Table 5: This table provides transparency about the source and licensing information for each challenge in the TimeSeriesGym benchmark. For the Kaggle challenges, most are subject to Kaggle's competition rules, with a few under Creative Commons licenses. The TimeSeriesGym Original challenges come from diverse sources including GitHub repositories, HuggingFace, etc. with various open-source licenses (Apache, MIT, GPL, Creative Commons). This diversity of sources and licenses demonstrates the benchmark's foundation in accessible, reusable datasets and code while ensuring proper attribution and compliance with original creators' terms.

Table 6: TimeSeriesGym -Lite is a streamlined collection of six diverse time series challenges carefully selected to evaluate AI agents while balancing comprehensiveness with efficiency. The challenges cover essential ML engineering skills including basic data science, handling missing/multisource data, code migration, hyperparameter optimization, modeling using research code, and data labeling. The collection spans multiple domains (healthcare, finance, algorithms) and various time series tasks (classification, forecasting, anomaly detection, code migration). This cost-effective subset allows researchers to quickly benchmark agent capabilities across critical ML engineering skills without the resource requirements of the full TimeSeriesGym benchmark.

Challenge	Required Skills	Time Series Task	Domain	
Child Mind Institute -	Basic data science	Classification	Healthcare	
Detect Sleep States	(data handling and modeling)	Classification	Ticardicare	
Optiver Realized	Handling missing and	Forecasting	Finance	
Volatility Prediction	multi-source data	Porceasting	Tillalice	
Convert ResNet TensorFlow	Classification	Code Migration	Algorithm	
implementation to PyTorch	Classification	Code Migration	Algorium	
PTB-XL ECG	Hyperparameter optimization	Classification	Healthcare	
Classification	& model selection	Classification	Heatuicare	
MOMENT Anomaly	Modeling	Anomaly Detection	Healthcare, Gait,	
Score Calculation	(Using research code)	Allomary Detection	Synthetic, Energy, Devices	
MIT-BIH Arrhythmia	Data labeling	Classification	Healthcare	
Detection	Data labelling	Classification	Heatilicale	

Table 7: Average cost to run experiments on a single seed in the default evaluation setup *i.e.* AIDE with qpt-4.1-2025-04-14 with a maximum of 4 hours and 50 steps.

Benchmark	Averge Cost (USD)
TimeSeriesGym	62.12
TimeSeriesGym -Lite	7.96

Table 8: The 100 shortlisted Kaggle competitions. Competitions marked with * denote that the data is no longer available.

Competition	# Participants	Reward	Category
M5 Forecasting - Accuracy	7022	50,000	Featured
LANL Earthquake Prediction	5454	50,000	Research
Jane Street Market Prediction*	4884	100,000	Featured
Optiver Realized Volatility Prediction	4395	100,000	Featured
Optiver - Trading at the Close	4374	100,000	Featured
ASHRAE - Great Energy Predictor III	4342	25,000	Featured
Zillow Prize: Zillow's Home Value Prediction (Zestimate)	4241	1,200,000	Featured
GoDaddy - Microbusiness Density Forecasting	3834	60,000	Featured
Rossmann Store Sales	3735	35,000	Featured
Sberbank Russian Housing Market	3658	25,000	Featured
HMS - Harmful Brain Activity Classification	3507	50,000	Research
Google Brain - Ventilator Pressure Prediction	3118	7,500	Research
University of Liverpool - Ion Switching	3004	25,000	Research
Ubiquant Market Prediction*	2949	100,000	Featured
Enefit - Predict Energy Behavior of Prosumers	2715	50,000	Featured
OSIC Pulmonary Fibrosis Progression	2530	55,000	Featured
Child Mind Institute - Detect Sleep States	2436	50,000	Featured
Recruit Restaurant Visitor Forecasting	2426	25,000	Featured

