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Abstract

We study data corruption attacks on stochastic multi arm bandit algorithms. Exist-
ing attack methodologies assume that the attacker can observe the multi arm bandit
algorithm’s realized behavior which is in contrast to the adversaries modeled in the
robust multi arm bandit algorithms literature. To the best of our knowledge, we
develop the first data corruption attack on stochastic multi arm bandit algorithms
which works without observing the algorithm’s realized behavior. Through this
attack, we also discover a sufficient condition for a stochastic multi arm bandit
algorithm to be susceptible to adversarial data corruptions. We show that any
bandit algorithm that makes decisions just using the empirical mean reward, and
the number of times that arm has been pulled in the past can suffer from linear
regret under data corruption attacks. We further show that various popular stochas-
tic multi arm bandit algorithms such UCB, ε-greedy and Thompson Sampling
satisfy this sufficient condition and are thus prone to data corruption attacks. We
further analyse the behaviour of our attack for these algorithms and show that using
only o(T ) corruptions, our attack can force these algorithms to select a potentially
non-optimal target arm preferred by the attacker for all but o(T ) rounds.

1 Introduction

Multi-armed bandit problems provide a foundational framework for understanding sequential decision
making. In the classical setting, on each round of the decision process a learner selects an action (arm)
from various alternatives and, upon making this choice, receives some scalar-valued feedback/reward
for the chosen action but no additional information. Algorithms for such multi-armed bandits have
been widely adopted in various applications, including recommender systems Bouneffouf et al.
[2012], Li et al. [2011a], Kawale et al. [2015], Li et al. [2011b] and in numerous modern industry
and business applications Villar et al. [2015], Schwartz et al. [2017].

A frequent model assumption for bandit problems is that the reward associated with an arm is a
stochastic quantity drawn from fixed distribution associated with each arm, and that this random
variable is independent of the learner’s previous actions. An alternative assumption, which takes a
worst-case perspective and has also been widely studied, is that on every round the reward released
by each arm is instead chosen by an adversary which may aim to hurt the learner’s learning objective.

The stochastic model is often criticized for being unrealistic: data collected in a sequence rarely
satisfy the IID assumption, and it would be naïve to think that corruptions never occur. The adversarial
model, on the other hand, is considered highly pessimistic in contexts where we expect learning to be
reasonably possible. Researchers have begun to consider intermediate model assumptions, where the
input data is generally assumed to be stochastic for the most part, yet a small fraction of malicious
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corruptions will occur. One does not have to look hard to find pertinent examples, e.g. click fraud in
online advertising [Haddadi, 2010], and fake reviews in online recommendation systems [Wilbur and
Zhu, 2009, Kshetri, 2010, Lappas, 2012, Lappas et al., 2016] to name a few.

Understanding adversarial attacks against machine learning algorithms is critical for helping to design
robust systems that can be deployed in the wild. There is a long line of work on understanding
adversarial data-poisoning attacks against deep learning algorithms [Madry et al., 2017, Akhtar and
Mian, 2018, Yuan et al., 2019], supervised learning algorithms [Dai et al., 2018, Liu et al., 2019],
and more recently for multi-armed bandit problems . Perhaps the most popular algorithm for the
stochastic multi-armed bandit setting, UCB [Auer et al., 2002], has a tight theoretical guarantee on its
performance (i.e. its regret). Despite all this, it has been shown indeed that UCB is highly vulnerable
to data corruption attacks [Jun et al., 2018, Liu and Shroff, 2019]. In short, with only a handful of
corruptions on the reward feedback given to the learning, UCB can be tricked into directing most of
its choices onto a sub-optimal arm. Adversarial corruptions for multi arm bandit strategies have been
studied across two axes: one line of work focus on designing and analysing different techniques to
attack existing bandit algorithms [Jun et al., 2018, Liu and Shroff, 2019, Ma et al., 2018, Garcelon
et al., 2020], while the other focuses on designing robust algorithms that can perform well under
various levels of data corruption [Lykouris et al., 2018, Gupta et al., 2019, Kapoor et al., 2019].

