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Abstract
This work provides a theoretical framework for
assessing the generalization error of graph neural
networks in the over-parameterized regime, where
the number of parameters surpasses the quantity
of data points. We explore two widely utilized
types of graph neural networks: graph convolu-
tional neural networks and message passing graph
neural networks. Prior to this study, existing
bounds on the generalization error in the over-
parametrized regime were uninformative, limiting
our understanding of over-parameterized network
performance. Our novel approach involves deriv-
ing upper bounds within the mean-field regime for
evaluating the generalization error of these graph
neural networks. We establish upper bounds with
a convergence rate of O(1/n), where n is the
number of graph samples. These upper bounds
offer a theoretical assurance of the networks’ per-
formance on unseen data in the challenging over-
parameterized regime and overall contribute to
our understanding of their performance.

1. Introduction
Graph Neural Networks (GNNs) have received increasing
attention due to their exceptional ability to extract mean-
ingful representations from data structured in the form of
graphs (Kipf & Welling, 2016; Veličković et al., 2017; Gori
et al., 2005; Bronstein et al., 2017; Battaglia et al., 2018).
Consequently, GNNs have achieved state-of-the-art perfor-
mance across various domains, including but not limited to
social networks (Hamilton et al., 2017; Fan et al., 2019),
recommendation systems (Ying et al., 2018a; Wang et al.,
2018) and computer vision (Monti et al., 2017). Despite the
success of GNN models, explaining their empirical general-
ization performance remains a challenge within the domain
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of GNN learning theory.

A central concern in GNN learning theory is to understand
the efficacy of a GNN learning algorithm when applied
to data that it has not been previously exposed to. This
evaluation is typically carried out by investigating the gen-
eralization error, which quantifies the disparity between the
algorithm’s performance, as assessed through a risk function,
on the training data set and its performance on previously
unseen data drawn from the same underlying distribution.
This paper focuses on the generalization error for GNNs
in scenarios with an overabundance of model parameters,
potentially surpassing the number of available training data
points, with a particular focus on tasks related to classify-
ing graphs. In this regard, our research endeavors to shed
light on the generalization performance exhibited by over-
parameterized GNN models in the mean-field regime (Mei
et al., 2018) for graph classification tasks.

We draw inspiration from the recent advancements in the
mean-field perspective regarding the training of neural net-
works, as proposed in a body of literature (Mei et al., 2018;
Chizat & Bach, 2018; Mei et al., 2019; Hu et al., 2019;
Tzen & Raginsky, 2020). These works propose to frame
the process of attaining optimal weights in one-hidden-layer
neural networks as a sampling challenge. Within the mean-
field regime, the learning algorithm endeavors to discern
the optimal distribution within the parameter space, rather
than solely concentrating on achieving optimal parameter
values. A central question driving our research is how the
mean-field perspective can provide further insights into the
generalization behavior of over-parameterized GNN models.
Our contributions here can be summarized as follows:

• We provide upper bounds on the generalization error
for graph classification tasks in GNN models, including
graph convolutional networks and message passing
graph neural networks in the mean-field regime, via
two different approaches: functional derivatives and
Rademacher complexity based on symmetrized KL
divergence.

• Using the approach based on functional derivatives,
we derive an upper bound with convergence rate of
O(1/n), where n is the number of graph samples.

• The effects of different readout functions and aggre-
gation functions on the generalization error of GNN
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models are studied.

• We carry out an empirical analysis on both synthetic
and real-world data sets.

Notations: We adopt the following convention for random
variables and their distributions in the sequel. A random
variable is denoted by an upper-case letter (e.g., Z), its
space of possible values is denoted with the corresponding
calligraphic letter (e.g., Z), and an arbitrary value of this
variable is denoted with the lower-case letter (e.g., z). We
denote the set of integers from 1 toN by [N ] ≜ {1, . . . , N};
the set of measures over a space X with finite variance is
denoted P(X ). For a matrix X ∈ Rk×q, we denote the
i−th row of the matrix by X[i, :]. The Euclidean norm of
a vector X ∈ Rq is ∥X∥2 := (

∑q
j=1 x

2
j )

1/2. For a matrix
Y ∈ Rk×q, we let ∥Y∥∞ := max1≤j≤k

∑q
i=1 |Y[j, i]|

and ∥Y∥F :=
√∑k

j=1

∑q
i=1 Y

2[j, i]. We write δz for
a Dirac measure supported at z. The KL-divergence be-
tween two probability distributions on Rd with densities
p(x) and q(x), so that q(x) > 0 when p(x) > 0, is
KL(p∥q) :=

∫
Rd p(x) log(p(x)/q(x))dx (with 0/0 :=

0); the symmetrized KL divergence is KLsym(p∥q) :=
KL(p∥q) + KL(q∥p). A comprehensive notation table is
provided in the Appendix (App.) A.

2. Our Model
2.1. Preliminaries
We first introduce the functional linear derivative,
see (Cardaliaguet et al., 2019).

Definition 2.1. (Cardaliaguet et al., 2019) A functional
U : P(Rn) → R admits a linear derivative if there is a map
δU
δm : P(Rn) × Rn → R which is continuous on P(Rn),
such that | δUδm (m, a)| ≤ C(1 + |a|2) for a constant C ∈ R+

and, for all m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mλ, a) (m

′ −m)(da) dλ,

where mλ = m+ λ(m′ −m).

Graph data samples and learning algorithm: We con-
sider graph classification for undirected graphs with N
nodes which have no self-loops or multiple edges. Inputs
to GNNs are graph samples, which are comprised of their
node features and graph adjacency matrices. We denote the
space of all adjacency matrices and node feature matrices
for a graph classification task with maximum number of
nodes Nmax, maximum node degree dmax and minimum
node degree dmin by A and F , respectively. The input pair
of a graph sample with N nodes is denoted by X = (F,A),
where F ∈ F ⊂ RN×k denotes a node feature matrix with
feature dimension k per node and A ∈ A ⊂ {0, 1}N×N

denotes the graph adjacency matrix. The GNN output (la-
bel) is denoted by y ∈ Y where Y = {−1, 1} for binary
classification. Define Z = X ×Y , where X := F ×A. Let
Zn = {Zi}ni=1 ∈ Z denote the training set, where the i−th
graph sample is Zi = (Xi = (Fi,Ai), Yi). We assume
that Zn are i.i.d. random vectors such that Zi ∼ µ ∈ P(Z).
Its empirical measure, µn := 1

n

∑n
i=1 δZi

, is a random
element with values in P(Z). We also assume that a sam-
ple Ẑ1 = (X̂1, Ŷ 1) is available, and this sample is i.i.d.
with respect to Zn. We set µn,(1) := µn + 1

n (δẐ1
− δZ1

).
We are interested in learning a parameterized model (or
function), fw : X 7→ Y for some parameters w ∈ W ,
where W is the parameter space of the model. Inspired by
(Aminian et al., 2023), we define a learning algorithm as a
map m : P(Z) → P(W);µn 7→ m(µn), which outputs a
probability distribution (measure) on W . For example, when
learning using stochastic gradient descent (SGD), the input
is random samples, whereas the output is a probability mea-
sure on the space of parameters, which are used in SGD.1

Graph filters: Graph filters are linear functions of the
adjacency matrix, A, defined by G : A 7→ RN×N where N
is the size of the input graph, see (Defferrard et al., 2016).
Graph filters model the aggregation of node features in a
graph neural network. For example, the symmetric nor-
malized graph filter proposed by (Kipf & Welling, 2016)
is G(A) = L̃ := D̃−1/2ÃD̃−1/2 where Ã = I + A, D̃
is the degree-diagonal matrix of Ã, and I is the identity
matrix. Another normalized filter, a.k.a. random walk
graph filter (Xu et al., 2019), is G(A) = D−1A + I ,
where D is the degree-diagonal matrix of A. The mean-
aggregator is also a well-known aggregator defined as
G(A) = D̃−1(A + I). The sum-aggregator graph filter
is defined by G(A) = (A+ I). Let us define Rmax(G(A))
as the maximum rank of graph filter G(A) over all adja-
cency matrices in the data set. We let

Gmax = min(∥G(A)∥max
∞ , ∥G(A)∥max

F ), (1)

where ∥G(A)∥max
∞ = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞

and ∥G(A)∥max
F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

2.2. Problem Formulation
In this study, we investigate two prominent GNN architec-
tures: one-hidden-layer Graph Convolutional Networks
(GCN) by Kipf & Welling (2016), and one-hidden-layer
Message Passing Graph Neural Networks (MPGNN)
by Dai et al. (2016) and Gilmer et al. (2017). The GCN
model is constructed by summating multiple neurons, while
MPGNN relies on the summation of multiple Message Pass-
ing and Updating (MPU) units.

1Due to a probability measure for the random initialization,
the final output is also a probability distribution over space of
parameters.
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Neuron unit: Here we define the one-hidden-layer
GCN (Zhang et al., 2020) consisting of h neuron (hid-
den) units. The i–th neuron unit is defined by parame-
ters Wc[i, :] := (W1,c(i),W2,c(i)) ∈ Wc ⊂ Sk+1, where
Wc is the parameter space of one neuron unit, W1,c ∈ Sk
are parameters connecting the aggregated node features
to the neuron unit, W2,c ∈ S is the parameter connect-
ing the output of neuron unit to output and S ⊂ R is
a bounded set. We define w2,c := supW2,c∈S W2,c and
∥W1,c,m∥2 = supW1,c∈Sk ∥W1,c∥2. An aggregation layer
aggregates the features of neighboring nodes of each node
via a graph filter, G(·). In a GCN, the output of the i−th
neuron unit (Kipf & Welling, 2016) for the j−th node in a
graph sample Xq = {Fq,Aq} is

ϕc(Wc[i, :], G(Aq)[j, :]Fq) :=

W2,c(i)φ
(
G(Aq)[j, :]Fq ·W1,c(i)

)
,

where φ : R 7→ R is the activation function. The
empirical measure over the parameters of the neurons
is then mc

h(µn) := 1
h

∑h
i=1 δ(W1,c(i),W2,c(i)) , where

{(W1,c(i),W2,c(i))}hi=1 depend on µn.

MPU unit: Several structures of MPGNNs have been pro-
posed by (Li et al., 2022; Liao et al., 2020) and (Garg et al.,
2020) for analyzing the generalization error, with inspiration
drawn from previous works such as (Dai et al., 2016; Gilmer
et al., 2017). In this paper, we utilize the MPGNN model
introduced in (Li et al., 2022) and (Liao et al., 2020). The
parameters for the i−th Message Passing and Updating unit
are denoted as Wp[i, :] :=

(
W1,p(i),W2,p(i),W3,p(i)

)
∈

Wp ⊂ S2k+1, where W2,p ∈ S, W1,p,W3,p ∈ Sk,
and S ⊂ R is a bounded set. We define w2,p :=
supW2,p∈S W2,p, ∥W1,p,m∥2 = supW1,p∈Sk ∥W1,p∥2 and
∥W3,p,m∥2 = sup∥W3,p∥2∈Sk ∥W3,p∥2. The output of
the i−th MPU unit for the j−th node in a graph sample
Xq = (Fq,Aq) with graph filter G(·) is

ϕp(Wp[i, :], G(Aq)[j, :]Fq) :=W2,p(i)κ
(
Fq[j, :] ·W3,p(i)

+ ρ(G(Aq)[j, :]ζ(Fq)) ·W1,p(i)
)
,

where the non-linear functions ζ : RN×k 7→ RN×k, ρ :
Rk 7→ Rk, and κ : R 7→ R may be chosen from non-linear
options such as Tanh or Sigmoid. For an MPGNN the param-
eter space is Wp = R2k+1 and the corresponding empirical
measure is mp

h(µn) := 1
h

∑h
i=1 δ(W1,p(i),W2,p(i),W3,p(i)),

where {(W1,p(i),W2,p(i),W3,p(i))}hi=1 depend on µn.

One-hidden-layer generic GNN model: Inspired by the
neuron unit in GCNs and the MPU unit in MPGNNs, we
introduce a generic model for GNNs, which can be applied
to GCNs and MPGNNs. For each unit in a generic GNN
with parameterW , which belongs to the parameter space W ,
the empirical measuremh(µn) =

1
h

∑h
i=1 δWi is a measure

on the parameter space of a unit. We denote the unit function
for the j-th node by

(W,G(A)[j, :]F) 7→ ϕ(W,G(A)[j, :]F).

The output of the network for the j−th node of a graph
sample, Xq = (Fq,Aq), can then be represented as

1

h

h∑
i=1

ϕ (Wi, G(Aq)[j, :]Fq) (2)

=

∫
ϕ (w,G(Aq)[j, :]Fq)mh(µn)(dw)

= EW∼mh(µn)[ϕ (W,G(Aq)[j, :]Fq)] ,

where Wi is the parameter of the i−th unit. The final step
is the pooling of the node features across all nodes for each
graph sample as the output of generic GNNs. For this pur-
pose, we introduce the readout function (a.k.a. pooling
layer) Ψ : P(W)×X 7→ R as follows:

Ψ(mh(µn),Xq) :=

ψ
( N∑
j=1

EW∼mh(µn)[ϕ (W,G(Aq)[j, :]Fq)]
)
,

(3)

where ψ : R 7→ R. In this work, we consider the mean-
readout and sum-readout functions by taking ψ(x) = x

N
and ψ(x) = x, respectively. For a GCN and an MPGNN,
the outputs of the model after aggregation are, respectively:

Ψc (m
c
h(µn),Xq) :=

ψ
( N∑
j=1

EWc∼mc
h(µn)

[
ϕc(Wc, G(Aq)[j, :]Fq)

])
,

(4)

Ψp (m
p
h(µn),Xq) :=

ψ
( N∑
j=1

EWp∼mp
h(µn)

[
ϕp(Wp, G(Aq)[j, :]Fq)

])
.

(5)

Loss function: With Y the label space, the loss function
ℓ : R× Y → R is denoted as ℓ(ŷ, y), where ŷ is defined in
(4) and (5) for a GCN and for an MPGNN, respectively; the
loss function is assumed to be convex. For binary classifi-
cation, we take loss functions of the form ℓ(ŷ, y) = h(yŷ),
where h(·) represents a margin-based loss function (Bartlett
et al., 2006); examples include the logistic loss function
h(yŷ) = log(1 + exp(−yŷ)), the exponential loss function
h(yŷ) = exp(−yŷ), and the square loss function (1− yŷ)2.
Liao et al. (2020) and Garg et al. (2020) studied a γ-margin
loss inspired by Neyshabur et al. (2018).
Over-parameterized one-hidden-layer generic GNN: As
discussed in (Hu et al., 2019; Mei et al., 2018), based on
stochastic gradient descent dynamics in one-hidden-layer
neural networks for a large number of hidden neurons and a
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small step size, the random empirical measure can be well
approximated by a probability measure. The same behav-
ior (due to the law of large numbers) also holds for one-
hidden-layer GNNs. Therefore, for an over-parameterized
one-hidden-layer generic GNN, as the number of hidden
units h (width of the hidden layer) increases, under some
assumptions the distribution mh(µn) converges to a contin-
uous distribution over the parameter space of the unit.
True and empirical risks: The true risk function (expected
loss) based on the loss function ℓ, with a data measure µ
and a parameter measure m ∈ P(W), is

R(m,µ) :=

∫
X×Y

ℓ
(
Ψ(m,x), y

)
µ(dx,dy) . (6)

When the parameter measure is m(µn), which depends on
an empirical measure, we obtain for example R(mc(µn), µ)
and R(mp(µn), µ), as the true risks for a GCN and an
MPGNN, respectively, given the observations which are
encoded in the empirical measure µn.

The empirical risk is given by

R(m,µn) :=
1

n

n∑
i=1

ℓ
(
Ψ(m,xi), yi

)
. (7)

Note that R(mc(µn), µn) and R(mp(µn), µn) are empiri-
cal risks for a GCN and an MPGNN, respectively.
Generalization Error: We would like to study the per-
formance of the model trained with the empirical data set
Zn = {(Xi, Yi)}ni=1 and evaluated against the true measure
µ, using the expected generalization error

gen(µn), µ) := EZn

[
gen(µn), µ)

]
, (8)

where gen(µn), µ) = R(m(µn), µ)− R(m(µn), µn). The
generalization errors for a GCN and an MPGNN are, respec-
tively, gen(mc(µn), µ) and gen(mp(µn), µ).

