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Abstract

A cascade over a network refers to the diffusion process where behavior changes
occurring in one part of an interconnected population lead to a series of sequen-
tial changes throughout the entire population. In recent years, there has been a
surge in interest and efforts to understand and model cascade mechanisms since
they motivate many significant research topics across different disciplines. The
propagation structure of cascades is governed by underlying diffusion networks
that are often hidden. Inferring diffusion networks thus enables interventions in
cascading process to maximize information propagation and provides insights
into the Granger causality of interaction mechanisms among individuals. In this
project, we propose a novel double network mixture model for inferring latent
diffusion network in presence of strong cascade heterogeneity. The new model
represents cascade pathways as a distributional mixture over diffusion networks
that capture different cascading patterns at the population level. We develop a
data-driven optimization method to infer diffusion networks using only visible
temporal cascade records, avoiding the need to model complex and heterogeneous
individual states. Both statistical and computational guarantees are established
for the proposed method. We apply the proposed model to analyze research topic
cascades in social sciences across U.S. universities and uncover the latent research
topic diffusion network among top U.S. social science programs.

1 Introduction

Cascades over network refer to the diffusion processes where behavior changes in a part of an
interconnected population lead to a series of sequential changes throughout the entire population. In
recent years, there are surging interests and efforts to understand and model the cascade mechanism
since it motivates many significant research topics in different areas, including social influence
[12, 13, 20], information propagation via social media [32, 1], diffusion of policy and social norms
[4, 33], viral marketing [25, 9], and contagion of infectious diseases [21, 35].

One fundamental problem is to understand the diffusion networks that govern cascade propagation
patterns. However, diffusion networks are often hidden and need to be inferred from observed
cascading behaviors. For example, in the case of infectious diseases, we can observe when an
individual is infected but need to impute the missing information on who infects this individual.
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More importantly, real-world cascading behaviors often exhibit strong heterogeneity and are jointly
governed by different diffusion patterns. For example, in information cascade and epidemiology,
cascades can diffuse among population via different transmission channels building on various
social relations, and thus lead to heterogeneous propagation speeds and scales [24, 30]. Furthermore,
cascading heterogeneity originates from the variability of individuals’ statuses in engaging the cascade
[39, 11]. In social media like X and Instagram, the spreading pattern and the speed of messages
heavily depend on users’ activity status. An active user will respond more instantly to interesting
messages and accelerate the information cascade compared to inactive users [10]. As for volatility
cascades in financial markets, structure heterogeneity in volatility diffusion depends on different
time horizons of the agents in the market [41]. In these scenarios, individual statuses determine the
transmission channels engaging in the cascades, and changes of individual statuses can also change
the downstream cascade diffusion patterns. To conclude from these examples, diffusion patterns can
exhibit combinatorial complexity as population grows. We present an example of cascade diffusion
when transmission channels of individuals vary in Figure (1).

(a) Observed network

(b) Latent diffusion network

Figure 1: A cascade diffuses through nodes tA,B,C,D,E, F u on a two-layer network. Yellow nodes:
activated nodes; gray nodes: inactivated nodes. tB,Du are activated via the observed network and tE,C, F u

are activated via the latent network.

In this paper, we propose a novel double network mixture model to infer multiple diffusion networks
simultaneously from heterogeneous cascade data. The proposed model introduces a distributional
mixture of diffusion networks to capture the heterogeneous cascading patterns, where diffusion
networks provide complementary connection information. The main advantage of the distributional
mixture is to avoid modeling the complex individual status changes. Specifically, the proposed
model can describe the diffusion process over multi-layer networks where cascades propagate across
different layers alternatively. Compared to existing methods, the proposed method can uncover
latent diffusion networks even when the number of diffusion patterns is exponential to the number of
nodes. Furthermore, the parameter estimation in our model can be solved by a sequence of convex
optimization problems, which leads to both statistical and computational guarantees for our diffusion
network estimation.

2 Related works

Various directed probabilistic graphical models have been developed to infer diffusion networks
from observed cascade samples [17, 19, 31, 8, 22, 18]. Generally, these models treat infection
time as a continuous random variable and construct the likelihood of cascade samples based on
the target diffusion network under local Markov assumption. To capture heterogeneous diffusion
patterns, several multi-pattern cascade models have been proposed [37, 40], where cascade samples
are adaptively clustered into groups and each group corresponds to a distinct diffusion network.
Among these methods, ConNIe [29], NetRate [31], and MMRate [37] are popular representatives.
Specifically, ConNIe employs a maximum likelihood formulation via convex programming, incor-
porating an l1-type penalty to promote sparsity in the inferred network. Building upon ConNIe,
NetRate explicitly represents diffusion as a continuous-time probabilistic process, characterized
by edge-specific transmission rates governing edge-wise diffusion probabilities. MMRate further
extends this framework by accommodating multiple distinct diffusion patterns, assuming multiple
heterogeneous latent networks, with each cascade diffusing via one network according to a certain
probability.
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3 Methodology

3.1 Continuous-time cascade on single network

Consider a network with N nodes where each node has two infection conditions in a single cascade:
infected (activated) and uninfected (inactivated), and an infected node will always remain infected. A
cascade is a N -dimensional temporal record t “ pt1, t2, ¨ ¨ ¨ , tN q, where ti is the infection time of
the i-th node. Instead of infinite time horizon, we observe a cascade within a finite time window of
length T , i.e., @i, ti P rt0, t0 ` T s, where t0 :“ min1ďiďNttiu is the infection time of source node.
We denote the infection time of the nodes not infected in the observation window as t0 ` T . Without
loss of generality, we assume t0 “ 0 in this paper.

A cascade diffuses nodewisely over edges of a diffusion network. The continuous-time model
formulates the cascade transmission from an infected node j to another infected node i with survival
analysis models. Specifically, given a node j being infected at time tj , let fpti | tj , λjiq denote the
likelihood of node i being infected by node j at time ti, where ti ě tj . The transmission rate λji

represents how fast cascades diffuse from node j to node i. Accordingly, the cumulative probability
function is F pti | tj , λjiq “

şti
tj
fps | tj , λjiqds. We consider the hazard rate function defined as

Hpti | tj , λjiq “
fpti | tj , λjiq

1 ´ F pti | tj , λjiq
“

fpti | tj , λjiq

Spti | tj , λjiq
, Spti | tj , λjiq “ exp

´

´

ż ti

tj

Hpt | tjqdt
¯

,

where Spti | tj , λjiq “ 1 ´ F pti | tj , λjiq is the survival function that indicates the probability
of node i not being infected by node j until time ti. Typical parametric forms of hazard rate
functions are Exp model: Hpti | tj , λjiq “ λji; Pow model: Hpti | tj , λjiq “ λji

1
ti´tj

; Ray model:
Hpti | tj , λjiq “ λjipti ´ tjq. Given that λji controls the likelihood and speed of transmission
between node j to node i, the global cascading pattern over network can be captured by matrix
Λ “ pλijq P RNˆN

` , where rows represent sender nodes and columns represent receiver nodes. Note
that Λ can be asymmetric, i.e., λij ‰ λji, when node i and j are different in the capacity of launching
transmission.

The diffusion process is typically modeled by independent cascade models [22], where any infected
nodes can infect a node independently and a node stays infected once another node infects it.
Therefore, one can formulate the likelihood of node i being infected by potential parent nodes
tj : tj ă tiu at time ti as

PIpti;Λ¨iq :“ P pti | ttj : tj ă tiuq “
ÿ

j:tjăti

fpti | tj , λjiq
ź

k:tkăti,k‰j

Spti | tk, λkiq (1)

“
ÿ

j:tjăti

Hpti | tj , λjiq
ź

k:tkăti

Spti | tk, λkiq

On the other hand, if node i is not activated by any parent nodes in the observation window, then the
corresponding likelihood for ti : ti “ T u is

PU pT ;Λ¨iq :“ P pti | ttj : tj ă tiuq “
ź

j:tjăT

SpT | tj , λjiq, (2)

Since infections of each node are conditionally independent given the corresponding parent nodes,
we can decompose the likelihood of a cascade t as the multiplication of a series of conditional
probabilities:

P pt;Λq “

N
ź

i“1

P pti | ttj : tj ă tiu;Λ¨iq “

N
ź

i“1

␣

1pti ă T qPIpti;Λ¨iq ` 1pti ě T qPU pT ;Λ¨iq
(

Therefore, the full likelihood of independent cascade samples ttpcquCc“1 is
śC

c“1 P ptpcq;Θq. The
advantage of the above model is that each cascade sample induces a directed acyclic graph, whose
local Markov property allows the decomposition of likelihood and thus a reduction in computational
complexity of inferring the diffusion network Θ.
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3.2 Double network mixture model

In many applications such as social media, there exist multiple networks among an interconnected
population that reflect different types of relations. Cascade diffusion pattern can change over different
networks, and cascade can proceed on different networks alternatively and simultaneously due to
the inter-layer interactions. The diffusion process on multi-layer networks can greatly increase the
degree of freedom in possible diffusion pathways, which leads to strong heterogeneity in cascade
observations. To model the multi-network cascade behavior, we propose the double network mixture
model. Consider two diffusion networks Θ and Ψ among the same population with N units, where
Θij and Ψij are the transmission rate from node i to node j corresponding to two relations. We
introduce double diffusion indicators Zc

i P t0, 1u such that

Zc
i

i.i.d
„ Bernpπiq, i “ 1, ¨ ¨ ¨ , N, c “ 1, ¨ ¨ ¨ , C.

