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ABSTRACT

GRPO has achieved impressive success in the landscape of reasoning models.
However, the motivation behind its origins along with the reasons for its effec-
tiveness remain elusive. In this work, we fill some of the gaps and demonstrate
that in on-policy setting, GRPO’s optimization can be viewed as a weighted com-
bination of maximization of likelihood for correct rollouts and minimization for
the incorrect ones. This finding gives a different perspective on the optimization
landscape of GRPO. Motivated by this, we analyze the positive and negative part
of GRPO’s objective function independently, and find that their global minima
correspond to undesired solutions. While optimization of the positive term leads to
entropy minimization and length collapse, optimizing for the negative term leads to
entropy maximization and length explosion. Using this lens, we show the presence
of instability in on-policy training of some recent algorithmic advances trying to
simplify GRPO’s objective. Surprisingly, we find that PPO is also susceptible to
such training instabilities. However, despite the presence of bad global minima
in GRPO’s objective function, it doesn’t converge to either of them. We identify
design choices in GRPO’s advantages that aid convergence of GRPO to good
minima. We also demonstrate the effectiveness of using clipping in stabilizing
the optimization process, thereby preventing training instabilities even when train-
ing only for minimizing the likelihood of incorrect rollouts. This highlights the
surprising stability of off-policy methods as compared to using their on-policy
versions.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has shown impressive improvements in the
reasoning abilities of Large Language Models (LLMs) on tasks like maths, coding, etc. DeepSeek-Al
(2025); Jaech et al. (2024); Team et al. (2025). These improvements are a result of advancements in
the capabilities of the base models, along with development of improved RL algorithms like GRPO
(Shao et al., 2024) and PPO (Schulman et al., 2017b). It is interesting that merely using rewards at the
end of model’s prediction (output verifiable rewards) is sufficient to observe non-trivial improvements
in reasoning abilities of LLMs. This observation has led to a large adoption of outcome reward models
(ORMs) in the community resulting in increased popularity of RL finetuning methods like GRPO.
As aresult several modified versions of GRPO have been proposed recently, aiming to improve the
training efficiency and generalization of RL-finetuned models.

Amongst these alternatives, a few of them have tried simplifying GRPO’s objective function. For
instance, (Xiong et al., 2025) demonstrated that very simple algorithm RAFT (and its enhancement
RAFT++) that trains only on the correct rollouts give performance comparable with GRPO. On
the other hand, Zhu et al. (2025) demonstrated that minimizing the likelihood only on the incorrect
rollouts performs comparably to GRPO while improving model’s output diversity. Additionally,
Samineni et al. (2025) demonstrated that a simple combination of the positive and negative losses
as described above, also leads to performance similar to GRPO. A few of the recently proposed
alternatives have also tried modifying the clipping mechanisms in GRPO (MiniMax, 2025; Ahmadian
et al., 2024). Similarly, Zheng et al. (2025); Zhao et al. (2025¢) modify GRPO’s objective function
by considering importance sampling at sequence level. All these methods amongst several others
(Chen et al., 2025a; Lanchantin et al., 2025) aim to simplify GRPO’s objective function and they
have successfully demonstrated their effectiveness on certain datasets and base models. These results
point to the lack of motivation about different design choices in GRPO’s objective function.
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Figure 1: Optimization loss landscape of RLVR methods: (a) The loss landscape consists of
different critical solutions Cpy, Cnr, and Cpr, where Cpy represents the minimum entropy
solution, Cy, represents the maximum entropy solution, and C'py, leads to improved performance
of the model. (b) GRPO stabilizes the model against converging to bad critical solutions C'py, and
Cn1, by controlling the magnitude of the gradient as shown by the length of the arrows. (c) In
off-policy setting when minimizing the likelihood of rollouts with incorrect final answer, the norm of
the gradients becomes larger for a few tokens leading to quicker convergence to C'y1,. However, using
importance sampling (IS) reduces the norm of the gradients resulting in slower convergence to Cnr..
Using clipping further reduces the average norm of the gradients, leading to more stable training.

Another line of works modifies the definition of advantages and rewards in GRPO: Chen et al. (2025b);
Mahdavi et al. (2025); Zhou et al. (2025); Liu et al. (2025); Zhao et al. (2025b); Kang et al. (2025);
Arora & Zanette (2025); He et al. (2025); Prabhudesai et al. (2025); Xiao et al. (2025); Hao et al.
(2025); Fan et al. (2025); Yu et al. (2025); Shafayat et al. (2025); Arnal et al. (2025). In particular,
Prabhudesai et al. (2025) show that using GRPO in unsupervised RL setting by minimizing model’s
entropy could lead to improved performance. On the other hand, Wang et al. (2025b) demonstrated
that maximization of entropy could also lead to improved performance. These contrasting results
have created confusion within the community, highlighting a need to understand the optimization
landscape of GRPO and related simplified objective functions.

In this work, we primarily focus on understanding the role of algorithmic advancements in enabling
improvements in reasoning abilities of LLMs. We ablate several design choices of GRPO trying to
understand what makes it a successful method for RLVR. We demonstrate how these design choices
simplify GRPO’s learning process in on-policy setting to a reweighted version of maximization and
minimization of likelihood on the correct and incorrect samples respectively. Using this perspective,
we analyze the loss on samples with correct and incorrect answers separately, and characterize the
properties of their corresponding critical solutions. Let us term the critical solutions corresponding to
maximizing and minimizing the likelihood for positive (correct) and negative (incorrect) samples
respectively as Cpy, and Cny, (as shown in Fig. 1 (a)). Empirically, we observe that converging to
either of these minimas results in degraded performance, where training on the correct rollouts leads
to collapse of entropy and length of model’s outputs, and training on the incorrect rollouts leads
to explosion of entropy and length of model’s outputs. As GRPO’s gradients can be considered a
weighted mixture of the gradients of these losses, we aim to understand the reweighting mechanism
which prevents GRPO from converging to either of the two bad solutions. As shown in Fig. 1 (b),
we find that the advantages in GRPO help in reducing the norm of gradients when the model comes
closer to either of the minimas in its function space, while increasing the norm of the gradient in the
direction of farther away critical point.

In RL, off-policy methods are mainly used due to efficiency considerations; other things being equal,
on-policy methods are preferred. Surprisingly, we find that off-policy methods that use clipping
(originating in PPO) can have another benefit: they can help avoid instabilities and collapses in
training. Specifically, we find that the on-policy versions of the algorithms in Zhu et al. (2025);
Xiong et al. (2025); Prabhudesai et al. (2025) are prone to instability and collapses, as explained by
convergence to Cpy, and C'cr, above (these works focus their evaluations in off-policy setting without
discussing the on-policy vs. off-policy distinction). The collapsing behavior becomes even more
prominent when utilizing datasets specially crafted with difficult samples. Surprisingly, we also find
that the commonly used policy optimization method PPO is vulnerable to instabilities in training
leading to undesirable collapses in on-policy setting. To understand this in detail, we highlight how
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clipping reduces the norm of gradients as shown in Fig. 1 (c). Overall this indicates the critical role
played by clipping in enabling off-policy learning to surprisingly become more stable than on-policy.

Designing more stable and robust RLVR methods is important from a practical viewpoint, and in an
attempt to improve training stability of existing methods in on-policy setting, we find that utilizing
normalization at token level could be helpful. We further explain the reasons behind this, thereby
providing a new perspective on using token level normalization instead of sequence level, which
has recently gained traction in the community as well Yu et al. (2025); Liu et al. (2025); Yue et al.
(2025b). To summarize, our key contributions are:

¢ We provide a new view on GRPO as a reweighted version of maximization and minimization of
likelihood for correct and incorrect samples.

* We characterize the properties of the critical solutions of the two minimas corresponding to
maximization and minimization of likelihood for correct and incorrect samples, respectively.

* We discover collapses and instability in on-policy training of some recently proposed variations of
GRPO and explain them using the above characterization.

* We show that off-policy training with clipping is surprisingly more stable against collapsing as
opposed to on-policy settings for the above variations of GRPO, PPO, and other algorithms.

* We demonstrate the key role played by the advantages used in GRPO in stabilizing the training.

* We demonstrate how utilizing token level normalization helps achieve improved training stability,
thereby either preventing or delaying the occurrence of collapses.

We defer the detailed discussion of related work and background to Appendix A and B respectively.

2 UNDERSTANDING THE ORIGINS OF GRPO

We consider an episodic MDP given by the tuple (.S, A, P, 7, ), where S is a set of states and A, is a
set of actions allowed for a given state s;. We assume same action set for all states gives us Ag, =
A, =...=A,,.=A. The policy is parametrized by ¢ and defined as 7y : R* — [0, 1]¥, where v is the
cardinality of A and d is the dimension of the input. Denote by P : S x A x S — R the transition
probability matrix, by r; the reward given by the environment at time stamp ¢. Let the process be
episodic and always start from a state s;. We can now define the advantage function (A, (s, at))
for our policy mgp: Az (st,at) = qr(St,at) — v (8t) = qr(se,as) — Zai mo(alst)qr(st,a;), where
¢ (8t, at) represents the Q-value function calculated at state s; and for action a;.

While the above formulation can be used for general MDPs, in the case of language models we get a
special MDP: The input prompt g denotes the starting state given by s;. An action refers to prediction
of the next token and a state is obtained by appending the predicted token (i.e. s; = (g, a1, ..., az—1)).
Given the current state, the next state is deterministically determined by the action. A response is a
set of actions given by a = (a1, as, ..., ar), where the prediction of end of sequence (EOS) token
determines the end of episode. We use verifiable rewards given at the end of the episode, where
correct prediction results in a reward score of one, and an incorrect prediction results in zero reward.
We will now derive GRPO using PPO as the base method, where PPO’s objective function is:

J(0,q) = a ‘Z moladlst) o a) elip( L) G AL (s, an)] (1)
= lla

Oo1a at“st) To1a (at‘st)

where 7y and 7y_, represent the current and the old policy utilized for sampling the rollouts. PPO
utilizes generalized advantages (A (s¢, a;)) which are motivated from TD learning (Sutton, 1988).
Training of the policy can be done in either off-policy or on-policy setting. In the on-policy setting
the same model is used for training and generating the rollouts (i.e., my,,, = 7p), whereas in the
off-policy setting an older version of our current policy is utilized for generating the rollouts.