3. Related Works
Graph Classification and Generalization Error: Dif-
ferent learning theory methods, e.g., VC-dimension,
Rademacher complexity, and PAC-Bayesian, have been used
to understand the generalization error of graph classification
tasks. In particular, (Scarselli et al., 2018) studied the gen-
eralization error via VC-dimension analysis. (Garg et al.,
2020) provided some data-dependent generalization error
bounds for MPGNNs for binary graph classification via
VC-dimension analysis. The PAC-Bayesian approach has
also been applied to two GNN models, including GCNs and
MPGNNs, but only for hidden layers of bounded width, by
(Liao et al., 2020) and (Ju et al., 2023). Considering a large
random graph model, (Maskey et al., 2022) proposed a con-
tinuous MPGNN and provided a generalization error upper
bound for graph classification. An extension of the neural

tangent kernel for GNN as a graph neural tangent kernel
was proposed by Du et al. (2019), where a high-probability
upper bound on the true risk of their approach is derived.
Our work differs from the above approaches as we study the
generalization error of graph classification tasks under an
over-parameterized regime for GCNs and MPGNNs where
the width of the hidden layer is infinite. A detailed compari-
son is provided in Sec. 4.5.
Generalization and over-parameterization: In the under-
parameterized regime, that is, when the number of model
parameters is significantly less than the number of training
data points, the theory of the generalization error has been
well-developed (Vapnik & Chervonenkis, 2015; Bartlett &
Mendelson, 2002). However, in the over-parameterized
regime, this theory fails. Indeed, deep neural network mod-
els can achieve near-zero training loss and still perform
well on out-of-sample data (Belkin et al., 2019; Spigler
et al., 2019; Bartlett et al., 2021). There are three primary
strategies for studying and modeling the over-parameterized
regime: the neural tangent kernel (NTK) (Jacot et al.,
2018b), random feature (Mei & Montanari, 2022), and
mean-field (Mei et al., 2018). The NTK approach, also
known as lazy training, for one-hidden-layer neural net-
works, utilizes the fact that a one-hidden-layer neural net-
work can be expressed as a linear model under certain as-
sumptions. The random feature model is similar to the
NTK approach but assumes constant weights in the sin-
gle hidden layer of the neural network. The mean-field
approach utilizes the exchangeability of neurons to work
with the distribution of a single neuron’s parameters. Re-
cently, Nishikawa et al. (2022), Nitanda et al. (2022) and
Aminian et al. (2023) studied the generalization error of the
one-hidden layer neural network in the mean-field regime,
via Rademacher complexity analysis and differential calcu-
lus over the measure space, respectively. Nevertheless, the
analysis of over-parameterization within GNNs remains to
be thoroughly unexplored. Recently, inspired by NTK, (Du
et al., 2019) proposed a graph neural tangent kernel (GNTK)
method, which is equivalent to some over-parameterized
GNN models with some modifications. However, GNTK
is different from GCNs and MPGNNs. For a deeper under-
standing of the over-parameterized regime for such GNN
models, i.e., GCNs and MPGNNs, we need to delve into
the generalization error analysis. For this endeavor, the
mean-field methodology for GNN models is promising for
an analytical approach, especially when compared to NTK
and random feature models (Fang et al., 2021). Hence, we
use this methodology.

4. The Generalization Error of
KL-Regularized Empirical Risk
Minimization

In this section, we derive an upper bound on the solution
of the KL-regularized risk minimization problem. The KL-
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regularised empirical risk minimizer for parameter measure
m on W and empirical measure µn is defined as

Vα(m,µn) = R(m,µn) +
1

α
KL(m∥π), (9)

where π(w), w ∈ W , is a prior on the parameter measure
with (assumed finite) KL divergence between parameter
measure m and prior measure, i.e., KL(m∥π) <∞, and α
is a parameter (the inverse temperature). It has been shown
in (Hu et al., 2019) that under a convexity assumption on the
risk, a minimizer, denoted by mα(µn), of Vα(·, µn), exists,
is unique, and satisfies the equation,

mα(µn) =
π

Sα,π(µn)
exp

{
− α

δR(mα, µn, w)

δm

}
, (10)

where Sα,π(µn) is the normalizing constant to ensure that
mα(µn) integrates to 1.

For an example of a training algorithm that yields this
parameter measure, consider one-hidden-layer (graph)
neural networks in the context of the mean-field limit
limh→∞mh(µn). We denote the Gibbs measure related to
an over-parameterized one-hidden-layer GCN and an over-
parameterized one-hidden-layer MPGNN by mα,c(µn) ∈
P(Wc) and mα,p(µn) ∈ P(Wp), respectively. We also con-
sider Wc = (W1,c,W2,c) and Wp = (W1,p,W2,p,W3,p).

The conditional expectation in (4) and (5) taken over param-
eters distributed according to mα(µn), given the empirical
measure µn, corresponds to taking an average over samples
drawn from the learned parameter measure. This connection
has been exploited in the mean-field models of one-hidden-
layer neural networks (Hu et al., 2019; Mei et al., 2019;
Tzen & Raginsky, 2020).

The following assumptions are needed for our main results.

Assumption 4.1 (Loss function). The gradient of the loss
function (ŷ, y) 7→ ℓ(ŷ, y) with respect to ŷ is continuous
and uniformly bounded for all ŷ, y ∈ Y , i.e., there is a
constant Mℓ′ such that |∂ŷℓ(ŷ, y)| ≤ Mℓ′ .

2 Furthermore,
we assume that the loss function is convex with respect to ŷ.

Assumption 4.2 (Bounded loss function). There is a con-
stant Mℓ > 0 such that the loss function, (ŷ, y) 7→ ℓ(ŷ, y)
satisfies 0 ≤ ℓ(ŷ, y) ≤Mℓ.

Assumption 4.3 (Unit function). The unit function
(w,G(A)[j, :]f) 7→ ϕ(w,G(A)[j, :]f) with graph filterG(·)
is uniformly bounded, i.e, there is a constant Mϕ such
that supw∈W,f∈F,A∈A |ϕ(w,G(A)[j, :]f)| ≤ Mϕ for all
j ∈ [N ] and f ∈ F .

Assumption 4.4 (Readout function). There is a constant Lψ
such that |ψ(x1)−ψ(x2)| ≤ Lψ|x1−x2| for all x1, x2 ∈ R,
and ψ(0) = 0.

2For an L-Lipschitz-continuous loss function, Mℓ′ = L.

For mean-readout and sum-readout functions, we have
Lψ = 1/N and Lψ = 1, respectively.

Assumption 4.5 (Bounded node features). For every graph,
the node features are contained in an ℓ2-ball of radius Bf .
In particular, ∥F[i; ]∥2 ≤ Bf for all i ∈ [N ].

Assumptions Discussion: The requirements of Lipschitz
continuity and convexity (Assumption 4.1) for the loss func-
tion are met by both logistic and square losses, provided
the inputs and unit functions are bounded. The condition of
boundedness for unit functions (Assumption 4.3) holds un-
der the premise of bounded inputs and a bounded parameter
space for either neuron units or MPU units. Notably, with
a bounded activation function, bounding parameters only
in the last layer suffices. The sum and mean readout func-
tions satisfy the conditions of Lipschitz continuity and are
zero-centered (Assumption 4.4). The bounded feature (As-
sumption 4.5) is a widely accepted assumption, which can
be achieved through input normalization. Note that, similar
assumptions have been imposed in the generalization error
analysis of graph neural network literature, as discussed in
(Liao et al., 2020), (Ju et al., 2023), (Garg et al., 2020) and
(Maskey et al., 2022) to facilitate the theoretical analysis.
While these assumptions can be relaxed, we adhere to the
current forms for clarity and simplicity.

To establish an upper bound on the generalization error of
the generic GNN, we employ two approaches: (a) we com-
pute an upper bound for the expected generalization error us-
ing functional derivatives in conjunction with symmetrized
KL divergence, and (b) we establish a high-probability up-
per bound using Rademacher Complexity along with sym-
metrized KL divergence.

4.1. Generalization Error via Functional Derivative
We first derive two propositions to obtain intermediate
bounds on the generalization error in terms of KL diver-
gence. The proofs of this section are provided in App. C.
The notation is provided in Sec. 2.1.

Proposition 4.6. Let Assumptions 4.1, 4.3, and 4.4 hold.
Let m(µn) ∈ P(W). Then, for the generalization error of
a generic GNN model,

gen(m(µn), µ) ≤
(
Mℓ′LψNmaxMϕ/

√
2
)

× EZn,Ẑ1

[√
KL
(
m(µn)∥m(µn,(1))

)]
,

(11)

where Nmax is the maximum number of nodes among all
graph samples.

Remark 4.7. For the mean-readout function, Lψ = 1
N and

the upper bound in Proposition 4.6 can be represented as,

gen(m(µn), µ) ≤
(
Mℓ′Mϕ/

√
2
)

× EZn,Ẑ1

[√
KL
(
m(µn)∥m(µn,(1))

)]
.

(12)
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Proposition 4.6 holds for all m(µn) ∈ P2(W). Using the
functional derivative, the following proposition provides a
lower bound on the generalization error of the Gibbs mea-
sure from (10).

Proposition 4.8. Let Assumptions 4.1 hold. Then, for the
Gibbs measure mα(µn) in (10),

gen(mα(µn), µ)

≥ n

2α
EZn,Ẑ1

[
KLsym

(
mα(µn)∥mα(µn,(1))

)]
.

Using Proposition 4.6 for the Gibbs measure and Proposi-
tion 4.8, we can derive the following upper bound on the
generalization error for a generic GNN.

Theorem 4.9 (Generalization error and generic GNNs). Let
Assumptions 4.1, 4.3 and 4.4 hold. Then, for the generaliza-
tion error of the Gibbs measure mα(µn) in (10),

gen(mα(µn), µ) ≤
αC

n
,

where C = (Mℓ′MϕLψNmax)
2 does not depend on n.

Remark 4.10 (Readout-function comparison). In Theorem
4.9, the mean-readout function with Lψ = 1/N exhibits
a tighter upper bound when compared to the sum-readout
function with Lψ = 1. For the mean-readout function, in
Theorem 4.9 we have C = (Mℓ′Mϕ)

2.

Remark 4.11 (Comparison with (Aminian et al., 2023)). In
(Aminian et al., 2023, Theorem 3.4), an exact representa-
tion of the generalization error in terms of the functional
derivative of the parameter measure with respect to the data
measure, i.e., δmδµ (µn, z)(dw), is provided. Then, for the
Gibbs measure, in (Aminian et al., 2023, Lemma D.4), an
upper bound on the generalization error requires to compute
δm
δµ (µn, z)(dw), the functional derivative of parameter mea-
sure for the data measure. Instead, we use the convexity of
the loss function concerning the parameter measure, Propo-
sition 4.8, and the general upper bound on the generalization
error, Proposition 4.6, to establish an upper bound on the
generalization error of the Gibbs measure, Theorem 4.9, via
symmetrized KL divergence properties. Not only is this
simpler, but, more importantly, our framework enables us to
derive non-trivial upper bounds on the generalization error
of the graph neural network (GNN) based on specific graph
properties, such as dmax, dmin, andRmax, e.g., see Remarks
4.20 and 4.21.

Remark 4.12 (Comparison with (Aminian et al., 2021)). In
(Aminian et al., 2021, Theorem 1), an exact characterization
of the expected generalization error of the Gibbs algorithm
in terms of the symmetrized KL information (Aminian et al.,
2015) is derived. Then, Aminian et al. (2021) derived an
upper bound on the expected generalization error of the

Gibbs algorithm. However, as discussed in (Aminian et al.,
2023, Appendix F), the Gibbs algorithm is different from
the Gibbs measure and the generalization error analysis of
the Gibbs algorithm can not be applied to the mean-field
regime.

4.2. Generalization Error via Rademacher Complexity
Inspired by the Rademacher complexity analysis in
(Nishikawa et al., 2022; Nitanda et al., 2022), we derive
a high-probability upper bound on the generalization error
in the mean-field regime.

Proposition 4.13 (Upper bound on the symmetrized KL
divergence). Under Assumptions 4.1, 4.3, and 4.4,

KLsym(m
α(µn)∥π) ≤ 2NmaxMϕMℓ′Lψα.

Combining Proposition 4.13 with (Chen et al., 2020,
Lemma 5.5), uniform bound and Talagrand’s contraction
lemma (Mohri et al., 2018), we can derive a high-probability
upper bound on the generalization error via Rademacher
complexity analysis. The details are provided in App. D.

Theorem 4.14 (Generalization error upper bound via
Rademacher complexity). Let Assumptions 4.1, 4.3, 4.4,
and 4.2 hold. Then, for any δ ∈ (0, 1), with probability at
least 1− δ, under the distribution of PZn ,

gen(mα(µn), µ) ≤ 4NmaxMϕMℓ′Lψ

√
NmaxMϕMℓ′Lψα

n

+ 3Mℓ

√
log(2/δ)

2n
.

Remark 4.15 (Comparison with (Chen et al., 2020;
Nishikawa et al., 2022; Nitanda et al., 2022)). In (Chen et al.,
2020; Nishikawa et al., 2022; Nitanda et al., 2022), it is as-
sumed that there exists a “true” distribution mtrue ∈ P(W)
which satisfies ℓ(Ψ(mtrue,Xi), yi) = 0 for all (Xi, yi) ∈
Z where µ(Xi, yi) > 0 and the KL-divergence between
the true distribution and the prior distribution is finite, i.e.,
KL(mtrue∥π) < ∞. In particular, the authors in (Chen
et al., 2020) contributed Theorem 4.5 to provide an up-
per bound for one-hidden layer neural networks in terms
of the chi-square divergence, χ2(mtrue∥π), which is un-
known. In addition, in (Nishikawa et al., 2022; Nitanda
et al., 2022), the authors proposed upper bounds in terms
of KL(mtrue∥π) which cannot be computed. To address
this issue, our main contribution in comparison with (Chen
et al., 2020; Nishikawa et al., 2022; Nitanda et al., 2022) is
the utilization of Proposition 4.13, to obtain a parametric
upper bound that can be efficiently computed numerically,
overcoming the challenges posed by the unknown term.

Remark 4.16 (Comparison with Theorem 4.9). The con-
vergence rate of the generalization error upper bound in
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Theorem 4.14 is O(1/
√
n), while the upper bound in Theo-

rem 4.9 achieves a faster convergence rate of O(1/n).

4.3. Over-Parameterized One-Hidden-Layer GCN
For the over-parameterized one-hidden-layer GCN, we first
show the boundedness of the unit function as in Assump-
tion 4.3 under an additional assumption.

Assumption 4.17 (Activation functions in neuron units).
The activation function φ : R 7→ R is Lφ-Lipschitz 3, so
that |φ(x1)−φ(x2)| ≤ Lφ|x1−x2| for all x1, x2 ∈ R, and
zero-centered, i.e., φ(0) = 0.

Lemma 4.18 (Upper Bound on the GCN Unit Output).
Let Assumptions 4.5 and 4.17 hold. For a graph sample
(Aq,Fq) with N nodes and a graph filter G(·), the follow-
ing upper bound holds on the summation of GCN neuron
units over all nodes:

N∑
j=1

|ϕc(Wc, G(Aq)[j, :]Fq)|

≤ Nw2,cLφ∥W1,c∥2BfGmax.

Combining Lemma 4.18 with Theorem 4.9, we can de-
rive an upper bound on the generalization error of an over-
parameterized one-hidden-layer GCN.

Proposition 4.19 (Generalization error and GCN). In a
GCN model with the mean-readout function, under the com-
bined assumptions for Theorem 4.9 and Lemma 4.18, the
following upper bound holds on the generalization error of
the Gibbs measure mα,c(µn),

gen(mα,c(µn), µ) ≤
αM2

cM
2
ℓ′G

2
max

n
,

where Mc = w2,cLφ∥W1,c∥2Bf .