For cascade c, node i is activated via diffusion pathway on network Θ if Zc
i “ 1, and Zc

i “ 0 if via
network Ψ. Denote π “ tπiu

N
i“1 P r0, 1sN where πi is the probability of node i engaging cascade

via network Θ. Then the diffusion pathway of the cascade c can be represented as

Θc P RNˆN
` “

`

Zc
1Θ¨1 ` p1 ´ Zc

1qΨ¨1, ¨ ¨ ¨ , Zc
NΘ¨N ` p1 ´ Zc

N qΨ¨N

˘

, c “ 1, ¨ ¨ ¨ , C. (3)

Therefore, Θc is column-wise mixture of Θ and Ψ, which can vary for different cascades. Different
to conventional mixture model, the proposed method allows Zc

i to vary across different cascade
samples and nodes. Therefore, the proposed model (3) can generate up to 2N different types of
diffusion patterns, which grows exponentially as network size increases. Therefore, the proposed
method has the principled heterogeneity modeling for the diffusion patterns. The likelihood of the
proposed double mixture model can be also explicitly formulated. Following PI and PU in (1), we
have the probability for node i being infected in the c-th cascade given specific network as:

P ptci | Zc
i ; ttcj : t

c
j ă tciu,Θcq “

“

PIptci ;Θ¨iq
‰Zc

i ˆ
“

PIptci ;Ψ¨iq
‰1´Zc

i , (4)

and following (2) the probability for node i not being infected is

P pT | Zc
i ; ttcj : t

c
j ă T u,Θcq “

“

PU pT ;Θ¨iq
‰Zc

i ˆ
“

PU pT ;Ψ¨iq
‰1´Zc

i . (5)

Denote Z “ tZc
i u

N,C
i“1,c“1, the joint distribution of diffusion indicators is

P pZq “

C
ź

c“1

N
ź

i“1

P pZc
i q “

C
ź

c“1

N
ź

i“1

π
Zc

i
i p1 ´ πiq

1´Zc
i . (6)

Then we have the joint distribution of cascade samples and diffusion indicators Z as

C
ź

c“1

P ptpcq,Z;Ωq “

C
ź

c“1

!

ź

i:tci ďT

“

πiPIptci ;Θ¨iq
‰Zc

i
“

p1 ´ πiqPIptci ;Ψ¨iq
‰1´Zc

i (7)

ˆ
ź

j:tcjěT

“

πjPU pT ;Θ¨iq
‰Zc

i
“

p1 ´ πjqPU pT ;Ψ¨iq
‰1´Zc

i

)

, (8)

where Ω “ pπ,Θ,Ψq denote model parameters. And the marginal distribution of cascade samples is

C
ź

c“1

P ptpcq;Ωq “

C
ź

c“1

!

ź

i:tci ďT

”

πiPIptci ;Θ¨iq ` p1 ´ πiqPIptci ;Ψ¨iq

ı

ˆ (9)

ź

j:tcjěT

”

πiPU pT ;Θ¨iq ` p1 ´ πiqPU pT ;Ψ¨iq

ı)

.

Another advantage of our model is that the posterior distribution of diffusion indicator tZc
i u can be

calculated in an explicit form

π̂c
i :“ P pZc

i “ 1 | tpcqq “

#

πiPIptci ;Θ¨iq

πiPIptci ;Θ¨iq`p1´πiqPIptci ;Ψ¨iq
, if tci ă T

πiPU ptci ;Θ¨iq

πiPU ptci ;Θ¨iq`p1´πiqPU ptci ;Ψ¨iq
, if tci ě T

(10)
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3.3 Model identification

In this subsection, we establish the identifiability of the double network mixture model. Denote
RΘ

i :“ tj P t1, ¨ ¨ ¨ , Nu | Θji ą 0u and RΨ
i :“ tj P t1, ¨ ¨ ¨ , Nu | Ψji ą 0u as the sets of nodes

that can directly reach node i on Θ and Ψ, and tRi
P r0, T s|RΘ

i YRΨ
i | :“ ttj | j P RΘ

i Y RΨ
i u as the

infectious times of these nodes. We have the following identifiability result for model in (9).
Proposition 1. For each node i, i “ 1, ¨ ¨ ¨ , N , assume that 1) }Θ¨i}1 ` }Ψ¨i}1 ą 0 and there exists
j ‰ i such that Θji ‰ Ψji, and 2) survival function satisfies Spti | tj , λjiq “ exptλjihpti ´ tjqu

for some differentiable function hp¨q. Then, the parameters pπi,Θ¨i,Ψ¨iq associated with node i in
(9) are identifiable, i.e., if

πiPIpt;Θ¨iq ` p1 ´ πiqPIpt;Ψ¨iq “ π̃iPIpt; Θ̃¨iq ` p1 ´ π̃iqPIpt; Ψ̃¨iq, or

πiPU pt;Θ¨iq ` p1 ´ πiqPU pt;Ψ¨iq “ π̃iPU pt; Θ̃¨iq ` p1 ´ π̃iqPU pt; Ψ̃¨iq

for any ti and tRi
, then πi “ π̃i, Θ¨i “ Θ̃¨i, and Ψ¨i “ Ψ̃¨i.

Assumption 2) can be satisfied by popular risk models including Exp model, Pow model, Ray model,
and other additive risk models of information propagation, such as kernel hazard functions [10] and
feature-enhanced hazard functions [36]. Proposition 1 shows that the network preferences tπiu

N
i“1

are identifiable and diffusion networks Θ and Ψ are column-wise identifiable. However, similar
to the labeling non-identifiability issue in finite mixture model [23], Θ and Ψ may still not be
globally identifiable without structural constraints due to column permutation. Specifically, the data
distribution does not change if we swap Θ¨i and Ψ¨i in Θ and Ψ with other columns fixed.

Layer-specific network structure constraint Motivated by real-world applications, one can interpret
Θ as the diffusion pathways over an observed social network A P t0, 1uNˆN . Therefore, we can
impose support constraints on Θ as

Θij ě 0 if Aij “ 1; Θij “ 0 if Aij “ 0.

Due to the sparse nature of real-world social networks, the support constraint also implicitly imposes
sparsity constraint on Θ. On the other hand, one can interpret Ψ as the diffusion pathways via latent
social relations of individuals that are not captured by the social network A. The magnitude of Ψij

reflects the social distance between individual i and j in terms of their latent factors. It has been
found that social distance typically has or can be approximated by low-rank structure [34, 26, 27],
since high-dimensional social factors can always be embeded into a low dimensional latent space that
preserves social distances [34]. Therefore, we impose low-rank structure on Ψ as

rankpΨq ď r, 1 ď r ăă N.

Imposing the above support constraint and low-rank structure allows Θ and Ψ to capture comple-
mentary diffusion patterns driven by different types of relations. In addition, the structure constraints
solve the above column-wise permutation issue [6]. Specifically, we introduce the matrix sub-
space Λ1pΘq “

␣

N P RNˆN | supportpNq Ď A
(

. We also perform SVD on Ψ “ UΣV J

where U ,V P RNˆr and r is the rank of Ψ. Then, we define another matrix subspace as
Λ2pΨq “

␣

UXJ ` Y V J | X,Y P RNˆk
(

. We have the following result:
Proposition 2. Given that the assumptions in Proposition 1 hold, then Θ and Ψ are identifiable if:

max
NPΛ1pΘq,}N}8ď1

}N}2 ˆ max
NPΛ2pΨq,}N}2ď1

}N}8 ă 1, (11)

where } ¨ }2 and } ¨ }8 denote matrix operation norm and largest element in magnitude.

The first term in (23) controls the rank of Θ given a fixed sparsity level, where a larger value indicates
a lower rank. The second term controls the sparsity level of Ψ given a fixed rank, where a larger
value indicates a lower sparsity level. Intuitively, networks Θ and Ψ can be globally identified given
that they are well-separated in terms of either rank or sparsity.

3.4 Model estimation

Combining the distribution of cascade samples in Section 3.2 and the network structure constraints in
Section 3.3, we estimate the model parameters Ω via constrained likelihood maximization as

argmax
Ω“tΘ,Ψ,πu

1

C

C
ÿ

c“1

logP ptpcq;Ωq s.t. Θ d pI ´ Aq “ 0, rankpΨq ď r,
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where I is a N -by-N matrix with all elements being 1. However, both the likelihood function and
the rank regularization are difficult to directly optimize. Therefore, we maximize the evidence lower
bound of the log-likelihood function and replace the low-rank penalty with its convex relaxation as
nuclear norm } ¨ }‹. The optimization problem can thus be reformulated as follow

argmax
qpZq,Ω

EqpZq

“ 1

C

C
ÿ

c“1

logP ptpcq,Z;Ωq
‰

´
“

EqpZq log qpZq
‰

s.t. Θ d p1 ´ Aq “ 0, }Ψ}‹ ď ρ,

where EqpZq is the expectation of Z over distribution qpZq. The above objective function can be
optimized via EM algorithm by iteratively updating qpZq and Ω. Specifically, with the estimated
parameters Ωpsq from the s-th step:

E-step:qpZ;Ωpsqq “

C
ź

c“1

N
ź

i“1

P pZc
i | tpcq;Ωpsqq

M-step:Ωps`1q “argmax
Ω

1

C

C
ÿ

c“1

EqpZ;Ωpsqq

“

logP ptpcq,Z;Ωq
‰

s.t. Θ d pI ´ Aq “ 0, }Ψ}‹ ďρ.

