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Abstract

Variational inference (VI) is a popular approach in Bayesian inference, that looks
for the best approximation of the posterior distribution within a parametric family,
minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) diver-
gence. In this paper, we focus on the following parametric family: mixtures of
isotropic Gaussians (i.e., with diagonal covariance matrices proportional to the
identity) and uniform weights. We develop a variational framework and provide
efficient algorithms suited for this family. In contrast with mixtures of Gaussian
with generic covariance matrices, this choice presents a balance between accurate
approximations of multimodal Bayesian posteriors, while being memory and
computationally efficient. Our algorithms implement gradient descent on the
location of the mixture components (the modes of the Gaussians), and either (an
entropic) Mirror or Bures descent on their variance parameters. We illustrate the
performance of our algorithms on numerical experiments.

1 Introduction

The core problem of Bayesian inference is to sample from a posterior distribution π over model
parameters, combining prior knowledge with observed data. Unfortunately, the posterior distribution
is generally difficult to compute due to the presence of an intractable integral (the normalization
constant), and its density with respect to the Lebesgue measure on Rd, also denoted π, is only known
in unnormalized form as π ∝ e−V . Variational inference (VI, [Blei et al., 2017]) is a prominent
alternative to standard Markov chain Monte Carlo (MCMC, [Roberts and Rosenthal, 2004]) that
approximates the posterior by optimizing over a family of tractable distributions. While this restriction
can introduce bias, VI is typically much faster than MCMC, since it reframes the sampling problem
as a (generally finite-dimensional) optimization one over the parameters of the variational family.
Specifically, VI seeks a distribution in a parametric family C that minimizes a discrepancy to the
target posterior, typically the reverse Kullback-Leibler (KL) divergence:

min
µ∈C

KL(µ|π), (1)

where KL(µ|π) =
∫
log(dµ/dπ)dµ if µ is absolutely continuous with respect to π denoting dµ/dπ its

Radon-Nikodym density, and +∞ else.

There exist various choices of variational families and suited algorithms in the literature of VI.
For instance, Mean-field variational inference (MFVI) aims to find an approximate posterior that
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factors as a product of distributions [Lacker, 2023]. Recent studies by Arnese and Lacker [2024] and
Lavenant and Zanella [2024] have investigated solving this problem through the lens of coordinate
ascent variational inference (CAVI, Bishop [2006]), or over polyhedral sets with first-order algorithms
[Jiang et al., 2024]. Traditionally, the variational family is parameterized by a finite-dimensional set
of parameters, yet, Yao and Yang [2022], Yao et al. [2024] have extended this framework to MFVI
over infinite-dimensional families. Alternatively, Gaussian variational inference [Barber and Bishop,
1997, Opper and Archambeau, 2009] has garnered significant attention due to its computational
tractability and theoretical appeal [Challis and Barber, 2013]. More recently, a new class of Gaussian
VI algorithms has emerged, based on the discretization of the gradient flow of the KL divergence
on the space of Gaussian measures equipped with the Wasserstein-2 metric: Lambert et al. [2022]
proposed a forward (explicit) time discretization approach, while Diao et al. [2023], Domke et al.
[2023] introduced a forward-backward splitting scheme inspired by [Salim et al., 2020]. Other
algorithms were recently introduced for Gaussian VI by optimizing a weighted score-based (Fisher)
divergence [Modi et al., 2025, Cai et al., 2024b]. These methods bring valuable insights for Gaussian
VI, but may provide a too crude approximation of the target distribution if the latter is multimodal.
In this setting, deep generative approaches such as normalizing flows [Tabak and Vanden-Eijnden,
2010, Papamakarios et al., 2021, Kobyzev et al., 2020] offering tractable, normalized densities and
efficient sampling, have emerged as flexible and powerful alternatives to traditional Gaussian or
factorized variational families. While it offers a flexible and widely applicable approach to VI, it is
not tailored to a specific variational family. Moreover, despite their ability to represent multimodal
distributions using expressive variational families with neural networks, it can suffer from mode
collapse [Soletskyi et al., 2024], especially as the dimension increases, as shown recently in large
scale empirical evaluation from [Blessing et al., 2024].

A particularly compelling variational family is the one of mixtures of Gaussians. Indeed, the latter can
capture complex, multimodal distributions. Also, they lead to tractable approximate posteriors, since
sampling mixtures is computationnally cheap, and also marginalizations, or expectations of linear and
quadratic functions can be computed in closed-form. For this variational family, several algorithms
have been proposed [Lin et al., 2019, Arenz et al., 2018, 2023] based on natural gradient descent over
the natural parameters of the Gaussians. An extension of the Wasserstein gradient flow approach
for Gaussian mixtures has also been proposed in Lambert et al. [2022]. However, their practical
utility is often hindered by the computational challenges of inference, particularly when handling
high-dimensional distributions. Indeed, a key challenge in deploying Gaussian mixture models lies in
parameterizing the covariance matrices. While full covariance matrices provide maximum flexibility,
their quadratic scaling with dimensionality leads to high computational demands, even if some
solutions have been proposed to store them efficiently [Challis and Barber, 2013, Bonnabel et al.,
2024]. To address this issue, we restrict the variational family of mixtures of Gaussians to diagonal,
more precisely isotropic covariance matrices (i.e., assuming equal variance across all dimensions),
with uniform weights. Mode collapse may result from mean alignment, i.e., two components’ means
may align with the same mode of the target, instead of covering multiple modes; and vanishing
weights [Soletskyi et al., 2024]. Using fixed weights, as we do, prevents the latter. With this structure,
each Gaussian component in the mixture is parameterized by d+ 1 parameters in dimension d. As
a result, a mixture of N isotropic Gaussians requires a memory cost of N(d + 1), compared to
N(d2 + d) for a full covariance mixture. Then, optimizing mixtures of isotropic Gaussians incurs a
memory cost roughly equivalent to that of optimizing the means only. We show in this study that
this choice of variational family balances between accuracy of the variational approximation, i.e., its
ability to model multimodal target distributions, and the computational efficiency of the associated
algorithms.

Our contributions include the development of a variational framework and algorithms tailored to
isotropic Gaussian mixtures, as well as an empirical evaluation across synthetic and real-world
datasets, demonstrating that our approach achieves a compelling balance between modeling accuracy
for multimodal targets and computational efficiency. This paper is organized as follows. Section 2
provides the relevant background on the geometry of the space of isotropic Gaussians, and on
optimization schemes based on the Bures and entropic mirror descent geometries. In Section 3, we
introduce the general setting for optimization over mixtures of isotropic Gaussians with uniform
weights. Section 4 presents our algorithms to efficiently optimize over this variational family. In
Section 5 we discuss related work in the Variational Inference literature. Our numerical results are to
be found in Section 6.
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Notation. We write a Gaussian distribution on Rd with mean m and variance ϵ as N (m, ϵId), where
Id denotes the d-dimensional identity matrix; and N (x;m, ϵId) its density evaluated at x. We denote
by P2(Rd) the set of probability distributions on Rd with bounded second moments. Consider µ, ν ∈
P2(Rd), the Wasserstein-2 (W2) distance is defined as W2

2(µ, ν) = infs∈S(µ,ν)

∫
∥x− y∥2ds(x, y),

where S(µ, ν) is the set of couplings between µ and ν. We will denote kϵ the normalized Gaussian
kernel on Rd with variance ϵ, i.e. kϵ(x) = (2πϵ)−d/2 exp

(
−∥x∥2/(2ϵ)

)
. For µ ∈ P2(Rd), we

denote by kϵ ⋆ µ its convolution with the Gaussian kernel, that writes kϵ ⋆ µ =
∫
kϵ(· − x)dµ(x). We

denote Tr the trace function.

2 Preliminaries (Gaussian VI)

This section introduces key concepts on the space of isotropic Gaussians, as well as different (time-
discretized) gradient flows one can consider through the Bures-Wasserstein or entropic mirror descent
geometries.

2.1 Isotropic Gaussians (IG)

The space of isotropic Gaussians is defined as IG =
{
N (m, ϵId),m ∈ Rd, ϵ ∈ R+∗} and is a

subspace of P2(Rd). When equipped with the W2 distance, this space has a particularly tractable ge-
ometric structure. Indeed, the W2 distance between two isotropic Gaussians N (m, ϵId), N (m′, τ Id)
takes the form of a Bures-Wasserstein (BW) distance:

BW2(N (m, ϵId),N (m′, τ Id)) = ∥m−m′∥2 +B
2(ϵId, τ Id), (2)

where B denotes the Bures metric [Bhatia et al., 2019] between positive definite matrices and
B2(ϵId, τ Id) = d(ϵ + τ − 2

√
ϵτ). This formula reflects the separable nature (with respect to the

means and variances) of the Wasserstein metric on the space of isotropic Gaussians IG. Interestingly,
the metric space (IG,BW) of isotropic Gaussians equipped with the BW distance can be seen as a
submanifold of the space of (all) Gaussian distributions equipped with the same metric, which can
itself be seen as a submanifold of the Wasserstein space (P2(Rd),W2). Indeed, the BW geodesic
between µ, ν ∈ IG also lies in IG, see Appendix A.1.

2.2 Bures-Wasserstein gradient descent on IG

Recall that our goal is to minimize a functional objective KL(·|π) as defined in Eq (1), where
π ∝ e−V , firstly on IG in this section, before being able to tackle mixtures of isotropic Gaussians.
In this subsection we explain how to derive a gradient flow with respect to the Bures-Wasserstein
geometry, and provide a discrete optimization scheme. To this goal, we first define a minimizing
movement scheme on IG. For p0 ∈ IG and γ > 0 a step-size, define:

pk+1 = argmin
p∈IG

ß
KL(p|π) + 1

2γ
BW2(p, pk)

™
, (3)

which corresponds to a JKO scheme Jordan et al. [1998], but where the solution is constrained to lie
in IG. In the limit γ → 0, we obtain a Wasserstein gradient flow of measures projected on IG, i.e. a
continuous curve (pt)t ∈ IG decreasing the KL, and which is governed by differential equations for
the mean (mt)t and variance (ϵt)t (see Appendix A.3). Such a flow can exhibit a favorable dynamical
behavior under a strong log-concavity assumption on the target distribution, as demonstrated in the
following proposition.

Proposition 2.1. Suppose that ∇2V ⪰ αId for some α ∈ R. Then, for any p0 ∈ IG, there is a unique
solution (pt)t to the flow obtained as a limit of Eq (3) as γ → 0. Then, for all t ≥ 0 and p∗ ∈ IG,

KL(pt|π)−KL(p∗|π) ≤ e−2αt
{
KL(p0|π)−KL(p∗|π)

}
,

implying that the flow converges linearly when α > 0.

The full proof of Proposition 2.1 is provided in Appendix A.2, and is a direct application of the one
of [Lambert et al., 2022, Corollary 3]. It relies on the fact that KL(·|π) is an α-convex objective
functional along W2 geodesics when the target potential V is α-convex, see e.g. [Villani, 2009,
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Theorem 17.15]; and since W2 (equivalently BW) geodesics between isotropic Gaussians lie in IG
(see Appendix A.1), the objective is also convex on (IG,BW). This result indicates that strongly
log-concave targets can be efficiently approximated using isotropic Gaussians.

Here, we propose to evaluate an explicit time-discretization of this gradient flow, as it is computation-
ally less expensive than an implicit scheme such as Eq (3). To this end, let F : Rd × R+∗ defined
as F (m, ϵ) := KL(N (m, ϵId)|π). Starting from some θ0 = (m0, ϵ0) ∈ Rd × R+∗, we consider the
following scheme:

θk+1 = argmin
θ∈Rd×R+∗

ß
⟨∇F (θk), θ − θk⟩+

1

2γ
BW2(Nθ,Nθk)

™
, (4)

denoting θ := (m, ϵ) and Nθ := N (m, ϵId). Note that the scheme above is similar to Eq (3) but
where the objective has been linearized. Thanks to the decomposition of the BW distance given in
Eq (2), it leads to the following updates on the mean and variances:

mk+1 = mk − γ∇mF (mk, ϵk)

ϵk+1 =
(
1− 2γ

d
∇ϵF (mk, ϵk)

)2
ϵk, (5)

where ∇mF (mk, ϵk) = Epk

[
∇V

]
and ∇ϵF (mk, ϵk) = 1

2

(
1

dϵk
Epk

[
(· − mk)

⊤∇V
]
− 1

ϵk

)
. We

observe that while the first update on the mean is a simple gradient descent, the latter update ensures
that the variance remains positive and differs from a simple Euler discretization of the associated
differential equation (see Appendix A.3) . We provide the details of the computation as well as an
interpretation of these updates as a Riemannian gradient descent in Appendix A.4.