Remark 4.20 (Graph filter and ∥G(A)∥∞). Proposi-
tion 4.19 shows that choosing the graph filter with smaller
∥G(A)∥max

∞ can affect the upper bound on the general-
ization error of GCN. In particular, it shows the effect
of the aggregation of the input features on the general-
ization error upper bound. For example, if we consider
the graph filter G(A) = L̃, then we have ∥G(A)∥max

∞ ≤√
(dmax + 1)/(dmin + 1), for sum-aggregation G(A) =

A+ I we have ∥G(A)∥max
∞ ≤ dmax + 1, and for random-

walk, i.e., G(A) = D−1A+ I , we have ∥G(A)∥max
∞ = 2.

Remark 4.21 (Graph filter and ∥G(A)∥F ). Similarly, choos-
ing the graph filter with a smaller ∥G(A)∥max

F value can
affect the upper bound on the generalization error of GCN.
For example, if we consider the graph filter G(A) = L̃,

3For the Tanh activation function, we have Lφ = 1.

then we have ∥G(A)∥max
F ≤

√
Rmax(L̃) and for ran-

dom walk graph filter G(A) = D̃−1A + I we have

∥G(A)∥max
F ≤ 2

√
Rmax(D̃−1A+ I).

In a similar approach to Proposition 4.19, we can derive an
upper bound on generalization error of GCN by combining
Lemma 4.18 with Theorem 4.14.

4.4. Over-Parameterized One-Hidden-Layer MPGNN
Similar to GCN, we next investigate the boundedness of the
unit function as in Assumption 4.3 for MPGNN; again we
make an additional assumption.

Assumption 4.22 (Non-linear functions in the MPGNN
units). The non-linear functions ζ : RN×k 7→ RN×k,
ρ : Rk 7→ Rk and κ : R 7→ R satisfy ζ(000N×k) = 000N×k,
ρ(000k) = 000k and κ(0) = 0, and are Lipschitz with parame-
ters Lζ , Lρ, and Lκ under vector 2-norm, respectively.

Similarly to GCN, we provide the following upper bound
on the MPGNN unit output.

Lemma 4.23 (Upper Bound on the MPGNN Unit Output).
Let Assumptions 4.5 and 4.22 hold. For a graph sample
(Aq,Fq) and a graph filter G(·), for the MPU units over all
nodes,

N∑
j=1

|ϕp(Wp, G(Aq)[j, :]Fq)|

≤ w2,pLκBf (∥W3,p,m∥2 + LρLζGmax∥W1,p,m∥2).

Proposition 4.24 (Generalization error and MPGNN). In
an MPGNN with the mean-readout function, under the com-
bined assumptions for Theorem 4.9 and Lemma 4.23,

gen(mα,p(µn), µ) ≤
αM2

pM
2
ℓ′

n
.

with Mp = w2,pLκBf (∥W3,p∥2 +GmaxLρLζ∥W1,p∥2).

Similar discussions as in Remark 4.20 and Remark 4.21
hold for the effect of graph filter choices in an MPGNN.
In a similar approach to Proposition 4.24, we can derive
an upper bound on the generalization error of MPGNN by
combining Lemma 4.23 with Theorem 4.14.

4.5. Comparison to Previous Works
We compare our generalization error upper bound with
other generalization error upper bounds derived by the
VC-dimension approach (Scarselli et al., 2018), bounding
Rademacher Complexity (Garg et al., 2020), PAC-Bayesian
bounds via perturbation analysis (Liao et al., 2020), PAC-
Bayesian bounds based on the Hessian matrix of the loss
(Ju et al., 2023), and probability bounds for continuous
MPGNNs on large random graphs (Maskey et al., 2022).
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Table 1: Comparison of generalization bounds in over-parameterized one-hidden layer GCN. The width of the hidden layer,
the number of training samples, maximum and minimum degree of graph data set are denoted as h, n, dmax and dmin,
respectively. We have d̃max = dmax + 1 and d̃min = dmin + 1. We examine three types of upper bounds: Probability (P),
High-Probability (HP) and Expected (E).“N/A” means not applicable.

Approach d̃max, d̃min h n Bound Type

VC-Dimension (Scarselli et al., 2018) N/A O(h4) O(1/
√
n) HP

Rademacher Complexity (Garg et al., 2020) O(d̃max log
1/2(d̃max)) O(h

√
log(h)) O(1/

√
n) HP

PAC-Bayesian (Liao et al., 2020) O(d̃max) O(
√
h log(h)) O(1/

√
n) HP

PAC-Bayesian(Ju et al., 2023) N/A O(
√
h) O(1/

√
n) HP

Continuous MPGNN (Maskey et al., 2022) N/A N/A O(1/
√
n) P

Rademacher Complexity (this paper, Theorem 4.14) O
(
(d̃max/d̃min)

3/4
)

N/A O(1/
√
n) HP

Functional Derivative (this paper, Theorem 4.9) O(d̃max/d̃min) N/A O(1/n) E

We also compare with our upper bound in App.D obtained
via Rademacher complexity in App.D. To compare different
bounds, we analyze their convergence rate concerning the
width of the hidden layer (h) and the number of training
samples (n). We also examine the type of bounds on the gen-
eralization error, including high-probability bounds, prob-
ability bounds, and expected bounds. In high-probability
bounds, the upper bound depends on log(1/δ) for δ ∈ (0, 1),
as opposed to 1/δ in probability bounds. For small δ, the
high probability bounds are tighter with respect to proba-
bility bounds. We use a fixed α in Theorem 4.9 for our
comparison in Table 1. More discussion is found in App. E.

As shown in Tab. 1, the upper bounds in (Scarselli et al.,
2018; Garg et al., 2020; Liao et al., 2020) and (Ju et al.,
2023) are vacuous for infinite width (h→ ∞) of one hidden
layer. We also provide results for other non-linear func-
tions that are functions of the sum of the final node rep-
resentations. (Maskey et al., 2022) proposed an expected
upper bound on the square of the generalization error of
continuous MPGNNs, which is independent of the width of
the layers. Then, via the Markov inequality, they provide
a probability upper bound on the generalization error of
continuous MPGNNs by considering the mean-readout, ob-
taining a convergence rate of O(1/

√
n). While the random

graph model in (Maskey et al., 2022) is based on graphons,
here we do not assume that the graph samples arise from a
specific random graph model. To the best of our knowledge,
this is the first work to represent an upper bound on the
generalization error with the convergence rate of O(1/n).

Inspired by the NTK approach of (Jacot et al., 2018a),
(Du et al., 2019) proposed the graph neural tangent kernel
(GNTK) as a GNN model for layers of infinite width. They
provided a high-probability upper bound on the true risk
based on (Bartlett & Mendelson, 2002) for the sum-readout
function, for their proposed structure, GNTK, which is dif-
ferent from GCNs and MPGNNs. However, as noted in
(Fang et al., 2021), the neural tangent kernel has some limi-
tations for over-parameterized analysis of neural networks
when compared to mean-field analysis. Therefore, we do

not compare with (Du et al., 2019). Finally, the upper bound
in (Verma & Zhang, 2019) focuses on stability analysis for
one-hidden-layer GNNs in the context of semi-supervised
node classification tasks. In (Verma & Zhang, 2019), the
data samples are node features rather than a graph, and the
node features within each graph sample are assumed to be
i.i.d., whereas we only assume that the graph samples them-
selves are i.i.d. and, therefore, we do not compare with
(Verma & Zhang, 2019).

5. Experiments
Our investigation focuses on the over-parameterized
one-hidden-layer case in the context of GNNs, such as
GCNs and MPGNNs. Prior works on graph classification
tasks (Garg et al., 2020; Liao et al., 2020; Ju et al., 2023;
Maskey et al., 2022; Du et al., 2019) have demonstrated
that the upper bounds on generalization error tend to
increase as the number of layers in the network grows. An
examination of the over-parameterized one-hidden-layer
case may be particularly instructive in elucidating the
generalization error performance of GNNs in the context
of graph classification tasks.

For this purpose, we investigate the effect of the num-
ber of hidden neurons h on the true generalization error
of GCNs and MPGNNs for the (semi-)supervised graph
classification task on both synthetic and real-world data
sets. We use a supervised ratio of βsup ∈ {0.7, 0.9} for
h ∈ {4, 8, 16, 32, 64, 126, 256} for our experiments de-
tailed in App. F. For synthetic data sets, we generate three
types of Stochastic Block Models (SBMs) and two types of
Erdős-Rényi (ER) models, with 200 graphs for each type.
We also conduct experiments on a bioinformatics data set
called PROTEINS (Borgwardt et al., 2005). Details on im-
plementation, data sets, and additional results are in App. F.

In our experiments, we use the logistic loss ℓ(Ψ(m,x), y) =
log(1 + exp(−Ψ(m,x)y)) for binary classification, where
y is the true label and Ψ(m,x) is the mean- or sum-readout
function for GCNs and MPGNNs. The empirical risk is
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(b) MPGNN.

Figure 1: Absolute empirical generalization error (×105×105×105)
for different widths h of the hidden layer. We employ a
mean-readout function and a supervised ratio of βsup = 0.7,
for GCN and MPGNN. Values are averaged over ten runs.
Error bars indicate one standard deviation.

then 1
n

∑n
i=1 log(1 + exp(−Ψ(m,xi)yi)).

From Fig. 1 (and App. F with detailed mean and standard de-
viation values), we observe a consistent trend: as the value
of h increases, the absolute generalization error decreases.
This observation shows that the upper bounds dependent on
the width of the layer fail to capture the trend of general-
ization error in the over-parameterized regime. We provide
extended actual absolute generalization errors in this section
and the values of our upper bounds are provided in App. F.

6. Conclusions and Future Work
This work develops generalization error upper bounds for
one-hidden-layer GCNs and MPGNNs for graph classifica-
tion in the over-parameterized regime. Our analysis is based
on a mean-field approach. Our upper bound on the gen-
eralization error of one-hidden-layer GCNs and MPGNNs
with the KL-regularized empirical risk minimization is of
the order of O(1/n), where n is the number of graph data
samples, in the mean-field regime. This order is a significant
improvement over previous work, see Table 1.

The main limitation of our work is that it considers only one
hidden layer for graph convolutional networks and message-
passing graph neural networks. Inspired by Sirignano &
Spiliopoulos (2019), we aim to apply our approach to deep
graph neural networks and investigate the effect of depth on
the generalization performance. Furthermore, we plan to
expand the current framework to study the generalization
error of hypergraph neural networks, using the framework
introduced in (Feng et al., 2019).
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A. Preliminaries
Notations in this paper are summarized in Table 2.

Table 2: Summary of notations in the paper

Notation Definition Notation Definition

W Parameter space of the model F Feature matrices space
A Adjacency matrices space F Matrix of feature nodes of a graph sample
A Adjacency matrix of a graph sample X input graph sample where X = (A,F)
Y Label of input graph Zi i-th graph sample (X, Y )
Zn The set of data training samples D Degree matrix of A
L̃ Symmetric normalized graph filter n Number of graph data samples

Nmax Maximum number of nodes of all graph samples dmax Maximum node degree of all graph samples
dmin Minimum node degree of all graph samples G(A) Graph filter with input matrix A
µn Empirical data measure µn,(1) Replace-one sample empirical data measure
Mϕ Bound on unit function Mℓ′ Bound on |∂ŷℓ(ŷ, y)|
Lζ Lipschitz parameter of function ζ(·) Lρ Lipschitz parameter of function ρ(·)
Lκ Lipschitz parameter of function κ(·) Lψ Lipschitz parameter of readout function ψ(·)
Lφ Lipschitz parameter of activation function ψ(·) Bf Bound on node features
α Inverse temperature h Width of hidden layer
π Prior measure over parameters mα The Gibbs measure for General GNN model

mα,c The Gibbs measure for GCN model mα,p The Gibbs measure for MPGNN model
mtrue True distribution over data samples Gmax min(∥G(A)∥max

∞ , ∥G(A)∥max
F )

Ψ(·) Readout function (W1,c,W2,c) Parameters of Neuron unit
(W1,p,W2,p,W3,p) Parameters of MPU unit gen(m(µn), µ) Generalization error under parameter measure m(µn)

βsup Supervised ratio ∥Y∥F
√∑k

j=1

∑q
i=1 Y

2[j, i]

∥Y∥∞ max1≤j≤k
∑q
i=1 |Y[j, i]| KL(p∥q)

∫
Rd p(x) log(p(x)/q(x))dx

KLsym(p∥q) KL(p∥q) + KL(q∥p) ϕ(·) Unit function

Let us recapitulate all the assumptions required for our proofs.

Assumption 4.1 (Loss function). The loss function, (ŷ, y) 7→ ℓ(ŷ, y), satisfies the following conditions,

(i) The gradient of the loss function (ŷ, y) 7→ ℓ(ŷ, y) with respect to ŷ is continuous and uniformly bounded for all
ŷ, y ∈ Y , i.e., there is a constant Mℓ′ such that |∂ŷℓ(ŷ, y)| ≤Mℓ′ .

(ii) We assume that the loss function is convex with respect to ŷ.

Assumption 4.3 (Unit function). The unit function (w,G(A)[j, :]f) 7→ ϕ(w,G(A)[j, :]f) with graph filterG(·) is uniformly
bounded, i.e, there is a constant Mϕ such that supw∈W,f∈F,A∈A |ϕ(w,G(A)[j, :]f)| ≤Mϕ for all j ∈ [N ] and f ∈ F .

Assumption 4.4 (Readout function). The function ψ : R 7→ R is Lψ-Lipschitz-continuous, i.e., there is a constant Lψ such
that |ψ(x1)− ψ(x2)| ≤ Lψ|x1 − x2| for all x1, x2 ∈ R, and zero-centered, i.e., ψ(0) = 0.

Assumption 4.5 (Bounded node features). For every graph, the node features are contained in an ℓ2-ball of radius Bf . In
particular, ∥F[i; ]∥2 ≤ Bf for all i ∈ [N ].

Assumption 4.17 (Activation functions in neuron unit). The activation function φ : R 7→ R is Lφ-Lipschitz, so that
|φ(x1)− φ(x2)| ≤ Lφ|x1 − x2| for all x1, x2 ∈ R, and zero-centered, i.e., ϕ(0) = 0.

Assumption 4.22 (Non-linear functions in the MPGNN unit). The non-linear functions ζ : RN×k 7→ RN×k, ρ : Rk 7→ Rk
and κ : R 7→ R are zero-centered, i.e., ζ(000N×k) = 000N×k, ρ(000k) = 000k and κ(0) = 0, and Lipschitz with parameters Lζ , Lρ
and Lκ under vector 2-norm4, respectively.

Total variation distance: The total variation distance between two densities p(x) and q(x), is defined as TV(p, q) :=
1
2

∫
Rd |p(x)− q(x)|dx.

The following lemmas are needed for our proofs.

4For function ζ(·), we consider that it is Lipschitz under a vector 2-norm,
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Lemma A.1 (Donsker’s representation of KL divergence). Let us consider the variational representation of the KL
divergence between two probability distributions m1 and m2 on a common space ψ given by Polyanskiy & Wu (2022),

KL(m1||m2) = sup
f

∫
ψ

fdm1 − log

∫
ψ

efdm2, (13)

where f ∈ F = {f : ψ → R s.t. Em2
[ef ] <∞}.

Lemma A.2 (Kantorovich-Rubenstein duality of total variation distance). The Kantorovich-Rubenstein duality (variational
representation) of the total variation distance is as follows (Polyanskiy & Wu, 2022):

TV(m1,m2) =
1

2L
sup
g∈GL

{EZ∼m1
[g(Z)]− EZ∼m2

[g(Z)]} , (14)

where GL = {g : Z → R, ||g||∞ ≤ L}.

Lemma A.3 (Bound on infinite norm of the symmetric normalized graph filter). Consider a graph sample G with adjacency

matrix A. For the symmetric normalized graph filter, we have
∥∥∥D̃−1/2(A+ I)D̃−1/2

∥∥∥
∞

≤
√

dmax+1
dmin+1 where dmax is the

maximum degree of graph G with adjacency matrix A.