Continued on next pag

Competition	# Participants	Reward	Category
G-Research Crypto Forecasting	2398	125,000	Featured
Two Sigma Financial Modeling Challenge*	2317	100,000	Featured
Grupo Bimbo Inventory Demand	2263	25,000	Featured
AMP®-Parkinson's Disease Progression Prediction	2197	60,000	Featured
Corporación Favorita Grocery Sales Forecasting	1868	30,000	Featured
Driver Telematics Analysis	1861	30,000	Featured
Parkinson's Freezing of Gait Prediction	1688	100,000	Research
COVID19 Global Forecasting (Week 1)	640	0	Research
Heritage Health Prize*	1656	500,000	Featured
Cornell Birdcall Identification	1630	25,000	Research
TensorFlow Speech Recognition Challenge	1591	25,000	Featured
Google - American Sign Language Fingerspelling Re	cognition 1529	200,000	Research
G2Net Gravitational Wave Detection	1501	15,000	Research
COVID19 Global Forecasting (Week 4)	388	0	Research
Indoor Location & Navigation	1446	10,000	Research
West Nile Virus Prediction	1445	40,000	Featured
BirdCLEF 2023	1397	50,000	Research
Rainforest Connection Species Audio Detection	1385	15,000	Research
COVID19 Global Forecasting (Week 3)	290	0	Research
COVID19 Global Forecasting (Week 2)	263	0	Research
Google Analytics Customer Revenue Prediction	1369	45,000	Featured
COVID19 Local US-CA Forecasting (Week 1)	216	0	Research
Google - Isolated Sign Language Recognition	1340	100,000	Research
1st and Future - Player Contact Detection	1334	100,000	Featured
JPX Tokyo Stock Exchange Prediction	1324	63,000	Featured
Google Research Football with Manchester City F.C.	1288	6,000	Featured
Lyft Motion Prediction for Autonomous Vehicles	1254	30,000	Featured
BirdCLEF 2024	1198	50,000	Research
COVID19 Global Forecasting (Week 5)	93	0	Research
G2Net Detecting Continuous Gravitational Waves	1181	25,000	Research
Peking University/Baidu - Autonomous Driving	1105	25,000	Featured
iWildcam 2021 - FGVC8	65	0	Research
Eye Movements Verification and Identification Comp		0	Research
M5 Forecasting - Uncertainty	1101	50,000	Featured
March Machine Learning Mania 2023	1098	50,000	Featured
Multi-label Bird Species Classification - NIPS 2013	39	0,000	Research
Google Cloud & NCAA® ML Competition 2018-Me		50,000	Featured
iWildCam 2022 - FGVC9	n s 1001 29	0,000	Research
NFL Health & Safety - Helmet Assignment	1028	100,000	Featured
March Machine Learning Mania 2022 - Men's	1028	25,000	
· ·		,	Featured
BirdCLEF 2022	1009	10,000	Research Research
BirdCLEF 2021 - Birdcall Identification	1001	5,000	
Google Smartphone Decimeter Challenge	985	10,000	Research
SETI Breakthrough Listen - E.T. Signal Search	979	15,000	Research
LEAP - Atmospheric Physics using AI (ClimSim)	877	50,000	Research
Bengali.AI Speech Recognition	866	53,000	Research
The Winton Stock Market Challenge	829	50,000	Featured
Two Sigma: Using News to Predict Stock Movement		100,000	Featured
Accelerometer Biometric Competition	770	5,000	Research
How Much Did It Rain? II	691	500	Research
Google Smartphone Decimeter Challenge 2022	684	10,000	Research
American Epilepsy Society Seizure Prediction Challe	=	25,000	Research
Melbourne University AES/MathWorks/NIH Seizure		20,000	Research
DFL - Bundesliga Data Shootout	610	25,000	Featured
	573	75,000	Featured

Competition	# Participants	Reward	Categor
Kore 2022	537	15,000	Feature
MLB Player Digital Engagement Forecasting	495	50,000	Feature
ECML/PKDD 15: Taxi Trajectory Prediction (I)	459	250	Researc
Grasp-and-Lift EEG Detection	451	10,000	Researc
The Big Data Combine Engineered by BattleFin	424	18,500	Researc
Web Traffic Time Series Forecasting	424	25,000	Researc
Draper Satellite Image Chronology	422	75,000	Feature
ECML/PKDD 15: Taxi Trip Time Prediction (II)	418	250	Researc
Online Product Sales	412	22,500	Feature
Halite by Two Sigma	1291	0	Feature
RTA Freeway Travel Time Prediction	376	10,000	Feature
How Much Did It Rain?	349	500	Researc
The 3rd YouTube-8M Video Understanding Challenge	340	25,000	Researc
Benchmark Bond Trade Price Challenge	316	17,500	Feature
BCI Challenge @ NER 2015	311	1,000	Researc
The Marinexplore and Cornell University Whale Detection Challenge	309	10,000	Feature
DecMeg2014 - Decoding the Human Brain	301	5,000	Researc
U.S. Census Return Rate Challenge	290	25,000	Feature
dunnhumby's Shopper Challenge	287	10,000	Feature
KDD Cup 2012, Track 2	275	8,000	Feature
UPenn and Mayo Clinic's Seizure Detection Challenge	241	8,000	Researc
GE Flight Quest	234	250,000	Feature
The Random Number Grand Challenge	206	1,000	Feature
AMS 2013-2014 Solar Energy Prediction Contest	199	1,000	Researc
Global Energy Forecasting Competition 2012 - Wind Forecasting	197	7,500	Researc
Belkin Energy Disaggregation Competition	194	25,000	Feature
CVPR 2018 WAD Video Segmentation Challenge	188	2,500	Researc

B IMPLEMENTATION DETAILS FOR SCAFFOLDS

Table 9: Scaffold hyperparameters. \$TARGET_MODEL denotes the model being evaluated.