2.3 Entropic Mirror Descent on IG

We now turn to an alternative descent scheme on IG, namely mirror descent, which relies on a
geometry different from the W2 one described in the previous subsection. Mirror descent is an
optimization algorithm that was introduced to solve constrained convex problems [Nemirovskij and
Yudin, 1983], and that uses in the optimization updates a cost (or “geometry") that is a Bregman
divergence [Bregman, 1967], whose definition is given below.
Definition 2.2. Let ϕ : X → R a strictly convex and differentiable functional on a convex set X ,
referred to as a Bregman potential. The ϕ-Bregman divergence is defined for any x, y ∈ X by:

Bϕ(y|x) = ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩.

Further details on mirror descent and its connection to standard algorithms such as gradient descent
are provided in Appendix A.5.

Hence, we propose to choose an appropriate Bregman divergence on the space of covariance matrices,
namely a generalized Kullback-Leibler divergence between positive definite matrices: KL(A|B) =
Tr(A(logA− logB))−Tr(A)+Tr(B). The latter object, also called Von Neumann relative entropy,
is a Bregman divergence whose Bregman potential is the Von Neumann entropy ϕ : A 7→ Tr(A logA)
(and where ⟨A,B⟩ = Tr(AB)). Note that KL(ϵId|τ Id) = d

(
ϵ log ϵ

τ − ϵ+ τ
)
. Then, we can define

a descent scheme on IG as follows, starting from some θ0 = (m0, ϵ0) ∈ Rd × R+∗:

θk+1 = argmin
θ∈Rd×R+∗

ß
⟨∇F (θk), θ − θk⟩+

1

2γ
∥m−mk∥2 +

1

2γ
KL(ϵId|ϵkId)

™
,

denoting again θ = (m, ϵ). Note that compared to the scheme of Eq (4), only the update on the
variance differs, and is given by:

ϵk+1 = ϵk exp

Å
−2γ

d
∇ϵF (mk, ϵk)

ã
, (6)

see Appendix A.6 for the computations. This update, as the one in Eq (5), also guarantees that the
variance parameter ϵ remains strictly positive; and is known as entropic mirror descent [Beck and
Teboulle, 2003]1.

1[Beck and Teboulle, 2003] used this exponential update followed by a renormalization to optimize over the
simplex.
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3 Mixtures of Isotropic Gaussians (MIG)

We now turn to the problem of optimizing the KL objective to the target distribution π over the family
of mixtures of isotropic Gaussians. We will consider the VI problem Eq (1) for a specific setting
where the variational family is the set of mixtures of N isotropic Gaussians, for some N ∈ N∗, with
equally weighted components:

CN =
{ 1

N

N∑
j=1

N (mj , ϵjId), [m
j , ϵj ]Nj=1 ∈ (Rd × R+∗)N

}
.

Note that any distribution ν ∈ CN writes ν = 1
N

∑N
j=1 kϵj ⋆ δmj , for some [mj , ϵj ]Nj=1 ∈ (Rd ×

R+∗)N , where kϵj is the Gaussian kernel with variance ϵj and δmj is the Dirac at mj . Then, we
define our loss function F : (Rd)N × (R+)N → R+∗ as:

F ([mj , ϵj ]Nj=1) := KL
( 1

N

N∑
j=1

N (mj , ϵjId)
∣∣∣π). (7)

The following proposition provides useful formulas regarding the gradients of this objective.

Proposition 3.1. Let µ = 1
N

∑N
j=1 δmj and denote kϵ⊗µ = 1

N

∑N
j=1 kϵj⋆δmj . Assume π ∈ C1(Rd).

The gradients of F with respect to mj , ϵj ∈ Rd × R+∗ write:

∇ϵjF ([mj , ϵj ]Nj=1) =
1

2Nϵj
Ekϵj ⋆δmj

[
(· −mj)T∇ ln

(kϵ ⊗ µ

π

)
(·)
]
,

∇mjF ([mj , ϵj ]Nj=1) =
1

N
Ekϵj ⋆δmj

[
∇ ln

(kϵ ⊗ µ

π

)
(·)
]
.

The proof of Proposition 3.1 can be found in Appendix A.7. Note that the means and variances in
the mixture interact through the terms ∇ ln(kϵ ⊗ µ) in the gradients. Remarkably, our computations
provide an expression of the gradient with respect to the variance that only involves a scalar product
(· −mj)T∇ ln

Ä
kϵ⊗µ

π

ä
, which can be computed efficiently with a computational cost in O(d). In

practice, the expectations over the Gaussian components kϵj ⋆δmj for j = 1, . . . , N will be estimated
with Monte Carlo integration.

4 Algorithms for VI on MIG

4.1 General optimization framework

We propose, for the optimization of the objective F on (Rd)N × (R+∗)N defined in Eq. (7), or
equivalently KL(·|π) on CN , to perform joint optimization on the means and variances of the mixture.
This joint optimization involves a gradient descent update on the means, and either a Bures or entropic
mirror descent update on the variances. Our approach is summarized in Algorithm 1.

Algorithm 1 MIG optimization with IBW or MD

Input: initial means and variances (mj
0, ϵ

j
0)

N
j=1, step-size γ, number of iterations T .

for k = 1 to T do
for i = 1 to N do

Update mi
k+1 = mi

k − γN∇mi
k
F
Ä
[mj

k, ϵ
j
k]

N
j=1

ä
(GD)

Update ϵik with IBW (Eq. 12) or MD (Eq. 13)
end for

end for

We now describe the optimization of the variance parameters using either Bures or entropic mirror
descent updates in the next subsections. These methods rely on careful adaptations of the schemes
introduced in Section 2, originally defined for a single isotropic Gaussian, to the mixture setting.
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4.2 Bures (IBW) update

This section extends the framework of Section 2.2 to Gaussian mixtures and presents a new formula-
tion of the JKO scheme adapted to this setting. The W2 distance between two Gaussian mixtures
is intractable and does not admit a closed form, in contrast with the BW distance on IG. Then, we
cannot obtain direct updates on the mean and variances for a JKO scheme restricted to CN . To address
this issue, we will represent a mixture with its associated mixing measure. Lambert et al. [2022]
proposed a similar approach to derive a Wasserstein gradient flow on Gaussian mixtures. However,
they considered a mixing measure with an infinite number of components and did not provide a
formal derivation of a fully explicit discrete (in time and space) scheme.

Any uniform-weight Gaussian mixture ν ∈ CN can be identified to a mixing measure p̂ =
1
N

∑N
j=1 δ(mj ,ϵj) on (Rd × R+∗)N where for any x ∈ Rd we have:

ν(x) =

∫
N (x;m, ϵId)dp̂(m, ϵ) (8)

Note that the space CN allows for the full identification of a mixture, up to a reordering of the indices,
since the corresponding mixing measure contains only N particles with equal weights. This avoids
the identifiability issues that arise when dealing with a mixing measure supported on a continuous
(infinite) set of components, which constitutes an overparameterized model, see [Chewi et al., 2024,
Section 5.6]. See also Appendix B.1 for more details. Following Chen et al. [2019], we first consider
a Wasserstein distance between mixing measures denoted Wbw, where the cost is a squared Bures-
Wasserstein distance, i.e. c((m, ϵ), (m′, τ)) = BW2(N (m, ϵId),N (m′, τ Id)). We then construct
the JKO scheme on mixing measures at each step k as:

p̂k+1 = argmin
(mj ,ϵj)Nj=1

ß
KL(ν|π) + 1

2γ
W 2

bw(p̂, p̂k)

™
, (9)

where p̂ = 1
N

∑N
j=1 δ(mj ,ϵj), p̂k = 1

N

∑N
j=1 δ(mj

k,ϵ
j
k)

and ν is defined as in Eq (8). The resulting
Gaussian mixture is νk+1 =

∫
N (m, ϵId)dp̂k+1(m, ϵ). Since p̂ and p̂k are two discrete measures

with an equal number of components, the above Wasserstein distance simplifies as:

W 2
bw(p̂, p̂k) = min

σ

1

N

N∑
j=1

BW2(N (mj , ϵjId),N (m
σ(j)
k , ϵ

σ(j)
k Id)), (10)

where σ is a permutation of the N indices in the mixture. Solving the JKO scheme Eq (9) is
now tractable and we can compute the limiting flow as γ → 0, since at the limit σ(i) = i. The
continuous-time equations of the flow in the isotropic case are given in Appendix B.2. They match
the continuous-time equations for the means and covariances derived in [Lambert et al., 2022, Section
5.2] and recalled in Appendix E.1.

Similarly to Section 2.2, we consider an explicit time-discretization of this flow, using a linearization
of the objective in Eq (9). This leads us to the scheme:

[θk+1]
N
j=1 = argmin

(θj)Nj=1

{
⟨∇F ([θjk]

N
j=1), [θ

j ]Nj=1 − [θjk]
N
j=1⟩+

1

2γN

N∑
j=1

BW2(Nθj ,Nθj
k
)
}
, (11)

assuming that σ(i) = i in Eq (10) for γ small enough. Finally, the variance updates for the Gaussian
components are:

IBW update For j = 1, . . . , N : ϵjk+1 =

Å
1− 2Nγ

d
∇ϵjF ([mj

k, ϵ
j
k]

N
j=1)

ã2
ϵjk. (12)

The update on the means takes the form of Eq (GD). Details of the computations are deferred to
Appendix B.3. Ultimately, we obtain a system of Gaussian particles (mj , ϵj)Nj=1 that interact through
the gradient of the objective.
Remark 4.1. Note that we can characterize the discrepancy between our JKO scheme on the mixing
measure and the original JKO scheme restricted to Gaussian mixtures. Indeed, the Wasserstein
distance on the mixing measure is related to the W2 distance on P2(Rd) as follows: 0 ≤ W 2

bw(p̂, p̂k)−
W 2

2 (ν, νk) ≤ 2
√
2dϵ∗ where ϵ∗ is the maximal variance of the mixtures ν, νk. This result is a direct

consequence of [Delon and Desolneux, 2020, Proposition 6], see Appendix B.4 for further details.
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4.3 Entropic mirror descent (MD) update

In this section we provide an alternative way to optimize the variances of the mixture, based on mirror
descent ideas introduced in Section 2.3. In particular, generalizing to N components what we have
done for Eq (6), and by analogy with the scheme Eq (11), we consider the following scheme:

[θjk+1]
N
j=1 = argmin

(θj)Nj=1

{
⟨∇F ([θjk]

N
j=1), [θ

j ]Nj=1−[θjk]
N
j=1⟩+

1

2γN

N∑
j=1

∥mj−mj
k∥

2+KL(ϵjId|ϵjkId)
}
.

Then, at step k ≥ 0, the udpate on the variances takes the form:

MD update For j = 1, . . . , N : ϵjk+1 = ϵjk exp

Å
−2Nγ

d
∇ϵjF ([mj

k, ϵ
j
k]

N
j=1)

ã
, (13)

while the update on the means remains Eq (GD), see Appendix A.6 for the detailed computations.

5 Related Work

In this section, we provide an overview of relevant work on VI with mixtures of Gaussians.

Several studies have addressed VI for mixture models, emphasizing computational aspects. Gershman
et al. [2012] optimize an approximate ELBO using L-BFGS (a quasi-Newton method), relying on
successive approximations of ELBO terms for mixtures of Gaussians. However, while the original
KL objective in VI defines a valid divergence between probability distributions, their optimization
objective departs significantly from it.

Lin et al. [2019], Arenz et al. [2018] propose natural gradient descent (NGD) updates on the natural
parameters of the Gaussians for each component of the mixture, and on the categorical distribution
over weights. These methods are unified and extended in [Arenz et al., 2023], which introduces
computational improvements. Natural gradient descent differs from standard gradient descent by
performing steepest descent with respect to changes in the underlying distribution, measured using the
Fisher information metric. In other words, the natural gradient is the standard gradient preconditioned
by the inverse of the Fisher information matrix. For exponential families, such as Gaussians, the
natural gradient of the objective with respect to natural parameters coincides with the standard
gradient of the (reparametrized) objective when expressed in terms of expectation parameters (i.e.,
the moments of the Gaussians). This has some pleasant consequences, including closed-form updates
on means and covariances, since the natural parameter admits a simple expression in terms of means
and variances for Gaussians. The NGD updates (fixing the weights of the mixture) on means and
variances write:

1

ϵik+1

− 1

ϵik
=

2Nγ

d
∇ϵik

F ([mj
k, ϵ

j
k]

N
j=1), mi

k+1 −mi
k = −ϵik+1Nγ∇mi

k
F ([mj

k, ϵ
j
k]

N
j=1). (14)

We refer to Appendix C for more details and the computations. In particular, the latter update does
not guarantee that the variances remain positive, and the update on the mean is multiplied by the
current covariance. In contrast, our updates on the means and covariances are decoupled (except
through the gradient of the objective), and our updates on variances enforce positivity.