Proof. Recall that Ã = A+ I . We have,∥∥∥L̃∥∥∥
∞

=
∥∥∥D̃−1/2ÃD̃−1/2

∥∥∥
∞

= max
i∈[N ]

N∑
j=1

Ãij√
di + 1

√
dj + 1

≤ 1√
dmin + 1

max
i∈[N ]

N∑
j=1

Ãij√
di + 1

≤
√
dmax + 1

dmin + 1
.

(15)

Lemma A.4 (Meyer & Stewart, 2023). For a matrix Y ∈ Rk×q , we have ∥Y∥F ≤
√
R∥Y∥2, where r is the rank of Y and

∥Y∥2 is the 2-norm of Y which is equal to the maximum singular value of Y.

Lemma A.5 (Verma & Zhang, 2019). For the symmetric normalized graph filter, i.e., L̃ = D̃−1/2ÃD̃−1/2, we have∥∥∥L̃∥∥∥
2
= 1. For the random walk graph filter, i.e., D−1A+ I , we have

∥∥D−1A+ I
∥∥
2
= 2, where ∥A∥2 is the 2-norm of

matrix A.

Lemma A.6 (Hoeffding lemma (Wainwright, 2019)). For bounded random variable, a ≤ X ≤ b, and all λ ∈ R, we have,

E[exp(λ(X − E[X]))] ≤ exp
(
λ(b− a)2/8

)
. (16)

Lemma A.7 (Pinsker’s inequality). The following upper bound holds on the total variation distance between two measures
m1 and m2 (Polyanskiy & Wu, 2022):

TV(m1,m2) ≤
√

KL(m1∥m2)

2
. (17)

In the following, we apply some lemmata from Aminian et al. (2023) where we use ℓ
(
Ψ(m(µn), x̂1), ŷ1

)
instead of

ℓ
(
m(µn), Ẑ1

)
in Aminian et al. (2023).

Lemma A.8. (Aminian et al., 2023, Proposition 3.3) Given Assumption 4.1, the following lower bound holds on the
generalization error of a Generic GNN,

gen(mα(µn), µ) ≥ EZn,Ẑ1

[ ∫
W
∂ŷℓ
(
Ψ(m(µn,(1)), x̂1), ŷ1

) δΨ
δm

(m(µn,(1)), x̂1, w)(m(µn)−m(µn,(1)))(dw)
]
.
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Remark A.9 (Another representation of Lemma A.8). Due to the fact that data samples and Ẑ1 are i.i.d., Lemma A.8 can be
represented as follows,

gen(mα(µn), µ) ≥ EZn,Ẑ1

[ ∫
W
∂ŷℓ
(
Ψ(m(µn),x1),y1

) δΨ
δm

(m(µn),x1, w)(m(µn,(1))−m(µn))(dw)
]
.

Lemma A.10. (Aminian et al., 2023, Theorem 3.2) Given Assumption 4.1.i, the following representation of the generalization
error holds:

gen(mα(µn), µ) = EZn,Ẑ1

[ ∫ 1

0

∫
W
∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

) δΨ
δm

(mλ(µn), x̂1, w)(m(µn)−m(µn,(1)))(dw)dλ
]

where mλ(µn) = m(µn,(1)) + λ(m(µn)−m(µn,(1))) for λ ∈ [0, 1].

The following preliminaries are needed for our Rademacher complexity analysis.

Rademacher complexity: For a hypothesis set, H of functions fh : Z 7→ R and setσσσ = {σi}ni=1, the empirical Rademacher
complexity R̂Z(H) with respect to set Zn is defined as:

R̂Zn
(H) := Eσσσ

[
sup
fh∈H

1

n

n∑
i=1

σifh(Zi)
]
, (18)

where σ = {σi}ni=1 are i.i.d random variables and σi ∈ {−1, 1} for all i ∈ [r] with equal probability.

In addition to the previous assumptions, for Rademacher complexity analysis we also need the following assumption.

Assumption 4.2 (Bounded loss function). The loss function, (ŷ, y) 7→ ℓ(ŷ, y), is bounded for all ŷ, y ∈ Y , i.e., 0 ≤
ℓ(ŷ, y) ≤Mℓ.

Lemma A.11 (Uniform bound (Mohri et al., 2018)). Let Fu be the set of functions f : Z → [0,Mℓ] and µ be a distribution
over Z . Let S = {zi}ni=1 be a set of size n i.i.d. drawn from Z . Then, for any δ ∈ (0, 1), with probability at least 1− δ over
the choice of S, we have

sup
f∈Fn

{
EZ∼µ[f(Z)]−

1

n

n∑
i=1

f(zi)

}
≤ 2R̂S(Fn) + 3Mℓ

√
1

2n
log

2

δ
.

The contraction lemma helps us to estimate the Rademacher complexity.

Lemma A.12 (Talagrand’s contraction lemma (Shalev-Shwartz & Ben-David, 2014)). Let ϕi : R → R (i ∈ {1, . . . , n}) be
L-Lipschitz functions and Fn be a set of functions from Z to R. Then it follows that for any {zi}ni=1 ⊂ Z ,

Eσ

[
sup
f∈Fn

1

n

n∑
i=1

σiϕi(f(zi))

]
≤ LEσ

[
sup
f∈Fr

1

n

n∑
i=1

σif(zi)

]
.

The units of GCNs and MPGNN are shown in Figure 2.

Aq

Fq

W1,c

W2,c

φ(·) ϕc(·)

G(·)

(a) Neuron Unit

Aq

Fq

W3,p

W1,p W2,pG(·)

ζ(·)
ρ(·)

κ(·) ϕp(·)

(b) MPU Unit

Figure 2: Units of GCN and MPGNN
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B. Other Related Works
Mean-field: Our study employs the mean-field framework utilized in a recent line of research (Chizat & Bach, 2018; Mei
et al., 2018; 2019; Sirignano & Spiliopoulos, 2019; Hu et al., 2019). The convergence of gradient descent for training
one-hidden layer NNs with infinite width under certain structural assumptions is established by Chizat & Bach (2018). The
study of Mei et al. (2018) proved the global convergence of noisy stochastic gradient descent and established approximation
bounds between finite and infinite neural networks. Furthermore, Mei et al. (2019) demonstrated that this approximation
error can be independent of the input dimension in certain cases, and established that the residual dynamics of noiseless
gradient descent are close to the dynamics of NTK-based kernel regression under some conditions.

Graph Representation Learning: Numerous Graph Neural Networks (GNNs) have emerged for graph-based tasks, span-
ning node, edge, and graph levels. GCNs, introduced in Kipf & Welling (2016), simplify the Cheby-Filter from Defferrard
et al. (2016) for one-hop neighbors. MPGNNs, as proposed in Gilmer et al. (2017), outline a general GNN framework,
treating graph convolutions as message-passing among nodes and edges. For graph-level tasks, like graph classification, a
typical practice involves applying a graph readout (pooling) layer after graph filtering layers, composed of graph filters. The
readout (pooling) layer aggregates node representations to create a graph-wide embedding. Common graph readout choices
encompass set pooling methods like direct sum application, mean (Hamilton, 2020), or maximum (Mesquita et al., 2020), as
well as combinations of LSTMs with attention (Vinyals et al., 2015) and graph coarsening techniques leveraging graph
structure (Ying et al., 2018b; Cangea et al., 2018; Gao & Ji, 2019). In this paper, we investigate how mean and sum impact
the generalization errors of GCNs and MPGNNs.

Node Classification and Generalization Error: For node classification tasks, Verma & Zhang (2019) discussed the
generalization error under node classification for GNNs via algorithm stability analysis. The work by Zhou & Wang (2021)
extended the results in Verma & Zhang (2019) and found that increasing the depth of GCN enlarges its generalization
error for the node classification task. A Rademacher complexity analysis was applied to GCNs for the node classification
task by Lv (2021). Based on transductive Rademacher complexity, a high-probability upper bound on the generalization
error of the transductive node classification task was proposed by Esser et al. (2021). The transductive modeling of node
classification was studied in Oono & Suzuki (2020) and Tang & Liu (2023). Cong et al. (2021) presented an upper bound on
the generalization error of GCNs for node classification via transductive uniform stability, building on the work of El-Yaniv
& Pechyony (2006). In contrast, our research focuses on the task of graph classification, which involves (semi-)supervised
learning on graph data samples rather than semi-supervised learning for node classification.

Neural Tangent Kernels:The neural tangent kernel (NTK) model, as described by Jacot et al. (2018a), elucidates the
learning dynamics inherent in neural networks when subjected to appropriate scaling conditions. This explication relies on
the linearization of learning dynamics in proximity to its initialization. Conclusive evidence pertaining to the (quantitative)
global convergence of gradient-based techniques for neural networks has been established for both regression problems
(Suzuki & Nitanda, 2021) and classification problems (Cao & Gu, 2019). The NTK model, founded upon linearization, is
constrained in its ability to account for the phenomenon of "feature learning" within neural networks, wherein parameters
exhibit the capacity to traverse and adapt to the inherent structure of the learning problem. Fundamental to this analysis is
the linearization of training dynamics, necessitating the imposition of appropriate scaling conditions on the model (Chizat &
Bach, 1812). Consequently, this framework proves inadequate for elucidating the feature learning aspect of neural networks
(Yang & Hu, 2020; Fang et al., 2021). Notably, empirical investigations have demonstrated the superior expressive power of
deep learning over kernel methods concerning approximation and estimation errors (GHORBANI et al., 2021). In certain
contexts, it has been observed that neural networks, optimized through gradient-based methodologies, surpass the predictive
performance of the NTK model, and more broadly, kernel methods, concerning generalization error or true risk (Allen-Zhu
& Li, 2019).

C. Proofs and details of Section 4
C.1. Generic GNN

Proposition 4.6. (restated) Let Assumptions 4.1, 4.3, and 4.4 hold. Then, the following bound holds on the generalization
error of generic GNN,∣∣∣gen(m(µn), µ)

∣∣∣ ≤ (Mℓ′LψNmaxMϕ/
√
2
)
EZn,Ẑ1

[√
KL
(
m(µn)∥m(µn,(1))

)]
. (19)

In the following, we provide two technical proofs for Proposition 4.6.
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Proof of Proposition 4.6 via Lemma A.1 and Lemma A.6. From Lemma A.1, the following representation of KL diver-
gence holds between two probability distributions m1 and m2 on a common space W ,

KL(m1∥m2) = sup
f∈F

EW∼m1
[f(W )]− log

(
EW∼m2

[exp{f(W )}]
)
, (20)

where f ∈ F = {f : W → R s.t. EW∼m2
[ef(W )] <∞}. Lemma A.10 yields

gen(mα(µn), µ)

= EZn,Ẑ1

[ ∫ 1

0

∫
W
∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

) δΨ
δm

(mλ(µn), x̂1, w)(m(µn)−m(µn,(1)))(dw)dλ
]

= EZn,Ẑ1

[ ∫ 1

0

∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)(
EW∼m(µn)

[ δΨ
δm

(mλ(µn), x̂1,W )
]

− EW∼m(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
])

dλ
]
.

For the function f(w) = λ1∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)
δΨ
δm (mλ(µn), x̂1, w), due to Assumptions 4.1, 4.3 and 4.4, we have∣∣∣∂ŷℓ(Ψ(mλ(µn), x̂1), ŷ1

)
δΨ
δm (mλ(µn), x̂1, w)

∣∣∣ ≤Mℓ′LψNmaxMϕ. Hence f ∈ F.

From (20), for m1 = m(µn) and m2 = m(µn,(1)), we have for all λ1 ∈ R

λ1EW∼m(µn)

[(
∂ŷℓ
(
Ψ(mλ(µn), x̂1)], ŷ1

) δΨ
δm

(mλ(µn), x̂1,W )
)]

(21)

≤ KL(m(µn)∥m(µn,(1))) + log
(
EW∼mα(µn,(1))

[
exp

{
λ1

(
∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

) δΨ
δm

(mλ(µn), x̂1,W )
)}])

.

With Lemma A.6,

EW∼mα(µn,(1))

[
exp

{
λ1

(
∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)( δΨ
δm

(mλ(µn), x̂1,W )− EW∼mα(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
]))}]

≤ exp

{
λ21σ

2
1

2

}
,

(22)

where σ1 =Mℓ′LψNmaxMϕ. Combining (22) with (21), we can derive the following:

λ1

(
∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)(
EW∼m(µn)

[ δΨ
δm

(mλ(µn), x̂1,W )
]
− EW∼m(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
]))

≤ KL(m(µn)∥m(µn,(1))) +
λ21σ

2
1

2
,

This is a nonnegative parabola in λ1, whose discriminant must be nonpositive. Therefore, we have,

∣∣∣∂ŷℓ(Ψ(mλ(µn), x̂1), ŷ1

)(
EW∼m(µn)

[ δΨ
δm

(mλ(µn), x̂1,W )
]
− EW∼m(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
])∣∣∣

≤
√

2σ2
1KL(m(µn)∥m(µn,(1))).

(23)

17
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The upper bound in (23) holds for all λ ∈ [0, 1]. Therefore, combining with Lemma A.10, we have,

gen(mα(µn), µ)

= EZn,Ẑ1

[ ∫ 1

0

∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)(
EW∼m(µn)

[ δΨ
δm

(mλ(µn), x̂1,W )
]

− EW∼m(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
])

dλ
]

≤ EZn,Ẑ1

[∫ 1

0

∣∣∣∂ŷℓ(Ψ(mλ(µn), x̂1), ŷ1

)(
EW∼m(µn)

[ δΨ
δm

(mλ(µn), x̂1,W )
]

− EW∼m(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
])∣∣∣dλ]

≤ EZn,Ẑ1

[√
2σ2

1KL(m(µn)∥m(µn,(1)))
]
.

(24)

This completes the proof.

Proof of Proposition 4.6 via Lemma A.2 and Lemma A.7. From Lemma A.10, it yields,

gen(mα(µn), µ)

= EZn,Ẑ1

[ ∫ 1

0

∫
W
∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

) δΨ
δm

(mλ(µn), x̂1, w)(m(µn)−m(µn,(1)))(dw)dλ
]

= EZn,Ẑ1

[ ∫ 1

0

∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)(
EW∼m(µn)

[ δΨ
δm

(mλ(µn), x̂1,W )
]

− EW∼m(µn,(1))

[ δΨ
δm

(mλ(µn), x̂1,W )
])

dλ
]
.

For the function f(w) = λ1∂ŷℓ
(
Ψ(mλ(µn), x̂1), ŷ1

)
δΨ
δm (mλ(µn), x̂1, w), due to Assumptions 4.1, 4.3 and 4.4, we have∣∣∣∂ŷℓ(Ψ(mλ(µn), x̂1), ŷ1

)
δΨ
δm (mλ(µn), x̂1, w)

∣∣∣ ≤Mℓ′LψNmaxMϕ. Hence, from lemma A.2, it yields,

∣∣gen(mα(µn), µ)
∣∣ ≤Mℓ′LψNmaxMϕEZn,Ẑ1

[
TV(m(µn),m(µn,(1)))

]
. (25)

Using Lemma A.7 completes the proof.

Proposition 4.8. (restated) Let Assumptions 4.1 hold. Then, the following lower bound holds on the generalization error of
the Gibbs measure mα(µn),

gen(mα(µn), µ) ≥
n

2α
EZn,Ẑ1

[
KLsym

(
mα(µn)∥mα(µn,(1))

)]
.

Proof. For simplicity of proof, we abbreviate

ℓ̃
(
m, z

)
:= ℓ

(
Ψ(m,x), y

)
, (26)

δℓ̃

δm

(
m, z,w

)
:= ∂ŷℓ(Ψ(m,x), y)

δΨ

δm
(m,x,w), (27)

where z = (x, y) and (27) follows from chain rule. From Assumption 4.1, where the loss function is convex with respect
to Ψ(m,x) and due to the fact that Ψ(m,x) is linear with respect to parameter measure m, then we have the convexity of
ℓ̃
(
m, z

)
with respect to parameter measure. Recall that from (10) we have

mα(µn) =
π

Sα,π(µn)
exp

{
− α

[
δR(mα, µn, w)

δm

]}
,

18
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and

mα(µn,(1)) =
π

Sα,π(µn,(1))
exp

{
− α

[
δR(mα, µn,(1), w)

δm

]}
.