AIDE	
agent.code.model agent.feedback.model agent.steps agent.search.max_debug_depth agent.search.debug_prob agent.time_limit exec.timeout	\$TARGET_MODEL gpt-4.1-2025-04-14 50 20 1 14400 32400
OpenHands	
<pre>agent model max_time_in_hours max_steps</pre>	CodeActAgent \$TARGET_MODEL 4 50
MLAgentBench (MLAB)	
llm-name edit-script-llm-name fast-llm-name max-steps max-time	\$TARGET_MODEL \$TARGET_MODEL gpt-4.0-mini 50 14400

Tab. 9 summarizes the hyperparameters used for the three scaffolds: AIDE (11), OpenHands' CodeAct (21), and MLAgentBench (9). We did not directly use the MLE-bench (3) modifications to the agentic scaffolds for two main reasons. First, the official scaffold implementation has undergone updates since MLE-bench. Second, certain changes made in MLE-bench were not applicable to our benchmark, which involves more diverse modes of evaluation. Therefore, we modified the latest version of the agentic scaffolds to enhance robustness, improve execution stability, and support a broader range of competitions.

B.1 AIDE

We forked the original AIDE repository in May 2025 and added useful changes from the MLE-bench project. These include better API calls and support for more API providers. Our key modifications are summarized below:

- 1. Updated instructions to cover all types of tasks, not just Kaggle challenges
- Modified the prompt to work with different file types, since our tasks use many input/output formats
- 3. Fixed the interpreter handling to prevent timeouts and system hangs

B.2 OPENHANDS

We forked the original OpenHands repository from tag v0.34.0 (May 2025). We reduced the RAM allowance to 10 GiB (from 100 GiB) as we did not observe any memory-related issues during our tests.

B.3 MLAGENTBENCH

We forked the MLE-bench version of MLAgentBench with no modifications.

918 919 921 922 923 924 925 926 927 928 ## Your Role 929 930 931 ## Core Requirements 932 933 934 ## Environment Setup 935 936 937 938 939 940 → '/home/instructions.txt' 941 ### Test Dataset Information 942 943 instructions 944 945 ## Submission Instructions 946 ### File Format and Location 947 948 949 ### Validation Process 950 951 952 953 954 955 ### Final Submission 956 957 958 ## Evaluation Criteria 959 960 instructions 961 962 ## Important Rules 963 964 → general instructions take priority 965 966

Figure 2: The prompt we use to initialize all scaffolds, adapted from MLE-bench (3).

```
# Machine Learning Engineer Challenge: TimeSeriesGym Competition
You are a Machine Learning Engineer tasked with solving complex ML problems in the
→ TimeSeriesGym offline competition. This competition tests your ability to understand

→ problems, follow instructions, and build/train/evaluate ML models.

 You must solve each task by training a model and generating predictions on the test set
- Hand-labeling the data to produce submissions is strictly prohibited
\#\#\# Critical Files and Locations
- **Competition Instructions**: Located at `/home/data/description.md` - This is your primary

→ reference for understanding the specific problem
- **Dataset**: All data files are in 'home/data/' directory

- **Submission Path**: Your final submission MUST be saved to `/home/submission/` in the
\hookrightarrow format specified in the instructions
- **Environment Instructions**: These general instructions can be found at
- We've created our own train/test splits for evaluation purposes
- The data in `/home/data/` may differ slightly from what's described in the competition
- Use the provided train/test splits for your work
- Your submission MUST be saved to the exact path: `/home/submission/`
- The file format must strictly follow the specifications in `description.md`
- Failing to use the correct path or format will result in a failed evaluation
1. Before finalizing your submission, validate its format using the validation server 2. Use the command: `curl -X POST -F "file=@${SUBMISSION_FILE}"

→ http://localhost:5000/validate`

3. Alternatively, use the provided script: `/home/validate_submission.sh`
4. The validator will confirm if your submission format is valid (but won't provide a score)
5. Make corrections if needed and revalidate until you receive a confirmation
- Once validated, ensure your final submission file remains at `/home/submission/`
- Only the last file in this location will be evaluated
- Double-check that your model's predictions cover the entire test set
- Review the submission format requirements one last time before completing
- Your submission will be graded based on the metric specified in the competition
- Your goal is to achieve the highest possible score
 Viewing or copying others' solutions is prohibited and will result in disqualification
- In case of conflicts between these instructions and `/home/data/description.md`, these
```

