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Abstract

As large language models (LLMs) become more sophisti-
cated and pervasive, ensuring their operational stability has
become increasingly critical. Consequently, the need for ac-
curate and reliable anomaly detection has grown signifi-
cantly. Leveraging the rich semantic information within log
data, LLMs have proven to be powerful tools for anomaly
detection. However, existing log-based anomaly detection
methods that utilize LLMs are resource-intensive and often
overlook the interrelationships between log entries. To ad-
dress these limitations, we propose a resource-efficient and
context-aware log-based anomaly detection approach. This
method combines hierarchical log compression with context-
aware retrieval-augmented generation to enhance efficiency
and accuracy. Experiments on various public and real-world
datasets demonstrate that our approach significantly improves
anomaly detection accuracy while dramatically reducing to-
ken consumption.

Introduction
With the rapid proliferation of large language models
(LLMs), the complexity of their underlying software clus-
ters has increased significantly, with growing interdepen-
dencies between components across clusters. A malfunc-
tion in one server can potentially trigger a cascade of fail-
ures throughout multiple servers, leading to instability in
the entire LLM system (Diaz-De-Arcaya et al. 2024; Tan-
tithamthavorn et al. 2025). Ensuring the stability and se-
curity of these systems requires timely fault detection and
mitigation to prevent cascading failures. However, the sheer
scale and complexity of modern software environments
make manual fault diagnosis impractical and prone to er-
rors. As a result, AI-based automated anomaly detection al-
gorithms have become essential in addressing these chal-
lenges (Lin et al. 2020; Kang et al. 2022).

System logs meticulously track the states and signifi-
cant events of actively running processes, making them a
valuable resource for anomaly detection. However, log data
is often vast and rich in semantic information, making it
resource-intensive and time-consuming to train and predict
using such data. Additionally, different systems typically
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have unique log characteristics, which means that operations
personnel must train distinct log-based anomaly detection
models for each system, significantly limiting the practical
implementation of these models in industrial settings (Zhang
et al. 2024a,b,c).

Fortunately, large language models (LLMs), pre-trained
on natural language understanding tasks, offer a promis-
ing solution to these challenges. Due to their inherent
strong semantic analysis and logical reasoning capabili-
ties, many recent approaches have leveraged LLMs for log-
based anomaly detection, thereby avoiding the resource-
intensive training processes typically required (Qi et al.
2023; Pan, Wong, and Yuan 2023; Zhang et al. 2023; Egers-
doerfer, Zhang, and Dai 2023; Chen et al. 2024; Zhang et al.
2024d). These works utilize LLMs in various ways for log-
based anomaly detection. Chris et al. (Egersdoerfer, Zhang,
and Dai 2023) conducted a study on zero-shot log-based
anomaly detection using ChatGPT. LogPrompt (Zhang et al.
2023) employs self-explanation prompts to guide the pre-
trained language model in better understanding the semantic
and sequential information in logs. RAGLog (Pan, Wong,
and Yuan 2023) enhances LLM-based anomaly detection by
integrating retrieval-augmented generation techniques with
vector databases, thereby improving detection accuracy.
LogGPT (Qi et al. 2023) utilizes chain-of-thought (CoT)
prompting to boost the LLM’s performance in anomaly de-
tection, enabling more nuanced and effective analysis.

Although these LLM-based anomaly detection methods
have shown promising results, they still face the following
practical challenges when applied to industrial scenarios:

• Resource-Intensive: Current methods typically input the
logs requiring detection directly into the LLM along with
the prompt. However, given the massive volume of log
data, this approach consumes a large number of tokens,
leading to significant resource waste.

• Lack of Consideration for Log Interrelationships:
Some approaches focus on determining whether a sin-
gle log entry is anomalous without considering the in-
terrelationships between different logs. In real industrial
settings, detecting anomalies often requires analyzing the
sequence of logs over a period of time to identify irregu-
larities.