We need to compute the expectation of KLsym

(
mα(µn,(1))∥mα(µn)

)
where KLsym(p∥q) = KL(p∥q) + KL(q∥p). For

that purpose,

EZn,Ẑ1

[
KL
(
mα(µn)∥mα(µn,(1))

)
+KL

(
mα(µn,(1))∥mα(µn)

)]
= EZn,Ẑ1

[ ∫
W

log
(
mα(µn)/m

α(µn,(1))
)
(mα(µn)−mα(µn,(1)))(dw)

]
= EZn,Ẑ1

[ ∫
W

log
(
Sα,π(µn,(1))/Sα,π(µn)

)
(mα(µn)−mα(µn,(1)))(dw)

]
+ EZn,Ẑ1

[
EW∼mα(µn,(1))

[
π(W )

]
− EW∼mα(µn)

[
π(W )

]]
+ α

(
EZn,Ẑ1

[
EW∼mα(µn)

[ δR
δm

(mα(µn,(1)), µn,(1),W )− δR

δm
(mα(µn), µn,W )

]]
− EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δR
δm

(mα(µn,(1)), µn,(1),W )− δR

δm
(mα(µn), µn,W )

]])
.

Let us define the following terms,

I1 := EZn,Ẑ1

[ ∫
W

log
(
Sα,π(µn,(1))/Sα,π(µn)

)
(mα(µn)−mα(µn,(1)))(dw)

]
,

I2 := EZn,Ẑ1

[
EW∼mα(µn,(1))

[
π(W )

]
− EW∼mα(µn)

[
π(W )

]]
,

I3 := EZn,Ẑ1

[
EW∼mα(µn)

[ δR
δm

(mα(µn,(1)), µn,(1),W )
]
− EW∼mα(µn,(1))

[ δR
δm

(mα(µn,(1)), µn,(1),W )
]]
,

I4 := EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δR
δm

(mα(µn), µn,W )
]
− EW∼mα(µn)

[ δR
δm

(mα(µn), µn,W )
]]
.

(28)

Note that log
(
Sα,π(µn,(1))/Sα,π(µn)

)
is not a function of parameters. Therefore, we have,

I1 = EZn,Ẑ1

[ ∫
W

log
(
Sα,π(µn,(1))/Sα,π(µn)

)
(mα(µn)−mα(µn,(1)))(dw)

]
= 0.

(29)

Also π(W ) is not a function of data samples, therefore, we have

I2 = EZn,Ẑ1

[
EW∼mα(µn,(1))

[
π(W )

]
− EW∼mα(µn)

[
π(W )

]]
= 0.

(30)

By considering,

δR

δm
(mα(µn), µn, w) =

1

n

δℓ̃

δm
(mα(µn), Z1, w) +

1

n

n∑
i=2

δℓ̃

δm
(mα(µn), Zi, w), (31)

δR

δm
(mα(µn,(1)), µn,(1), w) =

1

n

δℓ̃

δm
(mα(µn,(1)), Ẑ1, w) +

1

n

n∑
i=2

δℓ̃

δm
(mα(µn,(1)), Zi, w), (32)

then, we have,

I3 = EZn,Ẑ1

[
EW∼mα(µn)

[ δR
δm

(mα(µn,(1)), µn,(1),W )
]
− EW∼mα(µn,(1))

[ δR
δm

(mα(µn,(1)), µn,(1),W )
]]

=
1

n
EZn,Ẑ1

[
EW∼mα(µn)

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]
− EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]]

+
1

n

n∑
i=2

EZn,Ẑ1

[
EW∼mα(µn)

[ δℓ̃
δm

(mα(µn,(1)), Zi,W )
]
− EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn,(1)), Zi,W )
]]
.

(33)
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I4 = EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δR
δm

(mα(µn), µn,W )
]
− EW∼mα(µn)

[ δR
δm

(mα(µn), µn,W )
]]

=
1

n
EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn), Z1,W )
]
− EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn), Z1,W )
]]

+
1

n

n∑
i=2

EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn), Zi,W )
]
− EW∼mα(µn)

[ δℓ̃
δm

(mα(µn), Zi,W )
]]
.

(34)

For 2 ≤ j ≤ n due to the fact that data samples are i.i.d, we have:

EZn,Ẑ1
[ℓ̃(m(µn), Zj)] = EZn,Ẑ1

[ℓ̃(m(µn,(1)), Zj)]. (35)

Via the convexity of the loss function, ℓ̃
(
m, z

)
, with respect to the parameter measure, m, from Lemma A.8, it holds that,

EZn,Ẑ1
[ℓ̃(m(µn), Zj)− ℓ̃(m(µn,(1)), Zj)]

≥ EZn,Ẑ1

[ ∫ δℓ̃

δm
(m(µn,(1)), Zj , w)(m(µn)−m(µn,(1)))(dw)

]
.

(36)

Therefore, we obtain for 2 ≤ j ≤ n,

0 ≥ EZn,Ẑ1

[ ∫ δℓ̃

δm
(m(µn,(1)), Zj , w)(m(µn)−m(µn,(1)))(dw)

]
. (37)

Similarly, we can show that, for 2 ≤ j ≤ n,

0 ≥ EZn,Ẑ1

[ ∫ δℓ̃

δm
(m(µn), Zj , w)(m(µn,(1))−m(µn))(dw)

]
. (38)

Combining (37) and (38) with (33) and (34), the following holds:

I3 ≤ 1

n
EZn,Ẑ1

[
EW∼mα(µn)

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]
− EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]]
, (39)

and

I4 ≤ 1

n
EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn), Z1,W )
]
− EW∼mα(µn)

[ δℓ̃
δm

(mα(µn), Z1,W )
]]
. (40)

Therefore, from (29), (30), (39), and (40) we have,

EZn,Ẑ1

[
KL
(
mα(µn)∥mα(µn,(1))

)
+KL

(
mα(µn,(1))∥mα(µn)

)]
= I1 + I2 + α(I3 + I4)

≤ α

n
EZn,Ẑ1

[
EW∼mα(µn)

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]
− EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]]

+
α

n
EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn), Z1,W )
]
− EW∼mα(µn)

[ δℓ̃
δm

(mα(µn), Z1,W )
]]
.

(41)

From Lemma A.8, we have:

EZn,Ẑ1

[
EW∼mα(µn)

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]
− EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn,(1)), Ẑ1,W )
]]

≤ gen(mα(µn), µ).

(42)

Similarly from Remark A.9, we have,

EZn,Ẑ1

[
EW∼mα(µn,(1))

[ δℓ̃
δm

(mα(µn), Z1,W )
]
− EW∼mα(µn)

[ δℓ̃
δm

(mα(µn), Z1,W )
]]

≤ gen(mα(µn), µ).

(43)

The final results holds by combining (42) and (43) with (41).
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Theorem 4.9. (restated) Let Assumptions 4.1, 4.3 and 4.4 hold. Then, the following upper bound holds on the generalization
error of the Gibbs measure, i.e., mα(µn),

gen(mα(µn), µ) ≤
αC

n
,

where C = (Mℓ′MϕLψNmax)
2.

Proof.

n

2α
EZn,Ẑ1

[
KL
(
mα(µn)∥mα(µn,(1))

)]
≤ n

2α
EZn,Ẑ1

[
KLsym

(
mα(µn)∥mα(µn,(1))

)]
(44)

≤ gen(mα(µn), µ) (45)

≤
(
Mℓ′LψNmaxMϕ/

√
2
)
EZn,Ẑ1

[√
KL
(
m(µn)∥m(µn,(1))

)]
(46)

≤
(
Mℓ′LψNmaxMϕ/

√
2
)√

EZn,Ẑ1

[
KL
(
m(µn)∥m(µn,(1))

)]
, (47)

where (44), (45), (46), (47), follow from the fact that KL(·∥·) ≤ KLsym(·∥·), Proposition 4.8, Proposition 4.6 and Jensen-
Inequality, respectively. Therefore, we have,

√
EZn,Ẑ1

[
KL
(
m(µn)∥m(µn,(1))

)]
≤
(√2αMℓ′LψNmaxMϕ

n

)
. (48)

The final result follows from combining (48) with the following inequality,

gen(mα(µn), µ) ≤
(
Mℓ′LψNmaxMϕ/

√
2
)√

EZn,Ẑ1

[
KL
(
m(µn)∥m(µn,(1))

)]
.

C.2. GCN

Lemma 4.18. (restated) Let Assumptions 4.5 and 4.17 hold. For a graph sample, (Aq,Fq) with N nodes, and a graph
filter G(·), the following upper bound holds on summation of GCN neuron units over all nodes:

N∑
j=1

|ϕc(Wc, G(Aq)[j, :]Fq)| ≤ Nw2,cLφ∥W1,c∥2Bf min(∥G(Aq)∥∞, ∥G(Aq)∥F ).

Proof. Recall that ∥G(Aq)∥∞ = maxj
∑N
i=1 |G(Aq)[j, i]|, ∥G(Aq)∥F =

√∑N
j=1

∑N
i=1(G(Aq)[j, i])2 and
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∥W1,c,m∥2 = supW1,c∈Sk ∥W1,c∥2. Then, we have,

N∑
j=1

|ϕc(Wc, G(Aq)[j, :]Fq)|)| ≤
N∑
j=1

sup
W2,c∈S

|W2,c||φ(G(Aq)[j, :]Fq).W1,c)|

≤
N∑
j=1

sup
W1,c∈Sk

w2,c|φ(G(Aq)[j, :]Fq).W1,c,m)|

≤ Nw2,cLφ∥W1,c,m∥2 max
j

∥G(Aq)[j, :]Fq∥2

≤ Nw2,cLφ∥W1,c,m∥2 max
j

∥∥∥∥∥
N∑
i=1

G(Aq)[j, i]Fq[:, i]

∥∥∥∥∥
2

≤ Nw2,cLφ∥W1,c,m∥2 max
j

( N∑
i=1

|G(Aq)[j, i]|∥Fq[:, i]∥2
)

≤ Nw2,cLφ∥W1,c,m∥2Bf max
j

( N∑
i=1

|G(Aq)[j, i]|
)

≤ Nw2,cLφ∥W1,c,m∥2Bf∥G(Aq)∥∞.

(49)

We also have,

N∑
j=1

|ϕc(Wc, G(Aq)[j, :]Fq)|)| ≤
N∑
j=1

sup
W2,c∈S

|W2,c||φ(G(Aq)[j, :]Fq).W1,c)|

≤
N∑
j=1

sup
W1,c∈Sk

w2,c|φ(G(Aq)[j, :]Fq).W1,c,m)|

≤ w2,cLφ∥W1,c,m∥2
N∑
j=1

∥G(Aq)[j, :]Fq∥2

≤ w2,cLφ∥W1,c,m∥2
N∑
j=1

∥∥∥∥∥
N∑
i=1

G(Aq)[j, i]Fq[:, i]

∥∥∥∥∥
2

≤ w2,cLφ∥W1,c,m∥2
N∑
j=1

N∑
i=1

|G(Aq)[j, i]|∥Fq[:, i]∥2

≤ w2,cLφ∥W1,c,m∥2Bf
N∑
j=1

( N∑
i=1

|G(Aq)[j, i]|
)

≤ Nw2,cLφ∥W1,c,m∥2Bf∥G(Aq)∥F .

(50)

This completes the proof.

Proposition 4.19. (restated) In a GCN with mean-readout function, under the combined assumptions for Theorem 4.9 and
Lemma 4.18, the following upper bound holds on the generalization error of the Gibbs measure mα,c(µn),

gen(mα,c(µn), µ) ≤
αM2

cM
2
ℓ′G

2
max

n
,

where Mc = w2,cLφ∥W1,c∥2Bf , Gmax = min
(
∥G(A)∥max

∞ , ∥G(A)∥max
F

)
, ∥G(A)∥max

∞ =
maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞ and ∥G(A)∥max

F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

Proof. The result follows directly by combining Lemma 4.18 with Theorem 4.9 and assuming the mean-readout function.
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For sum-readout, we can modify the result as follows,

Corollary C.1 (GCN and sum-readout). In a GCN with the sum-readout function, under the combined assumptions for
Theorem 4.9 and Lemma 4.18, the following upper bound holds on the generalization error of the Gibbs measure mα,c(µn),

gen(mα,c(µn), µ) ≤
αM2

cM
2
ℓ′G

2
max

n
,

where Mc = w2,cNmaxLφ∥W1,c∥2Bf , Gmax = min
(
∥G(A)∥max

∞ , ∥G(A)∥max
F

)
, ∥G(A)∥max

∞ =
maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞ and ∥G(A)∥max

F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

We can present a modified version of Proposition 4.19 that accommodates a bounded activation function. It is important to
note that our analysis assumes the activation function to be Lipschitz continuous, a condition that holds for the popular Tanh
function. However, for scenarios where the activation function is bounded, i.e.,

sup
A,F

|φ(G(A)[j, :]F)| ≤Mφ

we can propose an updated upper bound in Proposition 4.19 as follows,

Corollary C.2. Let us assume the same assumptions in Proposition 4.19 and a bounded activation function, i.e.,
supA,F |φ(G(A)[j, :]F)| ≤ Mφ for j ∈ [N ] in GCN. Then the following upper bound holds on the generalization
error of the Gibbs measure, mα,c(µn),

gen(mα,c(µn), µ) ≤
αM2

cM
2
ℓ′

n
,

where Mc = w2,cmin
(
Mφ, Lφ∥W1,c∥2GmaxBf

)
, Gmax = min

(
∥G(A)∥max

∞ , ∥G(A)∥max
F

)
, ∥G(A)∥max

∞ =
maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞ and ∥G(A)∥max

F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

C.3. MPGNN

Lemma 4.23. (restated) Let Assumptions 4.5 and 4.22 hold. For a graph sample (Aq,Fq) and a graph filter G(·), the
following upper bound holds on the summation of MPU units over all nodes:

N∑
j=1

|ϕp(Wp, G(Aq)[j, :]Fq)| ≤ w2,pLκBf (∥W3,p,m∥2 + LρLζGmax∥W1,p,m∥2). (51)

Proof. Recall that ∥G(Aq)∥∞ = maxj
∑N
i=1 |G(Aq)[j, i]|, ∥G(Aq)∥F =

√∑N
j=1

∑N
i=1(G(Aq)[j, i])2, ∥W1,p,m∥2 =

supW1,c∈Sk ∥W1,p∥2 and ∥W3,p,m∥2 = supW1,c∈Sk ∥W3,p∥2. Then, we have,

N∑
j=1

|ϕp(Wp, G(Aq)[j, :]Fq)| ≤ sup
W2,p∈S

|W2,p|Lκ
(
∥Fq[j, :]W3,p + ρ(G(Aq)[j, :]ζ(Fq))W1,p∥2

)

≤
N∑
j=1

sup
W3,p,W1,p∈Sk

w2,pLκ

(
∥Fq[j, :]W3,p∥2 + ∥ρ(G(Aq)[j, :]ζ(Fq))W1,p∥2

)

≤
N∑
j=1

w2,pLκ

(
∥Fq[j, :]∥2∥W3,p,m∥2 + ∥ρ(G(Aq)[j, :]ζ(Fq))∥2∥W1,p,m∥2

)

≤
N∑
j=1

w2,pLκ

(
∥Fq[j, :]∥2∥W3,p,m∥2 + LρLζ∥G(Aq)[j, :]Fq∥2∥W1,p,m∥2

)
≤ Nw2,pLκBf (∥W3,p,m∥2 + LρLζ∥G(Aq)∥∞∥W1,p,m∥2),

Similar to Lemma 4.18, we can show that,

N∑
j=1

|ϕp(Wp, G(Aq)[j, :]Fq)| ≤ Nw2,pLκBf (∥W3,p,m∥2 + LρLζ∥G(Aq)∥F ∥W1,p,m∥2).
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Proposition 4.24. (restated) In an MPGNN with the mean-readout function, under the combined assumptions for Theo-
rem 4.9 and Lemma 4.23, the following upper bound holds on the generalization error of the Gibbs measure mα,p(µn),

gen(mα,p(µn), µ) ≤
αM2

pM
2
ℓ′

n
,

with Mp = w2,pLκBf (∥W3,p∥2 + GmaxLρLζ∥W1,p∥2), Gmax = min
(
∥G(A)∥max

∞ , ∥G(A)∥max
F

)
, ∥G(A)∥max

∞ =
maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞ and ∥G(A)∥max

F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

Proof. The result follows directly by combining Lemma 4.23 with Theorem 4.9 and assuming the mean-readout function.