Notwithstanding these prior lines of work, there remains a major gap in the corruption models
considered for such adversarial attacks on bandit algorithms. Most existing results assume that the
adversary (corruption agent) is given full knowledge of the arm chosen by the learner and can perform
a targeted corruption on just the reward selected by the algorithm. It has indeed been shown that all
no-regret stochastic bandit algorithms are vulnerable to such powerful adversaries [Liu and Shroff,
2019]. On the other hand, the development of robust algorithms (e.g. Lykouris et al. [2018], Gupta
et al. [2019]) have obtained guarantees only under a weaker adversary, one that can only corrupt the
reward feedback before observing the arm selected by the learner. There has been no work, to our
knowledge, that has tried to design adversarial attacks against popular stochastic bandit algorithms
under the weaker adversary. For algorithms that are deterministic, which select each arm via a
non-random function of prior observations, there is no relevant distinction between the strong and
weak adversarial models. But given that randomization is a common and important tool in algorithm
design, in this work we consider attacks against both randomized and non-randomized algorithms.

With this in mind, the goal of the present paper is to design a method of adversarial attack which (a)
is effective against a very broad range of multi-armed bandit algorithms and (b) fits within the weaker
adversary model. More specifically, we show that if a stochastic bandit algorithm makes its decisions
as a function of a natural statistic, the empirical mean reward and the number of pulls of each arm,
then such an algorithms is fully vulnerable to the corruption attacks. This family of bandit algorithms
is indeed quite broad, and we show that most of the popular classical strategies—UCB, ε-greedy, and
Thompson sampling [Agrawal and Goyal, 2012], all of which we analyze—fall within this framework
and are thus similarly vulnerable. We further show that using by corrupting only o(T ) rounds, our
attack can force these algorithms to select a specific arm preferred by the adversary (target arm) for
all but o(T ) rounds. We believe this reveals what is a core flaw inherent in many bandit algorithms,
and these insights can thus help to design more robust learning algorithms in this and other settings.

Compared to the most related works of Jun et al. [2018], Liu and Shroff [2019], Garcelon et al.
[2020] which also study adversarial attacks against bandit algorithms, there are three fundamental
differences. The first difference is that this line of work assumes that the adversary can observe the
actions of the bandit algorithms. This allows the adversary to attack the algorithms based on whether
a particular arm is selected or not. Without such ability, to simulate their attack, the adversary need
to corrupt all rounds if the bandit algorithm is randomized. The second difference is the corruption
model. In their model, the corruption is counted only for the arm which is selected, while in our
model, if in a round an arm is corrupted but not selected by the bandit algorithm, we still count it as
a corrupted rounds. Based on our notion of corruption, the corruption budget is T for the attackers
who need to corruption every round even if most of its corruption is not observed by the algorithm.
The third difference is that the attacks in this line of works never apply corruptions on the target arm.
Although this makes the target arm more preferred by the bandit algorithm, the negative side effect
is that the amount of corruption they can apply on the non target arms is limited because they are
picked less often, and thus they may have to keep attacking the algorithm. In our attack, the adversary
corrupts all arms at the beginning, making all arms look similar, thus even non-target arms are picked
often enough in the early phase of the attack. This allows the adversary to apply enough corruptions
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on the non-target arms so that the estimates cannot recover even after the attack stops. Through this
attack, we show that all mean based algorithms which make decisions only based on estimates of
empirical means are vulnerable to adversarial data corruption attacks. Liu and Shroff [2019] provide
a similar conclusion for the offline setting by analysing a few specific algorithms. Also note that in
the offline setting considered in Liu and Shroff [2019], the algorithm receives a batch of data with
size T at once, and goal of the adversary is to manipulate the algorithm’s choice at the T + 1 round,
which is very different to the online setting.

2 Preliminaries

Let’s begin by recalling the stochastic multi arm bandit setting. A principal (or learner) faces
a sequential decision making problem where it needs to select one out of K actions or arms at
each of the T rounds. The principal gets a reward in each round based on the arm chosen in that
round. Formally, at each round t, the environment generates a reward vector rt = (rt1, . . . , r

t
K)

(not observable to the principal) where rti ∈ [0, 1] is the reward the principal will receive if arm i is
picked, and for each arm i, rti sampled from a fixed arm dependant distribution with mean µi which
is unknown to the principal. Let µ = (µ1, . . . , µK) be the mean reward vector that includes mean
rewards of all arms. The principal then selects an arm It and receives the corresponding reward
rtIt and does not observe the rest of the values in rt. To characterize the performance of a bandit
algorithm, the notion of regret is introduced. The regret of a bandit algorithm is defined as the gap
between the total expected reward of the algorithm and the expected reward of the algorithm that
always selects the arm with the highest mean reward in each round.
Definition 1 (Regret).