GRPO builds on Eq. 1 and modifies the calculation of advantages. It approximates the computation
of Q-value functions by a single rollout, which results in an unbiased estimator with high variance. It
also assumes that the Q-value and the value functions are the same for all the states, where the value
function is calculated by generating rollouts only at the starting state (s1). This gives

1
Aﬂ(‘st?at) = Aﬂ'(StJrlvatJrl) = Aﬂ(st+naat+n) = A.,,(q,a) =Tr—-——= Zri, )
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where K is the number of rollouts generated for each sample g. GRPO also divides A, (S¢+1, at41)
by the standard deviation of the rewards for the sampled trajectories. Clearly, this design choice lacks
the desired motivation. With these approximations, we can now rewrite Eq. 1 in the following way:

J(6,q)= o Tal 2 Z a at|8t) moladds) oy etip(e)_ 314 (g.0) G

a~7Te o1a ( Oora (t]st) Tog1a (@t]St)

This yields the GRPO’s objective function. Here note that we do not incorporate the KL terms as
recent works: Zhou et al. (2025); Hu et al. (2025) have shown that using GRPO without the KL
divergence results in faster convergence and improved performance.

2.1 ON-pPOLICY GRPO AND ITERATED MLE

GRPO was motivated by PPO which in turn was obtained by modification of TRPO (Schulman et al.,
2017a) whose history goes further back. However, the conceptual underpinnings of GRPO become
somewhat obscured because of this long chain. Here we offer a way to think about on-policy version
of GRPO in terms of an arguably simple and natural algorithm we call iterated MLE. Consider the
following simple iterated maximum likelihood optimization algorithm: in each iteration, sample
a prompt ¢, and then sample the rollouts a for this prompt. We form an expression for likelihood
by taking the positive sign for a having the correct outcome and the negative sign for a having the
incorrect outcome (specified by A58 (q, a) taking values +1 and —1, resp.).

lal

LMEB(0.q)= B Y A7(g,a)loglme(ars,)). @
a~mo(alq) 7
) 0;+a E %A“g“(q a)V log[mg(arls:)] = 6; + « ZAS‘gn vm(at|st)
i+1 = U x ) olat|St)| = Ui —
armg(alg) = a~m<a|q>t ¢ 7T9(at|8t)
&)
In the case of GRPO we can write the gradients for Eq. 3 in the on-policy setting (79 = m,,,) as:
|al
« Vmg(at|st)
iy =0i+a E —Ax(ga)) ————". (6)
a~mo(alq) al t:Zl o (a|st)

By comparing Eq. 5 with Eq. 6, it is clear that we can consider GRPO as doing reweighted version
of iterated MLE, where the reweighing of gradients is done at sample level with weight given by

[Ax(g.a)] Importantly, note that the sign of A,(q,a) agrees with A5%%(q, a). We investigate the

la]
gradient update in case of PPO in App.G. In summary, we have:

Takeaway 1

In the on-policy setting, GRPO behaves like reweighted iterated MLE.

With this new perspective, we will now try to uncover the role the reweighting mechanism and
clipping used in GRPO’s objective function. But first we define our experimental setup below.

3 EXPERIMENTAL SETUP

To make our findings robust across different settings, we apply various RLVR finetuning methods
(GRPO, Lp1,, LnL, Lo, PPO) on several training datasets: SimpleRL (Zeng et al., 2025), Count-
down (Pan et al., 2025), Numina-Math (LI et al., 2024), and Numina-Math Hard which we specially
crafted ourselves by filtering the prompts in Numina-Math that fail at Pass@2 when evaluated using
Qwen2.5-7B (Qwen et al., 2025). More datasets details are in App. K. We also use multiple models:
Qwen2.5-7B, Qwen2.5-7B-Instruct, and Llama3.1-8B-Instruct (Grattafiori et al., 2024). In most
of the paper we plot the evolution of accuracy on train set of corresponding runs. The reader will
notice that some of the plots are missing; the corresponding experiments had not been completed
due to limited compute. Of course we are concerned about the test accuracy and we show in Table 1
that high train accuracy correlates with high test accuracy even across datasets different from the
training dataset. For test set we use Math 500 (Hendrycks et al., 2021) , GSMS8K (Cobbe et al., 2021),
Minerva-Math (Lewkowycz et al., 2022), College-Math (col, 2024), OlympiadBench (He et al., 2024),
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and Gaokao-2023 (Zhang et al., 2024). Many of our plots involve a single model trained on multiple
datasets (varying datasets), the base model in these plots is Qwen2.5-7B. Similarly, we have plots for
varying base models for a fixed dataset SimpleRL. Ideally, one would try all combinations of datasets
and models; this however is computationally infeasible. Experiments are run only once because of a
large number of experiments. We use 8 rollouts per prompt, batch size of 128 prompts, training batch
size of 128 x 8 samples for on-policy training, and 32 x 8 samples for off-policy training. For most
other hyperparameters we use the default settings from VeRL (Sheng et al., 2024).

4 UNWRAPPING GRPO

In this section, we will perform several ablations on the design choices of GRPO to highlight the key
ingredients behind GRPO’s success. The ablations include training only on the correct rollouts or the
incorrect ones, the use of advantages, on-policy and off-policy training with clipping. Let us start by
writing the empirical expectation of GRPO’s objective function in Eq. 3 decomposed according to
whether the response a to ¢ has the correct outcome or not:

mo(at|se) ., mo(a|st)
J(0,q) = g g ———A.(q,a),clip(—————=,1 —¢,1+¢

€A+ Oo1a at‘st) T0o1a (at|5t)

|al

@@+ |Zm | Tolardse) Aﬂ<q,a>,cnp<m71—e,1+e>Aw<q,a>]> %

aEA— TOo1a at|5t) 014 (at‘st)

where AT corresponds to the set of correct rollouts, and A~ refers to the set of incorrect rollouts.
Thus, AT U A~ = A, where all the rollouts are sampled from 7y_,,. Note that a € A" implies
Ar(g,a) > 0,and a € A~ implies A,(g,a) < 0. To ablate the use of advantages in GRPO, we
replace the advantages in equation 7 with their signs. (This gives a version of GRPO that’s similar to
iterated MLE but with clipping.) Let us name the objective corresponding to the set A™ as Positive
Likelihood (— Lpr,) and the objective corresponding to the set A~ as Negative Likelihood (—Lnr,).
In the on-policy setting, where 7y = my,,,, these objectives simplify further as follows:

mo(ay|ss) Vomg(as|s:)
LPL 0 q |.A+| Z |a| Z i Volpr= |.A+‘ Z ‘a| Z o at|5t =0 ®)

77901(1 (at ‘St)

a€ At a€ At
mo(ay|ss) Vomo(at|st)
L1, (0 ; VoL =0 9
w0 =5 |Z|a|Z eladds VP |€ZA, |a|Z ro(ar]si) ©

We would like to characterize the minimizers of the two objective functions above. We first do
this in an idealized setup where the response a consists of only one token and moreover we use
the expectation instead of the empirical mean used in the expressions for Lpr, and Ly, above. We
suggest that the minimization of Lpy, and Ly, leads to the problem of minimizing and maximizing
the entropy of the distribution of a, resp. Note that in Eq. 4, by decomposing the expectation into two
parts according to the correctness of the response a, we can express the objective as the difference of
the entropies (denoted by H) on the two distributions of the two parts:

L™MUE(9, q) = Pr[A3%"(q,a) = 1]H][mg(alq, A2 (q,a) = 1]—
Pr[A$8"(q,a) = —1]H[mg(alq, A3 (q,a) = —1] (10)

Note also from Eqgs. 8 and 9 that the gradients of Lpr, and Lyr, have the same form as that of
L™LE in Eq. 5. Now it’s well known that the entropy of a probability distribution on a finite set
is maximized for the uniform distribution and is minimized when the distribution is concentrated
on a single point. From the above facts we infer that for the idealized case, Lpy, is minimized by a
distribution concentrated on a single token, and Lyt, is minimized by the uniform distribution.

The experimental setup we study differs from the idealized setup above in the following ways: the
number of tokens in the response is not limited to 1, and moreover only the empirical mean is used in
the loss computation. Next, we hypothesize a generalization of the above idealized solution when we
drop the assumption on the length. Assuming that the cardinality of sets A~ and A™ is large enough,
the global minima corresponding to Eq. 8 and Eq. 9 are given by:

1
—Va e A" andt < |a|, (11)

Spr, : mo(ag|s;) = 1Va € AT andt < |a;  Sni : me(a|s:) =
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where |V| represents the size of the vocabulary. Some further justifications are presented in App. J.
When we also drop the assumption of working with the full expectation and work with the empirical
mean, we get the emprically realizable versions of the above solutions which we call Cpy, and Cnr,.
We will see below that empirically these have properties similar to their idealized counterparts:

Cp1: Entropy: Leads to minimum entropy of the model. Output Length: As the solution doesn’t
depend on the output length, the model can learn a shortcut by predicting the answer directly without
the reasoning traces. Stability: Highly stable as the same mean has low variance as compared to
population even for sample sizes of one. Refer to App. J for more discussion.

Cn1: Entropy: Leads to maximum entropy of the model. Output Length: Leads to longer sequence
length as the probability for predicting the end of sequence token also becomes close to ﬁ Stability:
Highly unstable as the sample mean has large variance with respect to population mean. This is

because we are sampling from a uniform distribution. Refer to App. J for more discussion.

Both the solutions Cpy, and Cyy, results in undesired behaviors. We demonstrate the same below.

4.1 ON-PoOLICY LEARNING

Training is performed to minimize Lpy, and Lyr,, and the evolution of accuracy on train set is shown
in Figs. 2 (a, b) and 2 (c, d) respectively. We validate our results across different models as well as
datasets. As observed in these plots the model indeed learns C'pr, and Cny, when trained on their
corresponding objective functions. In addition to the sudden drop in model’s performance, we also
observe significant decease and increase in length of model’s entropy when optimizing Lpy, and Lnt,
respectively (See Fig. 10). The drop in entropy is accompanied by a drop in length of model’s outputs,
whereas increase in model’s entropy leads to an increase in the length of model’s outputs (See Fig. 9).