[Huix et al., 2024] considered the setting where the variances of the mixture are shared, equal
to ϵId with ϵ ∈ R+∗ that is kept fixed, and only the means (m1, . . . ,mN ) are optimized with
gradient descent (GD). In that setting, they proved a descent lemma showing that the KL objective
functional decreases along the GD iterations, under some conditions including a maximal step-size, a
boundedness conditions on the second moment of the (distribution) iterations and a finite number of
components N . They also provided an upper bound on the approximation error, i.e. the minimal KL
divergence between a N -component mixture of Gaussians with uniform weights and shared isotropic
covariance matrices between components is upper bounded as O( log(N)

N ), when π writes as an infinite
mixture of these components. Interestingly, this bound is valid for mixtures of isotropic Gaussians
with different variances, as we show in Appendix D. Yet, fixing the covariances to a constant factor
ϵ of the identity, as in [Huix et al., 2024], limits a lot the expressiveness of the variational family.
Hence, we focus in this work on the more general variational family defined by CN .
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6 Experiments

In this section, we evaluate our proposed methods summarized in Algorithm 1, namely IBW and
MD, on different experiments on both toy and real data. In practice, in all our experiments, the
gradients in Proposition 3.1 are computed with a Monte Carlo approximation involving B samples
from Gaussian distributions in the components. Our other hyperparameters are the following: N
the number of components in the mixture; γ the step-size; and we also vary the initial values of the
means and covariances of the candidate mixture. Our code is available at https://github.com/
margueritetalamon/VI-MIG.

We compare our methods with different competitors. The algorithm presented in Lambert et al.
[2022], based on a Bures geometry (as IBW) but updating full covariance matrices in the mixture, is
abbreviated as BW (see Appendix E.1 for more details on BW). Note that the latter has a computational
complexity and memory scaling proportionally to N(d+ d2) instead of N(d+ 1) for our schemes
IBW and MD. The algorithm of [Huix et al., 2024], considering mixtures of isotropic Gaussians with
shared variance ϵId, that only updates the means with Eq. (GD) while keeping the variance ϵ fixed, is
denoted GD. The “shared-variance” version of our schemes (where ∀i = 1, . . . , N , we impose the
constraint ϵi = ϵ, but the latter is optimized) are denoted IBW-s and MD-s. The natural gradient
descent algorithm of Lin et al. [2019], adapted to isotropic Gaussians with fixed weights and given in
Eq (14), is referred to as NGD. We also evaluate a Normalizing Flow (NF) implementation based on
Real NVPs [Dinh et al., 2017]. We also used Hamiltonian Monte Carlo (HMC), an MCMC scheme
(hence non parametric) and Automatic Differentiation Variational Inference (ADVI) Kucukelbir et al.
[2017]. All the experimental details are provided in Appendix E.2.

Gaussian-mixture target in two dimensions. We first illustrate the behavior of our methods for
a two-dimensional target π that is a Gaussian mixture with 5 components. In Figure 1 (top), we
evaluate our methods for N = 1, 5, 10, 20. We observe several interesting facts. Choosing a number
of components N = 20 leads to the lowest final KL objective. This is in accordance with the fact
that the approximation error with a mixture of isotropic Gaussians goes to zero as N tends to infinity,
see Section 5. The shared-variance versions of our algorithms (IBW-s and MD-s) did not perform
as well as the original schemes we propose, namely IBW and MD. This demonstrates the benefit
of optimizing each component’s variance to better fit a given target’s shape. In Appendix E.3, we
visualize the optimized Gaussian components (represented as circles), highlighting the benefit of
allowing each component to have its own variance. The NF method appears slower than ours without
improving the approximation. We plot the approximated density with N = 10 for BW, IBW, GD
and NF methods together with the target density in Figure 1 (bottom).

Figure 1: Illustration of convergence of Algorithm 1 for a two-dimensional target distribution.

We also evaluated these VI methods on alternative challenging two-dimensional target distributions,
these results are deferred to the Appendix. More precisely, we test the performance of these methods
on a Funnel distribution and heavy-tailed targets in Appendix E.3. Then we investigate how well our
schemes on mixtures of isotropic Gaussians can fit challenging Gaussian mixtures (e.g. with highly
unbalanced mode weights) in Appendix E.4.
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Gaussian-mixture target in high dimension. We then consider a Gaussian mixture target with 10
components in dimension d = 20, and a variational mixture model with N = 20. In Figure 2, we
plotted the marginals along each dimension together with the KL evolution for the schemes (BW,
IBW, MD, NGD).

Figure 2: (First 10) Marginals (left) and KL objective (right) for MD, IBW, BW and NGD (d = 20).

Figure 3: Time/KL evolution w.r.t. d.

We observe that both our schemes IBW and MD provide a
good approximation, along with BW. In the mean update
of NGD, the gradient is rescaled by ϵ, which leads to a
large step for a spread-out Gaussian. While this rescaling
allows faster convergence, we observe that it makes the
algorithm more sensitive to the initial conditions. Then,
we compare in Figure 3 the time per iteration and the
KL objective value for BW (that updates full covariances
matrices), and our isotropic version (IBW) for a similar
target over several dimensions, for N = 15. We note that
IBW performs comparably to BW, while enjoying a faster
time execution, and still with a cost in memory linear in
the dimension instead of quadratic.

Bayesian posteriors. We evaluate our methods on two probabilistic inference tasks using classical
datasets. The first one is Bayesian logistic regression (BLR) for two UCI datasets: breast_cancer
(2 labels, d = 30) and wine (3 labels, d = 39). The second one aims to compute a Bayesian neural
network (BNN) posterior on a regression task on the boston dataset using a single hidden layer neural
network of 50 units (d = 601), and on the MNIST with a one layer neural network with 256 units
(d = 203530). In each case, we assume a standard Gaussian prior on the parameters, and compute
the posterior distribution given observations. More details are given in Appendix E.6 . Note that the
first task leads to log-concave posteriors (in contrast to the previous mixture of Gaussians targets
which are typically non log-concave) while the second typically leads to a multimodal one [Izmailov
et al., 2021].

Figure 4: Bayesian logistic regression and BNN regression approximated by mixtures of Gaussians.

In Figure 4, we present the results of our algorithms IBW and MD for N = 5, on these Bayesian
inference tasks, plotting the accuracy or Root Mean Squared Error (RMSE) score on the test set over
iterations. The evolution of log-likelihood and unnormalized KL (ELBO) are deferred to E.6. As
additional baselines, we compared our results with HMC and ADVI methods (except on MNIST
-where we did not manage to find a working set of hyperparam in such high dimensions), and
only plotted the final samples results provided by stan. Other experiments, such as comparing the
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performance of our methods with unimodal variational approximations, e.g. using N = 1 within our
framework or popular Laplace approximations (e.g. Diagonal and K-FAC [Ritter et al., 2018]) on
MNIST, are also deferred to E.6; they show the relevance of using several components to capture
different modes, for such multimodal posteriors. Regarding MNIST, for scalability issues, in analogy
with Blundell et al. [2015], we coded a mean-field version of our algorithm (see also Appendix E.6
for details) where each weight marginal is fitted by a Gaussian mixture with our Algorithm 1. We
observed that we achieved the same order of performance for IBW and MD. We also performed the
optimization with NGD updates but found out that if the means were not initialized within a very
small ball (increasing the chances of missing some modes in the target), the variance ϵ estimated
by NGD could become negative, which made the optimization difficult in practice. In contrast, our
scheme guarantees the positivity of ϵ by construction.

7 Conclusion

Mixtures of isotropic Gaussians provide a simplified yet powerful tool in variational inference, balanc-
ing expressivity for multimodal target distributions with computational and memory efficiency. We
presented two optimization schemes, that implement joint optimization on the means through gradient
descent, and on the variances through adapted geometries for the space of variance matrices, such
as the Bures or Von Neumann entropy ones, guaranteeing that they remain positive. Our numerical
experiments validate their relevance for different types of target posterior distributions. Future work
include establishing more theoretical guarantees regarding our schemes and mixtures of isotropic
Gaussians. For instance, comparing the approximation error of full covariance mixtures versus
isotropic ones, would be helpful to understand why we observe empirically a great computational
cost gain for a very modest increase of the KL loss (e.g., IBW vs BW). Then, studying optimization
guarantees for these schemes is of interest.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a memory-efficient variational inference (VI) algorithm for mix-
tures of Gaussians in the abstract and the introduction. This claim is supported by a
constructive approach under the assumption of isotropic covariances, along with the use
of a Hessian-free update scheme. Furthermore, we demonstrate experimentally that the
simplified model does not sacrifice approximation accuracy.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide convergence guarantees only for the single Gaussian case (N=1)
and under the assumption that the posterior is strongly log-concave. In other cases, the
problem becomes nonconvex, and the most we can hope for are descent-type results, namely,
that the KL objective decreases along IBW iterations. This guarantee holds for the case
of shared, fixed covariance [Huix et al., 2024, Prop. 4]. Extending this result to variable
covariances, as well as characterizing why the approximation performs so well empirically,
is the subject of future work, as mentioned in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The constructive proofs of the IBW and MD discrete updates for both the
single isotropic Gaussian and the mixture case are provided in the Appendix. Note that
for IBW, we present two distinct proofs: one based on the derivation of the necessary
optimality condition, and the other based on the projection of a Wasserstein gradient flow.
The projected gradient interpretation is given for both the single Gaussian and mixture of
isotropic Gaussian case.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: For synthetic datasets, we provide detailed information in the Appendix on
how the data are generated. For real data, we use only well-known standard benchmarks.
The algorithm settings are also described in detail in the Appendix, and the code will be
made publicly available to enable full reproducibility of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The Python scripts will be made publicly available on GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All these details about the experiments are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are not reported systematically, but only when they are relevant to
the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The assumptions regarding the computing resources are provided in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: our work is conformed with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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A Appendix

A.1 Geometric structure of Isotropic Gaussians space

We prove here the stability of the isotropic Gaussian model along the Bures-Wasserstein geodesics.
We recall that the Bures-Wasserstein space is the space of non-degenerate Gaussian distributions
equipped with the Wasserstein-2 metric.
Proposition A.1. The space of isotropic Gaussians equipped with the Bures-Wasserstein distance is
a geodesically convex subset of the Bures-Wasserstein space, which is itself a geodesically convex
subspace of the Wasserstein space (P2(Rd),W2).

Proof. Let p = N (mp, ϵpId) and q = N (mq, ϵqId) be two isotropic Gaussian distributions. Since p
is absolutely continuous, the Wasserstein-2 geodesic, (which is also a Bures-Wasserstein geodesic)
between p and q is given by the pushforward measure:

µt = ((1− t)Id + tT )# p, t ∈ [0, 1],

where Id is the identity map and T is the optimal transport map between p and q. Denoting Σp = ϵpId
and Σq = ϵqId, this optimal transport map T is the affine map:

T (x) = mq +A(x−mp), where A = Σ−1/2
p

Ä
Σ1/2

p ΣqΣ
1/2
p

ä1/2
Σ−1/2

p .

A is called the Bures map and satisfies Σq = AΣpA, which can be easily verified from the definition
above. Since the map is linear, it preserves densities, ensuring that the transported measure µt

remains Gaussian. The mean and covariance parameters evolve along the Bures-Wasserstein geodesic
between p and q according to the equations:

mt = (1− t)mp + tmq

Σt = ((1− t)Id + tA)Σp((1− t)Id + tA).

Since both p and q are isotropic, the transport map is:

T (x) = mq + a(x−mp), where a =

Å
ϵq
ϵp

ã1/2
.

Then, the covariance Σt evolves according to:

Σt = ((1− t)Id + taId)ϵp((1− t)Id + taId) = ((1− t) + ta)2ϵpId,

which is clearly isotropic. Hence, the interpolated distribution µt remains an isotropic Gaussian
for all t ∈ [0, 1]. Thus, the space of isotropic Gaussian distributions is geodesically convex in the
Bures-Wasserstein space. Since the Bures-Wasserstein space is itself a geodesically convex subspace
of the Wasserstein space, we complete the proof.

