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Abstract—We investigate the recovery of nodes and ampli-
tudes from noisy frequency samples in spike train signals, also
known as the super-resolution (SR) problem. When the node
separation falls below the Rayleigh limit, the problem becomes
ill-conditioned. Admissible sampling rates, or decimation param-
eters, improve the conditioning of the SR problem, enabling more
accurate recovery. We propose an efficient preprocessing method
to identify the optimal sampling rate, significantly enhancing the
performance of SR techniques.

I. INTRODUCTION

Consider the following "spike train" signal:

µ(x) :=

n∑
i=1

ajδxj
, aj ∈ C, xj ∈ T := R mod 2π.

(1)
where δx is the Dirac δ-distribution. We refer to {xj}nj=1 as the
nodes and to {aj}nj=1 as the coefficients. Given noisy band-
limited Fourier measurements µ̂ϵ(ω) = µ̂(ω) + e(ω), where

µ̂(ω) =

n∑
j=1

aj exp (iωxj), ω ∈ [−Ω,Ω] (2)

where Ω > 0 and ∥e(ω)∥∞ ≤ ϵ for some ϵ > 0, the goal is
to recover {aj , xj}nj=1 in equation (1). This Super-resolution
(SR) problem is an inverse problem of great theoretical and
practical interest, with diverse applications in optics, imaging,
inverse scattering, signal processing, spectroscopy, and data
analysis in general [15], [6], [25], [1], [31], [28], [7].

Let the SR factor be defined as SRF := (∆Ω)−1, where
∆ is the smallest separation of the nodes. When SRF ≫ 1,
the SR problem becomes very ill-conditioned. In this regime,
the nodes form ’clusters’. An important goal is to prove
that certain algorithms are optimal, attaining the optimal
reconstruction bounds known as the Min-max error bounds [5].
Extensive research has been conducted on this model regarding
its stability analysis and algorithms [24], [26], [12], [2], [11],
[27], [14], [23], [16].

The utilization of the Decimation technique was pioneered
in [5] to establish bounds on the Min-max error in the SR
regime. The decimation method proceeds as follows: the
spectral range [−Ω,Ω] is uniformly sampled at a rate ρ, and
subsequently, a system of equations of the form µ̂(ρk) =∑n

j=1 aj exp(iρkxj) is obtained. However, not all ρ’s are
desirable or suitable; some may result in collisions and the
formation of new clusters, thus worsening the ill-conditioned
nature of the problem. The existence of admissible ρ’s within

a certain interval was first proved in [5]. An optimal approach
proposed in [5] involves employing an oracle to obtain the
correct value of the decimation parameter ρ.

The Decimation method has already been applied in SR
algorithms, such as the Decimated Prony Method (DP) [21]
and VEXPA [8], to improve the conditioning of the problem
(see also [29], [30], [9]). Similar ideas have also been explored
in the sparse FFT literature [17], [20]. Using decimation as a
preprocessing step in any SR method with a suitable ρ yields a
set of solutions {eıρxj}nj=1 instead of {eıxj}nj=1. This new set
of solutions forms a well-separated configuration compared
to the undecimated one, making recovery easier and more
accurate.

Furthermore, the optimality of DP is established due to the
optimality of Prony’s method for Ω = 2n combined with
decimation [22]. Despite its practical usage, there is currently
no mathematical evidence supporting the identification of such
admissible decimation parameter.

In this paper, our objective is to develop a method to
automatically select an optimal decimation parameter ρ within
a given interval, ensuring effective separation between the
nodes. Towards that goal, we find the spectrum of the square
Vandermonde matrix of the samples (2), showing its depen-
dence on ∆ and on the number of clusters the nodes form
(similarly to [3] for rectangular Vandermonde matrices with
number of samples N ≫ 2n). Consequently, we find the
spectrum of the Toeplitz matrix of the samples (3), which
is our main tool to select the optimal decimation parameter.
Lastly, we present the Enhanced Decimated Prony’s method
(EDP) and the Decimated Matrix Pencil method (DMP),
demonstrating their time-complexity advantage over both DP
and the Matrix Pencil Method (MP) [19] and then show the
numerical optimality of EDP.

II. PRELIMINARIES

We recall some definitions from [3].