Additionally, it is evident from comparison of PL and NL on QwenIT 7B in Fig. 2 (c, d) that the
stability of the minima corresponding to Lpr, and Ly, differ significantly from each other. Cpy, is
very stable and as a result the model doesn’t escape it once learned. Thus, we do not observe sudden
jumps after the collapse, and the traces remain similar in nature as shown in Fig. 16. Here, the model
indeed learns the shortcut by outputting the final answer directly without any chain of thoughts. On
the other hand, the critical solution corresponding to Cy, is not stable, and the model tends to escape
it. This is evident from the traces in Fig. 14, 15, which change their nature very quickly and this is
also followed by sudden changes in model’s performance. The model sometimes quickly regains
its performance (as shown in Fig. 15), while sometimes it is not able to retain its performance, but
instead learns to output almost all constant tokens (as evident from traces shown in Fig. 15 (3)).

The observed instability is a result of using a few rollouts, which leads to a high variance of sample
mean as compared to population mean of Eq. 9. Note that this is not the case with Cpy, as it will have
low variance with respect to population mean even for single sample sizes. As a result, Cxy, won’t
have zero gradient, despite having a low value of loss. In fact, the norm of gradients here becomes
extremely large (as shown in Fig. 11 (b,d)), which makes the model converge into the solution space
of functions outputting random tokens with high likelihood. This results in small gradient norms
(even for small sample sizes). We summarize our findings in this section below:

Takeaway 2

* Lpp, minimization leads to collapse: the model converges to a bad critical solution
characterized by sudden loss of entropy and length of model’s outputs.

* Lnp minimization also leads to collapse: explosion of entropy followed by a sudden
increase in length of model’s outputs. However this solution is not stable.

4.2 OFF-POLICY LEARNING

We perform the same experiments in the off-policy setting, with and without the use of importance
sampling and clipping in Fig. 3 and Fig. 7 respectively. As expected, we observe that off-policy
setting makes the training even more unstable and leads to faster collapses. More detailed explanation
on this is provided in Appendix C. Next, we analyze the effect of incorporating importance sampling
with clipping in Fig. 3. We find that surprisingly, the collapse disappears and the training becomes
stable. We note that Zhu et al. (2025) and Xiong et al. (2025) claim performance similar to GRPO
when minimizing Lyt, and Lpy, respectively, however they missed performing rigorous evaluation in
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Figure 2: On-Policy Experiments: Comparison between the evolution of training accuracy for PL
and GRPO (a, c) and NL and GRPO (b, d). Utilizing PL (a, ¢) and NL (b, d) losses leads to collapses
across different datasets (a, b) and models (c, d)
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Figure 3: Off-Policy with Clipping Experiments: Comparison between the evolution of training
accuracy for on- and off-policy PL (a, c) and on- and off-policy NL (b, d). Utilizing clipping with
off-policy either delays or prevents the collapses observed in on-policy training.
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on-policy setting, which unfortunately gave a false impression of the effectiveness of their methods.
It is also surprising to see that using GRPO in on-policy setting with verifiable rewards leads
to improved performance (See Fig. 2), even though its optimization can be considered as some
reweighted combination of the gradient descent corresponding to Lpr, and Ly, with bad critical
points. Therefore, understanding the reweighting mechanism of GRPO becomes imperative.

4.3 UNDERSTANDING THE REWEIGHTING MECHANISM OF GRPO

Now we will analyze the effect of combining the two losses Lpr, and Ly, in an effort to move closer
to GRPO’s objective function. Let us define the combined loss as L¢y, = Mﬂh’ﬁw. Clearly,
the two critical solutions Cpy, and Cp, discussed above, are critical solutions of Ly, as well. To
analyze if the model converges to either of them, we train the policy to optimize L. Comparing
Fig. 4 (a, b) with Fig. 2, it is clear that in on-policy setting, optimizing L, leads to enhanced stability
as compared to optimizing Lpy, or Ly, alone. However, using L¢, still ends up collapsing (in most
cases) if the training is continued for longer time. Similar results hold for off-policy setting without
using clipping and importance sampling (See Fig. 4 (c, d)). But on using the reweighting mechanism
in GRPO, the training becomes stable and almost never collapses. Similarly, in off-policy setting
when not utilizing clipping and importance sampling, the collapse is delayed (See Fig. 4 (c, d)).

To explain the mystery behind GRPO’s enhanced stability, we revert back to analyzing the role
of advantages used in GRPO. Advantages reweigh the gradients for the i*" rollout by multiplying

r; —mean(r)

them with the following quantity: A, (q,a’) = ~—id(ry - This means that as shown in Fig. 1 (b),
the norm of the gradients reduces when the model enters into a space close to either of the critical
solutions Spr,, Snyr. If the model enters very close and starts generating all rollouts correctly or
incorrectly, the gradients becomes zero, which prevents the model to traverse further into the direction
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Figure 4: Understanding the role of advantages in GRPO: GRPO is robust against collapses in
on-policy setting when compared with CL (a, b). In case of off-policy setting GRPO indeed collapses
but the collapse is delayed as compared to CL (c, d). However, when using clipping, we observe CL
to also become stable (e). This highlights the enhanced stability achieved due to clipping.
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Figure 5: Instability of PPO, Noisy GRPO, and Prabhudesai et al. (2025) in on-policy setting: (a)
Instability in training is observed for GRPO when using noisy rewards in on-policy setting. However,
the training becomes stable in off-policy setting on using clipping. (b) Prabhudesai et al. (2025)
undergoes collapse in on-policy as well as off-policy setting. (c) PPO undergoes collapses on training
using Numina Hard and experiences instability when training on Countdown. But, its training remains
stable on SimpleRL across different models (d).

of the critical solutions. The use of advantages therefore helps in stabilizing GRPO and prevents it
from collapsing into either of the two bad critical solutions. We summarize this finding below:

Takeaway 3

The use of advantages in GRPO aids the optimization process by preventing it from converging
to the critical solutions for Lpy, and Ly, thereby stabilizing training.

Now, we will analyze how the use of clipping in off-policy setting stabilizes GRPO’s training.

5 OFF-POLICY FOR PPO, UNSUPERVISED RL, AND NOISY REWARDS

The motivation behind using off-policy training is normally grounded in minimizing the idle time of
GPUs, thereby leading to improved efficiency and faster training. It is thus often believed that in the
absence of efficiency considerations, on-policy training should result in a better policy (Arnal et al.,
2025; Pang & He, 2021). However, in this section we highlight an alternate motivation to prefer
off-policy setting by demonstrating that surprisingly off-policy training could indeed be more stable
than on-policy version when used with clipping and importance sampling.

Building on our preliminary evidence supporting the enhanced stability of off-policy training in
Fig. 3, we further investigate the robustness of this observation on other RLVR methods including
CL, PPO (Schulman et al., 2017b), unsupervised RL (Prabhudesai et al., 2025), and GRPO with
noisy rewards. As shown in Fig. 4 (e), using off-policy setting with clipping and importance sampling
makes the training of combined loss stable, while it remains unstable in on-policy setting. Similarly,
as demonstrated in Fig. 5 (b), we find that training Qwen2.5-7B with unsupervised RL by simply
minimizing entropy as proposed in Prabhudesai et al. (2025) collapses quickly in on-policy setting.
These results corroborate with our findings about Zhu et al. (2025) and Xiong et al. (2025).

Next, we craft an adversarial setting, where we utilize incorrect rewards for 25% of the rollouts. This
leads to calculation of incorrect advantages in GRPO, thereby prompting instability in training as the
gradients don’t become zero even when all the outputs are correct or incorrect. We observe training
instability in on-policy setting, but surprisingly the off-policy setting with clipping remains extremely
stable (See Fig. 5 (a)). Finally, we investigate the stability of the popularly used preference learning
method PPO (Schulman et al., 2017b) in RLVR setting when not utilizing the KL divergence. As
shown in Fig. 5 (c, d), surprisingly PPO collapses in on-policy setting for a few datasets and models,
but it remains stable in off-policy setting (more details in Appendix D).

The above results highlight an imperative role played by clipping in stabilizing the training on varying
datasets, models, and training algorithms. We note that we do not have a complete understanding
about the mechanism which helps clipping stabilize the training. However, preliminary results indicate
that clipping reduces the norm of the gradients as shown in Fig. 12. We hypothesize that this happens
because clipping makes the gradients zero precisely when the model becomes extremely confident or
extremely uncertain about its prediction, thereby preventing large deviations from the base model
used for sampling rollouts. This prevents updates which could lead to collapse or explosion of
model’s entropy. Understanding the mechanisms used by clipping to induce training stability is an
interesting future direction. We now highlight the main takeaway from this discussion below.
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Figure 6: Token normalization improves training stability: (a) Using token normalization with
CL enhances stability. (b) The training performance on SimpleRL and Numina datasets is similar to

GRPO. (c, d) Using token level normalization with PL. and NL results in improved training stability.

Takeaway 4

Off-policy training can surprisingly be more stable than on-policy setting. Clipping helps
induce this stability in training.