A.2 Proof of Theorem 2.1

A.2.1 Background on Wasserstein gradient flows

Let F : P2(Rd) → R ∪ {+∞} be a functional. We say that F is α-convex along Wasserstein-2
geodesics if for any two probability measures µ0, µ1 ∈ P2(Rd) and any geodesic {µt}t∈[0,1] in the
Wasserstein-2 space connecting µ0 and µ1, we have

F(µt) ≤ (1− t)F(µ0) + tF(µ1)−
α

2
t(1− t)W

2
2(µ0, µ1), ∀t ∈ [0, 1].

A Wasserstein gradient flow of F is a solution (µt)t∈(0,T ), T > 0, of the continuity equation

∂µt

∂t
+∇ · (µtvt) = 0

that holds in the distributional sense, where vt is a subgradient of F at µt [Ambrosio et al., 2008,
Definition 10.1.1]. Among the possible processes (vt)t, one has a minimal L2(µt) norm and is called
the velocity field of (µt)t. In a Riemannian interpretation of the Wasserstein space [Otto, 2001],
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this minimality condition can be characterized by vt belonging to the tangent space to P2(Rd) at µt

denoted Tµt
P2(Rd), which is a subset of L2(µt), the Hilbert space of square integrable functions

with respect to µt, whose inner product is denoted ⟨·, ·⟩µt
. The Wasserstein gradient is defined

as this unique element, and is denoted ∇W2
F(µt). In particular, if µ ∈ P2(Rd) is absolutely

continuous with respect to the Lebesgue measure, with density in C1(Rd) and such that F(µ) < ∞,
∇W2

F(µ)(x) = ∇F ′(µ)(x) for µ-a.e. x ∈ Rd [Ambrosio et al., 2008, Lemma 10.4.1], where F ′(µ)
denotes the first variation of F evaluated at µ, i.e. (if it exists) the unique function F ′(µ) : Rd → R
s.t.

lim
h→0

1

h
(F(µ+ hξ)−F(µ)) =

∫
F ′(µ)(x)dξ(x)

for all ξ = ν − µ, where ν ∈ P2(Rd).

A.2.2 Proof

The proof relies on tools on the Wasserstein geometry and calculus introduced above, and is a direct
application of the one of [Lambert et al., 2022, Corollary 3], yet we state it for completeness. When
∇2V ⪰ αId, F : µ 7→ KL(µ|π) is α-convex on P2(Rd) [Villani, 2009, Theorem 17.15]. Let us
denote p⋆ the minimum of this function and recall we denote BW the Bures-Wasserstein metric on
the manifold (IG,BW). We consider the following gradient flow:

∂pt
∂t

= div (pt∇W2
F(pt)) with the initial condition p0 = p0.

We first want to show that the solution of this problem is unique. Let (pt)t and (qt)t be two solutions
of the above gradient flow. Then, using differential calculus in the Wasserstein space and the chain
rule, we have

∂t BW
2(pt, qt) = 2 ⟨logpt

(qt),∇W2
F(pt)⟩pt

+ 2 ⟨logqt(pt),∇W2
F(qt)⟩qt ,

where ∇W2
F(p) denotes the Wasserstein gradient at p ∈ P2(Rd) and logpt

(qt) = T − Id ∈ L2(pt),
where T is the optimal transport map from pt to qt. Moreover since F is α convex, we can write
∀p, q ∈ P2(Rd) :

F(q) ≥ F(p) + ⟨∇W2
F(p), logp(q)⟩ −

α

2
BW2(p, q).

Thus we can write

∂t BW
2(pt, qt) ≤ −2αBW2(pt, qt).

Hence, by Grönwall’s lemma, we obtain

BW2(pt, qt) ≤ exp(−2αt) BW2(p0, q0) .

Since both (pt)t and (qt)t are solution of the gradient flow, p0 = q0 and it implies that ∀t ∈
[0, 1], pt = qt. This proves the uniqueness of the solution.

Moreover, if α > 0, we can set qt = p⋆ for all t ≥ 0 to deduce exponential contraction of the gradient
flow to the minimizer p⋆. Observe that by definition of the gradient flow, we have on the one hand
that

∂tF(pt) = ⟨∇W2
F(pt),−∇W2

F(pt)⟩pt
= −∥∇F(pt)∥2pt

. (15)

On the other hand, if α > 0, the convexity inequality and Young’s inequality respectively, yield

0 = F(p⋆) ≥ F(p) + ⟨∇W2
F(p), logp(p

⋆)⟩p +
α

2
BW2(p, p⋆)

≥ F(p)− 1

2α
∥∇W2

F(p)∥2p −
α

2

∥∥logp(p⋆)∥∥2p︸ ︷︷ ︸
=BW2(p,p⋆)

+
α

2
BW2(p, p⋆)

and hence ∥∇W2
F(p)∥2 ≥ 2αF(p). Substituting this into Eq (15) and applying Grönwall’s

inequality again, we deduce

F(pt) ≤ exp(−2αt)F(p0) .
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A.3 JKO scheme for isotropic Gaussians

In this section, we derive the continuous equations for the isotropic Bures-Wasserstein gradient flow.
Starting from the JKO scheme of Eq (3), we constrain the solution to lie in the space of isotropic
Gaussians IG. We follow the same method than [Lambert et al., 2022, Appendix A].

Let us recall the JKO scheme [Jordan et al., 1998]. Starting from p0 = N (m0, ϵ0Id) at time k = 0
we look for the solution p = N (m, ϵId) of:

pk+1 = argmin
p∈IG

ß
KL(p|π) + 1

2γ
BW2(p, pk)

™
. (16)

The gradient of the KL with respect to the variance parameters is given by Eq (21):

∇ϵ KL(p|π) = − d

2ϵ
− 1

2
TrEp[∇2 log π] = − d

2ϵ
+

1

2
TrEp[∇2V ].

Then, for two isotropic Gaussian distributions p = N (m, ϵId) and pk = N (mk, ϵkId) we have2

BW2(p, pk) = ∥m−mk∥22 + d (ϵ+ ϵk − 2
√
ϵϵk) ,

and

∇ϵ BW
2(p, pk) = d

Å
1−
…

ϵk
ϵ

ã
.

Hence, the first order condition on ϵ of (16) yield:

d

Å
1−
…

ϵk
ϵ

ã
=

dγ

ϵ
− γ TrEp

[
∇2V

]
⇔ ϵk = ϵ

(
1− γ

ϵ
+

γ

d
TrEp

[
∇2V

])2
⇔ ϵk = ϵ

Å
1− γ

Å
1

ϵ
− 1

dϵ
Ep

[
(· −m)T∇V

]ãã2
. (17)

Developing equation Eq (17) at first order in γ we obtain:

ϵk = ϵ

Å
1− 2γ

ϵ

Å
1− 1

d
Ep

[
(· −m)T∇V

]ã
+O(γ2)

ã
⇔ ϵ− ϵk

γ
= 2− 2

d
Ep

[
(· −m)T∇V

]
+O(γ).

Taking the limit γ → 0 yields the differential equation:

ϵ̇ = 2− 2

d
Ep

[
(· −m)T∇V

]
.

For the first order condition on the mean parameter m of (16), using the gradient of the KL w.r.t. the
mean given Eq (20), we obtain:

Ep

[
∇ log

( p
π

)]
+

1

γ
(m−mk) = 0. (18)

Since Ep [∇ log p] = 0 we obtain, at the limit γ → 0:

ṁ = Ep [∇ log π] = −Ep [∇V ] .

Inspecting Eq (17–18), we observe that solving the JKO scheme yields an implicit discrete-time
update, where the expectations are evaluated under the unknown distribution p. We now derive the
explicit form of this update, starting from the formulation in Eq (4).

2Recall that for two general Gaussians p = N (m,Σ), pk = N (mk,Σk), we have BW2(p, pk) = ∥m−
mk∥22 +Tr

(
Σ+ Σk − 2

Ä
Σ1/2ΣkΣ

1/2
ä1/2)

.
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A.4 Forward Euler scheme for isotropic Gaussians

Derivations of the updates. We now derive the updates given by the scheme Eq (4). The first order
condition on ϵ is given by:

1

2
d

Å
1−
…

ϵk
ϵ

ã
= −γ∇ϵF (mk, ϵk) ⇔ ϵ = ϵk

Å
1 +

2γ

d
∇ϵF (mk, ϵk)

ã−2

.

Using the Taylor expansion for small step γ given by (1 + x)−1 = 1− x+ o(x) we obtain at first
order the explicit update:

ϵ = (1− 2γ

d
∇ϵF (mk, ϵk))

2ϵk.

The first-order condition on m gives the explicit update:

m = mk − γ∇mF (mk, ϵk).

Riemannian interpretation. The latter scheme can be identified to Riemannian gradient descent, on
the isotropic Bures-Wasserstein space, i.e. the space IG of isotropic Gaussians equipped with the
Bures-Wasserstein metric, that we will denote iBW = (IG,BW). To achieve this, we first identify
the local tangent space of the isotropic Bures-Wasserstein space. The direction of the tangent vector
is computed by projecting the Wasserstein-2 gradient of the KL objective onto this tangent space (see
Appendix A.2.1 for the definition). We then follow this projected gradient with a step size γ. We can
then retract back to the isotropic Bures-Wasserstein manifold using an exponential map. We now
detail this approach.

Let F : P2(Rd) → R a functional. The isotropic Bures-Wasserstein Gradient of F at p ∈ IG,
denoted ∇iBWF(p), is the projection of its Wasserstein gradient onto the tangent space to iBW at p.
If p = N (mp, ϵpId), this tangent space writes:

TpiBW(Rd) = {x 7→ a+ s(x−mp)|a ∈ Rd, s ∈ R},

which can be identified with the pair (a, s) ∈ Rd × R. Thus,

∇iBWF(p) = projTpiBW(Rd)∇W2
F(p) = argmin

w∈TpiBW(Rd)

∥w −∇W2
F(p)∥2p.

The first conditions in a ∈ Rd and s ∈ R of this problem yield:

a = Ep [∇W2
F(p)] and s =

1

dϵp
Ep

[
(· −mp)

T∇W2
F(p)

]
.

Indeed,

∇a

∫
∥a+ s(x−mp)−∇W2

F(p)(x)∥2dp(x) = 0

⇐⇒
∫

2(a+ s(x−mp)−∇W2
F(p)(x))dp(x) = 0

⇐⇒ a = Ep [∇W2
F(p)] ,

and

∇s

∫
∥a+ s(x−mp)−∇W2

F(p)(x)∥2dp(x) = 0

⇐⇒
∫

2(x−mp)
T (a+ s(x−mp)−∇W2

F(p)(x))dp(x) = 0

⇐⇒ sϵpd−
∫

(x−mp)
T∇W2

F(p)(x)dp(x) = 0

⇐⇒ s =
1

dϵp
Ep

[
(x−mp)

T∇W2
F(p)

]
.
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Back to our problem with F(p) = KL(p|π), using Eq (20) and (21) and that ∇W2
F(p) = ∇ log

(
p
π

)
(see Appendix A.2.1) we have that

a = ∇m KL(p|π) = ∇mF (mk, ϵk) and s =
2

d
∇ϵ KL(p|π) = 2

d
∇ϵF (mk, ϵk).

We can follow the direction of the gradient from the tangent space back to the isotropic Bures-
Wasserstein manifold using an exponential map which is available in closed form

expp(a, s) = N
(
mp + a, (1 + s)2ϵpId)

)
, (19)

where we have adapted the exponential map formula for the Bures-Wasserstein space [Lambert et al.,
2022, Appendix B.3], written as expp(a, S) = N

(
mp + a, (S + I) Σp (S + I)

)
, to the case of

isotropic Gaussians. We can then construct a discrete update based as follow: we compute the iBW
gradient of F(p) = KL(p|π) multiplied a step size γ, and map it back onto the manifold using this
exponential map. Starting from pk = N (mk, ϵkId), this discrete time update is:

pk+1 = exppk
(−γ∇iBWF(pk)) = exppk

(−γ∇mF (mk, ϵk),−
2γ

d
∇ϵF (mk, ϵk)),

which gives the update on the mean and variance parameters:

mk+1 = mk − γ∇mF (mk, ϵk),

ϵk+1 = (1− 2γ

d
∇ϵF (mk, ϵk))

2ϵk.

A.5 Background on Mirror Descent

Mirror descent is an optimization algorithm that was introduced to solve constrained convex prob-
lems [Nemirovskij and Yudin, 1983], and that uses in the optimization updates a cost (or “geometry")
that is a Bregman divergence [Bregman, 1967] , whose definition is given below.