In E-step, the posterior distribution of network indicators π̂c
i “ P pZc

i | tpcq;Ωpsqq can
be explicitly updated via (10). In M-step, the objective function QpΩ | Ωpsqq :“
1
C

řC
c“1 EqpZ;Ωpsqq

“

logP ptpcq,Z;Ωq
‰

can be decomposed as QpΩ | Ωpsqq “ Q1pΘ | Ωpsqq `

Q2pΨ | Ωpsqq`Q3pπ | Ωpsqq. The arguments Θ, Ψ, and π can thus be updated parallelly in M-step
as

M.1 : Θps`1q “ argmax
Θ

Q1pΘ | Ωpsqq s.t. Θ d pI ´ Aq “ 0 (12)

M.2 : Ψps`1q “ argmax
Ψ

Q2pΨ | Ωpsqq s.t. }Ψ}‹ ď ρ (13)

M.3 : πps`1q “ argmax
π

Q3pπ | Ωpsqq (14)

When the structural network A is not observed, one can impose l1-norm penalty to pursue sparsity
structure in Θ. Accordingly, the constraint in optimization (12) is replaced by }Θ}1 ď s1, where
s1 ą 0 is the sparsity tuning parameter. The main advantage of the proposed relaxation is that the
M-step becomes a series of convex optimization problems. Specifically, denote parameter spaces
ΞΘpsq :“ tΘ P r0, β1sNˆN | Θ d pI ´ Aq “ 0u with s “ }A}0, ΞΨpρq :“ tΨ P r0, β2sNˆN |

}Ψ}‹ ď ρu, and Ξπ :“ tπ P rϵ, 1 ´ ϵsNu, where β1, β2 are nonnegative constants and 0 ă ϵ ă 0.5.
We have the following result:
Theorem 3.1. The parameter spaces ΞΘpsq, ΞΨpρq, and Ξπ are convex sets for any s ą 0, ρ ą 0,
and Q3pπ | Ωpsqq is concave on π. If the hazard function Hpt | t1, λq satisfies BH2

pt|t1,λq

Bλ2 “ 0 for
t ě t1, then Q1pΘ | Ωpsqq and Q2pΨ | Ωpsqq are concave on Θ and Ψ, respectively. Furthermore, if
for any node i, the probabilities of being source node P pvq ą 0 for v P R where R denotes the set of
nodes from which i is reachable via a directed path, then EtrQ1pΘ | Ωpsqqs and EtrQ2pΨ | Ωpsqqs

are also strictly concave in terms of Θ and Ψ, respectively.

Theorem 3.1 guarantees that the optimization in M-step has a unique and optimal solution. Combining
the theorem with the convergence guarantee of EM algorithm for convex ancillary function QpΩ |

Ωpsqq [2, 38], the above likelihood maximizer Ω̂ is guaranteed to converge to the true Ω. In addition,
the convexity assumption on hazard function can be satisfied by popular risk models including Exp
model, Pow model, Ray model, and other additive risk models. We summarize and provide details
for the above optimization process in the Appendix.

4 Numerical experiments on synthetic cascading data

We investigate the performance of the proposed method in recovering the diffusion networks based
on synthetic cascading data. The performance of global transmission rates estimation on a network Θ

is measured by normalized mean absolute error (MAE) as MAEpΘq “
ř

i,j |Θ̂ij ´ Θij |{Θij . The
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performance of network probability π estimation is measured as MAEpπq “
ř

i |π̂i ´ πi|{πi. In
addition, we investigate the performance of recovering the structure of diffusion network. Specifically,
given a diffusion network Θ we consider three topology estimation metrics accuracy, precision, and
recall as AccpΘq “

ř

i,j |IpΘ̂ijq ´ IpΘijq|{p
ř

i,j IpΘ̂ijq `
ř

i,j IpΘijqq, PrepΘq “
ř

i,jpIpΘ̂ijq ¨

IpΘijqq{
ř

i,j IpΘ̂ijq, and RecallpΘq “
ř

i,jpIpΘ̂ijq ¨ IpΘijqq{
ř

i,j IpΘijq, where Ipαq “ 1 if
α ą 0 and Ipαq “ 0 otherwise. In the following numerical experiments, we fix the size of diffusion
networks at N “ 200.

4.1 Benchmark comparison under different network topologies

We compare the proposed method with baseline methods including NetRate [31], MMRate [37], and
ConNIe [29] on diffusion network recovery. We generate diffusion networks Θ and Ψ to mimic
different structure of real-world networks. Specifically, we consider the diffusion network Θ and
its support A as random network, network with community structure, and scale-free network. On
the other hand, we fix the latent diffusion network to be both low-rank (rank 5) and sparse (edge
density 0.05). Given Θ and Ψ, we generate C “ 2, 000 independent cascade samples based on
double mixture model with Exp transmission model and observation window length being T “ 10.

Table 1 shows the proposed method outperforms both NetRate and MMRate by achieving lower
MAE of transmission rate estimation on diffusion network Θ under three network topologies and
lower MAE of corresponding latent diffusion network Ψ. MAE comparison does not include ConNIe
since it only estimates network topology. In addition, we compare the proposed method with baseline
methods in terms of network topology recovery on both Ψ and joint network Θ̂ Y Ψ̂ for a fair
comparison since benchmark methods NetRate and ConNIe do not distinguish the different diffusion
networks by design. Table 1 shows the proposed method achieves higher accuracy on topology
recovery via both latent network Ψ̂ and joint network Θ̂ Y Ψ̂ than NetRate, MMRate, and ConNIe
under different underlying structures in Θ. It also shows that under different settings, our method
significantly outperforms all other methods in precision while remains higher recall than MMRate and
ConNIe, and achieves similar recall to NetRate. Since only MMRate differentiates diffusion networks
and estimates probabilities of cascading diffusing over a specific network, we compare MAEpπq

from the proposed method with that from MMRate. Table 1 shows that our method also outperforms
MMRate in estimation of network selection probability under different network topologies.

Table 1: Diffusion network estimations from different methods under three Θ topologies (standard
deviation in parenthesis, best performance highlighted in blue).

MAEΘ MAEΨ MAEπ AccΨ PreΨ RecΨ AccΘYΨ PreΘYΨ RecΘYΨ

OurAlg
Rand 0.315(0.011) 0.544(0.007) 0.047(0.002) 0.842(0.006) 0.757(0.008) 0.948(0.006) 0.889(0.006) 0.829(0.006) 0.958(0.004)
Com 0.264(0.005) 0.507(0.004) 0.049(0.002) 0.846(0.005) 0.767(0.007) 0.942(0.004) 0.888(0.004) 0.832(0.006) 0.954(0.003)
Scale 0.312(0.006) 0.545(0.006) 0.050(0.002) 0.833(0.005) 0.750(0.007) 0.937(0.005) 0.883(0.004) 0.826(0.007) 0.949(0.003)

NetRate
Rand 0.865(0.001) 2.998(0.026) – 0.172(0.002) 0.095(0.001) 0.964(0.005) 0.207(0.003) 0.116(0.002) 0.942(0.004)
Com 0.851(0.000) 3.103(0.014) – 0.180(0.002) 0.099(0.001) 0.975(0.004) 0.216(0.002) 0.122(0.001) 0.955(0.003)
Scale 0.855(0.000) 2.897(0.018) – 0.179(0.002) 0.099(0.001) 0.929(0.003) 0.220(0.002) 0.125(0.001) 0.922(0.003)

MMRate
Rand 0.637(0.007) 1.490(0.030) 0.888(0.133) 0.201(0.023) 0.120(0.015) 0.632(0.023) 0.265(0.028) 0.164(0.019) 0.695(0.019)
Com 0.630(0.008) 1.665(0.036) 0.881(0.137) 0.219(0.017) 0.130(0.012) 0.705(0.008) 0.281(0.020) 0.173(0.015) 0.755(0.006)
Scale 0.668(0.006) 1.477(0.027) 0.928(0.028) 0.211(0.019) 0.126(0.013) 0.650(0.009) 0.278(0.023) 0.173(0.018) 0.710(0.007)

ConNIe
Rand – – – 0.519(0.006) 0.397(0.005) 0.752(0.010) 0.638(0.006) 0.530(0.006) 0.800(0.008)
Com – – – 0.519(0.005) 0.398(0.005) 0.748(0.007) 0.638(0.005) 0.532(0.007) 0.796(0.006)
Scale – – – 0.523(0.006) 0.402(0.005) 0.748(0.009) 0.646(0.006) 0.543(0.006) 0.797(0.008)

4.2 Network recovery under different transmission models

In this subsection, we investigate the performance of our diffusion network estimation when cascade
samples are generated from popular transmission models including Exp, Pow, and Ray models,
respectively. Table 2 illustrates the transmission rates recovery and network topology recovery on Ψ
under different transmission models and cascade sample sizes C. As the sample size C increases,
both the parameter estimations (MAE) and topology recovery metrics (Acc, Pre, Rec) improve under
different transmission models. In addition, the degree of improvement decreases as more cascade
samples become available. This pattern indicates the consistency of the proposed diffusion network
estimators, and the convergence of the proposed EM-type optimization. Notice that the diffusion
network recovery based on cascade samples generated from Pow transmission model is better than
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Exp and Ray model. This is because the Pow model introduces an additional parameter as time lag
lower bound, which lowers the variation of activate time and overestimation of transmission rates.

Table 2: Diffusion network estimations from the proposed method under different cascade models
and sample sizes.

MAEΘ MAEΨ MAEπ AccΨ PreΨ RecΨ

Exp

C = 500 0.320(0.019) 0.871(0.019) 0.095(0.006) 0.564(0.010) 0.431(0.011) 0.817(0.010)
C = 1000 0.235(0.013) 0.667(0.007) 0.091(0.005) 0.743(0.009) 0.653(0.014) 0.862(0.007)
C = 1500 0.216(0.012) 0.601(0.008) 0.085(0.004) 0.817(0.006) 0.746(0.008) 0.903(0.006)
C = 2000 0.187(0.011) 0.562(0.007) 0.082(0.004) 0.857(0.004) 0.794(0.006) 0.930(0.005)

Ray

C = 500 0.287(0.018) 1.053(0.056) 0.152(0.008) 0.605(0.018) 0.525(0.024) 0.714(0.013)
C = 1000 0.211(0.015) 0.990(0.100) 0.130(0.008) 0.712(0.019) 0.605(0.026) 0.866(0.012)
C = 1500 0.179(0.011) 0.629(0.091) 0.134(0.004) 0.795(0.017) 0.702(0.026) 0.916(0.007)
C = 2000 0.188(0.012) 0.605(0.081) 0.137(0.004) 0.807(0.011) 0.709(0.019) 0.937(0.011)

Pow

C = 500 0.171(0.008) 0.433(0.012) 0.144(0.010) 0.882(0.015) 0.832(0.024) 0.939(0.009)
C = 1000 0.129(0.006) 0.328(0.007) 0.131(0.007) 0.956(0.004) 0.932(0.007) 0.982(0.004)
C = 1500 0.112(0.005) 0.290(0.004) 0.125(0.008) 0.969(0.002) 0.946(0.004) 0.993(0.002)
C = 2000 0.106(0.006) 0.271(0.004) 0.129(0.011) 0.973(0.003) 0.950(0.005) 0.997(0.001)

5 Real cascading data analysis

In this section, we study the cascading patterns of research topics in sociology by discovering
the diffusion networks among US universities. Geographic proximity is known to facilitate idea
exchanges through collaborations and citations among colleagues within the same institution or
nearby locations [3], which can be due to dependence on shared research resources and the need
for coordination [28]. It is also known that research diffusion can happen via the latent network of
scholars, which is also sometimes called the "invisible colleges" [7] to highlight the role of informal
networks and latent ties. Our goal is to infer the latent research topic diffusion network and compare
its difference with the geographic network in terms of topic cascading.