R(T ) = T ·max
i
µi −

T∑
t=1

µIt

where It is the arm chosen by the algorithm in round t.

Let arm i∗ be the optimal arm, i.e. i∗ = argmaxi µi. Next we introduce the notion of adversarial
attacks in the stochastic bandit setting. The adversarial attack is a form of data corruption where
a malicious agent intends to manipulate the behavior of the bandit algorithm by corrupting the
reward vector rt generated by the environment. Specifically, the adversary can change the reward
vector rt to another corrupted reward vector r̂t = (r̂t1, . . . , r̂

t
K) such that r̂ti ∈ [0, 1] for all i. We

say that the round t is corrupted if the adversary changes the reward for at least one of the arms,
i.e. ‖rt − r̂t‖1 > 0. Let C be the total number of rounds that the adversary corrupts, that is
C =

∑T
t=1 1{‖rt − r̂t‖1 > 0}. We call C the corruption level of the bandit algorithm. Importantly,

We assume that the adversary corrupts the reward without observing the arm selected by the adversary.
Formally, the protocol between the learner and the adversary at each round t = 1, . . . , T is as follows:

1. The learner decides a distribution πt ∈ ∆K over K arms.
2. The environment generates a stochastic reward rt.
3. The adversary corrupts the reward, and the corrupted reward becomes r̂t

4. The learner picks an arm It from the distribution πt and receives corrupted reward r̂tIt

Next we give definitions to measure the robustness of an algorithm against adversarial data corruption
attacks and the power of attack methods. To characterize the performance of an algorithm under any
possible adversarial attack, we introduce the definition of vulnerable algorithms.
Definition 2 (Vulnerable bandit algorithms). We say a bandit algorithm is vulnerable if there exists
an instance and an adversary such that the adversary with C = o(T ) corruption level can induce
linear regret R(T ) = Ω(T ) on the bandit algorithm in expectation.

To characterize the performance of an adversarial attack, we need to consider the bandit algorithm it
attempts to attack as well. The adversarial attacks that we consider in this work have a goal which is
one step harder than just making the bandit algorithm obtain linear regret. The adversary has a favorite
arm (that we call the target arm) and the adversary’s goal is ensure that the bandit algorithm selects
the target arm for most of the rounds of the algorithm. We say a bandit algorithm B is completely
vulnerable to an adversarial attack A, if with probability at least 1 − δ(T ), with δ(T ) = o(1), the
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adversary can make the algorithm pick the target arm specified by the adversary for all but o(T )
rounds by using only C = o(T ) corruption level.

We now introduce a framework that is typically employed by a large class of traditional stochastic
multi arm bandit algorithms. Since the goal of the bandit algorithm is to incur low regret, to do so,
it needs to figure out which arms lead to high expected rewards and then it also needs to ensure
that it selects the arm with highest expected reward in most rounds. This leads to an exploration vs
exploitation trade-off in the goals of the algorithm. In most cases, bandit algorithms rely on two
statistics of each arm to balance the trade-off between explore and exploit: the empirical estimates on
mean rewards and the corresponding variance on the estimates. The empirical means indicate which
arm is likely to be the optimal, and the variances indicate how much confidence the algorithm has
about its estimates. The variance of the estimate can be characterized by the number of samples the
algorithm has access to for estimating the empirical means. The number of samples for each arm
is exactly equal to the number of times that arm is selected by the learner in the stochastic setting.
So typically, a wide class of stochastic multi arm bandit algorithms make decisions based on the
empirical mean and number of selections for each arm. We call this class of algorithms as Mean
based algorithms. Before introducing the formal definition, let us characterize the information the
bandit algorithm has access to when making decisions in a round t. Let It denote the information the
algorithm has access to while making decisions in round t. Using the information It, the algorithm
generates a probability distribution πt over the arms where for each arm i, πt(i|It) is the probability
that the arm i is selected in the current round t when the information available is It.
Since in each round t, the algorithm chooses an arm It and then obtains the corresponding reward
rtIt , the information obtained by the algorithm in round t is (It, rtIt). Thus before making a decision
in round t, the algorithm has access to all the information received in the rounds so far. Let us denote
Ht = {(I1, r1I1), . . . , (It−1, rt−1It−1)} as the history up till round t and it is exactly the information
that the bandit algorithm has access to when making the decision in this round, i.e. It = Ht. Thus
for the bandit algorithm, the decisions made in round t can be characterized by πt(i|It) = πt(i|Ht).