Definition A.2. Let ϕ : X → R a strictly convex and differentiable functional on a convex set X ,
referred to as a Bregman potential. The ϕ-Bregman divergence is defined for any x, y ∈ X by:

Bϕ(y|x) = ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩.

Let γ a fixed step-size and G an objective function on X . Mirror descent with ϕ-Bregman divergence
writes at each step k ≥ 0 as:

xk+1 = argmin
x∈X

⟨∇G(xk), x− xk⟩+
1

γ
Bϕ(x|xk).

Writing the first order conditions of the problem above, mirror descent writes

xk+1 = ∇ϕ∗(∇ϕ(xk)− γ∇G(xk)),

where ϕ∗(x) = supy∈X ⟨y, x⟩−ϕ(x) is the convex conjugate of ϕ, and ∇ϕ∗ = (∇ϕ)−1. Note that, if
X is a subset of Rd and that ϕ(x) = 1

2∥x∥
2, that Bϕ(x, y) =

1
2∥x−y∥2 and mirror descent coincides

with gradient descent. Yet, this scheme is more general and is useful for constrained optimization, as
if one chooses ϕ wisely, the inverse ∇ϕ∗ of the so-called “mirror map" ∇ϕ maps the iterates into the
domain of ϕ.

A.6 Entropic mirror descent updates

Derivations of the updates (Gaussian case). We now derive the updates given by the scheme
Eq (2.3). The first order condition on ϵ is given by:

1

2
d log

ϵ

ϵk
= −γ∇ϵF (mk, ϵk) ⇔ ϵ = ϵk exp

Å
−2γ

d
∇ϵF (mk, ϵk)

ã
.

The first order conditions on the means gives the same explicit update as Eq (4):

m = mk − γ∇mF (mk, ϵk)
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Remark A.3. Note that Eq (2.3) involves a factor 1/2 in front of the KL penalization term. Our
motivation is that in Eq (4), the Bures distance BW2(ϵId, ϵkId) = d

(√
ϵ−√

ϵk
)2 is a distance

between the square root of the matrices and thus its derivative w.r.t ϵ leads to a term implying only the
square root of the matrices, or in our isotropic Gaussian setting the square root of the scale isotropic
value: ∇ϵ BW

2(ϵId, ϵkId) = d
(
1 +

√
ϵk
ϵ

)
. We find out it was judicious to have a derivative for the

KL implying also the square roots of the isotropic coefficient, i.e., ∇ϵKL(ϵId|ϵkId) = d
2 log
Ä

ϵ
ϵk

ä
=

d log
Ä»

ϵ
ϵk

ä
.

Mixture Case. In the mixture of Gaussians case, we derive the following updates from Eq (4.3). The
first order condition on ϵi for i = 1, · · · , N gives:

1

2N
d log

ϵj

ϵik
= −γ∇ϵiF ([mj

k, ϵ
j
k]

N
j=1) ⇔ ϵi = ϵik exp

Å
−2Nγ

d
∇ϵiF ([mj

k, ϵ
j
k]

N
j=1)

ã
,

and for the means:

mi = mi
k −Nγ∇miF ([mj

k, ϵ
j
k]

N
j=1).

A.7 Proof of Theorem 3.1

In this section, we aim to compute the gradients of the KL(·|π) objective function defined Eq (7). To
achieve this, a fundamental tool are Stein’s identities [Stein, 1981] which relate the derivatives with
respect to the parameters to the derivatives of the integrand.

A.7.1 Stein’s identities for isotropic Gaussians

Lemma A.4. Let p be an isotropic Gaussian N (m, ϵId) and p(x) its density for x ∈ Rd. Assume
that π ∈ C1(Rd) and lim∥x∥→∞ p(x) log π(x) = 0. We have

∇m KL(p|π) = Ep

[
∇ log

( p
π

)]
(20)

∇ϵ KL(p|π) = 1

2ϵ
Ep[(· −m)T∇ log

( p
π

)
]. (21)

Note that the latter equation does not require to compute the Hessian (of dimension d× d), which
can be computationally more efficient than an alternative formula given in Eq (23).

Proof. Recall that p(x; θ) = (2πϵ)−d/2 exp
(
−∥x−m∥2

2ϵ

)
and KL(p|π) = Ep

[
log
(
p
π

)]
. First, note

that for θ = (m, ϵ):

∇θ

∫
log p(x; θ)p(x; θ)dx =

∫
log p(x; θ)∇θp(x; θ)dx,

which comes from the fact that the expectation of the score function is null, namely∫
∇θ log p(x; θ)p(x; θ)dx = 0. Hence,

∇mEp

[
log
( p
π

)]
=

∫
log
( p
π
(x)
)
∇mp(x)dx =

∫
∇x log

( p
π
(x)
)
p(x)dx,

where we used ∇mp(x) = −∇xp(x) and an integration by parts. We now compute the gradient of p
with respect to ϵ:

∇ϵp(x) =
1

2
p(x)

Å
1

ϵ2
∥x−m∥2 − d

ϵ

ã
=

1

2
Tr

ï
p(x)

Å
1

ϵ2
(x−m)(x−m)T − 1

ϵ
Id

ãò
=

1

2
Tr∇2

xp(x). (22)

Then, we have, using an integration by parts:

∇ϵEp

[
log
( p
π

)]
=

1

2
Tr

∫
log
( p
π

)
(x)∇2

xp(x)dx

= −1

2
Tr

∫
∇xp(x)∇x log

( p
π
(x)
)T

dx =
1

2ϵ
Ep[(· −m)T∇ log

( p
π

)
].
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Note that applying twice an integration by parts would yield another formula:

∇ϵEp

[
log
( p
π

)]
=

1

2
TrEp

[
∇2 log

( p
π

)]
= − d

2ϵ
− 1

2
TrEp

[
∇2 log π

]
. (23)

A.7.2 Stein’s identities for mixtures of isotropic Gaussians

The application of the previous results for a mixture of isotropic Gaussians is straightforward. Let
µ = 1

N

∑N
i=1 δmi , and recall we denote the associated isotropic Gaussian mixture as kϵ ⊗ µ =

1
N

∑N
i=1 kϵi ⋆ δmi = 1

N

∑N
i=1 N (mi, ϵiId) where kϵ(x) = (2πϵ)−d/2 exp

(
−∥x∥2/(2ϵ)

)
is the

Gaussian kernel.

Using the fact that the expectation of the score function is null and that ∇mikϵ⊗µ = 1
N∇mikϵi ⋆δmi ,

the gradient of the KL with respect to the mean parameter mi is then given by:

∇mi KL

Å
kϵ ⊗ µ

∣∣∣∣πã = ∇miEkϵ⊗µ

ï
ln

Å
kϵ ⊗ µ

π

ãò
=

1

N
Ekϵi⋆δmi

ï
∇ ln

Å
kϵ ⊗ µ

π

ãò
.

With the same arguments and using Eq (22), the gradient with respect to the variance parameter ϵi is:

∇ϵi KL

Å
kϵ ⊗ µ

∣∣∣∣πã = ∇ϵiEkϵ⊗µ

ï
ln

Å
kϵ ⊗ µ

π

ãò
=

1

2Nϵi
Ekϵi⋆δmi

ï
(· −mi)T∇ ln

Å
kϵ ⊗ µ

π

ãò
.

Equivalently, note that for the latter gradient, using twice an integration by parts would yield the
formula

∇ϵi KL

Å
kϵ ⊗ µ

∣∣∣∣πã =
1

2N
TrEkϵi⋆δmi

ï
∇2 ln

Å
kϵ ⊗ µ

π

ãò
.

B Bures-Wasserstein gradient flow for mixtures

In this section we consider the Bures-Wasserstein gradient flow for mixtures proposed in Lambert
et al. [2022] in the particular case of isotropic covariance matrices.

B.1 Additional discussion

Starting from a mixture of isotropic Gaussians ν0 ∈ CN at k = 0, the JKO scheme where we
constrain the distribution to be such a mixture writes recursively at subsequent step k + 1:

ν̂k+1 = argmin
ν∈CN

ß
KL(ν|π) + 1

2γ
W

2
2(ν, νk)

™
. (24)

Unfortunately, a closed-form solution for this scheme is not available, as the Wasserstein distance
between mixtures is not tractable. Regarding the geometry of the space of mixtures of Gaussians,
Lambert et al. [2022] considered a mixing measure with infinitely many components µ ∈ P(Θ),
which can be identified with a Gaussian mixture of the form

∫
Nθ dp(θ), where Nθ is a Gaussian

distribution with parameters θ ∈ Θ. Transport maps can be defined for this model, and gradient flows
can subsequently be computed [Lambert et al., 2022, Theorem 5]. However, this model is highly
overparameterized. For instance, as illustrated in Chewi et al. [2024], a single standard Gaussian in R
can be represented by infinitely many mixing measures of the form N (0, Id) =

∫
N (x, τ Id) dp(x),

where p = N (0, (1− τ)I) for any τ ∈ [0, 1].

An alternative solution is to constrain the mixing model by considering a fixed and finite number of
components with uniform weights as we do in this work. This resolves the identifiability issue: in
particular, two co-localized components with weight w cannot be confused with a single component
of weight 2w, since all weights are equal. See [Delon and Desolneux, 2020, Proposition 2] for further
details on identifiability for the mixture model. Moreover discrete measures with the same number
of atoms are stable along Wasserstein-2 geodesics. This property still holds if we consider discrete
measures on the isotropic Bures-Wasserstein space p̂ = 1

N

∑N
i=1 δ(mi,ϵi). We can therefore consider
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discrete mixing measures with uniform weights as stable and identifiable representatives of Gaussian
mixtures.

Following Section 4.2 we can reconsider the JKO scheme 24 where we replace the W2 distance with
the Wbw on mixing measures:

min
mi,ϵi

{
KL(ν|π) + 1

2γ
W 2

bw(p̂, p̂k)
}
,

which, at the limit γ → 0, is equivalent to:

min
mi,ϵi

{
KL(ν|π) + 1

2Nγ

N∑
i=1

BW2(N (mi, ϵiId),N (mi
k, ϵ

i
kId))

}
. (25)

The problem in Eq. (25) corresponds to the discrete scheme introduced for the full covariance case
Σi = ϵiI in [Lambert et al., 2022, Appendix B], without further justification. This scheme can
therefore be reinterpreted as a gradient flow on the space of discrete mixing measures.

B.2 Flow of mixtures of isotropic Gaussian

We now solve the problem (25) when ν is a mixture of isotropic Gaussians. We recall our notation for
an isotropic Gaussian mixture: ν = kϵ⊗µ := 1

N

∑N
i=1 N (mi, ϵiId) where kϵi ⋆δmi := N (mi, ϵiId),

as well as our loss function:

F ([mi, ϵi]Ni=1) := KL

(
1

N

N∑
i=1

N (mi, ϵiId)

∣∣∣∣∣π
)

= KL(kϵ ⊗ µ|π).

The derivative of this loss w.r.t. the parameters of the Gaussian mixture are given in Appendix A.7.2
and we report them here:

∇miF =
1

N
Ekϵi⋆δmi

ï
∇ ln

Å
kϵ ⊗ µ

π

ãò
, (26)

∇ϵiF =
1

2Nϵi
Ekϵi⋆δmi

ï
(· −mi)T∇ ln

Å
kϵ ⊗ µ

π

ãò
. (27)

Using the derivative of the Bures-Wasserstein distance computed in Appendix A.3, we obtain the first
order condition w.r.t. ϵi for the JKO-like scheme (25):

d

(
1−

 
ϵik
ϵi

)
= −2Nγ∇ϵiF ⇒ ϵik =

Å
1 +

2Nγ

d
∇ϵiF

ã2
ϵi,

and following Appendix A.3, as γ → 0 we obtain the flow:

ϵ̇i = −2

d
Ekϵi⋆δmi

ï
(· −mi)T∇ ln

Å
kϵ ⊗ µ

π

ãò
.

On the other hand, first order condition on the mean gives the implicit update:

mi = mi
k −Nγ∇miF,

and at the limit γ → 0 we obtain the flow:

ṁi = −Ekϵi⋆δmi

ï
∇ ln

Å
kϵ ⊗ µ

π

ãò
.