Data preparation and preprocess We select universities in both the list of 1965 ASA Guide to
Graduate Departments of Sociology and the list of 2022 US News Best Sociology Programs in
America. In addition, we exclude the universities whose sociology programs were established after
1965. Based on the above conditions, we finalize N “ 104 universities, which are considered as the
target population of our study. We then create a geographical network A P t0, 1uNˆN among the
selected universities, where Aij “ 1 if university i and j are located in the same state.

(a) Geographical network (b) Latent diffusion network

Figure 2: Cascade transmission rates over geographical network Θ and latent diffusion network Ψ.

To construct research topics, we use Elsevier’s Scopus API to compile a dataset of 29,725 unique
articles from 23 top generalist sociology journals, including information on authors, their affilia-
tions, article titles, and abstracts. Multiple keywords are extracted from the titles and abstracts of
articles. After these preprocesses, we obtain 3,033 unique research topics that cover major research
fields in sociology. For each research topic c, we construct the corresponding cascade samples as
ptc1, t

c
2, ¨ ¨ ¨ , tcN q where tci :“ t̃ci ´ t̃c0, with t̃c0 being the publication date of the first article that involves

topic c, and t̃ci being the publication date of the first article that involves topic c and is published by
any scholar affiliated with university i. If university i never publishes any article that involves topic c,
we set tci to be year 2022.

Diffusion networks inference We simultaneously estimate the geographic diffusion network Θ and
the latent diffusion network Ψ based on the proposed model. Figure (2) illustrates the inferred diffu-
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sion networks Θ̂ and Ψ̂, respectively. The size of nodes represents the out-degree of corresponding
universities on networks. We see that the geographic diffusion network has a strong local community
structure, especially among universities in California, the Great Lakes, and the northeast coast.
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Figure 3: Comparison of distributions of pairwise
transmission rates from geographic network Θij and
latent network Ψij .

Figure (2) also shows that the latent diffusion net-
work demonstrates a decentralized structure and
contains many connections between the east and
west coasts. This captures the national collabo-
ration and academic mobility. We also compare
estimated pairwise transmission rates on diffusion
networks Θ̂ and Ψ̂ in Figure (3). In summary, the
latent diffusion network is denser than the geo-
graphic network, and the magnitude of transmis-
sion rates on the geographic network is larger and
has more variation compared to the latent diffusion
network.

To provide an interpretation of the inferred geo-
graphic diffusion network Θ and latent diffusion
network Ψ, we connect universities’ positions on
the network with universities’ U.S. News Univer-
sity rankings on the sociology program. We choose these rankings since they are a systematic and
popular summary of academic factors. Figure (4a) illustrates the association between program ranking
and the node-wise betweenness centrality on latent diffusion network. The Betweenness centrality of
a node i is defined as

ř

j‰i‰k σjkpiq{σjk, where σjk is the total number of shortest paths from node j
to k, and σjkpiq is the number of those paths that pass through i. Based on the figure, the universities’
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(b) Pagerank centrality vs Ranking on Ψ

Figure 4: Node-wise centrality vs Ranking on latent network Ψ.

betweenness centralities are relatively uniform and do not significantly decrease as ranking increases.
This suggests that there does not exist any strong community or centralized topology in the latent
network. When universities are grouped according to their ranking (top 20, middle 60, low 20 etc.),
each group has different high-betweenness universities, serving as the bridges in idea diffusion. We
also investigate the relation between university rankings and Pagerank centrality. Pagerank centrality
measures the influence of a node on a network based on how many influential nodes it connects to.
Figure (4b) shows that the universities’ Pagerank centralities decrease as their rankings increase,
which suggests that the idea exchanges among high-ranked universities are more frequent and faster
than those of other universities. This pattern appears because high-ranked universities have a higher
level of research activities. University prestige is also considered as an important proxy for the quality
of ideas, which increases the likelihood of research ideas from higher-ranked universities to diffuse.

6 Scalability analysis

The implicit convex nature of our objective function allows the optimization process to be as efficient
as gradient descent, even though the optimization of our method is based on EM-type update. The
E-step in our algorithm has an explicit form as in (10). Furthermore, we have proved in Theorem
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3.1 that the objective function QpΩq in the M-step is strictly concave and in each EM-iteration, we
only perform gradient ascent once instead of maximizing QpΩq until convergence. Under these
conditions, established proofs in [2] show that the above EM-update is equivalent to gradient decent,
and our optimization thus enjoys gradient descent’s geometric convergence rate.

Computational complexity of the proposed method is K ¨ OpN2 ¨ Cq ` K ¨ OpN3q, where N is
network size, C is sample size, and K is the number of iterations executed. In practice, we require
C " N for reasonable estimation. The first term thus dominates and the computational complexity is
approximately the same as that of gradient descent. We can replace the standard SVD operation in the
M -step by randomized SVD or Lanczos algorithm. Then, we can further reduce the computational
complexity of the second term from OpN3q to OprN2q or Oppr ` lqN2q where r ! N is the rank
of network Ψ, N is the size of network, and l is a constant usually between 10 and 20.

We also numerically investigate both time and estimation performance of the proposed method in
recovering diffusion networks based on synthetic cascading data in large network settings. We adopt
the same criteria used in Section 4 to evaluate estimation performance and use average time per
iteration to evaluate time performance. We generate diffusion networks Θ and Ψ of different sizes in
a similar way to Section 4.2, fixing Ψ to be both low-rank (rank 5) and sparse (edge density 0.01).
Given Θ and Ψ, we generate C “ 50, 000 independent cascade samples based on double mixture
model with Exp transmission model and observation window length being T “ 10.

Table 3: Execution time of different methods under different network sizes (unit: second per iteration).

N “ 500 N “ 1000 N “ 2000 N “ 4000

OurAlg 2.395(0.001) 8.201(0.019) 33.442(0.031) 132.955(0.046)

NetRate 1.390(0.001) 4.929(0.011) 20.039(0.030) 79.992(0.040)

Table 3 shows that the computation time of the proposed method per iteration is proportional to the
squared network size N2. This aligns with the earlier theoretical analysis of computational complexity.
In addition, for all network sizes N “ 500, 1000, 2000, 4000, the ratio between computational time
per iteration of the proposed method and NetRate [31]is approximately a constant 1.65. Since
NetRate [31] is well-known for its scalability, this result demonstrates the computational efficiency
and scalability of the proposed method.

Table 4 illustrates the estimation performance of the proposed method for large networks. For
networks of all sizes N “ 500, 1000, 2000, the proposed method outperforms NetRate [31] on both
transmission rate estimation and network topology recovery. For networks of sizes N “ 500, 1000,
the proposed method achieves estimation performances comparable to those of smaller networks
in Section 4. Additionally, when sample size is fixed, the performance of the proposed method
decreases, indicating the need for more samples on larger networks to achieve accurate estimations.

Table 4: Diffusion network estimations from the proposed method under different network sizes.

MAEΘ MAEΨ AccΨ PreΨ RecΨ

OurAlg
N = 500 0.398(0.001) 0.711(0.019) 0.894(0.003) 0.820(0.005) 0.983(0.001)
N = 1000 0.411(0.005) 0.797(0.007) 0.779(0.001) 0.666(0.001) 0.939(0.003)
N = 2000 0.437(0.003) 0.814(0.008) 0.571(0.002) 0.523(0.002) 0.630(0.002)

NetRate
N = 500 0.743(0.014) 1.053(0.038) 0.078(0.008) 0.041(0.004) 0.818(0.007)
N = 1000 0.755(0.010) 1.094(0.019) 0.086(0.001) 0.045(0.001) 0.914(0.007)
N = 2000 0.759(0.003) 1.096(0.002) 0.083(0.000) 0.044(0.000) 0.913(0.000)

7 Conclusion

In this paper, we propose a novel double network mixture model for heterogeneous cascading process
on multi-layer networks. Our method can identify the latent diffusion network complementary to the
observed network. Due to its convex formulation, our method has both statistical and computational
guarantee in terms of estimating diffusion networks. A major future work is to generalize the mixture
graph model to a system with more than two-layer networks and derive the model identification
conditions. Extending the proposed method to inference on time-varying networks with time-
dependent parameters tΘptq,Ψptq,πptqu or nonparametric transmission models are also interesting
directions for future works.

10



References
[1] Eytan Adar and Lada A Adamic. Tracking information epidemics in blogspace. In The 2005

IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), pages 207–214. IEEE,
2005.

[2] Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the EM
algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77 – 120,
2017.

[3] Pierre-Alexandre Balland and David Rigby. The geography of complex knowledge. Economic
geography, 93(1):1–23, 2017.

[4] Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. Learning from the behavior of others:
Conformity, fads, and informational cascades. Journal of economic perspectives, 12(3):151–170,
1998.

[5] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion. SIAM Journal on optimization, 20(4):1956–1982, 2010.

[6] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

[7] Diana Crane. Invisible Colleges; Diffusion of Knowledge in Scientific Communities. University
of Chicago Press, Chicago„ 1972.