To fill this significant gap, we develop a resource-efficient
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Figure 1: XRAGLog Architecture

and context-aware log-based anomaly detection method
using retrieval-augmented generation, named XRAGLog.
XRAGLog first employs a Hierarchical Log Compression
method to perform compression of log data. The compres-
sion process begins with log parsing, extracting log tem-
plates and parameters, and then groups the logs together
for in-group merging and compression. Next, XRAGLog
creates a Context-Aware Log Knowledge Database using
anomaly-free log groups, storing essential contextual infor-
mation. Finally, XRAGLog compresses each input log group
and queries the Context-Aware Log Knowledge Database
for similar log contexts, merging them into a chain-of-
thought prompt for querying the large language model.

We evaluate XRAGLog’s effectiveness on various pub-
lic datasets and real-world measured datasets. The evalua-
tion results indicate that, compared to state-of-the-art mod-
els, XRAGLog improves the F1-score in anomaly detection
by approximately 40%, while reducing token consumption
by 90%. To summarize, our key contributions are as follows:

• We employ a Hierarchical Log Compression method
to reduce prompt consumption during the llm-based
anomaly detection process.

• We introduce a Context-Aware Log Knowledge Database
to assist in retrieval-augmented generation, effectively
taking log interrelationships into account.

• The effectiveness of XRAGLog is validated based on var-
ious public datasets and real-world measured datasets.

Methodology
The architecture of XRAGLog, as depicted in Figure 1, is
divided into two main components: the collection part and
the prediction part. The collection component is responsi-
ble for log grouping of historical normal logs, compressing

each log group using Hierarchical Log Compression. The
compressed logs are then processed using an LLM to com-
pute embeddings, which are stored in the Context-Aware
Log Knowledge Database, a vector database. The prediction
component operates in real-time within the LLM system.
After each fixed time window, the logs within that window
are compressed using Hierarchical Log Compression, and
embeddings are computed using the LLM. These embed-
dings are used to perform a neighbor search in the Context-
Aware Log Knowledge Database to find similar compressed
normal logs. Finally, these logs, along with the current time
window’s logs, are used to construct a CoT prompt, which
is input into the LLM for anomaly detection.

Hierarchical Log Compression
The Hierarchical Log Compression consists of two steps:
first, log parsing is performed on the raw logs, followed by
in-group compression of the parsed results.

Raw Log

2005-06-03-15.42.50.363779 R02-M1-
N0-C:J12-U11 RAS KERNEL INFO 

instruction cache parity error corrected
…

2005-06-25-11.49.45.478453 R27-M0-
N3-C:J16-U01 RAS KERNEL INFO 

generating core.21144

Event Templates

E0,"('instruction', 'cache', 'parity', 
'error', 'corrected')"

…
E26,"('generating', '<*>')"

Log Parsing

Figure 2: Log Parsing Example

Log Parsing Raw logs consist of semi-structured text
encompassing various fields like timestamps and severity
levels. For the benefit of downstream tasks, log parsing
is employed to transform each log message into a dis-
tinct event template, which includes a constant part paired



with variable parameters. For example, the log template
”E0,(’instruction’, ’cache’, ’parity’, ’error’, ’corrected’)”
can be extracted from the log message “2005-06-03-
15.42.50.363779 R02-M1-N0-C:J12-U11 RAS KERNEL
INFO instruction cache parity error corrected” in figure 2.
Formally, for a given log sequence S = (s1, s2, ..., sN ),
where sn represents an individual log entry. After log pars-
ing, each log sn can be represented as an event ei with cor-
responding parameters pn. The entire collection of unique
events is denoted as ω = {e1, e2, ..., en}.

In-Group Compression Building on log parsing, we fur-
ther compress the logs by merging consecutive events within
a log group and then performing a secondary compression
on the corresponding parameters of these events. Formally,
given a log group G = (e1, e2, ..., eM ), where ei represents
individual events, we first identify consecutive occurrences
of the same event type and combine them into a single event
with the number of occurrences denoted as e′i = ei × c, the
log group is then converted into G′ = (e′1, e

′
2, ..., eC), where

C << M . The parameters associated with these merged
events are subsequently aggregated using a state-of-art NLP
compression model for LLMs (Jiang et al. 2023b; Li et al.
2023; Laban et al. 2021; Pan et al. 2024; Jiang et al. 2023a),
resulting in a more compact representation.