B.3 Discrete update and Gaussian particles

Derivations of the updates. For the scheme given in Eq (11), we obtain the following first-order
conditions on the parameters for i = 1, · · · , N :

1

2N
d

(
1−

 
ϵik
ϵi

)
= −γ∇ϵiF ([mj

k, ϵ
j
k]

N
j=1) ⇔ ϵi = ϵik

Å
1 +

2Nγ

d
∇ϵiF ([mj

k, ϵ
j
k]

N
j=1)

ã−2

,

29



and using a Taylor expansion for small step size γ, (1 + x)−1 = 1− x+ o(x) we obtain:

ϵi = ϵik

Å
1− 2Nγ

d
∇ϵiF ([mj

k, ϵ
j
k]

N
j=1)

ã2
. (28)

The first-order condition on mi gives the explicit update:

mi = mi
k −Nγ∇miF ([mj

k, ϵ
j
k]

N
j=1). (29)

Riemannian interpretation. We now show that this update has also a Riemannian interpretation,
extending our geometric analysis from Appendix A.4 to the case of mixtures. We can compute the
isotropic Bures-Wasserstein gradient for each Gaussian component, by projecting the Wasserstein-2
gradient of the KL objective to the IBW-tangent space of each component. Each Gaussian particle
(component) follows its own trajectory ruled by ∇iBWiF . Adopting this point of view, we obtain the
following system of updates for i = 1, . . . , N :

pik+1 = exppi
k
(−γ∇iBWiF(νk)),

where exppi
k

is the exponential map from the iBW tangent space at pik defined in Appendix A.4. We
then get:

∇iBWiF(ν) = projTpi iBW(Rd)∇W2
F(ν) = argmin

w∈Tpi iBW(Rd)

∥w −∇W2
F(ν)∥2pi ,

with w = (a, s) ∈ Rd × R. Together with (26,27) it gives:

a = Epi [∇W2
F(ν)] = N∇miF ([mj , ϵj ]Nj=1),

s =
1

dϵi
Epi

[
(· −mi)T∇W2

F(ν)
]
=

2N

d
∇ϵiF ([mj , ϵj ]Nj=1).

Using Eq (19), we obtain the discrete updates Eq (28)-(29).

B.4 Background on Wasserstein distances for Gaussian mixtures [Delon and Desolneux, 2020]

In Delon and Desolneux [2020], the authors introduce the MW2 distance as a Wasserstein distance
between Gaussian mixtures, where the transport plan is itself constrained to be a Gaussian mixture
(with any number of components). We denote by GMM the latter space.

Namely, let p0, p1 being two general Gaussians mixtures p0 =
∑K0

i=1 π
i
0p

i
0 and p1 =

∑K1

i=1 π
i
1p

i
1, the

MW2 distance is defined as:

MW2
2(p0, p1) = min

γ∈S(p0,p1)∩GMM

∫
||x1 − x2||2dγ(x1, x2) ≥ W 2

2 (p0, p1),

which is an upper bound to the true Wasserstein distance since the transport plan is constrained.

It has been shown in [Delon and Desolneux, 2020, Proposition 4] that this distance is also equal to:

MW2
2(p0, p1) = min

W∈S(π0,π1)

K0∑
i=1

K1∑
j=1

Wi,j BW
2(N (mi,Σi),N (mj ,Σj)),

where S(π0, π1) is the set of coupling matrices between the vector of weights π0 and π1 of the two
mixtures defined by S(π0, π1) = {W ∈ MK0×K1(R+)| ∀i,

∑
j Wij = πi

0; ∀j,
∑

i Wij = πj
1},

where we note Mn×p(R+) the set of matrices of size n× p with positive values. Moreover, Delon
and Desolneux [2020] showed that the optimal transport plan takes the form:

γ(x, y) =

K0∑
i=1

K1∑
j=1

W ∗
i,jp

i
0(x)δy=TBW

i,j (x)(y),

where W ∗ is the optimal coupling matrix and TBW
i,j is the BW transport map from Gaussian

component i to Gaussian component j. The transport plan γ is a GMM with at most K0K1 Gaussian
components which are degenerated.
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Mixture model with fixed number of components. We now consider the case of mixture of
exactly N Gaussians with equal, fixed weights:

p =
1

N

N∑
i=1

N (mi,Σi) =
1

N

N∑
i=1

pi,

where pi is the ith Gaussian component of the mixture.

The MW2 distance takes an even simpler expression when considering a distance between two mix-
tures p0, p1 of exactly N Gaussians with equal, fixed weights. If we note SN the set of permutations
over {1, . . . , N}, we have:

MW2
2(p0, p1) = min

σ∈SN

1

N

N∑
i=1

BW2(N (mi,Σi),N (mσ(i),Σσ(i))) = W 2
bw(p̂0, p̂1),

where Wbw is the Wasserstein distance between mixing measures defined in Section 4.2. The lower
and upper bounds for MW2

2 given in [Delon and Desolneux, 2020, Proposition 6] then transfer to
Wbw and give:

W2(p0, p1) ≤ Wbw(p̂, p̂k) ≤ W2(p0, p1) +

Ã
2

N

N∑
k=1

TrΣk
0 +

Ã
2

N

N∑
k=1

TrΣk
1 .

The last term simplifies for isotropic Gaussians and we finally obtain:

0 ≤ W 2
bw(p̂, p̂k)−W

2
2 (ν, νk) ≤ 2

√
2dϵ∗, (30)

where ϵ∗ is the maximal variance of the mixtures ν, νk. When ϵ∗ → 0, such that the Gaussian mixture
degenerates into an empirical measure, the two distance matches.

Geodesics on mixtures Finally, when considering mixtures with N equal weights, the transport
plan has exactly N components and can be written:

γ(x, y) =
1

N

N∑
i=1

pi0(x)δy=TBW
i,σ∗(i)

(x)(y),

such that the mixture model with exactly N components is stable along the geodesics transported by
this plan. Indeed, the intermediate measure between two GMM p0 and p1 is given by the formula for
t ∈ [0, 1]:

µt = Pt#γ where Pt(x) = (1− t)x+ ty.

Applying this to our specific case, we obtain:

pt =
1

N

N∑
i=1

((1− t)Id + tTBW
i,σ∗(i))#pi0,

where pt has exactly N components, proving that our GMM structure with N components is stable
along the geodesics.

We may wonder if a transport map exists in our simpler framework of mixtures with a fixed number
of components and equal weights. Unfortunately, this is not the case, as illustrated in Figure 5, where
we observe that the map between the two mixtures is not bijective and cannot be represented by a
function T (x).

C Natural gradient descent updates

In this section, we give more details on Natural gradient descent on IG, which corresponds to the
algorithm proposed by Lin et al. [2019]. NGD adapts standard gradient descent to the geometry of
the parameter space, by preconditioning the Euclidean gradient with the inverse Fisher information
matrix.
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Figure 5: Optimal transport plan between two mixtures of two Gaussians with equal weights 1
2 . On

the left is the Wasserstein distance W2 case, where the optimal transport plan is not constrained.
On the right is the MW2 case, where the optimal transport plan is constrained to be a mixture of
Gaussians. In the W2 case, there exists a bijective map. We don’t have such a bijective map for the
MW2 case. Indeed, in the right figure, some points have two images. These figures are generated
using the Python Optimal Transport library (https://pythonot.github.io/).

Exponential Family An isotropic Gaussian p = N (m, ϵId) belongs to the exponential family. Its
density, in the canonical form, writes:

p(x; η) = (2π)−d/2 exp (⟨η, S(x)⟩ −A(η))

with the natural parameter η = (η1 η2)
⊤

=
(
m
ϵ − 1

2ϵ

)⊤, the sufficient statistics S(x) =(
x ∥x∥2

)⊤ and the log partition function A(η) = −∥η1∥2

2η2
− d

2 log(−2η2). It follows that
∇A(η) = Ep(·|η) [S(x)] := β and ∇2A(η) = I(η) with β and I(η) being respectively the mean
parameter and the Fisher information matrix. Also ∇A−1 = ∇A∗ where A∗(y) = supη⟨η, y⟩−A(η)
is the Legendre transform of A.

NGD as Mirror Descent [Raskutti and Mukherjee, 2015] Let η 7→ f(η) be the optimization
objective in the natural-parameter space, and define the corresponding mean-space objective β 7→
f(β) = f

(
∇A∗(β)

)
.

The natural-gradient step on f of size γ is

ηk+1 = ηk − γI(ηk)
−1∇f(ηk) = ηk − γ

(
∇2A(ηk)

)−1∇f(ηk). (31)

On the other hand, mirror descent on f with the Bregman potential ϕ(β) = A∗(β) updates writes

∇A∗(βk+1) = ∇A∗(βk)− γ∇βf(βk). (32)

By the chain rule,

∇βf(βk) = ∇2A∗(βk)∇f(ηk) =
(
∇2A(ηk)

)−1∇f(ηk),

substituting this into the mirror descent update recovers exactly the NGD step above. The correspond-
ing optimization scheme is:

argmin
β

⟨∇βf(βk), β − βk⟩+
1

γ
BA⋆(β|βk),
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where the geometry is induced by the Bregman divergence BA∗ generated by the Legendre transform
A∗ of the partition function. This divergence is equal to the KL divergence between two isotropic
Gaussians:

KL(N (m, ϵId),N (mk|ϵkId)) =
1

2

Å
d · ϵ

ϵk
+

∥m−mk∥2

ϵk
− d+ d log

ϵk
ϵ

ã
. (33)

Explicit Updates in (m, ϵ) Define F (m, ϵ) = f(m, ∥m∥2 + dϵ), and let ∇f(βk) = (g1 g2)
⊤,

with ∇mF = g1 + 2mg2,∇ϵF = dg2. Equivalently (31) and (32) give( mk+1

ϵk+1

− 1
2ϵk+1

)
=

( mk

ϵk

− 1
2ϵk

)
− γ∇f(βk) ⇔

(
mk+1

1
ϵk+1

)
=

(mk

ϵk
ϵk+1 − γg1ϵk+1

1
ϵk

+ 2γg2

)
The variance update writes

1

ϵk+1
=

1

ϵk
+

2γ

d
∇ϵF (mk, ϵk). (34)

and

mk+1 =

Å
mk

ϵk
− γg1

ã
ϵk+1

=

Å
mk

ϵk
− γg1

ã
ϵk

1 + 2ϵkγg2

=

Å
mk

ϵk
− γ [∇mF (mk, ϵk)− 2mkg2]

ã
ϵk

1 + 2ϵkγg2

=

Å
mk

ï
1

ϵk
+ 2γg2

ò
− γ∇mF (mk, ϵk)

ã
ϵk

1 + 2ϵkγg2

= mk − γ∇mF (mk, ϵk)
ϵk

1 + 2ϵkγg2
= mk − γϵk+1∇mF (mk, ϵk). (35)

Mixture case We now extend NGD to a mixture of N isotropic Gaussians with equal weights 1/N :

p(x; η) =
1

N

N∑
i=1

(2π)−d/2 exp
(
⟨ηi, S(x)⟩ −A(ηi)

)
with ηi =

(
ηi1 ηi2

)⊤
=
Ä
mi

ϵi − 1
2 ϵi

ä⊤
for i = 1, . . . , N, which is a convex combination of

exponential-family components, we apply NGD to each component.

Writing natural gradients in (mj , ϵj)-space givesà
mj

k+1

ϵjk+1

− 1

2 ϵjk+1

í
=

á
mj

k

ϵjk

− 1

2 ϵjk

ë
−Nγ

(
gj1

gj2

)
,

where for each j

∇βj f([βi]Ni=1) =

(
gj1

gj2

)
and ∇mjF = gj1 + 2mj gj2,∇ϵjF = d gj2. Equivalently, the updates are

1

ϵjk+1

=
1

ϵjk
+

2Nγ

d
∇ϵjF,

mj
k+1 = mj

k −N γ ϵjk+1 ∇mjF.

Remark C.1. Note that while KL(·|·) is known to be a Bregman divergence on the space of probability
distributions over Rd [Aubin-Frankowski et al., 2022], it is not a Bregman divergence on Rd × R+∗.
Indeed, note that Eq (33) does not decouple the mean and variance terms, resulting in coupled updates
in Eq (34)-(35).
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D Approximation error for mixtures of isotropic Gaussians

In this section, we investigate the approximation error that can be achieved within the variational
family we consider in this work. Previously, [Huix et al., 2024, Theorem 7] established that
the approximation error of VI within the family of mixtures of Gaussian distributions with equal
weights and constant isotropic covariance in the (reverse) Kullback-Leibler tends to 0 as N tends
to infinity, under the assumption that the target distribution writes as an infinite mixture of these
isotropic Gaussian components with same covariance. Below, we derive a similar result for our richer
family, i.e., mixtures of (isotropic) Gaussian distributions with equal weights (and possibly different
covariances). Note that we are deriving the results for mixtures of isotropic Gaussians, but the result
and computations would the same for Gaussians with full covariance matrix.