Let nt−1i =
∑t−1
τ=1 1{Iτ = i} denote the number of rounds arm i gets picked by the algorithm before

round t, and let µ̄t−1 =
∑t−1
τ=1 r

τ
i 1{I

τ=i}
nt−1
i

be the empirical mean of the arm i by round t. We can
define Mean based algorithms as follows.

Definition 3 (Mean based algorithms). We say an algorithm is a mean based algorithm if

1. Its policy depends only on the empirical means µ̄t−1i and number of times each arm i is selected
nt−1i of all the arms. In other words for each arm i,

πt(i|Ht) = πt(i|nt−11 , µ̄t−11 , . . . , nt−1K , µ̄t−1K )

2. For each arm i, the probability that it is selected is monotonically increasing in its empirical mean,
i.e.

πt(i| . . . , nt−1i , µ̄t−1i , . . .) ≥ πt(i| . . . , nt−1i , µ̄′t−1i , . . .)

if µ̄t−1i ≥ µ̄′t−1i

3. For each sub-optimal arm i, the probability that it is selected is monotonically decreasing on
number of selections, i.e

πt(i| . . . , nt−1i , µ̄t−1i , . . .) ≤ πt(i| . . . , n′t−1i , µ̄t−1i , . . .)

if nt−1i ≥ n′t−1i and µ̄t−1i < max µ̄t−1j∈[K].

In Definition 3, condition 1. implies that the algorithm’s decisions only depends on the empirical
mean and the number of pulls of each arm so far. Condition 2. implies that if the empirical mean
of the arm is higher, if every other statistic remains the same, then the probability that the arm gets
selected only increases. Condition 3. implies that if the arm is empirically sub-optimal, then if the
number of samples used to obtain that estimate increases, then the algorithm is more confident about
the fact the arm is sub-optimal, then the probability that the arm gets selected can only decrease.

Many classical bandit algorithms such as UCB, ε-greedy, and Thompson sampling fall into the
framework of mean based algorithms. In the next section we introduce our attack methodology using
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the adversary in consideration. Using the attack, we can show that all mean based algorithms are
vulnerable to data corruptions attacks. In subsequent sections we prove stronger guarantees for a
number of classical multi arm bandit algorithms by showing that UCB, ε-greedy, and Thompson
Sampling algorithms are completely vulnerable to our attacks as long as the mean reward of the target
arm is not too small.

3 Observation-Free Attack

In this section we introduce a data poisoning attack that we call the Observation-Free Attack (Algo-
rithm 2) which doesn’t explicitly observe the behavior of the bandit algorithm while deciding how to
corrupt rewards.

The attack is separated into three phases. In the first phase that lasts for C1 rounds, the attack aims at
making the algorithm receive a lot of low rewards from the optimal arm so that the empirical estimate
of the optimal arm’s mean reward is as low as possible and that the confidence of the algorithm over
its estimate is high. To ensure that the optimal arm is picked enough times, we attack all arms which
makes all arms appear equally bad to the algorithm. Explicitly, we set reward to be 0 for all arms in
all the rounds in the first phase.

In the second phase that lasts for C2 rounds, the attack tries to make the target arm distinguishable
from the other arms. That is, it wants the algorithm to think that the empirical reward of the target
arm is much better than all other arms. The corresponding way is to set the reward as 1 for that target
arm and 0 for all other arms. Let ĩ be target arm, then the corrupted reward r̂t in second phase is set
as eĩ ∈ [0, 1]K where eĩ is the vector with 1 at the index ĩ and 0 everywhere else. By the end of the
first two phases, the adversary has tried to ensure that empirical mean of all arms except the target
arm is very low with high confidence and that the empirical mean of the target arm is much higher
than the other arms.

In the third phase, the adversary does nothing and hopes that the algorithm selects the target arm for
most of the rounds and no other arm can recover from the initial corruption applied to their rewards
in the first two phases. So the attack only corrupts the initial C1 +C2 rounds and the corruption level
is C1 + C2.