6 IMPROVING STABILITY

In this section, we will explore a method which we find helps improve the training stability. Although
minimizing Ly, leads to instabilities in training, we highlight that modifying the normalization to
token level as used in recent works like DAPO (Zhou et al., 2025), Dr GRPO (Liu et al., 2025), VAPO
(Yue et al., 2025b) leads to improved stability. Thus we propose token normalized combined loss:

I . _mo(at]st) mo(at]se) 1
e (6.0) = ~ (T AT (22 Z o)~ 2o 2 Z sy 12
where 1" represents the maximum possible sequence length. We compare TNCL, GRPO, and CL for
on-policy setting in Fig. 6 (a, b) and Table 1. Improved stability of using token normalization with CL
is clearly evident. Note that although, TNCL is not as stable as GRPO, but in cases where collapse
is observed, it is significantly delayed as compared to CL. We also observe delayed collapse when
minimizing Lpr, and Ly, individually but with token level normalization (See Fig. 6 (c, d)). This
analysis strengthens the existing efforts in the community to utilize token level normalization. We
find that the critical solutions Spy, and Sy change their form on using token level normalization:

Spr : mola|sy) = 1Vt< lal,|al + |q| = T,Va € A" (13)

Sy molag|sy) = Vt <lal,la] =1,Va € A~ (14)

V]
where |V| represents the size of the vocabulary. Refer to App. J for more details. Clearly, for the
solutions S and S%;, the length of rollouts is in contrast with the desired distribution of .
Uniform distribution of 7y naturally prefers longer outputs but the desired length is unity, and skewed
distribution in case of S, will prefer shorter output length, but the desired solution requires longer
outputs. This conflict indeed makes it difficult for the model to converge to S, and S7,;, which
in-turn leads to improved stability. This is clearly evident by looking at the rollouts generated on
using token normalization with PL, NL, and CL in Fig. 20, 19, and 18 respectively. The nature of
rollouts has also changed when compared to not using normalization (See Fig. 16, 14, and 15). These
results provide a new lens explaining the increased effectiveness of using token level normalization,
which has recently gained traction (Yu et al., 2025; Liu et al., 2025; Yue et al., 2025b).

7 CONCLUSION

In this work, we unwrap GRPO’s objective function and through rigorous experiments on multiple
models and datasets, we discover instability and collapses in the training algorithms proposed in
recent works and present the reasons for it. Next, we demonstrate how the advantages used in GRPO
help in overcoming this instability. Most importantly and surprisingly perhaps, we find that off-policy
training with clipping can result in enhanced stability than on-policy. We note that due to limited
access to compute our results are focused on the academically feasible setting of models up to a size of
8B and open-source datasets. It would be an interesting future direction to validate our claims related
to enhanced stability of off-policy training with clipping on larger language models. Understanding
how clipping induces stability is an interesting future direction as well.
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A RELATED WORKS

A.1 LLM REASONING

Explicit efforts towards improving the reasoning abilities of language models via RLVR started
primarily with the advent of DeepSeek R1 (DeepSeek-Al, 2025), which demonstrated that utilizing
verifiable outcome reward models (ORMs) could lead to significant improvements in performance of
language models on tasks like maths and coding. Prior to this, GPT4 O1 (Jaech et al., 2024) also
attracted a lot of interest within the community, however until DeepSeek R1, many were skeptical
about ORMs. Given the demonstrated effectiveness of ORMs by DeepSeek R1, we consider the
same sparse reward setting in this work. Another distinct characteristic highlighted by DeepSeek
R1 was the emergence of long chain of thoughts with cognitive behaviors like self correction when
performing RLVR fine-tuning. It was further argued that emergence of such behaviors helped in
improving the reasoning abilities of the model Gandhi et al. (2025); Setlur et al. (2025). Gandhi et al.
(2025) also demonstrated similar behaviors being learned in smaller models when being trained on
more synthetic tasks like countdown. Some of the recent works: Setlur et al. (2025); He et al. (2025);
Wang et al. (2025a); Qu et al. (2025) have argued that improvements observed on performing RLVR
are driven by two mechanisms: 1) sharpening of existing skills 2) chaining of basic skills existing in
the pretrained model. While the former helps in exploitation, the latter aids in exploration. However,
the extent of contribution of these mechanisms towards improving model’s performance remains
unclear as highlighted by some recent works: Wu et al. (2025); Yue et al. (2025a); Zhao et al. (2025a).
These works argue against the chaining hypothesis, by highlighting reduction in pass@n performance
of the RL tuned model when compared with the base model. Nevertheless, since DeepSeek R1 used
GRPO as its preference learning objective function, GRPO has been believed as one of the major
contributor behind the emergence of cognitive behaviors and improved reasoning abilities. However,
the motivation behind the origins and several design choices of GRPO is still obscure. This motivates
us to deeply understand the inner working and motivation behind different design choices of GRPO.

A.2 ALGORITHMS FOR RL REASONING

Motivated by the effectiveness of GRPO, many follow up works have further proposed simplified
versions of GRPO, often leading to similar or slightly improved performance (Zheng et al., 2025; Zhu
et al., 2025; Zhao et al., 2025c; MiniMax, 2025; Chen et al., 2025a; Ahmadian et al., 2024; Xiong
et al., 2025; Samineni et al., 2025). Reinforce++ (Xiong et al., 2025) demonstrated that training only
on the correct rollouts gives very similar performance when compared with GRPO, thereby proposing
a simpler alternative to GRPO. On the other hand, Zhu et al. (2025) demonstrated that minimizing
the likelihood only on the incorrect rollouts gives similar performance as compared to GRPO while
improving model’s output diversity. Additionally, Samineni et al. (2025) demonstrated that a simple
combination of the positive and negative losses as described above, also leads to performance similar
to GRPO. Similarly, MiniMax (2025); Ahmadian et al. (2024) modify the clipping mechanisms
in GRPO, thus leading to the same objective function as GRPO in the on-policy setting. Zheng
et al. (2025); Zhao et al. (2025¢) modify the GRPO’s objective function by considering importance
sampling at sequence level, which also leads to the same objective function as GRPO in on-policy
setting. All these methods aim to simplify GRPO’s objective function and they have successfully
demonstrated their effectiveness on certain datasets and base models. These results clearly question
the lack of motivation about different design choices in GRPO’s objective function.

Recently a plethora of works have also tried using different reward functions Prabhudesai et al.
(2025); Kang et al. (2025); Zhao et al. (2025b); Shafayat et al. (2025); Shao et al. (2025); Aggarwal &
Welleck (2025), while utilizing GRPO for optimization. A few of them including Shao et al. (2025),
have recently demonstrated improvements on utilizing GRPO with spurious rewards like format based
rewards, thereby highlighting the importance of formatting. Surprisingly these improvements continue
to persists even on using random rewards Shao et al. (2025). Prabhudesai et al. (2025) highlighted
that using negative Shannon entropy as the reward could also lead to improved performance. On the
other hand, contrastingly Wang et al. (2025b) demonstrated that maximization of entropy could also
lead to improved performance. These results therefore have created confusion within the community,
highlighting a need to understand the optimization landscape of GRPO and related simplified objective
functions.

Another line of work has shown that the widely adopted preference learning method PPO gives
sub-optimal performance when used for RLVR (Kazemnejad et al., 2024; Xiong et al., 2025). This
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additionally makes it important to understand the reasons which make GRPO superior to PPO in the
reasoning landscape. Now we will describe the background essential to understand the origins of
GRPO and dive further into understanding the motivation and utility of different design choices of
GRPO.

B BACKGROUND

In this section, we will discuss the background and motivation behind different preference opti-
mization methods namely REINFORCRCE (Williams, 1992; Sutton et al., 1999), PPO (Schulman
et al., 2017b), and GRPO (Shao et al., 2024). Let us consider an episodic MDP given by the tuple
(S, A, P,r,v), where S is a set of states, A; is a set of actions allowed for a given state s, and A
is the set of A,. Here the policy is parametrized by 6 and defined as 7y : R? — [0, 1]*, where v
represents the number of classes and d is the dimension of the input. Let each episode start at the
state sg. Denote by P : S x A x S — R the transition probability matrix, by 7, the reward given by
the environment at time stamp ¢, and by v the discounting factor. Let us assume that the process is
episodic and always starts from a state sg. Given this, we can now define the value function for our
policy my:

Uny (50) = Y (al50)¢x (s, ) (15)
Here ¢ (s, a) represents the Q-value function defined as E[G¢|a, s|, where Gy = ry + 11 + ... +
Y™ 7r¢4n, Where sy, is the terminal state. The objective here is the maximize the value function for
our policy, while updating the policy. Using the policy gradient theorem Sutton et al. (1999), we have
the following:

Vovr, x Z u(s) Z qx(s,a)Vemg(als) (16)

Here, pi(s) represents the relative frequency of visiting the state s by the agent on following the policy
my. We can further simplify the above expression in the following way:

Zu qu s,a)Vmg(als) Z:q7T s,a)V7g(als)] = Es ammg [0, (5, a)V 1og(mg(als))]
’ (17)
6t+1 - et + aEs7a~ﬂ'9 [q7T9 (Sa a)v log(m)(a|s))} (18)

Here o represents the learning rate. In practice, monte-carlo sampling is performed to get an
unbiased estimate of the expectation. It is trivial to show that we can rewrite Eq. 18 as 6y, = 0; +
aFs o[(gx(s,a)—vx(s))Vlog(mg(als))] because ) v (s)Vmg(als)] = 0 and therefore subtracting
this term from Eq. 16 won’t add any bias. Let us call ¢,(s,a) — v, (s) as the advantage function
denoted by A, (s, a). Thus we get the following update:

Ory1 =0 +a E [Ax(s,a)Vloglmg(als)]] (19)

s,a~Tg

The monte carlo approximation of the above equation for a single rollout gives us the standard
reinforce algorithm, which is given by

Or11 = 04 + Z (sk, ar)V log[mg(ak|sk)]] (20)

In contrast to reinforce, the motivation behind deriving PPO is a bit different. Due to limited scope of
this work, we discuss the high level idea behind PPO’s derivation below. PPO is motivated from Trust
Region Policy Optimization (TRPO) (Schulman et al., 2017a), which tries to maximize a lower bound
on the true policy’s value function while guaranteeing that the policy improves in every iteration.
To guarantee this, the approximated policy needs to remain within some proximity of the original
policy. This leads to a constrained optimization problem, where KL divergence between the true
and approximated policy is constrained. However, in practice the strict constrained optimization
problem is difficult to optimize and therefore PPO makes an approximation of using clipping in order
to enforce the closeness constraint. However, this results in the loss of any improvement guarantees
and the selection of clipping hyperparameters are left to the users based on empirical evidence. Thus
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the utility of clipping in case of PPO remains unclear. The objective function of PPO is given as:

|al
J(0,q) = Z mo(as|s:) Aﬂ(st,at),clip(MJ—e,1+€)Aw(3t7at)]

a~Ty ld( = 7Toold (at|st) T0o1a (at|st)
2D
where 7y and 7y, represent the current and the old policy utilized for sampling the rollouts. ¢
represents the input prompt and a represents a single rollout generated by the model. PPO utilizes
generalized advantages which are motivated from temporal difference learning Sutton (1988), which
is based on unbiased approximation of the q-value functions using value function of future states.
The generalized advantages used in PPO are given by

Ag(styar) = —ve(se) + 76+ o1 +Vress + oo £ 9T g (s7)
= (St + ’7)\6t+1 + ...+ (’7)\)T_t_1(5T,1 where 61/ =T¢ + ’YV(St+1) — V(St>, A=1 (22)

PPO uses a value network to predict the value functions. This value network is in-turn trained using
the ground truth rewards obtained for the rollouts generated during training.