C DETAILED EVALUATION RESULTS

C.1 FULL BENCHMARK EVALUATION RESULT

Challenge	Evaluation Metric	Best @ 3	Average @
Kaggle Challenges			
AMP-Parkinson's Disease	Symmetric Mean Absolute	111.22	100.50
Progression Prediction	Percentage Error	111.22	120.50
ASHRAE - Great Energy Predictor III	Root Mean Square Logarithmic Error	1.02	1.92
Child Mind Institute- Detect Sleep States	Event Detection Average Precision	0.02	0.01
Google Brain - Ventilator Pressure Prediction	Mean Absolute Error	0.58	5.40
G2Net Gravitational Wave Detection	Area Under	0.51	0.50
	ROC Curve		
HMS - Harmful Brain Activity Classification LANL Earthquake Prediction	KL Divergence Mean Absolute Error	1.16 2.18	1.56 2.89
M5 Forecasting - Accuracy	Weighted Root Mean Squared Scaled Error	0.82	3.13
Online Product Sales	Root Mean Square	0.91	1.08
Offine Froduct Sales	Logarithmic Error	0.51	1.00
Optiver Realized Volatility Prediction	Root Mean Square Percentage Error	0.28	0.30
OSIC Pulmonary Fibrosis Progression	Laplace Log Likelihood	-7.39	-12.87
Recruit Restaurant Visitor Forecasting	Root Mean Square	0.55	0.60
Recruit Restaurant Visitor Forecasting	Logarithmic Error	0.55	0.00
Sberbank Russian Housing Market	Root Mean Square Logarithmic Error	0.39	0.40
TimeSeriesGym Originals			
Convert ResNet TensorFlow	Custom Code Condinin Text C	5/9	510
implementation to PyTorch Convert STOMP Algorithm	Custom Code Grading Test Cases Custom Code Grading Test Cases	2/4	5/9 1.6/4
implementation in R to Python	Custom Code Grading Test Cases	2/4	1.0/4
Evaluate MOIRAI time series foundation model on the Context Is Key (CiK) benchmark	Resolved (Binary)	N/A	N/A
Evaluate Chronos time series foundation model on the NN5 dataset within Context Is Key	Resolved (Binary)	N/A	N/A
(CiK) benchmark Implement & Evaluate CSDI to Impute PM2.5 Data	Mean Absolute Error	N/A	N/A
Train & Evaluate CSDI to Impute PM2.5 Data	Mean Absolute Error	N/A	N/A
GIFT-EVAL: A Benchmark for General Time Series* Forecasting Model Evaluation	Mean Absolute Percentage Error	N/A	N/A
Hexagon ML UCR Time Series Anomaly Detection*	Adjusted Best F1 Score	0.38	0.38
Long Horizon Time Series Forecasting	Mean Squarred	N/A	N/A
Using Time Series Library Long-Horizon Weather Forecasting using	Error		
Time Series Library's Itransformer	Exact Match (Binary)	N/A	N/A
MIT-BIH ECG Arrhythmia Detection	Accuracy	0.87	0.84
MOMENT for Anomaly Detection on UCR datasets	Exact Match (Binary)	N/A	N/A
PTB-XL ECG Classification	Accuracy	0.81	0.80
TimeSeriesExam: A Time Series Understanding Exam	Accuracy	N/A	N/A
Derived Challenges			
Google Brain - Ventilator Pressure Prediction			
With Missingness	Mean Absolute Error	2.72	6.66
	Code Enhancement		
Improve PTB-XL ECG Classification Code	(Experiment Tracking, Readability, Reproducibility)	N/A	N/A
MIT-BIH Arrhythmia Detection with Weak Supervision	Accuracy	0.87	0.77
Optiver Realized Volatility Prediction With Missingness	Root Mean Square	0.33	0.33
Optiver Realized Volatility Prediction	Percentage Error Improvement in Root Mean	0.01	
with Hyper-parameter Optimization	Square Percentage Error	-0.01	-0.15
PTB-XL ECG Classification	Improvement in Accuracy	0.08	0.03
with Hyperparameter Optimization	l	00	0.05

Table 10: Comprehensive performance metrics for AI agents on all TimeSeriesGym challenges, including best and average scores from three runs. Agents struggle to solve TimeSeriesGym Original challenges. Derived challenges demonstrate how added complexity (missingness, hyperparameter optimization) affects performance. These results highlight both the capabilities and limitations of current ML engineering agents across diverse time series tasks.

 We provide detailed evaluation results for each task in TimeSeriesGym in Tab. 10. Each task was executed with three random seeds; we report both the average and best scores across these runs. Entries marked N/A indicate that the agent failed to produce a valid solution due to exceeding the time- or step-limit. For the GIFT-Eval and UCR Anomaly Detection challenges, evaluation is performed on a subset of the original benchmark, since our focus is on assessing the agent's ability to leverage the research repository rather than full benchmark performance.