Knowledge Database Construction
The primary task of the collection component is to construct
a Context-Aware Log Knowledge Database using Hierarchi-
cal Log Compression. This process begins with historical
normal logs, which are first grouped based on a fixed time
window. Each log group is then compressed using Hierar-
chical Log Compression. The resulting compressed logs are
processed by an LLM to compute embeddings, which are
stored in a vector database, referred to as the Context-Aware
Log Knowledge Database.

Formally, given a set of historical normal logs L =
{l1, l2, ..., LN}, these logs are grouped into subsets Gi based
on a fixed time window T , such that Gi = {lj |tj ∈ Ti},
where tj is the timestamp of log lj . Each group Gi is then
compressed using Hierarchical Log Compression to obtain
G′

i. The compressed logs G′
i are processed by an LLM to

generate embeddings Ei, which are stored in the Context-
Aware Log Knowledge Database D = {E1, E2, ..., EM}.

Real-Time Anomaly Detection
XRAGLog is ultimately deployed online for real-time
anomaly detection using log data. At the end of each fixed
time window T , the log data LT = {l1, l2, ..., lN} is com-
pressed using Hierarchical Log Compression. The com-
pressed logs L′

T are then processed by an LLM to com-
pute embeddings ET . A k-nearest neighbors search is con-
ducted using ET within the Context-Aware Log Knowl-
edge Database D to identify the most similar embeddings
{ET1, ET2, ..., ETk} as well as corresponding compressed
normal log {G′

T1, G
′
T2, ..., G

′
Tk}, which are then used for

anomaly detection in the current time window T .
Finally, we concatenate the compressed log intended for

anomaly detection with the similar normal compressed logs

Context:
Your task is to determine if a given set of log messages
contains an anomaly or not (Sorted by timestamp).
We will provide you with the following logs and ask you
to determine if they contain any anomalies.
Additionally, we will provide the most semantically sim-
ilar normal log for each log entry. Be careful to consider
the contextual information of the log sequence.
Use the following format:
Logs: Given a set of log messages here. (a python list of
log template id with parameter, each template id will be
given corresponding template content at the end)
Similar Logs: Given a set of log messages here. (a python
list of log template id with parameter, each template id
will be given corresponding template content at the end)
Answer: yes or no (Output your thought process)
Input:
Logs: [Log Template Sequence] [Parameters] [Template
ID: Content]
Similar Logs: {[Log Template Sequence] [Parameters]
[Template ID: Content]} ×k

Figure 3: The prompt for anomaly detection

retrieved from the database into a CoT prompt for querying.
The complete prompt structure is illustrated in Figure 3. The
LLM is queried using a function call, and to enhance the
interpretability of the generated results, we also ask the LLM
to provide coresponding thought process when determining
whether an anomaly is present.

Experiments
Experimental Setup
We evaluate XRAGLog on 3 datasets collected by
loghub(He et al. 2023): HDFS, BGL and Thunderbird. We
utilize GPT-3.5 as our LLM. We compare XRAGLog with
LogGPT (Qi et al. 2023), LogPrompt (Zhang et al. 2023),
and RAGLog (Pan, Wong, and Yuan 2023). To demon-
strate the advantages of our log compression algorithm, we
also evaluate the performance of these approaches when the
prompts are compressed using selective context (SC) (Li
et al. 2023), llmlingua-2 (Pan et al. 2024), and KIS (Laban
et al. 2021) algorithms before anomaly detection.