GRPO (Shao et al., 2024) has followed the footsteps of PPO, and simply replaced the calculation of
advantages via monte carlo samplings. However, there are several approximations which undergo
here, which we describe in Sec. 2.

C INSTABILITY IN OFF-POLICY SETTING
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Figure 7: Off-Policy training without clipping and without importance sampling: Comparison
between the evolution of training accuracy for PL (Off-Policy) and PL (On-Policy) (a, c) and NL
(Off-Policy) and NL (On-Policy) (b, d). Off-Policy training expedites the onset of collapses.

We observed in the main paper in Fig. 7, that instability of training increases on training in off-policy
setting. To understand this in detail, we revert back to Eq. 9, and find that a small value of 7y should
lead to larger norm of gradients, thereby expediting collapse. To confirm that this is indeed the case,
we analyze the evolution of difference between the probability of sampling the ground truth tokens
from the old policy 7g_,, and the current policy 7y (denoted by Amy) in Fig. 13. We observe that
ATy increases over the course of training, and becomes significantly large at the time of collapse.

D CASE STUDY ON PPO

We note that the instability of PPO demonstrated in on-policy setting in Section 5 could be of
independent interest, as PPO is one of the most popular preference learning method widely used
across different domains including RLVR, RLHEF, etc. To understand the root cause for the observed
instability, we dive deeper into analyzing the estimates of value function calculated by the value
network used in PPO. Surprisingly, we find that the value network predicts negative value functions
in case of incorrect rollouts (See Fig. 8). Note that this is mathematically not possible, as the value
function should be greater than zero when using zero reward for incorrect rollouts and one for the
correct ones. We note that similar inconsistencies were also noted previously in Kazemnejad et al.
(2024) which motivated them to utilize monte carlo rollouts for calculating advantages instead of
a value network. These results indicate that although PPO seems quite mathematically principled,
but in practice the estimators for advantages have large errors from the true estimates. This leads to
collapses in on-policy setting as observed in Fig. 5 (c, d). This finding is summarized below.
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Figure 8: Case study on PPO: The mean of the value functions predicted by the value model shows
clear separation between correct and incorrect samples, where the incorrect samples often get negative
values, and the correct ones receive positive ones. This shows that the value estimates predicted by
the value network often deviate significantly from the true estimates.

Takeaway 5

PPO in RLVR setting without the use of KL divergence is susceptible to training instabilities
often leading to model collapses. This is due to high errors associated with the empirical
estimators of value functions.

Next, we provide a preliminary study to overcome the training instabilities observed so far.

E DIScussIioN

We note that the although the analysis presented in this work is focused on RLVR, our results are
expected to hold across different applications of preference learning, where algorithms like GRPO are
being used. This also includes RLHF, which is popularly used for aligning the language models as
per human preferences. One example particularly interesting is SimPO (Meng et al., 2024) which was
proposed as a simplified version of DPO (Rafailov et al., 2023). We can show that SimPO behaves
like reweighted maximum likelihood estimation (MLE) in cases where the confidence of the policy
on the incorrect samples is much larger than that on the correct samples. This is in fact the regime
where maximum learning would occur. More details are given below:

The optimization function of SimPO is given by the following

p
LSimPO (7’1’9) = _E(w,ywyl)ND[lOg U(T

Y

log T (yule) — |Z|l09 ro(yla) — ) (@3)

where y,,, y; represents the preferred and the less preferred outputs for the input prompt given by x.
Gradients for the above objective function are given as:

-
VoLsimpo(To) = Ez.y., y)~p[Velog(l 4 e Tl

Clearly, if — yilog o (Yw|x)+ %log 7o (Y1) +~ >> 0 then we have the following approximation

[yl

log ﬂe(ym‘f)"'\'y‘%log We(yllz)-i_’y)] (24)

. B .
log Tre(yw|1)+mlog We(yl|l)+7)] o — B log Wo(yw|$)+£logﬂe(yz\$)+’y (25)

__B
log(14+e Twwl
Y| |y1]

Thus, we get the following

log o (yul) + 5”109 rolule) 4] (26)

VoLsimpo(T9) = E(zy. yi)~D Vol—

Y|
The above equation is simply some reweighted version of MLE.

Similarly as shown in Fig.8, we observe that PPO ends up learning positive value functions for correct
rollouts and negative for the incorrect ones, thereby resulting in an objective function very close

to simple reweighted iterated MLE. The demonstrated similarity of different preference learning
methods with simple maximum likelihood estimation makes us question if we are really investing
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correctly in terms of algorithmic designs for learning preferences. Here is one such way that could
help develop more principled preference learning algorithms:

Performing reweighted iterated MLE at token level: PPO (Schulman et al., 2017b) and Reinforce
(Sutton et al., 1999) can be considered as doing token level MLE. However due to several errors
in PPO (See Sec. D) and approximations made in Reinforce, we end up in a regime very close to
sample level reweighting. A naive solution to perform token level reweighting could be to generate
multiple monte-carlo rollouts at each state of the MDP. However, this could be quite expensive in
terms of compute. Moreover, defining a good MDP need not define a state as a single token prediction.
Therefore, definition of an MDP with appropriate number and position of states is important. A naive
solution could be to prompt an LLM for this, but there could be better ways. Utilizing process reward
models could also be helpful in minimizing the compute associated with rollouts, however training a
good process reward model is challenging in itself (Lightman et al., 2023).

Incorporating preference based learning during pre-training: An alternative way to enable models
learn human like preferences could be to incorporate preference based training during pretraining
itself by designing specialized datasets and training algorithms. In such a case, the effectiveness of
existing post-training methods like PPO and GRPO would increase, even if they end up doing simple
reweighted MLE.

F REASONING IN BANDITS SETTING

Here, we try to derive GRPO’s objective function in the setting of contextual bandits. Considering a
single state MDP we will get the following gradient update for GRPO.

la’|

K
9t+1 =0 + a? Zl AW(Qv a )v9t [tl:[l f(ﬂeom (at|5tv )7 7T9(at|5t)v 6)]3
T — |K‘ T
K k=1"k
std(ry)

T 7o (ailse)

1) e (ailse)

where Ar(st,al) =

f(mo.1 (a§|st)),7r9(a§\st), €) = min [ max [ ,1—¢,14+¢ @27)

Clearly, Eq. 27 is different from Eq. 3, which means that GRPO cannot be considered as operating in
a bandit setting. However, it would be interesting to analyze how much of a difference analyzing
GRPO (Shao et al., 2024) and DAPO (Zhou et al., 2025) in an MDP vs. bandit setting would create.
This has been recently explored in Zheng et al. (2025); Zhao et al. (2025¢), which demonstrate
improved stability and performance as compared to GRPO.

G GRADIENT UPDATES IN CASE OF PPO

Using PPO in on-policy setting we get the following:

|al

Vm) ails
9t+1:9t+‘a|2Atﬂ'st7at f(t| t,0)
t

Tho1a (atlst’ )

K
B S0

where Atm—(St,at) = 7’Uw¢t (St)+7’t+’}/7’t+1+...’}/ t’l}ﬂ-¢ (ST) and ¢f+1 *} 'Uﬂd)
=1

(28)

where ¢; corresponds to the ¢! time step update of the value network. Since v, , 18 calculated for
each state, we can consider PPO as performing reweighted iterated MLE but with reweighting at
token level.
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Figure 9: Analysis of response length over training iterations in on-policy setting: Using Lpy,
collapses the output’s length, while utilizing Ly, explodes it when compared to optimizing GRPO.
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Figure 10: Analysis of output’s entropy over training iterations in on-policy setting: Using Lpy,
collapses the output’s entropy, while utilizing Ly, explodes it when compared to optimizing GRPO.

H ADDITIONAL RESULTS

In this section, we present additional analysis providing a more detailed investigation on the results
in the main paper. First, we analyze the evolution of the average response length over the course of
training in on-policy setting in Fig. 9. We find that on optimizing Lyy, the average length of model’s
outputs increases, while it decreases on optimizing Lpry,. Similarly, as shown in Fig. 10 the entropy of
model’s outputs increases on using Ly, and decreases on using Lpy,. Moreover the sudden jumps in
entropy are close to the timestamps where the model collapses. Similarly, on analyzing the evolution
of model’s grdient norm over the course of training in Fig. 11, we find that the norm of the gradient
increases drastically close of the point where the model collapses and training instability is observed.

Next, we compare the evolution of model’s gradient norm between off-policy and on-policy training,
where clipping is utilized in off-policy training. As shown in Fig. 12, using clipping leads to reduction
in gradient’s norm which in-turn leads to improved training stability. To further understand the reason
behind this, we analyze how the average difference between the probability of the current and the old
policy changes over the course of training in Fig. 12. We observe that utilizing clipping reduces this
difference, which results in lower norm of gradients.

We further analyze the evolution of the average value functions predicted by the value network on
using PPO in Fig. 8. We observe that the value network primarily learns negative value functions for
the incorrect trajectories and positive for the correct ones. Note that here the value function will be
positive as the reward is always positive. Therefore, predicting a negative value function indicates
model’s large deviation from its true value function.

We benchmark different approaches discussed above against several evaluation datasets and present
the results in Table 1. We observe that while optimizing Lnr,, Lpr,, and L¢, leads to suboptimal
performance when compared with GRPO, on using token normalization, optimizing L1y ¢, leads to
performance comparable with GRPO.