Assumption D.1. There exists p∗ on Rd × R+∗ such that the target π writes as:

π :=

∫
Θ

kmϵ dp⋆(m, ϵ), (36)

where kmϵ (x) := kϵ(x−m) for any x ∈ Rd.

Recall that we use the notation ρN = kϵ⊗µ =
∫
kmϵ dp̂(m, ϵ) with µ = 1

N

∑N
i=1 δmi for an isotropic

Gaussian mixture with N components (where p̂ = 1
N

∑N
j=1 δ(mj ,ϵj), and in the notation kϵ ⊗ µ, ϵ

is identified to the vector (ϵ1, . . . , ϵN )). We now state and prove our generalization of [Huix et al.,
2024, Theorem 7].

Theorem D.2. Let CN =
{

1
N

∑N
j=1 N (mj , ϵjId), [mj , ϵj ]Nj=1 ∈ (Rd × R+∗)N

}
. Suppose that

Assumption D.1 holds, then

min
ρ∈CN

KL(ρ|π) ≤ C2
π

log(N) + 1

N
, where C2

π =

∫ ∫
kmϵ (x)2dp⋆(m, ϵ)∫
kmϵ (x)dp⋆(m, ϵ)

dx.

Proof. We denote

DN = min
ρ∈CN

KL(ρ|π), ρN = argmin
ρ∈CN

KL(ρ|π).

For any m ∈ Rd, we consider ρm,ϵ
N+1 ∈ CN+1 defined as

ρm,ϵ
N+1 = (1− α)ρN + αkmϵ ,

with α = 1
N+1 . By definition of DN , we have that, DN+1 ≤ KL(ρm,ϵ

N+1|π). Denoting f(x) =

x log x, we have KL(ρm,ϵ
N+1|π) =

∫
f(rN+1)dπ, where we define:

rN+1 :=
ρm,ϵ
N+1

π
= (1− α)

ρN
π

+ α
kmϵ
π

:= r0 + α
kmϵ
π

.

Defining B(x) = x log x−x+1
(x−1)2 for x ∈ R∗

+\{1}. By Lemma D.3, this function is decreasing; and
since rN+1(x) ≥ r0(x) ∀x, we have B(rN+1(x)) ≤ B(r0(x)). It follows that

f(rN+1) = rN+1 log(rN+1) ≤ rN+1 − 1 +B(r0)(rN+1 − 1)2

= r0 + α
kmϵ
π

− 1 +B(r0)(r0 + α
kmϵ
π

− 1)2

= α
kmϵ
π

+ r0 log(r0) + α2

Å
kmϵ
π

ã2
B(r0) + 2α

kmϵ
π

B(r0)(r0 − 1). (37)
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Moreover, we have:

DN+1 =

∫
DN+1dp

⋆(m, ϵ)

≤
∫

KL(ρm,ϵ
N+1|π)dp

⋆(m, ϵ)

=

∫ ∫
f(rN+1)dπdp

⋆(m, ϵ)

≤
∫ ∫

α
kmϵ
π

dπdp⋆(m, ϵ) +

∫ ∫
r0 log(r0)dπdp

⋆(m, ϵ)

+

∫ ∫
α2

Å
kmϵ
π

ã2
B(r0)dπdp

⋆(m, ϵ)

+

∫ ∫
2α

kmϵ
π

B(r0)(r0 − 1)dπdp⋆(m, ϵ) from (37)

= α+

∫
r0(x) log(r0(x))dπ(x) + α2

∫ ∫
kmϵ (x)2

π(x)
B(r0(x))dx dp⋆(m, ϵ)

+ 2α

∫ ∫
kmϵ B(r0(x))(r0(x)− 1)dx dp⋆(m, ϵ)

= α+

∫
r0(x) log(r0(x))dπ(x) (a)

+ α2

∫ ∫
kmϵ (x)2

π(x)
B(r0(x))dx dp⋆(m, ϵ) (b)

+ 2α

∫
B(r0(x))(r0(x)− 1)π(x)dx. (c)

We first observe that we can write (a) in function of DN . Indeed, r0(x) = (1− α)ρN

π , so

(a) =
∫

r0(x) log(r0(x))dπ(x)

=

∫
(1− α)

ρN
π

log
(
(1− α)

ρN
π

)
dπ

= (1− α)

∫
ρN (x) log

Å
ρN (x)

π(x)

ã
dx+ (1− α) log(1− α)

= (1− α)DN + (1− α) log(1− α).

For the second term (b), we have that limx→0+ B(x) = 1 and since B decrease, B(x) ≤ 1, thus
B(r0(x)) ≤ 1, this implies :

(b) = α2

∫ ∫
kmϵ (x)2

π(x)
B(r0(x))dx dp⋆(m, ϵ) ≤ α2

∫ ∫
kmϵ (x)2

π(x)
dx dp⋆(m, ϵ)

= α2C2
π.

And for the third term (c), we have that B(x)(x− 1) ≤
√
x− 1, see Lemma D.4. Thus,

(c) = 2α

∫
B(r0(x))(r0(x)− 1)π(x)dx ≤ 2α

∫ (»
r0(x)− 1

)
π(x)dx

= 2α

∫  
(1− α)

ρN (x)

π(x)
π(x)dx− 2α

= 2α
√
1− α

∫ »
ρN (x) π(x)dx− 2α

= 2α
√
1− α

(
1−H2(ρN , π)

)
− 2α

≤ 2α
√
1− α− 2α,
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where we have used the definition of the squared Hellinger distance H2(f, g) = 1−
∫ √

f(x)g(x)dx
and the property stating that for any densities of probability f, g, 0 ≤ H2(f, g) ≤ 1.

Finally, we have

DN+1 ≤ α+ (1− α)DN + (1− α) log(1− α) + α2C2
π + 2α

Ä√
1− α− 1

ä
≤ (1− α)DN + α2C2

π, (38)

using Lemma D.5, stating that α+ (1− α) log(1− α) + 2α
(√

1− α− 1
)
≤ 0.

The previous inequality (38) is true for any n ≥ 0 and recalling that α = 1
n+1 we have,

Dn+1 ≤ (1− α)Dn + α2C2
π

(n+ 1)Dn+1 − nDn ≤ 1

n+ 1
C2

π

N−1∑
n=0

(n+ 1)Dn+1 − nDn ≤ C2
π

N−1∑
n=0

1

n+ 1

NDN ≤ C2
π(log(N) + 1)

DN ≤ C2
π

log(N) + 1

N
,

where the Harmonic number
∑N−1

n=0
1

n+1 has been bounded by log(N) + 1.

In the proof above we used the following lemmas from [Huix et al., 2024] (Lemma 8 to 10 therein).
We provide their proofs for completeness.

Lemma D.3. The function B(x) = x log x−x+1
(x−1)2 ∀x ∈ R+∗\{1}, is decreasing.

Proof. For all x ∈ R+∗\{1} the gradient of B writes:

∇B(x) =
(x− 1) log x− 2(x log x− x+ 1)

(x− 1)3

• For x ∈ (0, 1), the denominator is strictly negative and the numerator strictly positive, thus
∇B(x) ≤ 0.

• For x ∈ (1,∞), the denominator is stricly positive and the numerator is strictly negative,
thus ∇B(x) ≤ 0.

So B is decreasing on both intervals, and limx→1− = 1
2 and limx→1+ = 1

2 by Hospital’s rule.

Lemma D.4. The function B satisfies: B(x)(x− 1) ≤
√
x− 1 ∀x ∈ R+∗\{1}.

Proof. Let C(x) := B(x)(x− 1) = x log x−x+1
x−1

• For x ∈ (0, 1), log x ≥ x−1√
x

implies log x
x−1 ≤ 1√

x
⇒ x log x

x−1 ≤ x√
x
=

√
x,

• For x ∈ (1,∞), log x ≤ x−1√
x

implies log x
x−1 ≤ 1√

x
⇒ x log x

x−1 ≤ x√
x
=

√
x.

and C(x)−
√
x− 1 = x log x

x−1 −
√
x ≤ 0.

Lemma D.5. Let consider α = 1
n+1 ∀n ∈ N, then α+(1−α) log(1− α)+2α

(√
1− α− 1

)
≤ 0.
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Proof. We have:

α+ (1− α) log(1− α) + 2α
Ä√

1− α− 1
ä
= −α+ (1− α) log(1− α) + 2α

√
1− α

≤ α
Ä
α− 2 + 2

√
1− α

ä
≤ α− 2 + 2

√
1− α

≤ 0,

using log(1− α) ≤ −α and the fact that α = 1/(n+ 1) ≤ 1 for the first and second inequality. For
the last inequality we have used the fact that the before last expression is decreasing and is equal to 0
when α goes to 0.

E Additional experiments and details

E.1 Updates for the full-covariance matrices scheme of Lambert et al. [2022, Section 5.2]

In this section we detail the updates for the full-covariance scheme of Lambert et al. [2022, Section
5.2]. The parameter space is Θ = Rd × Sd++ (the space of means and covariance matrices). Consider
initializing this evolution at a finitely supported distribution p0:

p0 =
1

N

N∑
i=1

δ
θ
(i)
0

=
1

N

N∑
i=1

δ
(m

(i)
0 ,Σ

(i)
0 )

It has been checked in Lambert et al. [2022] that the system of ODEs thus initialized maintains a
finite mixture distribution:

pt =
1

N

N∑
i=1

δ
θ
(i)
t

=
1

N

N∑
i=1

δ
(m

(i)
t ,Σ

(i)
t )

,

where the parameters θ
(i)
t = (m

(i)
t ,Σ

(i)
t ) evolve according to the following interacting particle

system, for i ∈ [N ]

ṁ
(i)
t = −E∇ ln

νt
π

Ä
Y

(i)
t

ä
,

Σ̇
(i)
t = −E∇2 ln

νt
π

Ä
Y

(i)
t

ä
Σ

(i)
t − Σ

(i)
t E∇2 ln

νt
π

Ä
Y

(i)
t

ä
,

where Y
(i)
t ∼ p

θ
(i)
t

and νt =
∫
Nθdpt(θ). In their experiments, the ODEs were solved using a

fourth-order Runge–Kutta scheme. In our experiments we applied the BW SGD described in Lambert
et al. [2022, Algorithm 1] .

E.2 Experimental details

As mentioned in Section 6, we detail here our experimental setup and hyperparameters whose values
are provided in Table 1.

Initialization of the variational mixture: For N ∈ N∗ a given number of components, we initialize
the variational mixture by sampling the means in a ball of size [−s, s]d, where s ∈ R+∗, and setting
each covariance matrix to r Id, where r ∈ R+∗. For the GD algorithm (mean optimization only,
following Huix et al. [2024]), the variances are initialized in the same way but kept fixed during
optimization.

Optimization hyperparameters: We set the step-size γ, the number of iteration niter, the number of
Monte Carlo samples to Bgrad = 10 for gradient estimation, and to BKL = 1000 for the KL objective
estimation.

Normalizing Flows: For the NF baseline, we used a simplified RealNVP architecture
[Dinh et al., 2017], based on the code available at https://github.com/marylou-gabrie/
tutorial-sampling-enhanced-w-generative-models, with b = 2 coupling layers and hidden
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Table 1: Hyperparameters

MOG Init. Optim Targets

Exp. s r γ niter

Figure 1
mog 15 2 10−1 103 {stg, rtg, Ntg} = {8, 5, 5}

Figure 3
mog 102d−1 10 10−2d−1 103 {stg, rtg, Ntg} = {102d−1, 5, 5}

Figure 2
mog 30 100 10−2 104 {stg, rtg, Ntg} = {10, 1, 10}

Figure 4
breast_cancer 20 10 10−2 104 σ2

prior = 100

wine 20 10 10−2 102 σ2
prior = 100

boston 10 10 10−6 104 {σ2
prior, h} = {10, 50}

Figure 6
funnel (a) 5 0.5 10−2 104 σ2 = 1.2

sinh-arcsinh (b-1) 10 2 10−3 104 skw = (−0.2,−0.2)

sinh-arcsinh (b-2) 10 2 10−3 104 skw = (−0.2,−0.5)

mog (c-1) 10 5 10−2 104 {pt, rtg, Ntg} = {3, 2, 4}
mog (c-2) 10 5 10−2 104 {pt, rtg, Ntg} = {4, 1, 4}
mog (c-3) 10 5 10−2 104 {pt, rtg, Ntg} = {3, 2, 4}

Figure 10
mog 30 100 10−3 104 {stg, rtg, Ntg} = {20, 5, 5}

Figure 11
mog 30 100 10−3 104 {stg, rtg, Ntg} = {10, 10, 10}

dimension h = 124, which yields a Neural Network (NN) with 4976 parameters in dimension d = 2.
Our isotropic mixture model has N(d + 1) = 3N parameters, even for large N , the NF model
remains more complex and costly to optimize. Therefore, for each target distribution, we tuned
the learning rate and number of iterations for the NF method separately, rather than using the same
settings as for the VI mixture methods, since their optimization dynamics differ significantly.