Algorithm 1: Observation-Free Attack
Parameters :Number of rounds T , Mean rewards vector µ̄, bandit algorithm A, target arm i

1 Compute parameters C1 and C2 for the given T, µ̄, A.
2 for t = 1, . . . , T do
3 Environment generates the reward vector rt
4 if t ≤ C1 then
5 r̂t ← (0, . . . , 0) /* Set reward as 0 for all arms */
6 end
7 else if C1 < t ≤ C1 + C2 then
8 r̂t ← eĩ /* Set reward as 0 for all arms but the target arm. The

reward for the target arm is 1 */
9 end

10 else
11 r̂t ← rt /* No corruption is applied */
12 end
13 Bandit algorithm A selects arm It and receives reward r̂tIt
14 end

C1 and C2 are the two parameters that the adversary needs to tune based on the bandit algorithm
under consideration and the rewards of the arms. For the sake of analysis, we assume that adversary
has access to the mean reward for each of the arms, i.e the adversary knows µ = (µ1, . . . , µK) before
the start of the bandit learning algorithm. If the adversary has access to the mean rewards, then
the adversary doesn’t even need to access the realized rewards from any of the rounds to decide its
strategy. If the adversary does not have access to the mean rewards before the start of the process,
then we show in appendix 7 that while corrupting the first few rounds, the adversary can observe the
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realized rewards to effectively estimate the mean rewards. Using the estimates, the adversary can set
the parameters C1 and C2 of Algorithm 2 in an adaptive manner.

Algorithm 2: Bandit learning with data poisoning attack
Parameters :Number of rounds T , bandit algorithm A, adversary M

1 for t = 1, . . . , T do
2 Environment generates the reward vector rt
3 if Weak attack then
4 Adversary M replace the reward vector by r̂t
5 end
6 Bandit algorithm A selects arm It

7 if Strong attack then
8 Adversary M observe It and replace the reward vector by r̂t
9 end

10 Bandit algorithm A receives reward r̂tIt
11 end

4 Vulnerability of Mean Based Bandit Algorithms

In this section we show the main result of this paper that all mean based bandit algorithms are
vulnerable. In another word, any algorithm that only makes decisions that depend only on the
empirical means of the arms so far and the number of time each arm has been pulled so far are not
robust.
Theorem 1. For any mean based bandit algorithm that achieves sub-linear regret in the absence of
data-corruptions, there always exists an instance with an adversary data corruption attack such that
the algorithm will suffer linear regret R(T ) = Ω(T ) in expectation.

To prove the theorem, we show there exist three instances such that the algorithm must suffer linear
regret in at least one of the three instances. We apply observation free attack in the first instance. In
the second instance, we only attack the first few rounds and show that algorithm either suffers from
linear regret in this instance, or almost always picks the target arm at the second phase in the first
instance. In the third instance, we apply no attack and show that either the algorithm suffers from
linear regret in this instance, or only picks the optimal arm for a few rounds at the third phase in the
first instance. Then if the algorithm guarantees sub-linear regret in the second and the third instance,
then it must suffer from linear regret in the first instance.

Here we provide an intuition for why mean based algorithms are vulnerable. Mean based algorithms
make decisions based on estimates on arms mean value and error from variance. However, the
adversary could introduce additional bias to the estimates which is unknown to and omitted by the
algorithms. Such bias could keep the estimates far from the real value for most of time through only
slight corruption, hence the algorithm will always make poor decisions, which leads to big regret.

So far we have shown that the observation free attack can induce linear regret on the algorithm
in some instances with Ω(1) probability if such algorithm perform well in some other instances.
Actually, the observation free attack is more powerful when attacking some specific mean based
algorithms. In the next section we will show that UCB, ε-greedy, and Thompson sampling algorithms
are completely vulnerable to the attack, that is, as long as the target arm has Ω(1) mean reward, the
adversary with low corruption level is able to manipulate the bandit algorithm to almost always pick
the target arm with high probability. Also, note that the famous EXP3 algorithm is robust in this
setting as it can work even in the fully adversarial setting which includes this setting as a special case.
Unlike the other classical algorithms we have just mentioned, EXP3 algorithm is not a mean-based
algorithm as it doesn’t use the empirical mean of rewards to make decisions.

5 Attack on Stochastic Bandit Algorithms

In this section we analyze the performance of the Observation-Free attack on different classical
stochastic multi arm bandit algorithms including UCB, ε-greedy, and Thompson sampling algorithms.
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We show how we can tune the parameters C1 and C2 for each of the algorithm and present the
corresponding guarantees on the vulnerability of the algorithms when subjected to our attacks.

5.1 Attack on UCB Algorithm

The UCB algorithm [Auer et al., 2002] is probably the most popular stochastic multi arm bandit
algorithm. UCB works by maintaining upper confidence bounds on the empirical means of the arms’
rewards and chooses the arm with the highest UCB value in each round. Formally, the arm selection
rule of a standard UCB algorithm is the following.