[8] Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, and Bernhard Schoelkopf. Estimating
diffusion network structures: Recovery conditions, sample complexity & soft-thresholding
algorithm. In International conference on machine learning, pages 793–801. PMLR, 2014.

[9] Nan Du, Le Song, Manuel Gomez Rodriguez, and Hongyuan Zha. Scalable influence estimation
in continuous-time diffusion networks. Advances in neural information processing systems, 26,
2013.

[10] Nan Du, Le Song, Ming Yuan, and Alex Smola. Learning networks of heterogeneous influence.
Advances in neural information processing systems, 25, 2012.

[11] Wenjing Duan, Bin Gu, and Andrew B Whinston. Informational cascades and software adoption
on the internet: an empirical investigation. MIS quarterly, pages 23–48, 2009.

[12] John RP French. The bases of social power. Studies in social power/University of Michigan
Press, 1959.

[13] Noah E Friedkin and Eugene C Johnsen. Social influence network theory: A sociological
examination of small group dynamics, volume 33. Cambridge University Press, 2011.

[14] Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordinate
optimization. The annals of applied statistics, 1(2):302–332, 2007.

[15] P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-scale constrained
optimization. SIAM Review, 47:99–131, 2005.

[16] Philip E. Gill, Walter Murray, Michael A. Saunders, and Elizabeth Wong. User’s Guide
for SNOPT Version 7.7: Software for Large-Scale Nonlinear Programming. Department of
Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA, March 2018.
CCoM Technical Report 18-1.

[17] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion
and influence. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4):1–37,
2012.

[18] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Modeling information
propagation with survival theory. In International conference on machine learning, pages
666–674. PMLR, 2013.

11



[19] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Structure and dynamics
of information pathways in online media. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 23–32, 2013.

[20] Márton Karsai, Gerardo Iñiguez, Riivo Kikas, Kimmo Kaski, and János Kertész. Local cascades
induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned
behaviour govern online adoption spreading. Scientific reports, 6(1):27178, 2016.

[21] Matt J Keeling and Ken TD Eames. Networks and epidemic models. Journal of the royal
society interface, 2(4):295–307, 2005.

[22] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

[23] Daeyoung Kim and Bruce G Lindsay. Empirical identifiability in finite mixture models. Annals
of the Institute of Statistical Mathematics, 67:745–772, 2015.

[24] Alden S Klovdahl, John J Potterat, Donald E Woodhouse, John B Muth, Stephen Q Muth, and
William W Darrow. Social networks and infectious disease: The colorado springs study. Social
science & medicine, 38(1):79–88, 1994.

[25] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral marketing.
ACM Transactions on the Web (TWEB), 1(1):5–es, 2007.

[26] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
journal of the association for information science and technology (2007). Google Scholar
Google Scholar Digital Library Digital Library, 2007.

[27] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011, Proceedings, Part II 22, pages 437–452. Springer, 2011.

[28] Sarah Morrison-Smith and Jaime Ruiz. Challenges and barriers in virtual teams: a literature
review. SN Applied Sciences, 2(6):1096, 2020.

[29] Seth A Myers and Jure Leskovec. On the convexity of latent social network inference. Advances
in Neural Information Processing Systems, 2, 2010.

[30] Jeongha Oh, Anjana Susarla, and Yong Tan. Examining the diffusion of user-generated content
in online social networks. Available at SSRN 1182631, 2008.

[31] Manuel Gomez Rodriguez, Jure Leskovec, David Balduzzi, and Bernhard Schölkopf. Un-
covering the structure and temporal dynamics of information propagation. Network Science,
2(1):26–65, 2014.

[32] Daniel M Romero, Brendan Meeder, and Jon Kleinberg. Differences in the mechanics of
information diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In Proceedings of the 20th international conference on World wide web, pages 695–704,
2011.

[33] Charles R Shipan and Craig Volden. The mechanisms of policy diffusion. American journal of
political science, 52(4):840–857, 2008.

[34] Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank?
SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019.

[35] Jacco Wallinga and Peter Teunis. Different epidemic curves for severe acute respiratory
syndrome reveal similar impacts of control measures. American Journal of epidemiology,
160(6):509–516, 2004.

[36] Liaoruo Wang, Stefano Ermon, and John E Hopcroft. Feature-enhanced probabilistic models
for diffusion network inference. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings,
Part II 23, pages 499–514. Springer, 2012.

12



[37] Senzhang Wang, Xia Hu, Philip S Yu, and Zhoujun Li. Mmrate: Inferring multi-aspect diffusion
networks with multi-pattern cascades. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1246–1255, 2014.

[38] Zhaoran Wang, Quanquan Gu, Yang Ning, and Han Liu. High dimensional expectation-
maximization algorithm: Statistical optimization and asymptotic normality. arXiv preprint
arXiv:1412.8729, 2014.

[39] Duncan J Watts. A simple model of global cascades on random networks. Proceedings of the
National Academy of Sciences, 99(9):5766–5771, 2002.

[40] Ming Yu, Varun Gupta, and Mladen Kolar. Estimation of a low-rank topic-based model for
information cascades. Journal of Machine Learning Research, 21(71):1–47, 2020.

[41] Gilles Zumbach and Paul Lynch. Heterogeneous volatility cascade in financial markets. Physica
A: Statistical Mechanics and its Applications, 298(3-4):521–529, 2001.

13



A Additional details on methodology

A.1 Detailed expression of objectives in M-step

Q1pΘ | Ωpsqq, Q2pΨ | Ωpsqq, and Q3pπ | Ωpsqq can be formulated in detail as:

Q1pΘ | Ωpsqq “
1

C

C
ÿ

c“1

!

ÿ

i:tci ďT

π̂c
i logPIpti;Θ¨iq `

ÿ

j:tcjąT

π̂c
j logPU pT ;Θ¨jq

)

Q2pΨ | Ωpsqq “
1

C

C
ÿ

c“1

!

ÿ

i:tci ďT

p1 ´ π̂c
i q logPIpti;Ψ¨iq `

ÿ

j:tcjąT

p1 ´ π̂c
jq logPU pT ;Ψ¨jq

)

Q3pπ | Ωpsqq “
1

C

C
ÿ

c“1

!

N
ÿ

i“1

”

π̂c
i log πi ` p1 ´ π̂c

i q logp1 ´ πiq

ı)

,

where PI , PU follow the definitions in Section 3.1.

A.2 Optimization algorithm and discussions

We summarize the optimization of the reformulated problem in Section 3.4 via EM algorithm as
Algorithm 1.

Algorithm 1 First-order projected EM algorithm

Require: initialization Ωp0q “ tΘp0q,Ψp0q,πp0qu, observed network A, low-rank penalty µ, learn-
ing rate λ, and stopping criterion ϵ.
while QpΩps`1q | Ωpsqq ´ µ}Ψps`1q}‹ ´ QpΩpsq | Ωpsqq ` µ}Ψpsq}‹ ą ϵ do.

E-step: update π̂c
i “ P pZi | tc;Ωpsqq via its posterior distribution based on Ωpsq for i “

1, ¨ ¨ ¨ , N, c “ 1, ¨ ¨ ¨ , C.
M-step: decompose QpΩ | Ωpsqq “ Q1pΘ | Ωpsqq ` Q2pΨ | Ωpsqq ` Q3pπ | Ωpsqq

M.1: Update Θ via Q1pΘ | Ωpsqq:
Θps`1q Ð maxtΘpsq ` λ BQ1

Θ

ˇ

ˇ

ˇ

Θ“Θpsq
d A,0u

M.2: Update Ψ via Q2pΨ | Ωpsqq:
M.2.1: Ψ Ð Ψ ` λ BQ2

Ψ

ˇ

ˇ

ˇ

Ψ“Ψpsq

M.2.2: perform SVD decomposition on Ψ “ UΛV J

M.2.3: Ψps`1q Ð maxtUdiagpΛ ´ λµq`V ,0u

M.3: Update π via Q3pπ | Ωpsqq:

π
ps`1q

i “

řC
c“1 π̂c

i

C , i “ 1, ¨ ¨ ¨ , N
end while

In Algorithm 1, we utilize projected gradient ascent and proximal gradient ascent to update diffusion
networks Θ and Ψ in M.1 and M.2 of M-step, where the latter can be implemented via singular
value soft-thresholding operation [14, 5]. For computational efficiency and stability, we utilize the
first-order EM algorithm [2] such that the ELBO is increased via one-step gradient ascend instead of
maximized in M-step. In addition, both the gradients BQ1

Θ and BQ2

Ψ have closed forms and can be
efficiently calculated. The closed form gradients are provided in A.3.

Likelihood-based parameter tuning The low-rank penalty µ in the above Algorithm 1 can be
selected in a data-adapted manner. Specifically, we can first randomly separate the total cascade
samples into a training subset Ctrain and a validation subset Cval, and estimate model parameters
Ω̂µ on Ctrain given a specific µ. Then we calculate the log-likelihood of validation samples as

1
|Cval|

ř

cPCval
logP ptpcq, Ω̂µq, and select µ such that

µ “ argmax
µPG

1

|Cval|

ÿ

cPCval

logP ptpcq, Ω̂µq
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where G is a grid of candidates for penalty values.

Sparsity pursuit on Θ When the observed network A is not sparse enough or the sample size
of cascade is relatively small, one can further add l1 regularizer on Θ in the objective function
Q1pΘ | Ωpsqq. Accordingly, the matrix Θ is updated via an additional soft-thresholding operator in
the M.1 step of Algorithm 1. Previous results shows that adopting the l1 regularization can improve
the performance and efficiency to recover the diffusion network structure [8, 31].

A.3 Closed form gradients in Algorithm 1

Denote pSΘ
c qji “ Sptci | tcj ,Θjiq, pSΨ

c qji “ Sptci | tcj ,Ψjiq, pHΘ
c qji “ Hptci | tcj ,Θjiq, and

pHΨ
c qji “ Hptci | tcj ,Ψjiq, where Sp¨ | ¨, ¨q and Hp¨ | ¨, ¨q are survival and hazard functions,

respectively.