Definition 1. For x ∈ R, we denote

∥x∥T :=
∣∣ arg (eıx)∣∣ = ∣∣x mod (−π, π]

∣∣,
where arg(z) is the principal value of the argument of z ∈
C \ {0}, taking values in (−π, π].

For a set of n distinct nodes X := {xj}nj with xj ∈
(−π

2 ,
π
2 ], we introduce the following definitions.



Definition 2. Define the minimal separation of the set X as

∆ = ∆(X) := min
i ̸=j

∥xi − xj∥T.

In addition, for any ρ ∈ R we define

∆ρ = ∆(ρX) := min
i ̸=j

∥ρxi − ρxj∥T.

Definition 3 (Single cluster configuration). The set of nodes
X is said to form an (∆, ν, n)-cluster if

∀x, y ∈ X,x ̸= y : ∆ ≤ ∥y − x∥T ≤ ν∆.

Definition 4 (Multi-cluster configuration). The set of nodes X
is said to form an ((h(j), ν(j), n(j))Mj=1, η)-clustered configu-
ration if there exist an M -partition X =

⋃M
j=1 C(j), such that

for each j ∈ {1, ...,M} the following conditions are satisfied:
1) C(j) is an (h(j), ν(j), n(j))-cluster.
2) ∥x− y∥T ≥ η > 0, ∀x ∈ C(j),∀y ∈ X \ C(j).

Definition 5. For a finite set of nodes X and sampling set S,
we define the corresponding Vandermonde matrix as

V (X;S) =
[
eikx

]x∈X

k∈S
.

Let σ1(L) ≥ σ2(L) ≥ · · · ≥ σn(L) denote the singular
values of a matrix L ∈ Cn×n and let λ1(L) ≥ λ2(L) ≥ · · · ≥
λn(L) denote it’s eigenvalues.

III. IDENTIFICATION OF AN OPTIMAL RATE

In this section, we establish a measure for approximating
the minimal separation ∆ρ between decimated nodes with dec-
imation parameter ρ. For M clusters, we prove in proposition
1 that σM+1(Tρ) ≍ ∆2

ρ, where ≍ denotes asymptotic scaling.

A. Main result and proofs

Let µ̂k := µ̂(k) =
∑n

j=1 aje
ikxj be the Fourier measure-

ment of model (1). For a set of nodes X := {x1, ..., xn}, the
Toeplitz matrix of the samples is defined as:

T = T (X;n) :=

 µn−1 µn−2 . . . µ0

...
...

...
µ2n−1 µ1 . . . µn−1

 . (3)

and it can be decomposed into:

T = Ṽn diag(a1, . . . , an)︸ ︷︷ ︸
A

V ∗
n ,

where

Ṽn := V (X; {n− 1, . . . , 2n− 2}),
Vn := V (X; {0, . . . , n− 1}).

We have

Ṽn := Vndiag(e
i(n−1)x1 , ..., ei(n−1)xn) = VnE,

then we can write

T = VnDV ∗
n , D = EA. (4)

Theorem 1. Let Q ∈ Cn×n be a matrix of the form
Q = V ∗DV , where D is a diagonal complex matrix and
V ∈ Cn×n. Then for i = 1, . . . , n we have:

σi(Q) =
∣∣λi(Q)

∣∣ = θiλi(V V ∗), |D| := (DD∗)
1
2 . (5)

where λn((DD∗)
1
2 ) ≤ θi ≤ λ1((DD∗)

1
2 ).

Proof. ∣∣λi(V
∗DV )

∣∣2 = λi(V
∗DV )λ̄i(V

∗DV )

= λi(V
∗DV )λi(V

∗D∗V ).

from properties of eigenvalues:

µi := λi(V
∗DV ) = λi(V V ∗D) = λi(D

1
2V V ∗D

1
2 ),

µ̄i := λi(V
∗D∗V ) = λi(V V ∗D∗) = λi((D

∗)
1
2V V ∗(D∗)

1
2 ).

and thus

D
1
2V V ∗D

1
2ui = µiui, u∗

i (D
∗)

1
2V V ∗(D∗)

1
2 = µ̄iu

∗
i .