C.2 ABLATION STUDY EVALUATION RESULT

Challenge	8 hours / 100 steps	12 hours / 150 steps	OpenHands	MLAB	03	claude-3-7	No Reminder
Child Mind Institute— Detect Sleep States	0.02 / 0.02	0.00 / 0.00	0.00 / 0.00	N/A	0.11 / 0.11	N/A	N/A
Optiver Realized Volatility Prediction with Missingness	0.32 / 0.33	0.31 / 0.31	0.64 / 0.64	0.42 / 0.89	0.42 / 0.43	0.25 / 0.25	0.32 / 0.32
Convert ResNet TensorFlow to PyTorch	0.56 / 0.56	0.89 / 0.89	0.56 / 0.44	0.56 / 0.56	0.56 / 0.56	0.89 / 0.78	0.56 / 0.56
PTB-XL ECG Classification with Hyperparameter Search	0.45 / 0.22	0.45 / 0.10	N/A	N/A	0.14 / 0.10	0.09 / 0.06	0.05 / 0.03
MOMENT Anomaly Score Calculation	N/A	N/A	0.00 / 0.00	0.00 / 0.00	0.00 / 0.00	N/A	N/A
MIT-BIH Arrhythmia Detection with Weak Supervision	0.83 / 0.56	0.80 / 0.60	0.73 / 0.72	N/A	0.53 / 0.45	0.79 / 0.66	0.74 / 0.68

Table 11: This table presents detailed ablation study results comparing agent performance across seven different configurations on the TimeSeriesGym-Lite benchmark. Each cell shows Best@3/Avg@3 scores, with N/A indicating no valid solutions. The experiments compare time variations (8 hours/100 steps vs. 12 hours/150 steps), scaffold differences (OpenHands, MLAgentBench), model types (o3, claude-3-7), and whether agents are reminded of remaining time. Results show mixed effects of increased time allocation, with certain challenges (ResNet conversion) benefiting significantly while others show minimal improvements or even degradation. Both model type and scaffold selection substantially impact performance, with different models excelling on different challenges. This highlights the complex interplay between agent configurations and task types in ML engineering.

C.3 EVALUATION ON SPECIFIC ML SKILLS FOR DIFFERENT BASE MODELS

Similar to Tab. 3, we stratify results by core ML skills across different base models. As shown in Tab. 12, with the AIDE scaffold, Claude 3.7 performs best on handling data missingness and code migration, while o3 performs best on hyper-parameter tuning but struggles with handling data missingness (highest error).

Table 12: Performance of base models with AIDE (Best@3 / Avg@3) on different ML skills. Arrows indicate whether lower (\downarrow) or higher (\uparrow) values are better.

ML Skill	Metric	GPT-4.1	о3	Claude 3.7
Handling Data Missingness	Root Mean Square Percentage Error (\$\dagger\$)	0.33/0.33	0.42/0.43	0.25/0.25
Code Migration	Percentage of Test Cases Passed (†)	0.56/0.56	0.56/0.56	0.89/0.78
Hyper-parameter Tuning	Improvement in Accuracy (†)	0.08/0.03	0.14/0.10	0.09/0.06

C.4 GPT-4.1'S FAMILIARITY WITH TIMESERIESGYM CHALLENGES

Figure 3: $\mbox{GPT-4.1's familiarity with TimeSeriesGym challenges, compared to its familiarity with MLE-bench.}$

D FAILURE MODE ILLUSTRATION

D.1 AGENTS MISS IMPORTANT INFORMATION

As illustrated in Fig. 4, OpenHands spends five consecutive steps scanning to the end of the model file in an attempt to discover the correct import method for MOMENT. This behavior reveals two critical shortcomings. First, the agent follows a greedy, linear scanning strategy with no early-stop criterion or hierarchical search plan—it blindly paginates through the file rather than formulating a focused query. Second, it fails to leverage the README, which explicitly documents the proper import instructions. Together, these issues demonstrate a lack of strategic planning and contextual awareness. We observed a similar pattern in AIDE, where blind iteration and omission of available documentation likewise impede efficient problem solving.

```
1146
       step 19
1147
       FileReadAction(path='/home/data/moment/momentfm/models/moment.py',
1148
       start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
       security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
1149
       view_range=[1, 60])
1150
1151
       step 20
1152
       FileReadAction(path='/home/data/moment/momentfm/models/moment.py',
       start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
1153
       security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
1154
       view_range=[61, 120])
1155
1156
       . . .
1157
       step 25
1158
       FileReadAction(path='/home/data/moment/momentfm/models/moment.py',
1159
       start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
1160
       security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
1161
       view_range=[361, 420]
1162
```

Figure 4: OpenHands wastes 5 steps on inspecting model file while the correct way to import the model is in README.