In addition, we introduce two cascade sample indicator variables Ip1qpcqji and Ip2qpcqji for each node
pair pj, iq such that

Ip1qpcqji “

"

1, if tcj ă tci , and, tcj ď T,

0, otherwise

and

Ip2qpcqji “

"

1, if tcj ă tci , t
c
j ď T, and, tci ď T,

0, otherwise

Then, BQ1

Θ and BQ2

Ψ over each element in Θ and Ψ, respectively, can be explicitly formulated as:

BQ1

BpΘqji
“

C
ÿ

c“1

“

Ip1qpcqji ˆ IpAji “ 1q
π̂c
i

pSΘ
c qji

BpSΘ
c qji

BΘji
`

Ip2qpcqji ˆ IpAji “ 1q
π̂c
i

ř

k:tckătci
pHΘ

c qki

BpHΘ
c qji

BΘji

‰

,

BQ2

BpΨqij
“

C
ÿ

c“1

“

Ip1qpcqji
1 ´ π̂c

i

pSΨ
c qji

BpSΨ
c qji

BΨji
` Ip2qpcqji

1 ´ π̂c
i

ř

k:tckătci
pHΨ

c qki

BpHΨ
c qji

BΨji

‰

The above gradients can be calculated by matrix operations after translating two indicator functions
into matrices.

B Additional details on experimental setup

B.1 Benchmark comparison under different network topologies

In this experiment, we generate diffusion networks with different topologies. Specifically, we consider
the diffusion network Θ and its support A as random network, network with community structure, and
scale-free network. For random network, we generate A via Erdos-Renyi model with edge generation
probability being 0.01. For the community structure, we generate A with a stochastic block model
that contains four equal-sized communities. The generation probability of within-community edge
is 0.05 and that of between-community edge is 0.01. For scale-free network, we generate A via
Barabási–Albert model where we set the number of edges to attach from a new node to existing nodes
to be 1. After generating support A, we set its diagonal to be 0 and assign to each non-zero edge a
weight that follows Unifp1, 5q to construct Θ.

We generate the latent diffusion network as Ψ “ Ψ1Ψ
J
2 where Ψ1,Ψ2 P RNˆ5

` . We fix the proportion
of non-zero edges in Ψ1,Ψ2 at 0.1 and sample weights from Unifp1, 2q for these non-zero edges.
The generated Ψ has an edge density of 0.05 and transmission rates between 1 and 8 on non-zero
edges.

In addition, we impute edges on A to ensure that each row and column of Θ Y Ψ has at least one
non-zero element, i.e., the combined network is connected. Given Θ and Ψ, we generate C “ 2, 000
independent cascade samples based on the double mixture model with Exp transmission model and
observation window length of T “ 10.
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B.2 Network recovery under different transmission models

In this experiment, we generate the latent diffusion network Ψ with low-rank structure using the
same procedure as in B.1.

Given Ψ and its support B, we then generate Θ’s support A by forcing one overlap with B per
column, i.e. tpi, jq | AijBij “ 1u, and one non-overlap with B per column, i.e. tpi, jq | Aij “

1,Bij “ 0u. For Exp and Pow transmission models, we create Θ by sampling transmission rates
from Unifp2, 5q for non-zero edges of A. We slightly modify the generation process for Ray model
by decreasing the transmission rates on non-zero edges of Θ and Ψ. We instead sample weights from
Unifp0.1, 0.8q for non-zero edges in Ψ1,Ψ2 and weights from Unifp0.02, 2q for those in Θ. This
modification aims to force significantly large differences in infection time that contribute to large
differences in probability of infection among potential parents.

We also add edges in Θ to avoid all-zero row or column in Θ Y Ψ to ensure diffusion network
connectivity. The resulting Θ and Ψ have edge density at 0.01 and 0.05, respectively. Based on Θ
and Ψ, we generate different numbers of cascade samples at C “ 500, 1000, 1500, 2000 with a fix
observation window length at T “ 10. In the Pow transmission model, we select delay parameter
δ “ 1.

B.3 Network recovery under large network settings

In this experiment, for each network size N “ 500, 1000, 2000, 4000, we generate the latent diffusion
network Ψ following the same procedure as in B.2 but fixing its rank at 5 and edge density at 0.01.
Given Ψ, we also follow the same procedure in B.2 to generate Θ. The resulting Θ has an edge
density of 0.001. Based on Θ and Ψ, we generate C “ 50000 independent cascade samples with a
fixed observation window length of T “ 10.

To cope with memory limits when the network size N and the sample size C are large, in each outer
iteration, we stream the data in batches of size B: we process one batch at a time to compute the
contributions (likelihood terms, gradients) required by both the E-step and the M-step, accumulate
these quantities across all rM{Bs batches, and then carry out the parameter update using the ag-
gregated totals—thus matching the effect of a full-batch EM update while keeping memory usage
bounded. When more memory is available, one can increase the batch size B accordingly for better
parallelization on GPU and thus shorter execution time per iteration.

C Additional numerical results

C.1 Network recovery under different support overlap

In this subsection, we investigate the performance of our proposed method under different levels
of overlap between Θ and Ψ, defined as overlappΘ,Ψq “

ř

i,j IpAij ˆ Bijq{
ř

i,j IpAij ` Bijq,
where A,B are the support of Θ,Ψ, respectively.

We generate Ψ = Ψ1Ψ
T
2 following similar procedure in B.1 except that we sample weights of non-

zero edges in Ψ1 and Ψ2 from Unifp0.2, 1.5q and increase its rank to 30 to better control its overlap
degree with Θ. The edge density of the generated Ψ is 0.025 and the transmission rates on its
non-zero edges range from 0.05 to 2.

Given Ψ and its support B, we generate different supports A following the same procedure in
B.2 while changing their overlaps and non-overlaps per column with B so that overlappΘ,Ψq

takes three levels at about 0.1, 0.3, 0.5. Then we create Θ by sampling transmission rates from
Unifp0.1, 0.2q Y p1.9, 2.0q for the overlap tpi, jq | AijBij “ 1u, and sampling from Unifp1, 2q

for non-overlap support tpi, jq | Aij “ 1,Bij “ 0u.

We also add edges in Θ with transmission rates from Unifp1, 2q to avoid all-zero row or column in
Θ Y Ψ to ensure diffusion network connectivity. Based on Θ and Ψ, we generate different numbers
of cascade samples from Exp transmission model, and fix the observation window length at T “ 10.

Table 5 shows that the diffusion network recovery performance of the proposed method improves as
sample sizes increases. Additionally, as overlap level between Θ and Ψ increases, the transmission
rates estimations MAE on both Θ, Ψ and π decreases while estimation of Ψ’s support improves.
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This pattern uncovers a trade-off between network differentiation and topology recovery in network
mixture model. As the overlap level increases, the joint diffusion complexity on Θ and Ψ decreases
due to the shared diffusion pathways and support information. On the other hand, it becomes more
difficult and requires more samples to differentiate Θ and Ψ on their overlap component.

Table 5: Diffusion network estimations from the proposed method under different degrees of overlap-
ping between diffusion networks.

overlappΘ,Ψq MAEΘ MAEΨ MAEπ AccΨ PreΨ RecΨ

0.1

C = 500 0.325(0.014) 0.510(0.018) 0.314(0.013) 0.690(0.007) 0.553(0.009) 0.919(0.005)
C = 1000 0.309(0.015) 0.414(0.016) 0.300(0.016) 0.793(0.008) 0.669(0.010) 0.974(0.003)
C = 1500 0.307(0.016) 0.391(0.018) 0.297(0.016) 0.827(0.013) 0.711(0.018) 0.989(0.002)
C = 2000 0.277(0.012) 0.360(0.012) 0.288(0.015) 0.853(0.004) 0.748(0.007) 0.994(0.002)

0.3

C = 500 0.393(0.012) 0.577(0.017) 0.435(0.016) 0.764(0.008) 0.647(0.010) 0.933(0.008)
C = 1000 0.388(0.018) 0.519(0.016) 0.454(0.015) 0.852(0.006) 0.756(0.010) 0.977(0.003)
C = 1500 0.387(0.013) 0.507(0.018) 0.456(0.012) 0.887(0.008) 0.804(0.013) 0.989(0.002)
C = 2000 0.366(0.017) 0.489(0.022) 0.452(0.018) 0.908(0.003) 0.835(0.004) 0.994(0.002)

0.5

C = 500 0.458(0.014) 0.618(0.014) 0.533(0.017) 0.810(0.017) 0.712(0.023) 0.940(0.006)
C = 1000 0.438(0.018) 0.555(0.013) 0.555(0.011) 0.884(0.034) 0.809(0.053) 0.975(0.006)
C = 1500 0.442(0.018) 0.556(0.026) 0.560(0.011) 0.919(0.027) 0.863(0.046) 0.986(0.004)
C = 2000 0.421(0.019) 0.526(0.019) 0.557(0.011) 0.935(0.030) 0.886(0.052) 0.992(0.004)

C.2 Performance under different time window length

In this subsection, we investigate the network recovery performance under different observation
window lengths, which ranges in T P t1, 2, 3, 5, 10u.

We generate Θ and Ψ following the same procedure in C.1 and fix their overlap level at about 0.30.
We generate C “ 1500 cascade samples from transmission models Exp, Pow, Ray.

We illustrate the performance in Figure 5 and 6. In general, both transmission rate estimations and
network topology recovery improve as the observation window becomes T longer since effective
diffusion information increases within each cascade sample. Specifically, by Figure 5, the proposed
method achieves better MAE of Θ and Ψ under Ray (green line with shaded one standard deviation
error range) and Pow (yellow line) cascade model. MAE criterion under Exp model is not strictly
monotone, but its overall trend matches that of Pow and Ray. Figure 6 shows that accuracy and
precision of Ψ also increases as T increases and then remains stable. The results in this subsection
suggest to set a large T in practice, which is also consistent with our theoretical analysis.