Note that these matrices are not necessarily Hermitian.

u∗
i (D

∗)
1
2V V ∗(D∗)

1
2D

1
2V V ∗D

1
2ui = µ̄iµiu

∗
i ui,

u∗
i (D

∗)
1
2V V ∗|D|V V ∗D

1
2ui = µ̄iµiu

∗
i ui,

u∗
i (D

∗)
1
2V V ∗D

1
2 (D∗)

1
2V V ∗D

1
2ui = µ̄iµiu

∗
i ui,

∥(D∗)
1
2V V ∗D

1
2ui∥22

∥ui∥22
= µiµ̄i = σ2

i ((D
∗)

1
2V V ∗D

1
2 ),

σi((D
∗)

1
2V V ∗D

1
2 ) = λi((D

∗)
1
2V V ∗D

1
2 ).

Where the last equivalence is true because (D∗)
1
2V V ∗D

1
2

is a positive semi-definite hermitian matrix. By Ostrowski’s
Theorem for Hermitian matrices (Theorem 4.5.9 in [18]), we
have

λi(D
1
2V V ∗(D∗)

1
2 ) = θiλi(V V ∗),

where
λn((DD∗)

1
2 ) ≤ θi ≤ λ1((DD∗)

1
2 ).

Lastly we have,
∣∣λi(V

∗DV )
∣∣ = √

λi(V ∗DV ) · λ̄i(V ∗DV ) =√
λi(V ∗D∗V V ∗DV ) = σi(V

∗DV ).

From now on, we choose X to form a
((h(j), ν(j), n(j))Mj=1, η)-clustered configuration, as defined in
Definition (4), with h(1) = h(2) = · · · = h(M) = ∆(X).

Theorem 2. There exist C1, C2 depending on s := maxj n
(j)

such that for η ≥ C1 and ∆ ≤ C2

n2ν , ν := maxk ν
(k), for each

m = 1, ..., s there are precisely ℓm := #{1 ≤ k ≤ M : m ≤
n(k)} singular values of Vn := Vn(X) bounded below by

C∆m−1,

where C doesn’t depend on ∆.

Proof. Recall the following Theorem:

Theorem 3. [Proposition 7.1 in [4]] Let σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n

denote the union of all the singular values of the matrices
V

(j)
n := V (C(j); {0, . . . , n− 1}) in non-increasing order, and

σ1 ≥ σ2 ≥ · · · ≥ σn denote the singular values of Vn. Then



there exist C1(s), C2(s) depending only on s := maxj n
(j)

such that for η ≥ C1 and ∆ ≤ C2

n2ν , ν := maxk ν
(k) we have

σj ≥
1

2
σ̃j , j = 1, ..., n.

We have to find the scaling of the singular values of each
V

(j)
n to finish the proof. For simplicity, assume that n = 2p+1.

Thus we can write,

U (j)
p =

[
eikx

]x∈C(j)

k∈Gp
.

where Gp := {−p,−p + 1, ..., 0, ..., p} is the symmetric one-
dimensional grid. Let Gj :=

(
U

(j)
p

)∗
U

(j)
p for j = 1, ...,M .

Now we use the following Lemma and write it for the uni-
variate case:

Lemma 1 (Lemma 3 in [13]). Let V≤m(G) := [gk]0≤k≤m
g∈G .

Then the sampling set Gp satisfies the condition
rank(V≤n(j)−1(Gp)) ≥ n(j) and the eigenvalues of Gj

split into n(j) groups (each group has one element):

λ0 = ∆0(λ̃0 +O(∆)), λ1 = ∆2(λ̃1 +O(∆)), ...,

λn(j)−1 = ∆2(n(j)−1)(λ̃n(j) +O(∆)).

where λ̃i doesn’t depend on ∆.

Since
(
V

(j)
n

)∗
V

(j)
n = (D−1

j )∗GjD
−1
j for Dj :=

diag(e−ipx)x∈C(j) ∈ Cn(j)×n(j)

, we have that σk

(
V

(j)
n

)
=√

λk

(
Gj

)
≍ ∆k. Finally, for each k = 1, ..., s we have ℓk

singular values that scale like ∆k, obtained from each cluster.
Combining Theorem 3, we finish the proof of Theorem 2.