Experiments Results and Analysis
Model Effectiveness We first conduct a comprehensive
evaluation of the model’s overall performance. As shown in
Figure 1, XRAGLog consistently outperforms other meth-
ods, achieving higher F1-scores across all three datasets,
even when compared to methods combined with any NLP-
based compression techniques. However, for the HDFS
dataset, XRAGLog does not achieve the highest precision
and recall. In this dataset, the next best performer is the com-
bination of RAGLog and llmlingua-2, with an F1-score only
1.37% lower than that of XRAGLog. Notably, while Log-
GPT achieves the highest precision, it has significantly lower



Table 1: Overall Evaluation Results

Method HDFS BGL Thunderbird
P R F1 P R F1 P R F1

LogGPT 0.9487 0.3162 0.4744 0.4359 0.6296 0.5152 0.0513 0.1053 0.0689
LogGPT+SC 0.9744 0.3363 0.5000 0.8462 0.3084 0.4521 0.5385 0.3962 0.4565

LogGPT+llmlingua-2 0.9231 0.3103 0.4645 0.2564 0.1587 0.1961 0.3077 0.2308 0.2637
LogGPT+KIS 0.6667 0.2500 0.3636 0.3333 0.1646 0.2203 0.0513 0.2222 0.0833

LogPrompt 0.7692 0.3750 0.5042 0.8462 0.6111 0.7097 0.3846 0.2632 0.3125
LogPrompt+SC 0.6667 0.3824 0.4859 0.5385 0.3750 0.4421 0.3333 0.3023 0.3171

LogPrompt+llmlingua-2 0.6410 0.3571 0.4587 0.7949 0.3647 0.5000 0.4359 0.3400 0.3820
LogPrompt+KIS 0.7692 0.3529 0.4839 0.5128 0.2857 0.3669 0.5897 0.3594 0.4466

RAGLog 0.7436 0.7632 0.7532 0.6410 0.9259 0.7576 0.1538 0.1364 0.1446
RAGLog+SC 0.8205 0.8421 0.8312 0.7179 0.3111 0.4341 0.3077 0.2000 0.2424

RAGLog+llmlingua-2 0.7179 0.9656 0.8235 0.6154 0.2791 0.3840 0.4359 0.6800 0.5313
RAGLog+KIS 0.5897 0.3382 0.4299 0.1795 0.3333 0.2333 0.1282 0.4167 0.1961

XRAGLog(Ours) 0.9231 0.7659 0.8372 0.8718 1.0000 0.9315 0.9487 0.9487 0.9487

recall, indicating a high rate of missed detections.
Furthermore, while not surpassing XRAGLog, the uti-

lization of NLP-based compression methods generally im-
proves anomaly detection performance in most cases. For
instance, applying RAGLog with SC or llmlingua-2 on the
HDFS dataset led to an approximately 7% improvement in
effectiveness compared to using RAGLog alone. However,
the effectiveness of these NLP-based compression methods
varies across different datasets. While SC and llmlingua-2
enhance model performance on the HDFS and Thunderbird
datasets, they both result in a decrease in F1-score on the
BGL dataset.

Table 2: Reduced Token Ratio

Method HDFS BGL Thunderbird

SC 1.5101 1.5598 1.4438
llmlingua-2 2.5183 2.3205 2.4612

KIS 1.2972 1.2286 1.2564
XRAGLog(Ours) 3.0860 19.3658 3.7962

Token Consumption In addition to improving model per-
formance, XRAGLog significantly reduces resource con-
sumption. We use the average number of tokens required to
complete each anomaly detection as the metric for measure-
ment. As shown in Figure 2, XRAGLog dramatically low-
ers token consumption compared to other methods, outper-
forming the second-best method, llmlingua-2, by 22.64%,
734.55%, and 54.24% across the three datasets. Notably, the
improvement on the BGL dataset is particularly pronounced,
as it frequently contains consecutive identical events that can
be easily merged.

Conclusions
In this work, to address the issues of resource intensity and
lack of contextual log analysis in current log-based anomaly

detection methods using LLMs, we propose a resource-
efficient and context-aware log-based anomaly detection ap-
proach. This method leverages a unique hierarchical log
compression and context-aware retrieval-augmented gener-
ation. Experiments on various public datasets demonstrate
that our method significantly enhances anomaly detection
accuracy while drastically reducing token consumption.
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