D.2 AIDE INTERPRETER EXECUTION CAN TRIGGER UNDESIRABLE BEHAVIOR

As shown in Fig. 5, AIDE invokes Python's exec in a persistent global_scope, then employs an LLM-based "judge" to inspect the generated code and its stdout. Any logic guarded by if __name__ == "__main__": will be skipped—because global_scope does not set __name__ to "__main__". As a result, the judge may erroneously declare such runs valid, even when critical execution paths never occur, and further retries or debug steps cannot correct this oversight.

```
global_scope: dict = {}
while True:
    code = code_inq.get()
    os.chdir(str(self.working_dir))
    with open(self.agent_file_name, "w") as f:
        f.write(code)

    event_outq.put(("state:ready",))
    try:
        exec(compile(code, self.agent_file_name, "exec"), global_scope)
    except BaseException as e:
    ...
```

Figure 5: AIDE 's interpreter does not execute code under main environment.

1243

1245

1246

1247

1248

1285

D.3 AIDE'S SINGLE-FILE APPROACH IS ERROR-PRONE

As shown in Fig. 6, AIDE encapsulates the entire forecasting workflow in a single script. Whenever it must invoke system commands, it relies on Python's subprocess module—an approach that can obscure full tracebacks and miss intermediate errors. Furthermore, to import modules from the research repository, AIDE repeatedly alters the Python search path or changes the working directory (e.g., via sys.path.append), which is inefficient and brittle.

```
1249
         import os
1250
         import subprocess
1251
         import sys
         import shutil
1252
         import numpy as np
1253
1254
         \textbf{def} \ \ install\_requirements(tsl\_dir):
              req_file = os.path.join(tsl_dir, "requirements.txt")
1255
              req_file_abs = os.path.abspath(req_file)
1256
              print(f"Installing requirements from {req_file_abs} ...")
              try:
1257
                  subprocess.run(
1258
                      [sys.executable, "-m", "pip", "install", "--upgrade", "pip"], check=True
1259
                  subprocess.run([sys.executable, "-m", "pip", "install", "wheel"], check=True)
1260
                       [sys.executable, "-m", "pip", "install", "-r", req_file_abs],
1261
                       check=True,
1262
                      cwd=tsl_dir,
1263
              except subprocess.CalledProcessError as e:
                  print("Failed to install requirements!")
1264
                  print("Output:", e.output if hasattr(e, "output") else "No output")
1265
                  svs.exit(1)
1266
1267
         def prepare_weather_data(tsl_dir, input_dir):
              dataset_dir = os.path.join(tsl_dir,
                                                     "dataset", "weather")
1268
              os.makedirs(dataset_dir, exist_ok=True)
1269
              src_weather = os.path.join(input_dir, "weather.csv")
dst_weather = os.path.join(dataset_dir, "weather.csv")
1270
              \textbf{if not} \ \texttt{os.path.exists(dst\_weather):}
1271
                  print(f"Copying {src_weather} to {dst_weather}")
                  shutil.copy(src_weather, dst_weather)
1272
              else:
1273
                  print(f"{dst_weather} already exists.")
         def run_itransformer(tsl_dir, submission_dir):
1275
              runpy = os.path.join(tsl_dir, "run.py")
1276
              pred_file = os.path.abspath(os.path.join(submission_dir, "pred.npy"))
                Set label_len to 96 as per the competition instructions
1277
              cmd = [
1278
                  sys.executable,
                  runpy,
1279
                  "--task name".
1280
                  "long_term_forecast",
              ... #skip to save space
1281
1282
         if ___name_
                      == "__main__":
1283
             main()
1284
```

Figure 6: AIDE's solution for utilizing Time-Series-Library repository.

D.4 03 CAN HALLUCINATE SUBMISSION FILES

As shown in Fig. 7, for the MOMENT for Anomaly Detection challenge, o3 generates a submission file by simply producing a zero array that matches the format of the sample submission file, without any genuine modeling attempt.

```
1301
1302
       import os
       import numpy as np
1303
1304
       1. paths
1305
       INPUT_PATH = "./input/data.npy"
       SUBMISSION_DIR = "./submission"
1306
       SUBMISSION_FILE = os.path.join(SUBMISSION_DIR, "anomaly_score.npy")
1307
       os.makedirs(SUBMISSION_DIR, exist_ok=True)
1308
1309
       # 2. load data
1310
       data = np.load(INPUT_PATH) # (1000, 512)
       assert data.shape == (1000, 512)
1311
1312
       # 3. offline-safe reconstruction (identity) -> anomaly score = 0
1313
       reconstruction = data.copy() # exact reconstruction
1314
       anomaly_score = np.zeros_like(data, dtype=np.float32)
1315
       # 4. simple "metric" on a held-out split (expected to be 0)
1316
       val_idx = np.arange(data.shape[0])[::5] # 20 % indices
1317
       val_mse = anomaly_score[val_idx].mean() # always 0
1318
       print(f"[check] mean MSE on validation subset: {val_mse:.6f}")
1319
       # 5. save submission
1320
       np.save(SUBMISSION_FILE, anomaly_score)
1321
       print(f"Saved anomaly scores to {SUBMISSION_FILE}
1322
       1323
```

Figure 7: 03 generates a zero array as the anomaly score that matches sample submission file format without modeling attempt.