(a) MAEΘ (b) MAEΨ (c) MAEπ

Figure 5: Parameter estimation under different time window lengths.

C.3 Network recovery without support information

In this subsection, we investigate the performance of the proposed method when support A of
diffusion network Θ is unobserved.

We consider diffusion networks Θ and Ψ of size N “ 100, generated by similar scheme as in C.1.
Since the size of network is reduced, rank of Ψ1, Ψ2, where Ψ “ Ψ1Ψ

T
2 , is accordingly reduced to 15.

The generated Θ and Ψ have edge densities of 0.02 and 0.05, receptively. Non-zero edges of Θ and
Ψ have ranges 0.1 to 2 and 0.05 to 2.2, respectively. The level of overlap between the two networks is
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(a) AccΨ (b) PreΨ (c) RecallΨ

Figure 6: Topology recovery of latent network estimation under different time window lengths.

fixed at 0.15. We generate cascade samples of different sizes C “ 2000, 3000, 4000, 5000 and from
all three different transmission models Exp, Pow, and Ray.

Table 6 shows that when support of Θ is not observed, performance of the proposed method on
transmission rate estimation still increases as number of samples increases for all three cascade
generation models. Benchmark values in Table 6 are obtained from the proposed method with
information on the support of Θ. Figure 7 and 8 show the relationship between precision and recall
of the estimated Θ and Ψ when their entries below some varying thresholds are truncated to 0.
As sample size increases, the performance of the proposed method on network topology recovery
increases (shown by the larger area under P-R curves). Although the proposed method without
support information of Θ cannot achieve as good performance as when the information is available,
its performance on both transmission rate estimation and network topology recovery still exhibits
converging pattern to the benchmark performance as sample size increases.

Table 6: Parameter estimation from the proposed method when support of Θ is unknown.

MAEΘ AccΘ MAEΨ AccΨ

Exp

C = 2000 0.607(0.028) 0.628(0.013) 0.672(0.027) 0.803(0.015)
C = 3000 0.533(0.038) 0.702(0.016) 0.604(0.030) 0.883(0.007)
C = 4000 0.447(0.107) 0.742(0.053) 0.520(0.089) 0.902(0.009)
C = 5000 0.327(0.113) 0.787(0.047) 0.414(0.095) 0.904(0.024)

Benchmark 0.088(0.005) 0.976(0.003) 0.210(0.008) 0.926(0.006)

Ray

C = 2000 0.665(0.044) 0.573(0.021) 0.699(0.039) 0.601(0.020)
C = 3000 0.553(0.112) 0.680(0.053) 0.592(0.093) 0.699(0.040)
C = 4000 0.292(0.054) 0.824(0.027) 0.376(0.042) 0.811(0.016)
C = 5000 0.232(0.022) 0.858(0.012) 0.326(0.017) 0.837(0.010)

Benchmark 0.067(0.002) 1.000(0.000) 0.177(0.002) 0.941(0.023)

Pow

C = 2000 0.604(0.064) 0.732(0.026) 0.537(0.051) 0.855(0.010)
C = 3000 0.447(0.051) 0.786(0.043) 0.423(0.037) 0.871(0.008)
C = 4000 0.331(0.062) 0.822(0.025) 0.344(0.048) 0.879(0.010)
C = 5000 0.346(0.047) 0.791(0.022) 0.341(0.034) 0.869(0.010)

Benchmark 0.061(0.002) 0.976(0.003) 0.175(0.008) 0.916(0.002)

(a) Precision-recall, Exp (b) Precision-recall, Ray (c) Precision-recall, Pow

Figure 7: Precision-recall plot of Θ
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(a) Precision-recall, Exp (b) Precision-recall, Ray (c) Precision-recall, Pow

Figure 8: Precision-recall plot of Ψ

D Additional details on method implementation

To give proper initializations to our proposed method, we use estimation result Λ from NetRate
[31]. For experiments in Section 4.1, 4.2, C.1, and C.2, we initialize Θ0 “ Λ d A and Ψ0 “ Λ d

p1 ´ Aq, where A is the support of Θ.

We employ a new initialization method in C.3 since information on A, the support of Θ, is missing.
We initialize Ψ0 as the truncated SVD of Λ at rank r. We then initialize Θ0 as the top γ% entries of
the residual Λ ´ Ψ0. Both r and γ are tunable hyperparameters, where 1 ď r ď N and 0 ă γ ă 100.
In the optimization process of C.3, instead of forcing gradient updates of Θ taking non-zero values
only on A, we introduce an additional l1 regularizer on Θ in the loss function to promote its sparsity
and update Θ via an additional l1 soft-thresholding operator.

We also provide a short discussion in this section on the general strategy to choose the best hyperpa-
rameters rλΘ, λΨ, µ, ρΘ, ρΨs, where λ denotes learning rate, µ denotes low-rank penalty, ρ denotes
l1 penalty, and the subscript denotes the network associated with.

In general, as network size, sample size, or edge density increases, smaller λΘ, λΨ are required for
stable and good performance of the algorithm. In terms of different cascade transmission models, the
optimal learning rates for Pow model have the largest magnitude, while those for Ray model have
the smallest. Level of overlap, length of observation window, or the rank of Ψ does not significantly
affect learning rate choices.

For fixed tΘ,Ψ,πu, there exist best threshold λΨ ¨ µ for singular value soft-thresholding operation
and best thresholds λΘ ¨ ρΘ, λΨ ¨ ρΨ for l1 soft-thresholding operation. Thus, for fixed tΘ,Ψ,πu,
we need to adjust penalties inversely proportional to learning rates for the best performance of the
proposed algorithm. l1 penalties should be increased as transmission rates on Θ,Ψ increase, while µ
should be increased as rank of Ψ increases.

E Proofs for theoretical results

Proposition 1

Proof. To prove the column-wise identification between Θ¨i and Ψ¨i, we only need to consider
node i’s direct parents in two networks as RΘ

i :“ tj P t1, ¨ ¨ ¨ , Nu | Θji ą 0u and RΨ
i :“ tj P

t1, ¨ ¨ ¨ , Nu | Ψji ą 0u as the sets of nodes that can directly reach node i on Θ and Ψ. Denote the
activation times of the direct parents of node i as tRi P r0, T s|RΘ

i YRΨ
i | :“ ttj | j P RΘ

i Y RΨ
i u.

If πiPIpt;Θ¨iq ` p1 ´ πiqPIpt;Ψ¨iq “ π̃iPIpt; Θ̃¨iq ` p1 ´ π̃iqPIpt; Ψ̃¨iq, then we have

πi

ÿ

j

Hptj ;Θjiq
ź

j

Sptj ;Θjiq ` p1 ´ πiq
ÿ

j

Hptj ;Ψjiq
ź

j

Sptj ;Ψjiq (15)

“ p1 ´ π̃iq
ÿ

j

Hptj ; Θ̃jiq
ź

j

Sptj ; Θ̃jiq ` p1 ´ π̃iq
ÿ

j

Hptj ; Ψ̃jiq
ź

j

Sptj ;Ψjiq, (16)

where the summation and multiplication are over j P RΘ
i Y RΨ

i with p :“ |RΘ
i Y RΨ

i |. Given that
survival function satisfies Sptj ;λjiq “ exptλjihpti ´ tjqu for some non-negative function hp¨q, then
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the infection likelihood and hazard function are

fptj ;λjiq “ λji expt´λjihpti ´ tjquh1pti ´ tjq; Hptj ;λjiq “ λjih
1pti ´ tjq.

Denote w1ptjq “ πih
1pti ´ tjq

ś

k Sptk;Θkiq, w2ptjq “ p1 ´ πiqh
1pti ´ tjq

ś

k Sptk;Ψkiq,
w̃1ptjq “ π̃ih

1pti ´ tjq
ś

k Sptk; Θ̃kiq, and w̃2ptjq “ p1 ´ π̃iqh
1pti ´ tjq

ś

k Sptk; Ψ̃kiq. Then
(15) can be re-written as

ÿ

j

w1ptjqΘji `
ÿ

j

w2ptjqΨji ´
ÿ

j

w̃1ptjqΘ̃ji ´
ÿ

j

w̃2ptjqΨ̃ji “ 0, (17)

which should hold for any tRi . Consider a 4p ˆ 4p matrix Γ with each row be-
ing rw1pt1q, ¨ ¨ ¨ , w1ptpq, w2pt1q, ¨ ¨ ¨ , w2ptpq, w̃1pt1q, ¨ ¨ ¨ , w̃1ptpq, w̃2pt1q, ¨ ¨ ¨ , w̃2ptpqs where each
row takes different values of tRi

. Based on assumption that there exist j˚ ‰ i such that Θj˚i ‰ Ψj˚i,
then up to permutation between Θ̃¨i and Ψ̃¨i, the columns corresponding to different tj will be linear
independent. Without loss of generality, we only need to investigate the 4p ˆ 4 submatrix Γj with
each row being rw1ptjq, w2ptjq, w̃1ptjq, w̃2ptjqs. We prove that w1ptjq “ w̃1ptjq, w2ptjq “ w̃2ptjq

and Θji “ Θ̃ji, Ψji “ Ψ̃ji by contradiction argument. For two different values tj and t1
j , we have

w1ptjq

w1pt1
jq

“
w2ptjq

w2pt1
jq

ñ

ś

j Sptj ,Θjiq
ś

j Spt1
j ,Θjiq

“

ś

j Sptj ,Ψjiq
ś

j Spt1
j ,Ψjiq

(18)

ñ
ÿ

j

pΘji ´ Ψjiqphpti ´ tjq ´ hpti ´ t1
jqq “ 0, (19)

and we can choose tj ‰ t1
j for those j˚ such that Θj˚i ‰ Ψj˚i. Then the above equation implies

Θj˚i “ Ψj˚i, which cause contradiction. Therefore, the rank of Γj is larger than 1.