For the sum-readout function, similar to Corollary C.1, we have,

Corollary C.3 (MPGNN and sum-readout). In an MPGNN with the sum-readout function, under the combined assumptions
for Theorem 4.9 and Lemma 4.23, the following upper bound holds on the generalization error of the Gibbs measure
mα,p(µn),

gen(mα,p(µn), µ) ≤
αM2

pM
2
ℓ′

n
.

with Mp = w2,pNmaxLκBf (∥W3,p∥2 +GmaxLρLζ∥W1,p∥2), Gmax = min
(
∥G(A)∥max

∞ , ∥G(A)∥max
F

)
, ∥G(A)∥max

∞ =
maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞ and ∥G(A)∥max

F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

In a similar approach to the proof in Corollary C.2, we can derive an upper bound on the generalization error of MPGNN
based on the upper bound on the κ(.) function.

Corollary C.4. Let us assume the same assumptions in Proposition 4.19 and the bounded κ(.) function, i.e., supx∈R |κ(x)| ≤
Mκ , in MPGNN. Then the following upper bound holds on the generalization error of the Gibbs measure, mα,p(µn),

gen(mα,p(µn), µ) ≤
αM2

pM
2
ℓ′

n
,

with Mp = w2,pmin
(
Mκ, LκBf (∥W3,p∥2 + GmaxLρLζ∥W1,p∥2)

)
, Gmax = min

(
∥G(A)∥max

∞ , ∥G(A)∥max
F

)
,

∥G(A)∥max
∞ = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥∞ and ∥G(A)∥max

F = maxAq∈A,µ(fq,Aq)>0 ∥G(Aq)∥F .

C.4. Details of Remark 4.20 and Remark 4.21
Using Lemma A.3, we have ∥G(A)∥max

∞ ≤
√
(dmax + 1)/(dmin + 1). Similar to Lemma A.3, for sum-aggregation

G(A) = A+ I we have ∥G(A)∥max
∞ ≤ dmax + 1, and for random-walk G(A) = D−1A+ I we have ∥G(A)∥max

∞ = 2.

Regarding to
∥∥∥G(L̃)∥∥∥max

F
, using Lemma A.4, we have

∥∥∥G(L̃)∥∥∥max

F
≤
√
Rmax(L̃)

∥∥∥G(L̃)∥∥∥max
2

. Then, via Lemma A.5,

we have
∥∥∥G(L̃)∥∥∥

2
= 1. Similarly, for the random walk graph filter G(A) = D̃−1A + I we have ∥G(A)∥max

F ≤∥∥∥G(D̃−1A+ I)
∥∥∥max
2

√
Rmax(D̃−1A+ I) and

∥∥∥G(D̃−1A+ I)
∥∥∥max
2

= 2.

D. Generalization Error Upper Bound via Rademacher Complexities
Inspired by the Rademacher Complexity analysis in (Nishikawa et al., 2022) and (Nitanda et al., 2022), we provide an upper
bound on the generalization error of an over-parameterized one-hidden generic GNN model via Rademacher complexity
analysis.

For Rademacher complexity analysis, we define the following hypothesis set for generic GNN functions based on the
mean-field regime characterized by KL divergence between (m,π),

FKL(H) ≜
{ N∑
j=1

EW∼m

[
ϕ (W,G(Aq)[j, :]Fq)

]
: KL(m∥π) ≤ H

}
. (52)

24



Generalization Error of Graph Neural Networks in the Mean-field Regime

To establish an upper bound on the generalization error of the generic GNN, we first use the following lemma to bound the
Rademacher complexity of hypothesis set FKL(H).

Lemma D.1. (Chen et al., 2020, Based on Lemma 5.5) Under Assumption 4.3, the following bound holds on the empirical
Rademacher complexity of the hypothesis set FKL(H),

R̂Zn
(FKL(H)) ≤ NMϕ

√
2H

n
. (53)

Proof. Without loss of generality, we denote ϕT (W,Xi) :=
∑N
j=1 ϕ (W,G(Ai)[j, :]Fi). Then, with (52),

FKL(H) =
{
EW∼m

[
ϕT (W,Xq)

]
: KL(m∥π) ≤ H

}
.

From Donsker’s representation of KL for the definition of R̂Zn
(FKL(H)) and considering a constant λ > 0, we have

R̂Zn(FKL(H)) =
1

λ
Eσ

[
sup

m:KL(m∥π)≤H,
m<<π

λ

n

n∑
i=1

σiEW∼mϕT (W,Xi)

]

≤ 1

λ
Eσ

[
sup

m:KL(m∥π)≤H,
m<<π

{
KL(m∥π) + log

(
EW∼π exp

(
λ

n

n∑
i=1

σiϕT (W,Xi)

))}]

≤ 1

λ
Eσ

[
H + log

(
EW∼π exp

(
λ

n

n∑
i=1

σiϕT (W,Xi)

))]

≤ 1

λ

[
H + log

(
EW∼πEσ exp

(
λ

n

n∑
i=1

σiϕT (W,Xi)

))]
.

Here we applied Jensen’s inequality in the last line. Note that, {σi}ni=1 are i.i.d. Rademacher random variables. Then, from
the Hoeffding inequality with respect to Rademacher random variables, we have

Eσ exp

(
λ

n

n∑
i=1

σiϕT (W,Xi)

)
≤ exp

{
λ2

2n2

n∑
i=1

ϕ2T (W,Xi)

}
.

Note that, we have ϕT (W,Xi) ≤ NMϕ. Therefore, we have,

R̂Zn
(FKL(H)) ≤ 1

λ

(
H +

N2M2
ϕλ

2

2n

)
=
H

λ
+
N2M2

ϕλ

2n
,

which is minimized at λ =
√

2nH
N2M2

ϕ
, yielding

R̂Zn
(FKL(H)) ≤ NMϕ

√
2H

n
.

Remark D.2 (Comparison with Lemma 5.5 in (Chen et al., 2020)). In (Chen et al., 2020, Lemma 5.5), the authors assume a
Gaussian prior π. However, in Lemma D.1, we do not assume a Gaussian prior. Instead, we assume a bounded unit output.

Note that, in Nishikawa et al. (2022) and Nitanda et al. (2022), it is assumed that there exists a “true” distribution
mtrue ∈ P(W) which satisfies ℓ(Ψ(mtrue,Xi), yi) = 0 for all (Xi, yi) ∈ Z where µ(Xi, yi) > 0 and therefore we have
R(mtrue, µn) = 0. In addition, it is assumed that the KL-divergence between the true distribution and the prior distribution
is finite, i.e., KL(mtrue∥π) <∞. Due to the fact that the Gibbs measure is the minimizer of (9), Vα(m,µn), we have

1

α
KL(mα(µn)∥π) ≤ R(mα(µn), µn) +

1

α
KL(mα(µn)∥π) (54)
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≤ R(mtrue, µn) +
1

α
KL(mtrue∥π) (55)

≤ 1

α
KL(mtrue∥π). (56)

Therefore, the value of H is estimated by KL(mtrue∥π) in Nishikawa et al. (2022) and Nitanda et al. (2022). However,
mtrue is unknown and cannot be computed.

Considering the Gibbs measure, we provide the following proposition to estimate the value of H for the hypothesis set
FKL(H) in terms of known parameters of problem formulation. This is our main theoretical contribution in the area of
Rademacher Complexity analysis; it is related to results by (Chen et al., 2020; Nishikawa et al., 2022; Nitanda et al., 2022).

Proposition 4.13 (Upper bound on the symmetrized KL divergence). Under Assumptions 4.1, 4.3, and 4.4, the following
upper bound holds on the symmetrized KL divergence between the Gibbs measure mα(µn) and the prior measure π,

KLsym(m
α(µn)∥π) ≤ 2NMϕMℓ′Lψα.

Proof. The functional derivative of the empirical risk of a generic GNN concerning a measure m is

δR(mα(µn), µn, w)

δm
=

1

n

n∑
i=1

∂ŷℓ
(
EW∼mα(µn)[Φ(W,xi)], yi

)
Φ(w,xi).

Note that δR(mα(µn),µn,w)
δm is NMϕMℓ′Lψ-Lipschitz with respect to w under the metric d(w,w′) = 1w ̸=w′ . Recall that

mα(µn) =
π

Sα,π(µn)
exp

{
− α

δR(mα(µn), µn, w)

δm

}
.

We can compute the symmetrized KL divergence as follows:

KLsym(m
α(µn)∥π) = KL(mα(µn)∥π) + KL(π∥mα(µn))

= Emα(µn)

[
log

(
mα(µn)

π

)]
+ Eπ

[
log

(
π

mα(µn)

)]
= Eπ[log(Sα,π)]− Emα(µn)[log(Sα,π)]

+ αEmα(µn)

[
δR(mα(µn), µn, w)

δm

]
− αEπ

[
δR(mα(µn), µn, w)

δm

]

≤ α

∣∣∣∣∣Emα(µn)

[
δR(mα(µn), µn, w)

δm

]
− Eπ

[
δR(mα(µn), µn, w)

δm

]∣∣∣∣∣
≤ 2αLRTV(mα(µn), π),

where LR = NMϕMℓ′Lψ . The last and second to the last inequalities follow from the total variation distance representation,
(14), and the fact that

Eπ[log(Sα,π)]− Emα(µn)[log(Sα,π)] = 0 .

Using that TV(mα(µn), π) ≤ 1 completes the proof.

Combining Lemma D.1, Proposition 4.13, Lemma A.12 (the Uniform bound), and Lemma A.12 (Talagrand’s contraction),
we now derive the following upper bound on the generalization error for a generic GNN in the mean-field regime.

Theorem 4.14 (Generalization error upper bound via Rademacher complexity). Let Assumptions 4.1, 4.3, 4.4, and 4.2 hold.
Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following upper bound holds on the generalization error of the
Gibbs measure, i.e., mα(µn), under the distribution of PZn

,

gen(mα(µn), µ) ≤ 4NmaxMϕMℓ′Lψ

√
NmaxMϕMℓ′Lψα

n
+ 3Mℓ

√
log(2/δ)

2n
.
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Proof. From the uniform bound (Lemma A.11) and Talagrand’s contraction lemma (Lemma A.12), we have for any
δ ∈ (0, 1)

gen(mα(µn), µ) ≤ 2Mℓ′LψR̂Zn
(FKL(H)) + 3Mℓ

√
1

2n
log

(
2

δ

)
. (57)

Combining Lemma D.1 with (57) results in

gen(mα(µn), µ) ≤ 2NmaxMϕMℓ′Lψ

√
2H

n
+ 3Mℓ

√
1

2n
log

(
2

δ

)
. (58)

Next, we find a suitable value of H to be used in the definition (52) of FKL(H). For that purpose, note that

KL(mα(µn)∥π) ≤ KL(mα(µn)∥π) + KL(mα(µn)∥π)
≤ 2NmaxMϕMℓ′LψαTV(mα(µn), π)

≤ 2NmaxMϕMℓ′Lψα,

(59)

where the last inequality follows from TV(mα(µn), π) ≤ 1. Therefore, we choose H = 2NmaxMϕMℓ′Lψα in (58). This
choice completes the proof.

Note that the upper bound in Theorem 4.14 can be combined with Lemma 4.18 and Lemma 4.23 to provide upper bounds
on the generalization error of a GCN and an MPGNN in the mean-field regime, respectively. In addition to the assumptions
in Theorem 4.9, however, in Theorem 4.14 we need an extra assumption (Assumption 4.2).

Similar results to Corollary C.1 and Corollary C.3 for Rademacher complexity upper bounds based on sum-readout function
can be derived using similar approach. Also, similar to Corollary C.2 and Corollary C.4, we can derive Rademacher
complexity upper bounds based on mean-readout function.

E. More Discussion for Table 1
We also examine the dependency of our bound for the maximum/minimum node degree of graph data set (dmax, dmin)
in Table 1. In Ju et al. (2023), the upper bound is dependent on the spectral norm (L2 norm of the graph filter) which is
independent of (dmax, dmin). The upper bound proposed by (Maskey et al., 2022), is dependent on DX and the dimension
of the space of graphon instead of the maximum and minimum degree. Note that, our bounds also depend on the maximum
rank of the adjacency matrix in the graph data set.

F. Experiments
F.1. Implementation Details
Hardware and setup. Experiments were conducted on two compute nodes, each with 8 Nvidia Tesla T4 GPUs, 96 Intel
Xeon Platinum 8259CL CPUs @ 2.50GHz and 378GB RAM. With this setup, all experiments were completed within one
day. Note that we have six data sets, each with seven values of the width of the hidden layer, h, for two different supervised
ratio values, βsup, on three model types (GCN, GCN_RW5, and MPGNN) with two different readout functions (mean and
sum), for ten different random seeds. Therefore, there are a total of 6 × 7 × 2 × 3 × 2 × 10 = 5, 040 single runs in our
empirical analysis.

Code. Implementation code is provided at https://github.com/SherylHYX/GNN_MF_GE. We thank the authors
of (Liao et al., 2020) for kindly sharing their code with us.

Training. We train 200 epochs for synthetic data sets and 50 epochs for PROTEINS. The batch size is 128 for all data sets.

5GCN with random walk as aggregation method
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Regularization. Inspired by Chen et al. (2020), we propose the following regularized empirical risk minimization for
GCN.

R(mc
h(µn), µn) =

1

n

n∑
i=1

ℓ
(
E[Ψc(mc

h(µn),xi)], yi
)
+

1

hα

h∑
i=1

∥Wc[i, :]∥22
2

, (60)

where Wc[i, :] denotes the parameters of the i−th neuron unit. For MPGNN, we consider the following regularized empirical
risk minimization:

R(mp
h(µn), µn) =

1

n

n∑
i=1

ℓ
(
Ψp(m

p
h(µn),xi), yi

)
+

1

hα

h∑
i=1

∥Wp[i, :]∥22
2

, (61)

where Wp[i, :] is the parameters of i−th MPU unit.

Optimizer. Taking the regularization term into account, we use Stochastic Gradient Descend (SGD) from PyTorch as the
optimizer and ℓ2 regularization with weight decay 1

hα to avoid overfitting, where h is the width of the hidden layer, and α is
a tuning parameter which we set to be 100. We use a learning rate of 0.005 and a momentum of 0.9 throughout.

Tanh function. For ease of bound computation, we use Tanh for GCN as the activation function and for MPGNN as the
non-linear function κ(.).

F.2. Data Sets
We generate five synthetic data sets from two random graph models using NetworkX (Hagberg et al., 2008). The first three
synthetic data sets correspond to Stochastic Block Models (SBMs) and the remaining two correspond to Erdős-Rényi (ER)
models. The synthetic models have the following settings:

1. Stochastic-Block-Models-1 (SBM-1), where each graph has 100 nodes, two blocks with size 40 and 60, respectively.
The edge probability matrix is [

0.25 0.13
0.13 0.37

]
.

2. Stochastic-Block-Models-2 (SBM-2), where each graph has 100 nodes, and three blocks with sizes 25, 25, and 50,
respectively. The edge probability matrix is 0.25 0.05 0.02

0.05 0.35 0.07
0.02 0.07 0.40

 .
3. Stochastic-Block-Models-3 (SBM-3), where each graph has 50 nodes, and three blocks with sizes 15, 15, and 20,

respectively. The edge probability matrix is 0.5 0.1 0.2
0.1 0.4 0.1
0.2 0.1 0.4

 .
4. Erdős-Rényi-Models-4 (ER-4), where each graph has 100 nodes, with edge probability 0.7.