It =

{
t, if t ≤ K
argmaxi{µ̄t−1i +

√
log T

nt−1
i

}, otherwise (1)

where µ̄t−1i and nt−1i are the empirical mean and number of times selected so far for arm i by round t.
Ties can be broke arbitrarily. Let arm i∗ be the optimal arm, and arm ĩ be the target arm. Let µ = µĩ
denote the mean reward of the target arm for the rest of the paper.

Theorem 2. When an adversary applies data corruption attack on UCB algorithm with the attack
given by Algorithm 2, by choosing appropriate C1 and C2, with corruption level C = O(K log T

µ2 )

where µ is the mean reward of the target arm, the UCB algorithm pulls the target arm for all but
O(K log T

µ2 ) rounds with probability at least 1− 1/T .

The proof ideas for the analysis of attack on UCB algorithm and the other two algorithms mentioned
later this section are similar. During the first stage where t ≤ C1, each arm will get selected for
around C1/K rounds and the empirical mean for all arms will be 0. During the second phase where
C1 < t ≤ C1 + C2, the adversary starts injecting high reward for the target arm and still keeps
corrupting the other arms’ rewards to 0. The target arm will have the highest mean and thus will get
picked most frequently. C2 is chosen to be big enough such that the empirical mean of target arm
will never be lower than its true mean with high probability. At the end of the second phase, all arms
other than the target arm have been corrupted heavily. During the last stage where t > C1 + C2,
since the target arm has a high enough empirical mean, it gets picked the most often. By choosing C1

and C2 appropriately, we can ensure that even if the other arms are explore in the third phase, they
get picked so infrequently that their empirical mean cannot recover by the end of the T rounds to be
better than that of the target arm. Thus, the target arm will be empirically optimal arm throughout the
last phase and thus will be chosen the most often.

5.2 Attack on ε-greedy Algorithm

In ε-greedy Algorithm, with some probability ε, the algorithm decides to randomly select an arm
to explore. Otherwise, the algorithm picks the am which is empirically best so far. Formally, the
arm-selection rule of ε-greedy algorithm with an explore rate ε is:

It =

{
draw uniform[K], w.p.ε
argmaxi{µ̄t−1i }, otherwise

(2)

Theorem 3. When an adversary applies data corruption attack on ε-greedy algorithm with the attack
given by algorithm 2, by choosing appropriate C1 and C2, with corruption level C = Õ(Tε/µ+K)

where Õ hides log T terms and µ is the mean reward of the target arm, the ε-greedy algorithm pulls
the target arm for all but Õ(Tε/µ) +K) rounds with probability at least 1− 2K+2

T .

For ε-greedy algorithm, in the absence of corruption, appropriate choice of ε is important to ensure
sub-linear regret. The Tε term in unavoidable in the regret of epsilon greedy thus to ensure sub-linear
regret in the absence of corruptions, the ε chosen by the learner has to be such that Tε is sub-linear.
This also implies that our corruption level is also sub-linear. A typical choice is ε = O(T 2/3), then
the corresponding level for the attack is Õ(T 2/3/µ+K), and the target arm will be selected for all
but Õ(T 2/3/µ+K) rounds with probability at least 1− 2K+2

T .
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5.3 Attack on Thompson Sampling Algorithms

Here we analyze the Thompson sampling algorithm on Bernoulli Bandits with Beta Distribution as
posterior distribution [Agrawal and Goyal, 2012]. In this setting, the reward from picking an arm i in
any round is a Bernoulli random variable with mean µi. Let µ̄i be the empirical mean reward of arm
i and ni be the number of rounds when arm i is picked. At round t, for every arm i, the algorithm
samples θti from the posterior distribution B(µ̄i · ni + 1, (1− µ̄i) · ni + 1) associated with the arm.
Here B(·, ·) is a beta distribution. Then the algorithm chooses the arm with the highest sampled
value, that is, It = argmaxi θ

t
i .

Theorem 4. When an adversary applies data corruption attack on the Thompson sampling algorithm
with the attack given by algorithm 2, by choosing appropriate C1 and C2, with corruption level
C = O( 2K log T

µ2 ) where µ is the mean reward of the target arm, the Thompson sampling algorithm

will pull the target arm for all but O( 2K log T
µ2 ) rounds with probability at least 1− 2K+1

T .