If there exists a, b such that aˆw1ptjq ` bˆw2ptjq “ w̃1ptjq hold for any tRi
. Then we let tj “ ti

for all j P RΘ
i Y RΨ

i except j˚. Then we have

a ˆ πih
1pti ´ tj˚ q expthpti ´ tj˚ qΘj˚iu ` b ˆ p1 ´ πiqh

1pti ´ tj˚ q expthpti ´ tj˚ qΨj˚iu

(20)

“π̃ih
1pti ´ tj˚ q expthpti ´ tj˚ qΘ̃j˚iu (21)

ña1 expthpti ´ tj˚ qpΘj˚i ´ Θ̃j˚iqu ` b1 expthpti ´ tj˚ qpΨj˚i ´ Θ̃j˚iqu “ 1, (22)

where a1 “ aπi

π̃i
, b1 “ b 1´πi

π̃i
. Notice that at least one of Θj˚i ´ Θ̃j˚i and Ψj˚i ´ Θ̃j˚i is not zero

and the monotonicity of exppλtq in terms of t, the above exponential function equation cannot hold
as long as hpti ´ tq is not constant over t. Therefore, the rank of Γj can not be 2. Using the same
argument above, we can show the rank of Γj can not be 3 as well.

If the rank of Γj is 4, i.e., Γj is full rank, then Γ is also full rank by applying above argument on
each j P RΘ

i Y RΨ
i except j˚. Based on (17), we have ΓrΘJ

¨i ,Ψ
J
¨i , Θ̃

J
¨i , Ψ̃

J
¨i sJ “ 0, which leads

to ΘJ
¨i “ ΨJ

¨i “ Θ̃J
¨i “ Ψ̃J

¨i “ 0 and contradicts to assumption }Θ¨i}1 ` }Ψ¨i}1 ą 0. Therefore,
w1ptjq “ w̃1ptjq, w2ptjq “ w̃2ptjq and Θji “ Θ̃ji, Ψji “ Ψ̃ji for all j. Finally, by the definition of
w1ptjq and tildew1ptjq, we can derive πi “ π̃i. The statement based on PU can be similarly derived.

Proposition 2

Proof. Given Proposition 1, we have the column-wise identification of Θ¨i and Ψ¨i, and only the
identification of Θ and Ψ up to the column exchange between Θ and Ψ. Notice that Proposition 1
guarantee the identification of C “ Θ ` Ψ. Then if

max
NPΛ1Θq,}N}8ď1

}N}2 ˆ max
NPΛ2pΨq,}N}2ď1

}N}8 ă 1, (23)

we have Λ1pΘq X Λ2pΨq “ H based on Proposition 1 in [6]. Notice that Θ P Λ1pΘq and
Ψ P Λ2pΨq, then Θ and Ψ are identifiable conditioning on C is identifiable.
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Theorem 3.1

Proof. We first show ΞΘpsq, ΞΨpρq, and Ξπ are convex sets for any s ą 0, ρ ą 0 by checking that
the convex combination of any two elements in ΞΘpsq, ΞΨpρq, or Ξπ still lies in the set.

For any Θ1, Θ2 P ΞΘpsq and 0 ď λ ď 1,

0 ď λpΘ1qij ` p1 ´ λqpΘ2qij ď λβ1 ` p1 ´ λqβ1 “ β1 (24)

pλΘ1 ` p1 ´ λqΘ2q d pI ´ Aq “ λrΘ1 d pI ´ Aqs ` p1 ´ λqrΘ2 d pI ´ Aqs “ 0

ΞΘpsq is thus a convex set. Note that s ą 0 avoids the trivial case where A is a zero matrix.

It is easy to argue that Ξπ is a convex set using similar argument to (24).

For any Ψ1, Ψ2 P ΞΨpρq and 0 ď λ ď 1,

||λΨ1 ` p1 ´ λqΨ2||˚ ď λ||Ψ1||˚ ` p1 ´ λq||Ψ2||˚ “ ρ (25)

By (25) and similar argument to (24), ΞΨpρq is a convex set.

Next, we show Q3pπ | Ωpsqq is concave over π. Recall the formulation of Q3pπ | Ωpsqq in A.1

Q3pπ | Ωpsqq “
1

C

C
ÿ

c“1

rpπ̂cqT logpπq ` p1 ´ π̂cqT logp1 ´ πqs

When π P Ξπ, both logpπq and logp1 ´ πq are concave over π. From the above formulation,
Q3pπ | Ωpsqq is concave over π by linearity of concavity.

Without loss of generality, we show Q1pΘ | Ωpsqq is concave on Θ under the assumption that hazard
function Hpt | t1, λq satisfies BH2pt | t1, λq{Bλ2 “ 0 for t ě t1.

Note that this assumption immediately implies the concavity of Hpt | t1, λq and the log concavity of
Spt | t1, λq over λ.

Recall the definition of PI and PU in Section 3.1 we have

logPIpti;Θ¨iq “ logp
ÿ

j:tjăti

Hpti | tj ,Θjiq
ź

k:tkăti

Spti | tk,Θkiqq (26)

logPU pT ;Θ¨iq “ logp
ź

j:tjăT

SpT | tj ,Θjiqq (27)

Rewrite (26) and (27) in the following form,

logPIpti;Θ¨iq “ logp
ÿ

j

Hpti | tj ,Θjiqq `
ÿ

k

logSpti | tk,Θkiq

logPU pT ;Θ¨iq “
ÿ

j

logSpT | tj ,Θjiq

Then by concavity and monotonicity of log function, composition rule for concavity, and linearity of
concavity, both logPIpti;Θ¨iq and logPU pT ;Θ¨iq are concave over Θ¨i.

Concavity of Q1pΘ | Ωpsqq over Θ immediately follows from composition rule for concavity and
the proof for Q3pπ | Ωpsqq. Concavity of Q2pΘ | Ψpsqq directly follows this proof by changing Θ
to Ψ.

By the above proof, the linear combination
ř

j:tcjąT π̂c
j logPU pT ;Θ¨jq where π̂c

j depends on Ωpsq

instead of Θ is concave over Θ. Therefore, Etp
ř

j:tcjąT π̂c
j logPU pT ;Θ¨jqq is concave in terms

of Θ. In addition, notice that B
2EtrQ1pΘ|Ωpsq

qs

B2Θ is a pN2 ´ Nq ˆ pN2 ´ Nq diagonal block matrix

as B
2EtrQ1pΘ|Ωpsq

qs

BΘijBΘkl
“ 0 if j ‰ l, which leads to N blocks

´

B
2EtrQ1pΘ|Ωpsq

qs

BΘjiBΘki

¯

pN´1qˆpN´1q
, i “

1, ¨ ¨ ¨ , N . And the ith block corresponds to the second derivative of

1

C

C
ÿ

c“1

π̂c
i

´

1ttci ďT u logPIpti;Θ¨iq ` 1ttci ąT u logPU pT ;Θ¨iq

¯

21



Based on the above arguments, we only need to show that the strictly concavity for each block in
B
2EtrQ1pΘ|Ωpsq

qs

B2Θ , i.e., Et

`

1
C

řC
c“1 1ttci ďT uπ̂

c
i logPIpti;Θ¨iq

˘

. We then set C to be larger enough
such that C0 :“

řC
c“1 1ttci ďT u ą N ´1 and set the index of cascade where i is infected as 1, ¨ ¨ ¨ , C0,

and

Et

` 1

C

C
ÿ

c“1

1ttci ďT uπ̂
c
i logPIpti;Θ¨iq

˘

“ Et

` 1

C

C0
ÿ

c“1

π̂c
i logPIpti;Θ¨iq

˘

Then we denote Q “ 1
C

řC0

c“1 π̂
c
i logPIpti;Θ¨iq and follow the argument of Lemma 10 in [8] to

prove Q is positive definite. Following their notations and α :“ Θ¨i, we can write

Q “ Dpαq `
1

C
XpαqrXpαqsJ

where Dpαq “ 1
C

řC0

c“1 Dptc;αq and Dptc;αq is a diagonal matrix with rDptc;αqsjj “

´π̂c
iS

2

ptci | tcj ;αkq ´ π̂c
ih

´1ptc, αqH
2

ptci | tcj ;αkq, and hptc, αq “
ř

j:tcjătci
Hptci | tcj ;αkq. In

addition, Xpαq is a pN ´ 1q-by-C0 matrix as

Xpαq “ rXpt1;αq | Xpt1;αq | ¨ ¨ ¨ ,XptC0 ;αqs,

where each column Xptc;αq “
a

π̂c
ih

´1ptc, αq∇αhptc, αq. Given the assumption that the proba-
bilities of being source node P pvq ą 0 for v P R where R denotes the set of nodes from which
i is reachable via a directed path, we can follow the same argument in Lemma 10 of [8] to show
Q is strictly concave in terms of Θ. Then EtpQq is also strictly concave. The strong concavity of
EtrQ2pΨ | Ωpsqqs in terms of Ψ can be similarly proved.

F Information on computer resources

Numerical experiments in this paper were carried out in Google Colab on a single Nvidia A100 GPU
with 80GB of memory available. Regardless of failed experiments, the entire numerical experiment
section took approximately 50 hours of computation time.

In addition, to evaluate the benchmark algorithm ConNIe, we used SNOPT (version 7.7) as the
underlying constrained optimization solver [15, 16].
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of this work in the Conclusion section.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions are stated and all proofs are provided in either Methodology
section or Appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. Code for experiments are provided as supplementary material.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data and code with sufficient instructions
to faithfully reproduce the main experimental results.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details necessary to understand the
results.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports standard deviations where appropriate with suitable explana-
tions.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: The paper provides information on computer resources in the Appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Real cascading data analysis section, we apply our method to analyze the
research topic cascades in social science across U.S. universities and uncover the latent
research topic diffusion networks among the top U.S. social science programs.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper uses open-domain data and code, properly crediting the license and
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New code accompanying this paper is well documented and submitted as
supplementary material.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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