MOG targets: To generate target MoG distributions, as in the initalization of variational MOG, we
fix stg and Ntg. Each component covariance matrix is constructed by sampling a random symmetric
positive-definite matrix (full diagonal or isotropic) and scaling it by rtg. We draw raw weights
uniformly in {1, . . . , 2Ntg} and normalize them to one. In Figure 6(c) all weights are equal except in
case (c-3), where one component has weight 0.1 and the remaining ones share the remaining mass
equally and the component means are placed at (±pt,±pt).

Datasets: We have used popular datasets from the UCI repository, as well as MNIST. The training
ratio has been set to 0.5 for UCI datasets and 0.8 for MNIST.

Computational resources: All experiments (except MNIST) were conducted on a MacBook Air
(M3, 2024) with an Apple M3 processor and 16 GB of RAM. The MNIST experiments were run on
an NVIDIA 50-90 GPU. Experiment runtimes ranged from a few seconds to up to two hours.

E.3 Additional 2-D examples

We present more experiments on 2D synthetic target distributions on Figure 6. These target distribu-
tions are defined below.
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(c-3)

(a) (b-1)

(b-2) (c-1)

(c-2) 

Figure 6: Evolution of the KL divergence over iterations together with the optimized variational
mixture density on different type of target distribution: (a) Funnel, (b) sinh-arcsinh normal distribution
and (c) Gaussian mixture. Optimization performed with different methods (IBW, MD, BW, NGD,
GD and NF) and varying N values.

Funnel distribution: The funnel distribution [Neal, 2003] in dimension d = 2 has density

p(x1, x2) = N
(
x1; 0, σ

2
)
× N

(
x2; 0, e

x1
)
,

for x = (x1, x2) ∈ R2. We follow the setting of Cai et al. [2024a] by fixing σ2 = 1.2. Although
unimodal, this “funnel” shape is difficult to capture with isotropic Gaussians. We experimented with
N = 5, 20, 40 components, but even for large N , our isotropic mixtures struggled, and the BW and
NF methods still outperformed them.

Sinh-arcsinh normal distribution: This distribution [Pewsey, 2009] applies a sinh–arcsinh transfor-
mation to a multivariate Gaussian to control the skewness skw and tail weight τ . Let

Z0 ∼ N (m,Σ), Z = sinh
(
τ sinh−1(Z0)− skw

)
.

In our experiments, we use τ = (0.8, 0.8), m = (0, 0), Σ =

Å
1 0.4
0.4 1

ã
, and vary the skew

parameter skw as specified in Table 1.

In Figure 7, we visualize the optimized Gaussian components of the target density, highlighting the
advantages of allowing each component to have its own ϵ value.

E.4 Bias induced by uniform weights mixture

We investigate the bias induced by our choice of the variational family, i.e. mixtures (of isotropic
Gaussians) with uniform weights. Our goal in this section is to analyze how such a constraint affects
the approximation of a bimodal target distribution with highly unbalanced mode weights.
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(a) (b)

Figure 7: Optimized isotropic Gaussians (represented as circles) over the target distributions for
the proposed methods and their shared-variance variants. (a) corresponds to the Funnel distribution
in Figure 6(a); (b) corresponds to the target used in Figure 1

We consider as the target a two-dimensional Gaussian mixture with two components and weights
(p, 1 − p) where p = 0.1. We seek the optimal approximation within our variational family of N
isotropic Gaussian components with uniform weights. To mitigate optimization issues and being
trapped in a local minima, we initialize the means of our variational approximation by sampling the
initial components means in two small balls centered around each target mode (where the number of
initial means sampled in a ball is proportional to Np and N(1− p) respectively).

As expected, when N = 2, the weights constraint induces a strong bias: the approximation either
ignores the low-weight mode or assigns equal mass to both modes. However, as N increases, this
bias progressively vanishes. For sufficiently large N , the model reallocates more components to the
dominant mode and fewer to the lighter one, effectively recovering the correct proportions despite the
uniform-weight constraint.

To quantify how well the variational mixture captures both the mode locations and their effective
weights, we drew B = 10, 000 samples from both the variational distribution and the target distri-
bution and applied K-means clustering with nclusters = 2, then analyzed the cluster assignments
and proportions. The reported errors are: E1 the mean Euclidean distance between the target and
variational modes, and E2 the absolute difference between their corresponding cluster weights. The
first metric captures whether the variational modes are well located, while the second one measures
whether their relative proportions are well captured. Each experiment is repeated 10 times; we report
the average result and error bars. Figure 8 shows that both errors rapidly decrease with N , demonstrat-
ing that uniform-weight Gaussian mixtures can approximate highly unbalanced multimodal targets
remarkably well when sufficiently overparameterized. We also display the estimated variational
density and Gaussians components (circles) along with the target density.

E.5 Additional high-dimensional mixtures

We first provide the full marginals of the experiment described in Figure 2 in Figure 9. We also
performed experiments in d = 10 Figure 10 and d = 50 Figure 11.

Figure 9: Marginals for MD, IBW, BW and NGD (d = 20).
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N values N values

IBW IBWIBWIBW

Figure 8: Errors, visualization and estimation of the bias induced by the uniform weights constraint
as a function of N for a two dimensional unbalanced mixture of Gaussians target.

Figure 10: Marginals (left) and KL objective (right) for MD, IBW, BW and NGD (d = 10).

Figure 11: Marginals (left) and KL objective (right) for MD, IBW, BW and NGD (d = 50).

E.6 More details on the Bayesian inference examples

In this section we provide some background on the Bayesian inference examples of Section 6 as well
as additional experiments.

E.6.1 Definition of the target distributions

Let D = {(xi, yi)}ni=1 be a labeled dataset, where xi ∈ Rd and yi is the associated label.

Binary logistic regression: We model the probability of a binary label yi ∈ {0, 1} given xi and
parameter z ∈ Rd by

π(yi | xi, z) = σ(x⊤
i z)

yi (1− σ(x⊤
i z))

1−yi ,

where σ(t) = 1/(1 + e−t) is the logistic function. The likelihood is

L(D | z) =
n∏

i=1

π(yi | xi, z),
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and the log-likelihood is

ℓ(D | z) =
n∑

i=1

log π(yi | xi, z) =

n∑
i=1

[
yi (x

⊤
i z)− log

(
1 + ex

⊤
i z
)]
.

With a Gaussian prior π(z) = N (0, σ2
priorId), the posterior is

π(z | D) ∝ L(D | z)π(z) (39)

and its gradient is

∇z log π(z | D) =

n∑
i=1

(
yi − σ(x⊤

i z)
)
xi − z

ϵz
.

Multi class logistic regression: For L classes, let z = (z1, . . . , zL) with each zl ∈ Rd. Then

π(yi = l | xi, z) =
exp
(
x⊤
i zl
)∑L

l=1 exp
(
x⊤
i zl
) , l = 1, . . . , L.

Linear regression: The classical linear model is

yi = z⊤xi + ξi, ξi ∼ N (0, σ2),

so that
yi ∼ N

(
x⊤
i z, σ

2
)
.

and the ordinary least squares estimator is

ẑ = arg min
z∈Rd

n∑
i=1

(yi − z⊤xi)
2.

for which we are able to find a close form when X = (xi)
n
i=1 is invertible.

In our Bayesian setting we aim at finding a distribution on z, put a prior on it, and approximate the
resulting posterior π(z | D) via variational inference.

Bayesian Neural Network: In the Bayesian neural network (BNN) setting, the linear predictor z⊤xi

is replaced with a neural network output f(xi | z) and model

yi ∼ N
(
f(xi | z), σ2

)
.

In our experiments we use a single hidden layer with h hidden units, ReLU activation function and
output dimension c. Thus, the dimension of parameters and thus of the problem is

d = h (ddata + 1) + c (h+ 1).

For a L-class classification task, c = L and the BNN output class probabilities π(yi = l | xi, z) =
f(xi | z)l.
Once the variational approximation to the posterior is optimized, we can make predictions by Bayesian
model averaging:

p(y | x) =
∫

π(y | x, z)πpost(z) dz, or ŷ =

∫
f(x | z)πpost(z) dz.

When d is large (e.g. MNIST, where d ≈ 105), sampling or expectation under a full d-dimensional
mixture becomes too expensive. To address this, we adopt a mean-field-style approximation: we
model the posterior as a product of identical univariate Gaussian-mixture marginals,

zj ∼ 1

N

N∑
i=1

N
(
mi[j], ϵi

)
, j = 1, . . . , d,

so that all d dimensions share the same N -component mixture. This reduces both memory and
computational cost while retaining multimodality in each coordinate. We updated mi, ϵi using the
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presented algorithms. In this setting, we follow a classical deep-learning framework. We use a single-
layer neural network with h = 256 hidden units and ReLU activation. The means of the variational
mixture of Gaussians are initialized by sampling from a normal distribution, and a Gaussian prior is
placed on the model parameters.

Laplace Approximation: In the Bayesian setting, a well-known approach to approximate the
posterior distribution is to fit it with a Gaussian. Given the posterior π(z|D) defined in Equation (39),
Laplace approximation methods consider a Gaussian N (z⋆,Σ⋆) where

z⋆ = argmin
z∈Rd

U(z), U(z) := − log π(z|D) = −ℓ(D|z)− log π(z),

is the Maximum a Posteriori (MAP), and Σ⋆ is the inverse of the hessian of U evaluated at z⋆. Indeed,
performing a second-order Taylor expansion of U around z⋆ yields:

U(z) ≈ U(z⋆) + (z − z⋆)T ∇U(z⋆)︸ ︷︷ ︸
=0

+
1

2
(z − z⋆)TH(z − z⋆), H = ∇2U(z⋆)

which corresponds to the negative log of a gaussian with mean z⋆ and covariance Σ⋆ := H−1. The
MAP estimate can be obtained with standard Euclidean optimization methods (e.g. gradient descent).
However, in high-dimensional settings, the Hessian H is typically too large to compute or invert
directly, so it must be approximated. In our experiments, we focus on two practical approximations:
the Diagonal approximation and the Kronecker-Factored (K-FAC) approximation [Ritter et al., 2018].

• Diagonal approximation:

H = diag(h1, . . . , hd), hi =
∂2U(z)

∂z2i

∣∣∣
z=z⋆

• K-FAC approximation:

H ≈ diag(H1, . . . ,HL), Hℓ ≈ Gℓ ⊗Aℓ,

Aℓ := ED
[
aℓ−1a

⊤
ℓ−1

]
, Gℓ := ED

[
gℓg

⊤
ℓ

]
,

where aℓ−1 are layer inputs and gℓ the backpropagated pre-activation gradients; expectations
are empirical over D and all quantities are evaluated at z⋆ = argminz U(z).

E.6.2 Real data experiments

Comparison with Laplace Approximation. We compare our method using N = 1 and N = 5
Gaussian components with Laplace approximations on MNIST. On the training set, all methods
achieve similar accuracy and negative log-likelihood (NLL), while on the test set our approach yields
much better performance, indicating it generalizes better with multiple modes. To illustrate the effect
of using multiple Gaussian components, we perform PCA on the means obtained with MD and IBW
for N = 1 and N = 5, along with the MAP estimate used in the Laplace approximation. As shown in
Figure 13, the means for N = 5 do not collapse, highlighting the richer posterior structure captured
by multiple components.
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Figure 12: Evolution of the ELBO, accuracy (or RMSE), and log-likelihood over iterations on the
train set (left) and test set (Tight) for the breast_cancer (upper row), wine (middle row), MNIST
and boston (bottom row) datasets for N = 5.
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Figure 13: Comparison of Laplace and our methods IBW and MD on MNIST. Left: train and test
accuracies for N = 1 and N = 5. Right: Principal Component Analysis (PCA) projections on
the three principal axis of the Gaussian component means obtained with MD, IBW, and Laplace
approximations.
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