5. Erdős-Rényi-Models-5 (ER-5), where each graph has 20 nodes, with edge probability 0.5.

Each synthetic data set has 200 graphs, the number of classes is 2, and the random train-test split ratio is βsup : (1− βsup),
where in our experiments we vary βsup in {0.7, 0.9}. For each random graph of an individual synthetic data set, we
generate the 16-dimension random Gaussian node feature (normalized to have unit ℓ2 norm) and a binary class label
following a uniform distribution. In addition to the synthetic data sets, we have one real-world bioinformatics data set called
PROTEINS (Borgwardt et al., 2005). In PROTEINS, nodes are secondary structure elements, and two nodes are connected
by an edge if they are neighbors in the amino-acid sequence or in 3D space. Table 3 summarizes the statistics for the data
sets in our experiments.
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Table 3: Summary statistics for the data sets.

Statistics/Data Set SBM-1 SBM-2 SBM-3 ER-4 ER-5 PROTEINS

Maximum number of nodes (Nmax) 100 100 50 100 20 620
Number of graphs 200 200 200 200 200 1113
Feature dimension 16 16 16 16 16 3
Maximum node degree 14 35 22 87 16 25
Minimum node degree 6 1 1 52 2 0

F.3. Bound Computation
As our upper bounds in Corollaries C.2 and C.4 are applicable for the over-parameterized regime in a continuous space of
parameters, we estimate the upper bounds for a large number of hidden units, h. For this purpose, we need to compute the
following parameters from the model and the data set:

• Bf : We compute the l2 norm of the node features before GNN aggregation and find the max ∥F [j, :]∥2 for all training
and test data. This would be the Bf term in Corollaries C.2 and C.4.

• dmax: Maximum degree of a node in all graph samples.

• Lφ: Lipschitzness of the activation function. For Tanh, we have Lφ = 1.

• w2,c: For GCN, we can choose the maximum value of |W2,c| as w2,c. For MPGNN, we consider the maximum value
of |W2,p| among all MPU units as w2,c.

• Mℓ and Mℓ′ : As we consider the Tanh function as our activation function in GCN and as the κ(.) function in MPGNN,
we have Mℓ = log(1 + exp(−w2,c ∗B)) and we also have Mℓ′ = 1. Note that the maximum value of the derivative
of the logistic loss function ℓ(Ψ(W,x), y) = log(1 + exp(−Ψ(W,x)y)) is 1.

• ∥W1,c,m∥2: We consider the maximum value of ∥W1,c∥2 among all neuron units.

• ∥W1,p,m∥2 and ∥W3,p,m∥2: We consider the maximum values of ∥W1,p∥2 and ∥W3,p∥2 among all MPU units as
∥W1,p,m∥2 and ∥W3,p,m∥2, respectively.

F.4. Extended Experimental Results
We compute the actual absolute empirical generalization errors (the difference between the test loss value and the training
loss value) as well as empirical generalization error bounds for GCN, GCN_RW, and MPGNN with either the mean-readout
function or the sum-readout function. Here GCN_RW denotes a variant of GCN where the symmetric normalization of
the adjacency matrix is replaced by the random walk normalization. Specifically, Table 4 reports the effect of the width
h of the hidden layer on the actual absolute empirical generalization errors for GCN when we employ a mean-readout
function, over various data sets and supervised ratio values βsup, where Table 5 and Table 6 reports those for GCN_RW and
MPGNN when we employ a mean-readout function, respectively. Tables 7, 8, and 9 report the actual absolute empirical
generalization errors for GCN, GCN_RW, and MPGNN with the sum-readout function, respectively. Table 10 reports the
empirical generalization error bound values for all three model types for both mean and sum readout functions with hidden
size h = 256.

F.5. Discussion
In all our experimental findings, increasing the width of the hidden layer leads to a reduction in generalization errors.
Regarding the comparison of mean-readout and sum-readout, based on our results in Corollary C.1 and Proposition 4.19
for GCN and Corollary C.3 and Proposition 4.24 for MPGNN, the upper bound on the generalization error of GCN and
MPGNN with mean-readout is less than the upper bound on the generalization error with sum-readout function in GCN and
MPGNN, respectively. This pattern is similarly evident in the empirical generalization error results presented in Tables 4
and 7 for GCN and Tables 6 and 9 for MPGNN. As shown in Table 10 and Table 11, the upper bounds on the generalization
error of GCN under L̃ and random walk as graph filters are similar. The empirical generalization error of GCN under L̃ and
random walk in Tables 4 and 5 are also similar. Tables 12 to 15 provides other bound computation results based on smaller
h values. We conclude that these are very similar to the bounds computed using h = 256, and hence h = 256 should be a
proper approximation to the mean-field regime.
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Table 4: Absolute empirical generalization error (×105×105×105) for different widths h of the hidden layer for GCN, for which
we employ a mean-readout function and various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup h = 4 h = 8 h = 16 h = 32 h = 64 h = 128 h = 256

SBM-1 0.7 66.37± 44.09 18.66± 15.44 13.91± 9.46 3.42± 2.96 2.04± 1.68 1.23± 0.99 0.29± 0.27
SBM-1 0.9 101.34± 73.25 36.35± 37.01 12.76± 14.21 12.00± 4.81 3.56± 2.69 0.86± 0.60 0.60± 0.39
SBM-2 0.7 67.27± 44.95 19.57± 16.12 13.54± 9.79 3.79± 3.16 2.36± 1.71 1.25± 0.93 0.31± 0.22
SBM-2 0.9 103.32± 77.20 36.67± 40.96 15.38± 15.17 11.85± 4.41 3.51± 2.41 0.96± 0.56 0.60± 0.38
SBM-3 0.7 85.51± 54.72 42.42± 23.06 25.18± 10.59 6.72± 4.32 4.36± 3.63 1.13± 0.62 0.33± 0.23
SBM-3 0.9 108.83± 139.12 61.35± 45.92 24.04± 22.08 13.07± 13.03 4.19± 3.06 1.81± 1.50 0.73± 0.61
ER-4 0.7 69.63± 45.13 18.39± 15.77 14.04± 10.49 3.86± 3.36 2.17± 1.67 1.24± 1.02 0.33± 0.25
ER-4 0.9 102.21± 79.73 38.18± 37.76 13.49± 13.99 12.32± 4.67 3.52± 2.61 0.88± 0.56 0.59± 0.36
ER-5 0.7 123.16± 113.58 60.06± 29.55 39.63± 23.92 16.21± 7.46 3.34± 2.76 1.63± 1.02 0.59± 0.62
ER-5 0.9 203.04± 97.39 100.28± 95.76 48.95± 33.67 21.76± 17.30 6.91± 6.40 1.98± 1.92 1.00± 0.62
PROTEINS 0.7 256.91± 132.64 157.51± 145.88 50.78± 63.32 22.77± 19.97 8.37± 7.71 1.85± 1.28 1.72± 1.38
PROTEINS 0.9 95.66± 85.97 67.25± 52.78 26.35± 15.27 12.36± 7.95 2.18± 1.85 1.11± 1.16 0.33± 0.28

Table 5: Empirical absolute generalization error (×105×105×105) for different widths h of the hidden layer for GCN_RW, for which
we employ a mean-readout function and various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup h = 4 h = 8 h = 16 h = 32 h = 64 h = 128 h = 256

SBM-1 0.7 66.71± 43.86 18.49± 15.25 13.85± 9.33 3.41± 3.08 2.05± 1.69 1.23± 0.99 0.29± 0.26
SBM-1 0.9 101.61± 72.92 35.81± 36.26 12.65± 13.99 12.01± 4.85 3.60± 2.71 0.85± 0.59 0.59± 0.39
SBM-2 0.7 66.87± 46.15 19.40± 16.29 13.70± 9.86 3.87± 3.37 2.35± 1.73 1.24± 0.94 0.32± 0.22
SBM-2 0.9 102.64± 77.20 37.06± 40.15 15.15± 15.06 11.90± 4.43 3.54± 2.42 0.95± 0.54 0.59± 0.38
SBM-3 0.7 84.58± 53.86 42.57± 22.71 25.41± 10.69 6.67± 4.39 4.37± 3.60 1.13± 0.60 0.33± 0.22
SBM-3 0.9 107.79± 138.73 61.28± 46.17 24.22± 22.75 13.08± 12.93 4.19± 3.09 1.81± 1.50 0.74± 0.63
ER-4 0.7 69.60± 45.04 18.40± 15.75 14.04± 10.50 3.85± 3.36 2.17± 1.67 1.24± 1.02 0.35± 0.26
ER-4 0.9 102.20± 79.69 38.14± 37.83 13.49± 13.99 12.32± 4.67 3.52± 2.61 0.88± 0.56 0.59± 0.37
ER-5 0.7 121.54± 111.05 59.94± 29.04 39.85± 23.30 16.13± 7.67 3.38± 2.81 1.62± 1.02 0.61± 0.62
ER-5 0.9 200.88± 97.85 99.61± 94.82 49.04± 34.17 21.71± 17.31 6.93± 6.44 1.98± 1.92 1.02± 0.62
PROTEINS 0.7 257.77± 133.07 157.76± 146.31 50.83± 63.41 22.79± 19.97 8.37± 7.72 1.85± 1.28 1.72± 1.38
PROTEINS 0.9 95.82± 85.65 67.42± 52.74 26.37± 15.19 12.38± 7.96 2.18± 1.84 1.11± 1.16 0.32± 0.28

Table 6: Empirical absolute generalization error (×105×105×105) for different widths h of the hidden layer for MPGNN, for which
we employ a mean-readout function and various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup h = 4 h = 8 h = 16 h = 32 h = 64 h = 128 h = 256

SBM-1 0.7 31.39± 27.27 27.39± 37.85 11.50± 9.70 5.13± 5.20 3.10± 2.19 0.56± 0.42 0.77± 0.52
SBM-1 0.9 54.32± 35.73 24.44± 17.76 13.64± 8.20 7.76± 3.12 2.68± 1.35 1.80± 1.00 0.87± 0.57
SBM-2 0.7 31.59± 27.47 25.64± 36.66 11.10± 9.45 5.03± 5.17 3.28± 2.19 0.80± 0.56 0.77± 0.56
SBM-2 0.9 58.06± 36.49 26.80± 19.50 14.48± 8.15 7.38± 3.80 2.71± 1.58 1.86± 0.96 0.88± 0.63
SBM-3 0.7 42.21± 54.18 12.36± 9.99 15.00± 12.97 8.99± 5.73 3.18± 2.86 1.86± 1.40 1.10± 0.72
SBM-3 0.9 72.91± 35.61 26.80± 27.89 11.07± 6.90 9.62± 7.27 3.78± 2.42 2.55± 2.27 0.86± 0.79
ER-4 0.7 31.61± 26.04 25.19± 36.25 11.17± 9.81 5.01± 4.88 3.10± 2.14 0.64± 0.49 0.74± 0.56
ER-4 0.9 58.24± 34.28 25.84± 18.96 13.27± 7.39 7.47± 3.25 2.71± 1.43 1.79± 1.01 0.89± 0.56
ER-5 0.7 75.54± 57.19 35.99± 36.89 25.52± 15.42 10.60± 8.65 4.38± 4.97 3.01± 1.79 1.93± 1.02
ER-5 0.9 112.86± 40.24 54.54± 62.52 32.05± 20.23 13.84± 10.95 6.55± 4.59 1.96± 2.12 1.45± 0.75
PROTEINS 0.7 21.09± 13.77 18.05± 29.26 5.17± 3.57 2.33± 2.56 1.42± 1.23 1.17± 1.18 0.22± 0.23
PROTEINS 0.9 109.26± 71.68 57.88± 42.90 25.44± 22.23 13.80± 10.87 6.96± 4.22 4.37± 2.09 2.17± 1.58
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Table 7: Empirical absolute generalization error (×105×105×105) for different widths h of the hidden layer for GCN, for which we
employ a sum-readout function and various supervised ratios of βsup. We report the mean plus/minus one standard deviation
over ten runs.

Data Set βsup h = 4 h = 8 h = 16 h = 32 h = 64 h = 128 h = 256

SBM-1 0.7 32043.32± 16566.13 23188.17± 11633.58 12027.73± 5808.93 3292.38± 1512.93 954.86± 485.91 309.84± 195.80 69.97± 53.92
SBM-1 0.9 11014.75± 9029.01 8587.25± 5798.39 4112.02± 2643.86 1061.97± 842.66 483.87± 310.76 158.10± 111.88 59.79± 38.18
SBM-2 0.7 29492.62± 15154.35 21897.35± 10576.63 11528.95± 5424.90 3180.05± 1592.76 893.67± 510.50 302.50± 177.62 65.90± 47.15
SBM-2 0.9 10939.57± 9443.50 8767.78± 6205.08 4198.28± 2726.61 1029.97± 840.74 452.85± 299.91 162.18± 111.69 59.96± 35.63
SBM-3 0.7 24106.77± 12571.98 14354.73± 5584.92 5151.51± 3047.06 1978.71± 1092.38 300.63± 198.73 124.01± 81.82 28.69± 19.98
SBM-3 0.9 11512.44± 7587.11 6449.65± 4699.86 2671.03± 2532.28 1033.62± 1133.25 274.73± 169.96 110.43± 83.63 35.22± 25.80
ER-4 0.7 31101.54± 15568.03 22961.55± 10676.48 12133.39± 5563.73 3385.93± 1638.43 960.17± 499.79 311.68± 194.79 71.25± 53.81
ER-4 0.9 11349.50± 9665.34 8915.33± 6303.86 4305.80± 2789.51 1092.02± 868.09 487.43± 312.86 159.23± 109.41 59.54± 36.57
ER-5 0.7 12857.92± 6902.99 6270.49± 2471.73 2971.75± 1483.12 594.54± 481.81 222.13± 105.15 54.96± 21.80 20.09± 17.30
ER-5 0.9 3459.34± 2468.52 2126.09± 1573.64 937.35± 715.44 410.62± 305.72 161.93± 130.67 43.76± 37.61 20.60± 13.61
PROTEINS 0.7 2901.59± 1921.36 2763.40± 1750.78 2686.88± 1763.09 2639.22± 1548.08 2262.60± 1594.35 1395.51± 1028.10 552.28± 408.37
PROTEINS 0.9 5496.67± 121.21 5461.98± 30.99 5418.24± 53.89 5683.96± 131.28 6172.92± 113.16 4711.74± 182.59 2162.89± 181.60

Table 8: Empirical absolute generalization error (×105×105×105) for different widths h of the hidden layer for GCN_RW, for which
we employ a sum-readout function and various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup h = 4 h = 8 h = 16 h = 32 h = 64 h = 128 h = 256

SBM-1 0.7 32202.69± 16672.76 23276.51± 11663.99 12093.87± 5792.22 3319.33± 1528.94 959.65± 484.71 310.31± 195.87 70.17± 53.66
SBM-1 0.9 11047.91± 9063.60 8605.98± 5812.74 4117.02± 2640.91 1051.64± 836.74 492.20± 312.51 157.20± 110.82 59.17± 37.52
SBM-2 0.7 29464.80± 15051.55 21963.74± 10570.57 11625.39± 5466.76 3205.53± 1653.48 900.03± 512.29 302.58± 179.68 66.34± 48.32
SBM-2 0.9 10969.08± 9674.08 8786.41± 6312.44 4219.59± 2785.49 1024.60± 849.98 458.05± 305.83 161.38± 110.93 59.30± 35.73
SBM-3 0.7 24204.66± 12196.40 14446.60± 5486.24 5198.20± 3006.84 1986.90± 1079.75 304.06± 200.22 124.71± 82.10 28.79± 19.92
SBM-3 0.9 11521.04± 7603.94 6424.98± 4711.22 2711.02± 2530.53 1038.27± 1121.70 272.09± 168.42 111.38± 83.39 35.89± 26.55
ER-4 0.7 31094.88± 15550.76 22956.86± 10665.25 12131.93± 5561.57 3385.06± 1636.21 960.45± 499.69 311.72± 194.88 71.27± 53.77
ER-4 0.9 11345.07± 9661.97 8913.06± 6303.20 4303.07± 2791.26 1091.45± 867.72 487.14± 312.64 159.09± 109.52 59.55± 36.57
ER-5 0.7 12866.49± 6889.85 6276.96± 2479.75 2982.31± 1475.88 590.39± 481.24 222.85± 104.62 54.99± 21.79 20.23± 17.47
ER-5 0.9 3435.09± 2462.73 2118.73± 1592.37 938.36± 717.11 408.90± 303.14 161.82± 132.05 43.84± 37.65 20.88± 13.62
PROTEINS 0.7 2900.35± 1919.12 2763.56± 1749.91 2687.83± 1762.29 2640.40± 1547.35 2262.67± 1594.47 1395.50± 1028.99 552.57± 408.40
PROTEINS 0.9 5501.96± 117.09 5470.32± 27.49 5425.94± 53.69 5690.28± 131.20 6181.97± 113.28 4720.11± 182.87 2166.19± 181.78

Table 9: Empirical absolute generalization error (×105×105×105) for different widths h of the hidden layer for MPGNN, for which we
employ a sum-readout function and various supervised ratios of βsup. We report the mean plus/minus one standard deviation
over ten runs.