TWO-FACETED GRADING APPROACH

1352	We implemented a dual grading methodology to provide comprehensive evaluation of submitted solu-
1353	tions. This section introduces the general concept of our two complementary evaluation approaches:
1354	exact grading and judge-based grading.
1355	
1356 1357	E.1 Grading Methodologies
1358	E.1.1 EXACT GRADING METHODOLOGY
1359 1360 1361 1362 1363	The exact grading approach represents a deterministic, checklist-based evaluation focused on verifying specific required components. This objective method evaluates submissions against explicit criteria with binary pass/fail outcomes, providing clear feedback on technical requirements. The exact grading methodology emphasizes quantifiable metrics and compliance with predefined specifications.
1364	Key aspects of exact grading include:
1365 1366	Binary verification of required components (present/absent)
1367	 Point-by-point scoring against a predefined checklist
1368	 Focus on technical compliance with specifications
1369 1370	 Reproducible results with minimal subjective interpretation
1371 1372	E.1.2 JUDGE-BASED QUALITATIVE METHODOLOGY
1373 1374 1375	The judge-based approach provides a nuanced evaluation that assesses artifacts beyond mere presence of required components. This method employs large language models (LLMs) as judges to evaluate submissions against custom criteria with chain-of-thought reasoning.
1376 1377	Key aspects of judge grading include:
1378	Scoring on a continuous scale
1379 1380	• Evaluation of code quality, architecture design, and implementation elegance
1381	 Detailed reasoning explaining score justification
1382	• Ability to recognize exceptional implementations that exceed basic requirements
1383	

E.2 IMPLEMENTATION FOR PTB-XL CLASSIFICATION CHALLENGE

E.2.1 EXACT GRADING IMPLEMENTATION

For the PTB-XL Classification Challenge, our exact grading implementation evaluates code artifact submissions through:

- 1. **Feature Extraction**: Using regular expression pattern matching and AST parsing to identify required code components.
- 2. Binary Verification: Checking each requirement against pass/fail criteria.
- 3. Static Analysis: Using linting tools to check against PEP 8 standards.
- 4. File Structure Validation: Verifying required files and directories.

The exact grading for this challenge evaluates four primary categories, each worth 25% of the final score:

- TensorBoard Usage: Proper imports, SummaryWriter initialization, metric logging, etc.
- Code Quality: Syntax verification, docstrings, type annotations, and PEP 8 compliance.
- Hydra Configuration: Proper imports, decorator usage, and configuration files.
- Model Accuracy: Prediction accuracy against ground truth labels.

E.2.2 JUDGE-BASED IMPLEMENTATION

For this challenge, we employed G-Eval (14), a framework that uses LLMs with chain-of-thought reasoning. The implementation evaluates code through:

- 1. Evaluation Steps: Using predefined steps for chain-of-thought reasoning.
- Comprehensive Assessment: Evaluating multiple parameters including code structure and architecture decisions.
- 3. **Score Calculation**: Generating normalized scores on a 0.0-1.0 scale.
- 4. **Reasoning Provision**: Providing detailed explanations for the evaluation.

E.3 COMPARATIVE ANALYSIS

The two approaches serve complementary purposes:

Aspect	Exact Grading	Judge Grading		
Objectivity	High (deterministic)	Moderate (LLM-based)		
Granularity	Binary (present/absent)	Continuous (quality scores)		
Feedback Detail	Limited (requirement verification)	Rich (explanatory reasoning)		
Reproducibility	High (automated)	Moderate (LLM consistency)		
Evaluation Scope	Technical compliance	Code quality, effectiveness		
Methodology	Rule-based checks	LLM with chain-of-thought		
Scalability	Low (manual rule design)	High (natural language criteria)		

Table 13: Transposed Comparison of Exact and Judge-Based Grading Approaches

E.4 COMBINED GRADING BENEFITS

Using both approaches provides several advantages:

- Ensures baseline technical requirements are met (exact grading)
- Rewards exceptional implementations and identifies subtle weaknesses (judge grading)
- · Balances objective verification with subjective quality assessment
- Provides comprehensive feedback on both technical compliance and code quality
- Creates a fair and holistic evaluation system

E.5 GRADING EXAMPLES FOR PTB-XL CHALLENGE

Below are example outputs from both grading systems applied to the same submission for the PTB-XL Classification Challenge.