The theorems in this section conclude that as long as 1
µ2 is sub linear in T where µ is the mean reward

for the target arm, then an adversary using the observation free attack that ensure can the algorithms
picks a target arm of their choice for all but o(T ) rounds with high probability. In the following
section, we experimentally evaluate the performance of the difference algorithms when subjected to
the observation free attack.

6 Experiments

In this section, to intuitively illustrate the behavior of algorithms under corruption by our adversary
algorithm, we run simulations attacking UCB, ε-greedy and Thompson Sampling algorithm. Each
algorithm is tested under the same artificial instance with 2 arms, with means µ1 = 0.9 and µ2 = 0.8.
The arm 1 is the optimal arm and we set arm 2 as the target arm for the adversary. We set T = 50000
and the corresponding parameters (C1, C2) for each of the algorithm is listed in Table 1.

Algorithm C1 C2

UCB 34 66
ε-greedy 150 150

Thompson Sampling 34 66
Table 1: Corruption level parameters for different algorithms

In Figure 1, we plot some key statistics about the arms as a function of the iterations that can help
us understand the behaviour of the algorithms under the attacks. In Figure 2, we plot the number of
times the optimal arm is pulled is chosen till round t, i.e. nti∗ with the iteration t on the x axis in both
the settings. We consider the case when there is no attack and how the number changes when we do
attack the algorithm. In both Figure 1 and Figure 2, the top row zooms in on the iterations in phase 1
and 2, i.e. the corrupted rounds whereas the bottom row shows the behaviour till the horizon T .

UCB Algorithm

In UCB algorithm, the main statistic used by the algorithm is the UCB on the arms’ mean reward. In
each round, the arm with the highest UCB value is picked. In sub-figures (a1) and (a2) in Figure
1, we plot the UCB values for both the target arm and optimal arm. We can see sub-figures (a1)
that in the first phase, i.e. t ≤ C1 the UCB value for both the arms decreases to a value close to 0.
Then in the next phase as we start injecting high rewards for the target arm, the UCB value for the
target arm grows but it remains close to 0 for the optimal arm. In the third phase, after the corruption
rounds, in sub-figures (a2) we can see that till the end of the horizon, UCB value of the target arms
remains greater than that of the optimal arm. Even the mean of the target arm decreases towards in
the direction of the real mean, it never fall below the UCB of the optimal arm. In sub-figures (a1)
and (a2) of Figure 2, we plot the the number of cumulative times the optimal arm gets pulled by the
round t. In sub-figure (a1) of Figure 2, we can see that in the second phase, as we start injecting
higher rewards in the target arm, the algorithm completely stops choosing the optimal arm. After the
second phase also, we can see in sub-figure (a2) of Figure 2 that the optimal arm never almost never
gets pulled. In the absence of corruptions, UCB algorithm performs very well and the optimal arm is
pulled almost always.
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ε-greedy Algorithm

In ε-greedy Algorithm, the key value to an arm’s performance is its empirical mean. When there are
two arms, the arm with higher empirical mean will be picked with probability 1− ε/2. In sub-figures
(b1) and (b2) of Figure 1, we plot the empirical mean for both the target arm and optimal arm. Similar
to UCB we see than in Phase 1, the empirical means concentrate around 0, then the empirical mean
for target arm increases in phase 2, and then the target arm remains the empirically optical arm till
the end of horizon. Similar behaviour is seen in the number of times the optimal arm gets pulled. We
see in sub-figures (b1) and (b2) of Figure 2 that under the attack, after Phase 1, the optimal arm gets
picked very infrequently (only in explore rounds) whereas in the absence of corruptions, the optimal
arm is picked almost always.

Thompson sampling Algorithm

In Thompson Sampling algorithm, the algorithm maintains a Beta distribution for each arm. Based
on the Beta distribution for the two arms, in sub-figures (c1) and (c2) of Figure 1, we plot the
approximate probability that a sample from the empirical Beta distribution associated with the
optimal arm is greater than a sample from the empirical Beta distribution of the target arm. Again,
similar to UCB, we can see that in sub-figure (c1) of Figure 1 that after Phase 1, the probability that
the optimal arm is chosen drops close to zero. In sub-figure (c2) of Figure 1, we observe that the
optimal arm can never recover from the corruption and the probability that it gets selected remains
close to 0. This is reflected in sub-figures (c1) and (c2) of Figure 2 where we can see that under
attack, after phase 1, the optimal arm never gets picked whereas in the absence of corruptions, the
optimal arm is picked almost always.