20



Under review as a conference paper at ICLR 2026

Gradient Norm

10-1 4

10t 4 \

10043

10! 102
(a) PL (Varying Datasets)

—— SimpleRL

103

—— Countdown

10t
(b) NL (Varying Datasets)

102

—— Numina

Iterations

—— NuminaHard

1004\

10t 102

(c) PL (Varying Base Models)

— Qwen

—— Llama

QwenlIT

10° 4
102 4
1014

100 4

10! 102
(d) NL (Varying Base Models)
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Figure 12: Comparison of gradient’s norm between on and off policy training when clipping is
utilized. Clipping reduces the norm of the gradient , which helps in preventing collapses.
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This leads to larger norm of gradients, thereby leading to training instability.
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Input: You are a helpful assistant. A sphere is cut into four congruent wedges. The circumference of the sphere is $12\\pi$ inches. What is the
number of cubic inches in the volume of one wedge? Express your answer in terms of $\\pi$. Note: To measure the circumference, take the
largest circle on the surface of the sphere. Please reason step by step, and put your final answer within \\boxed{{}}.

Output: To find the volume of one wedge, we first need to determine the volume of the entire sphere and then divide it by four, since the sphere
is cut into four congruent wedges.\n\n**Step 1: Find the radius of the sphere. **\n\n The circumference of a sphere is given by the formula \\( C
=2\\pir\\), where \\( C\\) is the circumference and \\( r \\) is the radius.\n\n Given the at the circumference \\( C \\) is \\( 12\\pi \\) inches, we
can set up the equation:\n\n\\[ 12\\pi = 2\\pi r \\]\n\nDividing both sides by \\( 2\\pi \\):\n\n\\[ r = \\frac{12\\pi{2\\pi} = 6 \\text{ inches}
\\\n\n**Step 2: Find the volume of the sphere.**\n\n The volume \\( V \\) of a sphere is given by the formula \\( V = \\frac{4{3\pi "3

100 \\).\n\nSubstituting \\( r = 6 \\) inches into the formula:\n\n\\[ V = \\frac{4}{3}\\pi (6)*3 \\I\n\\[ V = \\frac{4{3\\pi (216) \\]\n\\[ V = 288\\pi
\\text{ cubic inches} \\]\n\n**Step 3: Find the volume of one wedge.**\n\n Since the sphere is cut into four congruent wedges, the volume of

s one wedge is one-fourth of the volume of the sphere:\n\n\\[ V_{\\text{wedge}} = \\frac{288\\pi}{4} = 72\\pi \\text{ cubic inches}
\\\n\nTherefore, the number of cubic inches in the volume of one wedge is \\(\\boxed{72\\pi}\\)

e A i

N ‘w v'-'v/W}’V%
_ W

Input: You are a helpful assistant. What is the sum of the smallest and second-smallest positive integers $a$ satisfying the congruence
$$27a\\equiv 17 \\pmod{40}~?$$ Please reason step by step, and put your final answer within \\boxed{{}}.
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w
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Input: You are a helpful assistant. Without using a calculator, compute $100342-997/2-100142+999425.Please reason step by step, and put your
final answer within \\boxed{{}}.
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Figure 14: Analysis of rollouts for Qwen2.5-7B trained using Ly, in on-policy setting on
SimpleRL.

Table 1: Evaluation results of different objective functions in on-policy setting: The results
are suboptimal when optimizing Lpr, Lpr, and Lo as compared to GRPO. However on using
token normalization, L, performs similar to GRPO, thereby highlighting the effectiveness of token
normalization.

Method | Dataset | Model |GSMSK | Math-500 | College-Math | Gaokao-2023 | Minerva-Math | OlympiadBench

GRPO 91.9 71.6 41.9 64.4 379 39.7
PPO 88.6 73 39.6 62.6 30.5 34.1

NL SimpleRL Qwen 0.1 0.2 0.1 0.8 0.7 0

PL 59.4 314 239 28.6 16.5 9.2

CL 14 0.4 0.5 4.7 0.7 1

GRPO 87.5 52.2 30.9 47.3 22.8 20
PPO 84.7 48.2 30.2 41.6 26.8 15.6

NL SimpleRL | Llama 21.5 5.8 32 6.5 4 33

PL 17.1 14.8 11 17.4 9.2 5
CL 78.1 40 26.3 35.3 21.3 11.3
GRPO 90.8 77.6 40.5 61.3 43 38.8
PPO 91.7 77.8 423 64.2 40.1 40.4

NL SimpleRL | QwenIT 2.2 2.6 1 4.4 1.8 1.3

PL 252 27.8 20.5 29.1 16.2 8.7

CL 77.2 59 325 50.6 29.4 28
GRPO 90.8 74.6 41.7 63.4 342 379

NL Numina-Hard | Qwen 1.6 1.8 1 29 1.1 1.2

PL 23.7 22.8 17.9 28.3 15.1 7

CL 0.4 1 14 1.8 0.4 0.1
GRPO 91.1 77 45.6 64.4 38.6 39.9

NL Numina Qwen 1.7 1.8 0.7 4.7 1.1 0.9

PL 252 244 20.8 26.8 16.2 7.9
CL 52.8 41.6 255 36.1 16.2 233
GRPO (Token Norm.) 91.9 70 40.7 59.7 379 33.8
NL (Token Norm.) SimpleRL Qwen 56.8 422 23.1 37.7 7 15.1
PL (Token Norm.) 234 21.2 11.3 22.6 6.2 6.8
TNCL 91.8 77.8 41 65.2 40.1 37.6
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Accuracy (%)

Input: You are a helpful assistant. Suppose 2 distinct integers are chosen from 1 through 9, inclusive. What is the probability that they are both
odd? Please reason step by step, and put your final answer within \\boxed{{}}.

Output: There are 5 odd numbers (1, 3, 5, 7, 9) out of 9 total numbers. The number of ways to choose 2 distinct integers from these 9 is \\(
\\binom{9}{2} = \\frac{9 \\times 8{2} = 36 \\). The number of ways to choose 2 odd numbers from these 5 is \\( \\binom{5}2} = \\frac{5 \\times
4}2} = 10 \\). Therefore, the probability is \\(\\frac{10}{36} = \\boxed{\\frac{SH18}}\\)

Input: You are a helpful assistant. A triangle can be formed having side lengths $4,$ $5,$ and $8.$ It is impossible, however, to construct a triangle
with side lengths $4,$ $5,$ and $10.$ Using the side lengths $2,$ $3,$ $5,$ $7,$ and $11,$ how many different triangles with exactly two equal
sides can be formed? Please reason step by step, and put your final answer within \\boxed{{}}.

Output: CDATA%Edce?ace % E\n-memberi%CEic % Brakei4(Ea%a 363, % Ed%
Trevorieni%(Ed €6 4 a€Eae?, i (E Milaka 3¢3,0 ...

8,3¢3, % Ea%E S EEf v ESY ThERe £aE4EES €8,2 orthyiar
& EMACE\N 63,094, %0e§ 4CE Pullingsae, ¢¥ i4(EaKae ¢1%4EE%E,35¢3,3... Nan—
%ECoordinatei’4E____i%E¢—«aef...4%+a“W4CE\n italé |-APloparn Volk dari<<\"\\ userEmaili%(Eeladsa»¥app

Heather: ivi(Eeladn£ei @ Fi%Enonei%Edeclared’wundlebeginTransactionilEc"2e®° 8% «elaitEa'VeqiiEg % Einetee, % (Ea, &-®Verae, Ref
reshingi%(E%xaa°, UPIV4CE4CE>\niltienienumeratorMainWindowi%(E4 73, reunionDateTimei%(Ea, (Eaeceref4anyatta€,\n kAfzjA™ital QString-
bearing/séS¥ideosi Va++iAC(EA%" Matdw a3 ieniV4Ea%a $c3,aminai%CE StA%ck Mil transiti §4...f (alla, €% Eelas €id Viae” GOl I4CES €
Mount_PLLi%%oi%E®f... ¢3, 2, i%ExeErat a1, ACEA'YPIIACE marki$CEl,~4pd-¢Ollc bxemata,, ....

Input: You are a helpful assistant. What is the sum of the squares of the lengths of the $\\textbf{medians}$ of a triangle whose side lengths are
$10,$ $10,5 and $125? Please reason step by step, and put your final answer within \\boxed{{}}.

Output:
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Figure 15: Analysis of rollouts for Qwen2.5-7B trained using L~ in on-policy setting on
SimpleRL.

Accuracy (%)

Iterations.

Input: Four red candies and three green candies can be combined to make many different flavors. Flavors are different if the percent red is
different, so 3 red / 0 green is the same flavor as 2 red / 0 green; and likewise 4 red / 2 green is the same flavor as 2 red / 1 green. If a flavor is to
be made using some or all of the seven candies, how many different flavors are possible?\nPlease reason step by step, and put your final answer
within \\boxed{{}}.

Output: The ratio of red to green candies can be written as r:g o r/(r+g). The possible values of r/(r+g) are: \n\n0 (when r=0, no red candy is
used), \n1/7 (when r=1), \n2/7 (when r=2), \n3/7 (when r=3), \n4/7 (when r=4), \n5/6 (when r=5, but there are only 4 red candies available),
\n6/7 (when r=6, but there are only 4 red candies available, and also r>g in this case, which is the same as the reverse, so it is the same flavor as
r=1,g=6), \n7/7 or 1 (when r=7, but there are only 4 red candies available, and also r>g in this case, which is the same as the reverse, so it is the
same flavor as r=0,g=7).\n\nSo, there are 6 possible different flavors. \n\n\\boxed{6}

Input: Find the complex number $z$ so that $z + |z| = 2 + 8i.5\nPlease reason step by step, and put your final answer within \\boxed({{}}.

Output: \\boxed{2+7i}

Input: A line intersects the SyzS-plane at $(0,-2,-5),$ and the $xz$-plane at $(3,0,-1).$ Find the point where the line intersects the $xy$-
plane.\nPlease reason step by step, and put your final answer within \\boxed{{}}.assistant\n\n",

Output: $\\boxed({(3,0,0)}$

Figure 16: Analysis of rollouts for Qwen2.5-7B trained using Lp;, in on-policy setting on
SimpleRL.