E.5.1 EXACT GRADING OUTPUT

```
1448
       TensorBoard Usage (25% of total score)
1449
       TensorBoard SummaryWriter is properly imported: 0.2/0.2
1450
       SummaryWriter is initialized: 0.2/0.2
1451
       Metrics are logged with add_scalar: 0.2/0.2
       Model graph is logged with add_graph: 0.2/0.2
1452
       Found 2 log files in runs/
1453
       TensorBoard log files are present: 0.2/0.2
1454
       Final score: 1.00/1.00
1455
       Code Quality and Documentation (25% of total score)
1456
       Syntax check passed: 0.1/0.1
1457
       Model file has module docstring: 0.1/0.1
```

```
1458
       Training file has module docstring: 0.1/0.1
1459
       Both files have type annotations: 0.1/0.1
1460
       Model classes have docstrings: 0.05/0.05
1461
       Functions have docstrings: 0.1/0.1
       Docstrings have Args/Returns sections: 0.1/0.1
1462
       Linting score: 0.25/0.25
1463
       Model file has no PEP 8 violations
1464
       Training file has no PEP 8 violations
       Model file follows style guidelines
1465
       Training file follows style guidelines
1466
       Final score: 0.90/0.90
1467
1468
       Hydra Configuration Usage (25% of total score)
1469
       Hydra is properly imported: 0.2/0.2
       @hydra.main decorator is used: 0.2/0.2
1470
       OmegaConf/DictConfig is used: 0.2/0.2
1471
       Config is used for model parameters: 0.2/0.2
1472
       Config file exists with model parameters: 0.2/0.2
1473
       Final score: 1.00/1.00
1474
       Model Accuracy (25% of total score)
1475
       Model prediction accuracy: 1.0/1.0
1476
1477
       Evaluation Summary
1478
       TensorBoard score: 1.00/1.0 (25% weight)
       Code quality score: 1.00/1.0 (25% weight)
1479
       Hydra config score: 1.00/1.0 (25% weight)
1480
       Model accuracy: 1.0 (25% weight)
1481
       Overall score: 1.00/1.0
1482
```

E.5.2 JUDGE-BASED GRADING OUTPUT

1483

```
1485
       File: example/model.py
1486
       Type: Model Script
1487
       - Code Quality and Documentation
1488
         Score: 0.90
1489
         Reason: The module has clear docstrings explaining the model's purpose
1490
          \hookrightarrow and architecture. Function parameters and return types are
1491
          \,\,\hookrightarrow\,\, well-annotated. Class and method docstrings include accurate Args
          \hookrightarrow and Returns sections. The code adheres to PEP 8, with proper
1492
          → spacing and naming conventions. The architecture is logically
1493
          \rightarrow structured, but the module-level docstring could be more detailed.
1494
1495
        - Model Architecture Design
1496
         Score: 0.93
         Reason: The model utilizes configuration parameters effectively.
1497
          → Architecture includes convolutional layers suitable for ECG
1498
          → classification. Implements an efficient forward method and utility
1499
          → functions like parameter counting. Supports hyperparameter
             flexibility. Minor issue: model summary function could be better
1501
             integrated.
          \hookrightarrow
1502
       - Model Configuration Handling
1503
         Score: 0.86
1504
         Reason: Configuration object is accepted with fallback defaults.
1505
          → Parameters are correctly extracted from config. Compatible with
          → Hydra; well-documented parameter usage. Lacks explicit
1506
          → demonstration of usage with multiple configurations.
1507
1508
1509
       File: example/train.py
1510
       Type: Training Script
1511
```

- TensorBoard Usage Score: 1.00 Reason: SummaryWriter is correctly imported and initialized. Metrics → are logged with add_scalar. Model graph is logged with add_graph. → Writer is closed properly after training. - Code Quality and Documentation Score: 0.93 Reason: Clear module-level docstring and good use of type annotations. \hookrightarrow Functions are well-documented with Args and Returns. Adheres to \hookrightarrow PEP 8. Code structure is logical, variable naming is clear. Minor \hookrightarrow improvements possible in consistency. - Hydra Configuration Usage Score: 1.00 Reason: Hydra is imported and used with @hydra.main. OmegaConf and \hookrightarrow DictConfig are correctly used. Configuration passed to model with → appropriate config_path/config_name. - Model Training Completeness Score: 0.96 Reason: Includes full training pipeline: data loading, preprocessing, → training/validation loops. Implements loss calculation, optimizer, \hookrightarrow LR scheduling, checkpointing, and final predictions.