Data Set βsup h = 4 h = 8 h = 16 h = 32 h = 64 h = 128 h = 256

SBM-1 0.7 6585.43± 4142.24 5259.12± 5278.60 2267.42± 999.08 1870.21± 1126.94 863.73± 615.32 382.73± 199.14 221.63± 108.73
SBM-1 0.9 4891.93± 4654.50 3103.23± 3360.01 1857.44± 1867.96 911.86± 949.42 444.46± 290.26 311.74± 232.01 153.68± 150.55
SBM-2 0.7 6501.10± 4180.16 5044.84± 5075.24 2273.68± 998.62 1910.63± 1122.18 851.73± 613.75 390.12± 198.82 228.47± 108.99
SBM-2 0.9 5001.03± 4333.61 3282.25± 3330.88 1853.53± 1942.58 866.83± 949.21 474.32± 316.04 318.67± 232.69 160.81± 156.28
SBM-3 0.7 6344.20± 5047.26 2025.66± 1769.09 1928.82± 1554.69 1118.35± 712.80 555.00± 350.92 277.29± 221.90 145.94± 124.73
SBM-3 0.9 3740.18± 2378.95 1523.19± 1165.79 935.91± 700.15 579.09± 388.71 247.42± 228.09 180.99± 110.70 76.95± 49.52
ER-4 0.7 6407.19± 4182.56 5045.12± 5052.70 2261.19± 1028.58 1882.95± 1098.92 848.09± 617.37 383.24± 188.61 219.20± 108.37
ER-4 0.9 4492.42± 4098.88 3340.34± 3534.57 1754.96± 1911.25 841.93± 963.63 450.14± 282.38 307.74± 232.70 155.84± 149.04
ER-5 0.7 1175.50± 960.26 1004.51± 913.75 838.87± 482.98 362.88± 261.34 135.72± 67.97 112.66± 71.25 46.78± 37.25
ER-5 0.9 1843.43± 1152.07 1115.01± 1019.58 748.95± 399.20 270.69± 242.98 156.37± 94.23 77.84± 50.28 40.04± 18.55
PROTEINS 0.7 1084.56± 780.16 1007.44± 975.67 1306.72± 887.61 1084.37± 588.17 1085.74± 537.60 843.62± 527.95 762.83± 537.17
PROTEINS 0.9 558.80± 88.90 839.32± 97.22 1277.49± 147.09 1848.46± 100.86 2281.52± 64.97 2573.71± 48.59 2510.18± 29.38
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Table 10: Empirical generalization error bounds via functional derivative for width h = 256 of the hidden layer for different
model types and readout functions, for various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup
mean readout sum readout

GCN GCN_RW MPGNN GCN GCN_RW MPGNN

SBM-1 0.7 0.014± 0.001 0.015± 0.001 0.244± 0.013 2520476.175± 156887.505 2669876.975± 164650.807 4005.391± 220.699
SBM-1 0.9 0.011± 0.001 0.012± 0.001 0.190± 0.010 1885484.212± 142336.573 1996144.750± 150151.799 3118.617± 164.941
SBM-2 0.7 0.023± 0.001 0.025± 0.001 0.341± 0.019 4089494.725± 260354.119 4438159.850± 275790.885 5603.943± 323.262
SBM-2 0.9 0.018± 0.001 0.020± 0.001 0.266± 0.015 3049281.675± 228393.096 3310971.200± 245013.883 4364.249± 244.524
SBM-3 0.7 0.015± 0.001 0.016± 0.001 0.249± 0.013 624203.919± 38222.136 657592.244± 40341.332 4091.722± 236.617
SBM-3 0.9 0.011± 0.001 0.012± 0.001 0.193± 0.010 476286.562± 25613.135 501607.622± 26855.429 3182.215± 179.787
ER-4 0.7 0.005± 0.000 0.005± 0.000 0.122± 0.005 811877.012± 49965.822 815294.519± 50332.475 1993.695± 90.394
ER-4 0.9 0.004± 0.000 0.004± 0.000 0.095± 0.004 607448.919± 45159.041 609996.025± 45468.797 1552.299± 68.335
ER-5 0.7 0.008± 0.000 0.009± 0.001 0.168± 0.008 53656.979± 2753.653 58993.716± 3014.306 2752.105± 142.909
ER-5 0.9 0.006± 0.000 0.007± 0.000 0.131± 0.006 41149.381± 2515.410 45243.126± 2763.916 2137.883± 111.558
PROTEINS 0.7 0.005± 0.000 0.005± 0.000 0.045± 0.003 363676.153± 93112.546 363892.670± 93165.563 2122.023± 27.214
PROTEINS 0.9 0.004± 0.000 0.004± 0.000 0.035± 0.002 402014.978± 50920.169 402314.366± 50931.723 1657.479± 21.872

Table 11: Empirical generalization error bounds via Rademacher Complexities for width h = 256 of the hidden layer for
different model types and readout functions, for various supervised ratios of βsup. We report the mean plus/minus one
standard deviation over ten runs.

Data Set βsup
mean readout sum readout

GCN GCN_RW MPGNN GCN GCN_RW MPGNN

SBM-1 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 304382.491± 9500.618 304607.622± 9518.604 4814.476± 84.398
SBM-1 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 260826.333± 7491.220 260911.930± 7550.637 4245.814± 74.430
SBM-2 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 305824.653± 9984.800 305862.869± 10206.895 4814.185± 84.265
SBM-2 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 261423.833± 7225.399 261561.489± 7270.949 4245.654± 74.354
SBM-3 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 104673.709± 2587.052 104675.531± 2549.178 4816.482± 84.778
SBM-3 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 91149.288± 1448.412 91135.775± 1449.661 4247.080± 74.968
ER-4 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 305177.969± 10269.198 305189.119± 10276.768 4814.444± 84.389
ER-4 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 261501.731± 7297.492 261507.970± 7300.305 4245.799± 74.568
ER-5 0.7 0.465± 0.002 0.465± 0.002 3.600± 0.137 26211.781± 520.483 26209.152± 522.064 4557.881± 205.714
ER-5 0.9 0.410± 0.002 0.410± 0.002 3.175± 0.120 22835.085± 242.080 22832.954± 242.523 4014.455± 180.352
PROTEINS 0.7 0.197± 0.001 0.197± 0.001 0.844± 0.030 59715.427± 7057.934 59730.912± 7058.069 2089.489± 20.112
PROTEINS 0.9 0.174± 0.001 0.174± 0.001 0.747± 0.026 64516.645± 4037.346 64535.982± 4035.333 1848.825± 18.308

Table 12: Empirical generalization error bounds via functional derivative for width h = 128 of the hidden layer for different
model types and readout functions, for various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup
mean readout sum readout

GCN GCN_RW MPGNN GCN GCN_RW MPGNN

SBM-1 0.7 0.014± 0.001 0.015± 0.001 0.244± 0.013 2520476.175± 156887.505 2669876.975± 164650.807 4005.391± 220.699
SBM-1 0.9 0.011± 0.001 0.012± 0.001 0.190± 0.010 1885484.212± 142336.573 1996144.750± 150151.799 3118.617± 164.941
SBM-2 0.7 0.023± 0.001 0.025± 0.001 0.341± 0.019 4089494.725± 260354.119 4438159.850± 275790.885 5603.943± 323.262
SBM-2 0.9 0.018± 0.001 0.020± 0.001 0.266± 0.015 3049281.675± 228393.096 3310971.200± 245013.883 4364.249± 244.524
SBM-3 0.7 0.015± 0.001 0.016± 0.001 0.249± 0.013 624203.919± 38222.136 657592.244± 40341.332 4091.722± 236.617
SBM-3 0.9 0.011± 0.001 0.012± 0.001 0.193± 0.010 476286.562± 25613.135 501607.622± 26855.429 3182.215± 179.787
ER-4 0.7 0.005± 0.000 0.005± 0.000 0.122± 0.005 811877.012± 49965.822 815294.519± 50332.475 1993.695± 90.394
ER-4 0.9 0.004± 0.000 0.004± 0.000 0.095± 0.004 607448.919± 45159.041 609996.025± 45468.797 1552.299± 68.335
ER-5 0.7 0.008± 0.000 0.009± 0.001 0.168± 0.008 53656.979± 2753.653 58993.716± 3014.306 2752.105± 142.909
ER-5 0.9 0.006± 0.000 0.007± 0.000 0.131± 0.006 41149.381± 2515.410 45243.126± 2763.916 2137.883± 111.558
PROTEINS 0.7 0.005± 0.000 0.005± 0.000 0.045± 0.003 363676.153± 93112.546 363892.670± 93165.563 2122.023± 27.214
PROTEINS 0.9 0.004± 0.000 0.004± 0.000 0.035± 0.002 402014.978± 50920.169 402314.366± 50931.723 1657.479± 21.872
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Table 13: Empirical generalization error bounds via Rademacher Complexities for width h = 128 of the hidden layer for
different model types and readout functions, for various supervised ratios of βsup. We report the mean plus/minus one
standard deviation over ten runs.

Data Set βsup
mean readout sum readout

GCN GCN_RW MPGNN GCN GCN_RW MPGNN

SBM-1 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 304382.491± 9500.618 304607.622± 9518.604 4814.476± 84.398
SBM-1 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 260826.333± 7491.220 260911.930± 7550.637 4245.814± 74.430
SBM-2 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 305824.653± 9984.800 305862.869± 10206.895 4814.185± 84.265
SBM-2 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 261423.833± 7225.399 261561.489± 7270.949 4245.654± 74.354
SBM-3 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 104673.709± 2587.052 104675.531± 2549.178 4816.482± 84.778
SBM-3 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 91149.288± 1448.412 91135.775± 1449.661 4247.080± 74.968
ER-4 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 305177.969± 10269.198 305189.119± 10276.768 4814.444± 84.389
ER-4 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 261501.731± 7297.492 261507.970± 7300.305 4245.799± 74.568
ER-5 0.7 0.465± 0.002 0.465± 0.002 3.600± 0.137 26211.781± 520.483 26209.152± 522.064 4557.881± 205.714
ER-5 0.9 0.410± 0.002 0.410± 0.002 3.175± 0.120 22835.085± 242.080 22832.954± 242.523 4014.455± 180.352
PROTEINS 0.7 0.197± 0.001 0.197± 0.001 0.844± 0.030 59715.427± 7057.934 59730.912± 7058.069 2089.489± 20.112
PROTEINS 0.9 0.174± 0.001 0.174± 0.001 0.747± 0.026 64516.645± 4037.346 64535.982± 4035.333 1848.825± 18.308

Table 14: Empirical generalization error bounds via functional derivative for width h = 64 of the hidden layer for different
model types and readout functions, for various supervised ratios of βsup. We report the mean plus/minus one standard
deviation over ten runs.

Data Set βsup
mean readout sum readout

GCN GCN_RW MPGNN GCN GCN_RW MPGNN

SBM-1 0.7 0.014± 0.001 0.015± 0.001 0.244± 0.013 2520476.175± 156887.505 2669876.975± 164650.807 4005.391± 220.699
SBM-1 0.9 0.011± 0.001 0.012± 0.001 0.190± 0.010 1885484.212± 142336.573 1996144.750± 150151.799 3118.617± 164.941
SBM-2 0.7 0.023± 0.001 0.025± 0.001 0.341± 0.019 4089494.725± 260354.119 4438159.850± 275790.885 5603.943± 323.262
SBM-2 0.9 0.018± 0.001 0.020± 0.001 0.266± 0.015 3049281.675± 228393.096 3310971.200± 245013.883 4364.249± 244.524
SBM-3 0.7 0.015± 0.001 0.016± 0.001 0.249± 0.013 624203.919± 38222.136 657592.244± 40341.332 4091.722± 236.617
SBM-3 0.9 0.011± 0.001 0.012± 0.001 0.193± 0.010 476286.562± 25613.135 501607.622± 26855.429 3182.215± 179.787
ER-4 0.7 0.005± 0.000 0.005± 0.000 0.122± 0.005 811877.012± 49965.822 815294.519± 50332.475 1993.695± 90.394
ER-4 0.9 0.004± 0.000 0.004± 0.000 0.095± 0.004 607448.919± 45159.041 609996.025± 45468.797 1552.299± 68.335
ER-5 0.7 0.008± 0.000 0.009± 0.001 0.168± 0.008 53656.979± 2753.653 58993.716± 3014.306 2752.105± 142.909
ER-5 0.9 0.006± 0.000 0.007± 0.000 0.131± 0.006 41149.381± 2515.410 45243.126± 2763.916 2137.883± 111.558
PROTEINS 0.7 0.005± 0.000 0.005± 0.000 0.045± 0.003 363676.153± 93112.546 363892.670± 93165.563 2122.023± 27.214
PROTEINS 0.9 0.004± 0.000 0.004± 0.000 0.035± 0.002 402014.978± 50920.169 402314.366± 50931.723 1657.479± 21.872

Table 15: Empirical generalization error bounds via Rademacher Complexities for width h = 64 of the hidden layer for
different model types and readout functions, for various supervised ratios of βsup. We report the mean plus/minus one
standard deviation over ten runs.

Data Set βsup
mean readout sum readout

GCN GCN_RW MPGNN GCN GCN_RW MPGNN

SBM-1 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 304382.491± 9500.618 304607.622± 9518.604 4814.476± 84.398
SBM-1 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 260826.333± 7491.220 260911.930± 7550.637 4245.814± 74.430
SBM-2 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 305824.653± 9984.800 305862.869± 10206.895 4814.185± 84.265
SBM-2 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 261423.833± 7225.399 261561.489± 7270.949 4245.654± 74.354
SBM-3 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 104673.709± 2587.052 104675.531± 2549.178 4816.482± 84.778
SBM-3 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 91149.288± 1448.412 91135.775± 1449.661 4247.080± 74.968
ER-4 0.7 0.465± 0.002 0.465± 0.002 3.774± 0.063 305177.969± 10269.198 305189.119± 10276.768 4814.444± 84.389
ER-4 0.9 0.410± 0.002 0.410± 0.002 3.329± 0.055 261501.731± 7297.492 261507.970± 7300.305 4245.799± 74.568
ER-5 0.7 0.465± 0.002 0.465± 0.002 3.600± 0.137 26211.781± 520.483 26209.152± 522.064 4557.881± 205.714
ER-5 0.9 0.410± 0.002 0.410± 0.002 3.175± 0.120 22835.085± 242.080 22832.954± 242.523 4014.455± 180.352
PROTEINS 0.7 0.197± 0.001 0.197± 0.001 0.844± 0.030 59715.427± 7057.934 59730.912± 7058.069 2089.489± 20.112
PROTEINS 0.9 0.174± 0.001 0.174± 0.001 0.747± 0.026 64516.645± 4037.346 64535.982± 4035.333 1848.825± 18.308
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