Figure 1: Empirical behaviors of arms in different algorithms. (a), (b) is for UCB algorithm; (c), (d)
is for ε-greedy algorithm; (e), (f) is for Thompson sampling algorithm. (a), (c), (e) focus on the time
when the rewards are being corrupted. (b), (d), (f) focus on the time when the attack stops.

To intuitively show how different algorithms behave with and without the existence of adversary, we
plot the counts of the number of rounds the optimal arm get picked versus time in figure 2.

7 Attack agnostic to mean rewards of arms

We assumed in Section 3 that the adversary has access to mean rewards of each arm which is required
to set the parameters of Algorithm 2. We can introduce a slight modification on the original attack
such that the new attack can be agnostic to the mean rewards while maintaining similar performance.

The modified observation free attack works as follows. The attack is still separated into three phases
and applies corruption in the same way as before. At the beginning C1 is set to be infinite so that the
attack can estimate the mean reward µ of the target arm, and once an accurate estimate is formed,
the attack can set C1 and C2 based on the estimate. The question is how to decide the time τ when
the estimating ends. Here is some intuition how we set τ . Let nt denote the number of rounds the
target arm gets selected by round t. The adversary can have a lower confidence bound on the mean
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Figure 2: The number of rounds the optimal arm get. (a1), (a2) is for UCB algorithm, (b1), (b2) is for
ε-greedy algorithm, and (c1), (c2) is for Thompson sampling algorithm.

reward of the target arm as µLCB = µ̄−
√

log T
nt

. By Hoeffding inequality, with probability at least

1− 2/T 2, we have µ̄ ∈ [µ−
√

log T
nt

, µ+
√

log T
nt

], which implies µLCB ∈ [µ− 2
√

log T
nt

, µ]. Note

that
√

log T
nt

diminishes from positive from infinite to 0 as nt grows, so there exists a turning n∗t such

that
√

log T
n∗t

< µ/4 and
√

log T
n∗t−1

> µ/4. Based on this fact, the attack can stop estimating when

µLCB ≥ 2
√

log T
nt

becomes true. At this time, with probability at least 1 − 2/T , µLCB∈[µ/2,µ], in
another word, µLCB=O(µ). Then the attack can set C1 and C2 by setting the mean reward for the
target arm as µLCB. If the time τ to set C1 is already greater than C1, then let C1 = τ and determine
new C2 based on the new C1 and µLCB correspondingly.

Lemma 5. When attacking UCB algorithm with the new attack, with corruption level C =
O(K log T

µ2 ), the UCB algorithm will pull the target arm for all but O(K log T/µ2) rounds with prob-

ability at least 1− 3/T . When attacking ε-greedy algorithm, with corruption level C = Õ(Tε+K),
the ε-greedy algorithm will pull the target arm for all but Õ(Tε + K) rounds with probability at
least 1 − 2K + 4/T . When attacking UCB algorithm with the new attack, with corruption level
C = O( 2K log T

µ2 ), the Thompson sampling algorithm will pull the target arm for all but O( 2K log T
µ2 )

rounds with probability at least 1− 3/T .

As we show earlier, with probability at least 1− 2/T , the true mean reward of the target arm satisfies

µ ∈ [µ̄ −
√

log T
nt

, µ̄ +
√

log T
nt

]. If this is true, then when the adversary determines C1 and C2,√
log T
nt
≥ µ/2, which is equivalent to nt ≤ 4 log T

µ2 . Note that in all the three algorithms mentioned

above, nt is at least t/K−
√
t log T with probability at least 1−1/T . So the time when the adversary

determine C1 and C2 is at most 16K log T
µ2 + K2 log T , and µLCB ≥ µ/2. Since µLCB ≤ µ, we

have µLCB = Ω(µ). If this C1 is larger than the current time τ , the algorithm will stay in phase 1
until C1 and behave exactly the same as the old attack with µ replaced by µLCB, which results in
corruption level with the same order. If this C1 is less than the current time τ , then the algorithm will
set C1 = τ instead. In this case τ is of the same order as C1 of the old attack since τ = O(C1) for
C1’s in attacking all algorithms, the corruption level the new attack needs is still of the same order of
the old one, and the probability that the new attack would fail is 2/T greater than the old one because
of the chance that the estimation of µ is inaccurate.
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