Accuracy (%)

— o

Iterations

Input: You are a helpful assistant. In how many ways can | arrange 3 different math books and 5 different history books on my bookshelf, if |
require there to be a math book on both ends? Please reason step by step, and put your final answer within \\boxed{{}}.\

Output: To determine the number of ways to arrange 3 different math books and 5 different history books on a bookshelf with the condition
that there must be a math book on both ends, we can break the problem down into several steps:\n\n1. **Choose the math books for the
ends:**\n - We need to place a math book on the left end and a math book on the right end.\n - There are 3 choices for the math book on
the left end.\n - After choosing the book for the left end, there are 2 choices left for the math book on the right end.\n - Therefore, the
number of ways to choose and arrange the math books on the ends is \\(3 \\times 2 = 6\\).\n\n2. **Arrange the remaining books:**\n - After
placing the math books on the ends, we have used 2 out of the 3 math books, so we have 1 math book and all 5 history books left, which makes
a total of 6 books.\n - The number of ways to arrange these remaining 6 books is \\(6!\\) (6 factorial).\n - Calculate \\(6!\\): \\(6! =
720\\).\n\n3. **Combine the arrangements:**\n - The total number of arrangements is the product of the number of ways to arrange the
math books on the ends and the number of ways to arrange the remaining books.\n - Therefore, the total number of arrangements is \\(6
\\times 720 = 4320\\). Putting it all together, the final answer is:\n\n\\boxed{4320}

Figure 17: Analysis of rollouts for Qwen2.5-7B trained using GRPO in on-policy setting on
SimpleRL.
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Input: You are a helpful assistant. Square SABCDS has side length $1$ unit. Points SES and S$FS are on sides SABS and $SCBS, respectively, with
SAE = CFS. When the square is folded along the lines SDES and $DF$, sides SADS$ and $CDS$ coincide and lie on diagonal $BDS. The length of
segment SAES can be expressed in the form $\\sqrt{k}-m$ units. What is the integer value of $Sk+m$? Please reason step by step, and put your
final answer within \\boxed{{}}.

Output: To determine the length of segment \\( AE \\) which can be expressed in the form \\(\\sqrt{k} - m\\), we start by analyzing the given

— wkenomaizedc. conditions. We know that when square \\(ABCD\\) is folded along the lines \\(DE\\) and \\(DF\\), sides \\(AD\\) and \\(CD\\) coincide and lie

on the diagonal \\(BD\\). This implies that points \\(A\\) and \\(C\\) are reflected to lie on \\(BD\\).\n\nLet \\(AE = CF = x\\). Since \\(ABCD\\)
is a square with side length 1, we have \\(BE = 1 - x\\) and \\(BF = 1 - x\\). When the square is folded, point \\(A\\) (which is at \\((0, 1)\\))
must lie on the diagonal \\(BD\\), which has the equation \\(y = x\\). After folding along \\(DE\\), point \\(A\\) will be at a new position such
that its reflection over line \\(DE\\) places it on the line \\(BD\\). The same logic applies to point \\(C\\) (which is at \\((1, 0)\\)).\n\nTo find
the exact coordinates and the value of \\(x\\), we use the fact that after folding, points \\(A\\) and \\(C\\) must lie on the line \\(y = x\\). For
point \\(A\\), its reflection over line \\(DE\\) must place it on the line \\(y = x\\). The coordinates of \\(A\\) are \\((0, 1)\\), and we need to
determine the coordinates of the reflection of \\(A\\) over the line \\(DE\\), which must lie on the line \\(y = x\\).\n\nThe line \\(DE\\) can be
determined using the coordinates of \\(D (0, 0)\\) and \\(E (x, 0)\\). The slope of \\(DE\\) is 0, so the fold along \\(DE\\) will symmetrically
place \\(A\\) such that its new position \\((x_1, y_1)\\) must satisfy \\(y_1 = x_1\\). Since \\(A (0, 1)\\) is folded over \\(DE\\), and \\(AE = x\\),
we need to use the symmetry and the fact that the folded image of \\(A\\) must lie on \\(BD\\).\n\nBy symmetry and the properties of the

Iterations

fold, we can use the fact that the distance from \\(A\\) to \\(DE\\) must be the same as the distance from the image of \\(A\\) to \\(DE\\), and
this image must lie on \\(BD\\). Using the specific geometry and the fact that the fold must place \\(A\\) and \\(C\\) on \\(BD\\), we can use a
more algebraic approach by noting that the distance and the specific fold conditions must be satisfied.\n\nBy detailed geometric and algebraic
analysis (which involves solving the specific fold conditions and using the fact that the coordinates must satisfy the line \\(y = x\\)), we find
that the length of \\(AE\\) must satisfy a specific form. By testing and using the specific conditions of the problem, we find that \\(x = \\sqrt{2}
- 1\\). This is because the specific fold conditions and the need for \\(A\\) and \\(C\\) to lie on \\(BD\\) after folding lead to this specific
form.\n\nThus, we have \(AE = \\sqrt{2} - 1\\), so \\(k = 2\\) and \\(m = 1\\), and the integer value of \\(k + m\\) is \\(\\boxed{3}\\)

Figure 18: Analysis of rollouts for Qwen2.5-7B trained using L1 ¢ in on-policy setting on
SimpleRL.

Input: You are a helpful assistant. The polynomial $4x\d - ax"3 + bxA2 - cx + 5,$ where $,$ $b,$ and $c$ are real coefficients, has four positive real roots $r_1,$ $r_2,$ $r_3,$ $r_4,$ such that\s\\\\frac(r_1}2} + \\frac(r_2){a} +\\frac(r_3)(5} +\\frac(r_a}(8} = 1.\[Find $a.5
Please reason step by step, and put your final answer within \\boxed({}}.

Aceuracy (%)

Output: To solve this problem, we need to use the given information about the roots of the polynomial and the relationships between the roots. Let's break down the problem step by step:\n\n1. **Write down the polynomial and its roots:**\n The given polynomial is

\(@x14 - ax33 + bxA2 - cx+ 5\\).\n- Let the roots of the polynomial be \\(r_1, r_2, 7_3, r_4\\) \n\n2. **Use Vieta's feliz:**\n Vieta's feliz relate the coefficients of the polynomial to sums and products of its roots\n For the polynomial \\(4x"4 - axA3 + bxA2 - cx + 5\\):

The sum of the roots \\(r_1 +_2 +_3 + r_4 = \\frac{al{4]\l\n - The sum of the products of the roots taken two at a time \\(r_1r_2+r_1r_3+r_1r_4 +r_2r_3 +r_2r_4+r_3r_4=\\frac(ok4}]\\)\n - The sum of the products of the roots taken three at a time \\(r_1r_2r_3

+r_Ar_20 4+ 1_1r_3r_4+r_2r3r.

100
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o
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=\\frac{cHa)\\).\n
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- The product of the roots \\(r_1r_2r_3r_4 = \\frac{S{4]\}.\n\n3. **Use the given condition:**\n We are given the condition:\n

Input: You are a helpful assistant. Let $x,y, 26 be real numbers so that \\beginfalign*\ny+z & = 13, \Wnz+x & = 14, \W\nxty & = 15, } Find ! step by step, and
put your final answer within \\boxed{{}).
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Input: You are a helpful assistant. On a long straight stretch of one-way single-lane highway, cars all travel at the same speed and all obey the safety rule: the distance from the back of the car ahead to the front
of the car behind is exactly one car length for each 15 kilometers per hour of speed or fraction thereof (Thus the front of a car traveling 52 kilometers per hour will be four car lengths behind the back of the car
in front of it.) A photoelectric eye by the side of the road counts the number of cars that pass in one hour. Assuming that each car is 4 meters long and that the cars can travel at any speed, let SMS be the
maximum whole number of cars that can pass the photoelectric eye in one hour. Find the quotient when $MS i divided by $103. Please reason step by step, and put your final answer within \\boxed{}.

Output: To determine the maximum number of cars that can pass a photoelectric eye in one hour, we need to consider the distance each car occupies on the highway, including the safety rule margin.\n\n1. **Determine the safety rule distance in terms of car
lengths:**\n According to the rule, for any speed given in kilometers per hour (km/h), the distance from the back of the car ahead to the front of the car behind is exactly one car length for each 15 km/h of speed or fraction thereof \n This means if a car is traveling at
(v V) km/h, the distance \\(d \\) in terms of car lengths is:\n \\(\nd = \\left\\iceil \\frac{v}{15} \\right\\rceil\n \I\n' where \\( \\left\iceil x \\right\\rceil \\) s the ceiling function, which rounds \\(x \\) up to the nearest whole number.\n\n2. **Convert the distance
occupied by one car including safety margin to meters:**\n If each car is 4 meters long, and the distance in terms of car lengths is \\(d \\), then the total distance occupied by one car including the safety rule distance is:\n \\[\n \\text{Total distance per car) = d

\\times 4 \\text{ meters\n )\n where \\(d = \\left\\

\\frac{vK{15} \\right\\rceil \\).\n\n3. **Calculate the number of cars passing the eye in one hour:**\n If cars are traveling at speed \\( v \\) km/h, then in one hour, a car will cover \\( v \\) km. We need to convert

I
the speed into meters per hour to consistent units:\n \\[\n v \\text{ km/h} = v \\times 1000 \\text{ meters/ hour\n )\n The number of cars that can pass a point in one hour is then:\n \\[\n \\text{Number of cars} = \\frac v {d \\times 4/\n where the total distance
occupied is \\(d \\times 4 \\)

Input: You are a helpful assistant. If $f(x) = 25 for all real numbers $x$, what is the value of $f{(x + 2)$?\nPlease reason step by step, and put your final answer within \\boxed{}.

Output: Okay, let’s reason through this step by step:\n\n1. We are given that \\(f(x) = 2 \\) for all real numbers \\( x \\).\n2. This means the function \\( \\)is a constant function, where the output is always 2 regardless of the input.\n3. Now we need to determine the
value of \\(f(x + 2) \\):\nd. According to the definition of the function \\( f\\), no matter what the input is, the output will always be 2.\n5. Therefore, when the input is \\( x + 2 \\), the output will still be 2.\n\nThus, the value of \\( f(x + 2) \\)is \\boxed{2}.

Input: You are a helpful assistant. If $m$ is a real number and $2xA2+mx+85 has two distinct real roots, then what are the possible values of $m$? Express your answer in interval notation. Please reason step by step, and put your final answer within \\boxed{(}).

Output: & 239+i*4*52xA%+mx+8 having two distinct real root we need to prepare us by math knowledge and 7 6¢7 €. 16" axA? + bx + C 63, 1 2ae ‘a2 distinct real rootsTACES"tae¥aece%had

n¥a,at,

~A"\n\n\n\n1L% a48aAes” Discriminant a¥i 4%83 € 2~ (e 'cS, @€Se"™ (in particular ™4} ¥aced6o Distinct real roots )\n_ By assumption @-'s"« 2442 + mx + B ¥aeceShe 6,2 distinct realee "\n @%o€dr¥ae dmgi¥EWI S 2Ef VY & ¥ (g5,

discriminant\n\n2. 4%fgs, Discriminant ze™"what ? let's calculate step by step.\nneeding library syllabus for your knowledge base:\n\n Now let's call upon our library to gave us some help\n\tto calculate the discriminant value correspond to our statement and
question:\n\n\n\n\n\n\nFrom math to program to Python code \nWe'll now import necessary things :\n\n\n\nfrom math import * 4,24212es¢ze4 previous calculation step in the previous section\n\n\nwe need The, in order to get a better m value , we need to put what

we have \"Discrimant= m**2-4 *2 * 8\" &™3,€éi"&%%a%, 3] SetUp bosses for test /veloper ney e ™€, @6

let's ((@ge¢aee ‘€Y ) thisacm'd ¢, doe” *= &, ¢5,4€4A2"4% 4,2 ...

Figure 19: Analysis of rollouts for Qwen2.5-7B trained using Ly, with token normalization in
on-policy setting on SimpleRL.
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Input: You are a helpful assistant. Let $a$ and $b$ be positive real numbers such that $a + 2b= 1.5 Find the minimum value of\n\[\frac{2}{a} +
\\frac{1}{b}-\\] Please reason step by step, and put your final answer within \\boxed{{}

Output: To solve the problem, we need to find the minimum value of the expression \\(\frac{2}a} + \\frac{1}{b}\\) given the constraint \\(a + 2b = 1\\), where
\\(a\\) and \\(b\\) are positive real numbers.\n\nLet's denote the expression we want to minimize as \\(f(a, b) = \\frac{2}{a} + \\frac{1}{b}\\) and the constraint
as\\(g(a, b) = a + 2b - 1 = 0\\).\n\nUsing the method of Lagrange multipliers, we introduce a multiplier \\(\lambda\\) and set up the following system of
equations:\n\\[\n\\nabla f = \\lambda \\nabla g\n\\]\n\\[\n\\begin{cases}\n-\\frac{2{a"2} = \\lambda \\\n-\\frac{1}{b~2} =
2\\lambda\n\\end{cases\n\]\nFrom the first equation, we have:\n\\[\n\\lambda = \\frac{2{a"2\n\\\ ....... Now, substitute \\(a = \\frac{1}{2]\\) and \\(b =
\\frac{L{4}\\) into the expression \\(\\frac{2}{a} + \\frac{1{bA\\):\m\[\n\\frac{2}a} + \\frac{1}{b} = \\frac{2H\\frac{1}{2}} + \\frac{1}\\frac{1{4}} = 2 \\times 2

100 +4 = 4 +4 = 8\n\ITherefore, the minimum value of \(\\frac{2}{a} + \\frac{L{b}\\) is \(\\boxed{8}\\)

— Token Normalizsd L

.
M“vuw Input: You are a helpful assistant. A circle with center SAS and radius three inches is tangent at $CS to a circle with center $BS, as shown. If point $BS is on the
o /_/\U"W small circle, what is the area of the shaded region? Express your answer in terms of
$\\pi$.\n\n[asy]\nfilldraw(circle((0,0),6).gray,linewidth(2));\nfi ircle(3dir(-30),3),white,linewidth(2));\n\ndot((0,0));\ndot(3dir(-30));\ndot(6dir(-
“ 30));\n\nlabel(\"$B$\",(0,0),NW);\nlabel(\"SA$\",3dir(-30),NE);\nlabel(\"$CS\" 6dir(-30),SE);\n[/asy] Please reason step by step, and put your final answer

Accuracy (%)

— within \\boxed({{}}.
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Input: You are a helpful assistant.\nuser\nSolve for the sum of all possible values of $x$ when $37{x"2+4x+4}=9/{x+2}$.Please reason step by step, and put
your final answer within \\boxed{{}}.
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Figure 20: Analysis of rollouts for Qwen2.5-7B trained using Lp;, with token normalization in
on-policy setting on SimpleRL.

I ANALYSIS OF ROLLOUTS

We investigate the rollouts corresponding to different objective functions (NL, PL, and CL), alongwith
GRPO and their token normalized version in Fig. 14, 15, 16, 18, 19, and 20. We observe that on
optimizing for Ly, and Loy, at the time of collapse, the model learns to output random tokens. The
diversity of model’s outputs reduces on further training and the model often converges into outputting
particular tokens with extremely limited vocabulary. On the other hand on using Lpry, the model learns
the shortcut solution of outputting the final answer directly without any reasoning traces. Contrary to
this, on using token normalization, the nature of solutions changes and so does the nature of rollouts.
Now, on using Lpr, with token level normalization, the model learns to output large length solutions,
which become more of random at the time of collapse. Whereas optimizing Ly, results in shorter
outputs.

J CHARACTERIZATION OF CRITICAL SOLUTIONS

Here we will first derive the global minimas corresponding to the objective function in Eq. 9. We
wish to show that

ONL : mo(aelst) = vt <lal,Va € A™ (29)

Vi
Proof. The optimization objective is given as follows:

lal

Lni(0,q) = Z ZA q,a),where a ~ mg(alq), A~ (¢,a) =1

Vomy (lt|5t)
= VylL = 0, whi ~
oLNL = |.A—| Z |G|Z o (adlse) where a ~ mg(alq)
a€EA~
|al
mo(alq) Voo (at|st)
— = O
Z |a Zl atISt)
N Z 17r9 (ak|sk) Z Voro(as|s:) —0 30
d — mo(at|st)
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Note that the above problem might have several critical solutions. But in particular, we can character-
ize only a few of them.

Assuming that the uniform policy would lead to a fixed length of the output given by F' and the
cardinality of A~ tends to infinity, we can now show that using a uniform policy will serve as a
critical solution to the above equation.

lal |al

H‘ |17r9 (ak|sk) Voro(a|s:) 1
_ = =0 (31
Z la| Z Tolals) | F|V|F- 1VGZZ7T9 F|V|F Y Gh

a t=1 a t=1

where c is some constant. Therefore the following is a critical solution for the objective function
analyzed above:

1
7T9(at|8t) = mvt < |a|,Va €A™ (32)
O

Note that the above scenario is true only when the cardinality of the set A~ is close to infinity. In
practice, this won’t be true and therefore we might observe large variance depending on the cardinality

of A™.
We wish to show that

Cpr, : molag|s;) = 1Vt < |a|,Ya € AT (33)
Proof. Similarly for Lpr,, we get the following

Ial

|al
1 7w (ap Vo T
E k=170 (9x]5%) E omo(a]s:) E E 1 o ak|sk)V9710(at|St) =0 (34

|al —  mo(at|st) — |a|7r9 at|st)

Now we will show that Vg (at|s;) = 0 if mg(as|s;) = 1Vt < |a|,Va € AT

a

erat (Zlv‘l e¥i — e¥ar) ePat (e%7)
TIPSRV AA G = s
(Xiz1e™) (>izy e™)?
where z,, represents the logits corresponding to a; and z; represents the logits corresponding to i*"
token in the vocabulary. The above equation will yield a vector of zeroes iff x; << xq,, Vj # a¢, Vt.

Vomo(at]st) = |

9 J}j 1J#at] (35)

This yields the following critical solution for the objective function defined in Eq. 9.

wo(a¢lse) = 1Vt < |al,Va € AT (36)
O

Note that there would be infinitely many solutions following Eq. 32 and Eq. 36 as the length of the
rollouts (i.e. |a|) is not a constant. Amongst this set, we need to select the ones which would yield
minimum or the maximum amount of loss. Since in case of Eq. 9, and Eq. 8, the normalization is
done based on the number of output tokens, all solutions following Eq. 32, will yield the same loss.
Same is the case with Eq. 36.

However, in case when token level normalization is used as proposed in Sec. 6, all the policies
following Eq. 32 and Eq. 36 won’t yield same loss. In case of Eq. 32, the policy yielding minimum
amount of loss would have |a| = 1, and in case of Eq. 36, the policy yielding maximum loss would
have |a| = T Therefore, using a different normalization can change the behavior.

K DETAILS ON DATASETS AND TRAINING

In this section, we present details on the datasets and the models used for training. We train
Qwen2.5-7B base, Qwen2.5-7B Instruct, and Llama3.1-8B Instruct models on SimpleRL, Numina,
Numina-Hard, and Countdown datasets. All the experiments are done using a batch size of 128, with
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a constant learning schedule and a learning rate of 1e-6. We use Adam optimizer with no weight
decay. In case of off-policy setting, we sample the rollouts for every 128 samples and perform the
gradient updates on every 32 samples.

SimpleRL consists of 8024 samples taken from GSMS8K and Math datasets, Numina consists of
approximately 83k problems, where as Numina-Hard consists of around 12k problems which are
sampled from Numina by ensuring that Qwen2.5-7B base fails on them in both attempts made from
it. Countdown consists of around 5k problems. For Xiong et al. (2025); Prabhudesai et al. (2025) and
Zhu et al. (2025) we verify our analysis using their version of code as well.
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