Theorem 4. The singular values of the Vandermonde matrix
Vn scale as follows:

{σ1,i(Vn)}ℓ1i=1 ≍ ∆0, . . . , {σs,i(Vn)}ℓsi=1 ≍ ∆s−1,

where s := maxk n
(j).

Proof. The determinant of the Vandermonde matrix Vn is:

det(Vn) =
∏
k ̸=j

|eixj − eixk |.

Using Lemma 5.6 in [5], for |x− x′| ≤ π
2 we have

2

π
|x− x′| ≤ |eix − eix

′
| ≤ |x− x′|.

Thus we get that

det(Vn) =

M∏
j=1

∏
x,y∈C(j)

|eix − eiy|
∏
j ̸=i

∏
x∈C(j),y∈C(i)

|eix − eix
′
|

= C(η, ν, n)

M∏
j=1

∏
x,y∈C(j)

|eix − eiy| = C∆
∑M

j=1 (
n(j)

2 ).

Now we show that
M∑
j=1

(
n(j)

2

)
=

M∑
j=1

n(j)(n(j) − 1)

2
=

M∑
j=1

n(j)∑
i=1

(i− 1)

=

s∑
i=1

ℓi(i− 1).

where the last step is due to the definition of ℓj . Thus we have
that det(Vn) = C ·∆

∑s
i=1 ℓi(i−1). It’s known that |det(Vn)| =∏n

i=1 σi(Vn). Thus on the one hand we have
∏n

i=1 σi(Vn) =
C ·∆

∑s
i=1 ℓi(i−1) and on the other hand (by Theorem 2) we

have that
n∏

i=1

σi(Vn) ≥
s∏

i=1

ℓk∏
k=1

Ci,kσi,k(Vn) =

s∏
i=1

ℓk∏
k=1

Ci,k∆
i−1

= C̃∆
∑s

i=1 ℓi(i−1).

Since C doesn’t depend on ∆, this forces the singular values
to have exact scaling (i.e. Ci,k don’t depend on ∆).

Now we state our main result.

Proposition 1. For any ρ > 0, the singular values of the
Toeplitz matrix Tρ := T (ρX;n) scales as follows:

{σ1,i(Tρ)}ℓ1i=1 ≍ ∆0
ρ, . . . , {σs,i(Tρ)}ℓsi=1 ≍ ∆2(s−1)

ρ ,

where s := maxj n
(j) and ∆ρ := ∆(ρX).

Proof. Combining Theorems 1 and 4, we get the desired
result.

Remark 1. The constants in Proposition 1 also depend on the
amplitudes {aj}nj=1.

B. Numerical Validation

Let k ∈ N be the number of clusters in a configuration with
nodes in X . To validate Proposition 1, we plotted the minimal
separation of decimated nodes for all decimation parameters
ρ in the interval I :=

[
1
2

Ω
2n−1 ,

Ω
2n−1

]
against the k + 1-th

singular value of the Toeplitz matrix Tρ. Figure 1 confirms
that σk+1(Tρ) scales proportionally to ∆2

ρ.

Fig. 1: (left) X has one cluster of size ℓ1 with SRF = 6. (right)
X has two clusters of sizes ℓ1 and ℓ2 with SRF = 3. The plotted√

σk+1(Tρ) values are scaled by C := n
Ω

for better visualization.

Remark 2. We expect our estimates in Proposition 1 to hold
for noisy samples, using standard perturbation analysis for
singular values. We leave it for future work.

IV. ALGORITHM

A decimation parameter λ ∈ I is said to be admissible if
it attains good separation properties, in particular, when the
cluster nodes are separated by at least O(Ω∆) and the non-
cluster nodes by ≥ 1

2n2 (for the full details, see Proposition
5.8 in [5]).



A. Selecting an optimal sampling rate

By Proposition 1, for any ρ ∈ N, we have σM+1(Tρ) ≍
∆2

ρ, where M is the number of clusters with multiplicity
at least 1. For a set Λ = {ρj , }mj=1 ⊂ N, we select
ρ = argmaxj{σM+1(Tρj

)}mj=1 as the optimal decimation
parameter with the best separation properties.

Since decimation alone is insufficient for recovery, any SR
method applied to samples at rate ρ gives nodes {eiρxj}nj=1,
with each eiρxj having ρ candidates. To resolve this ambiguity,
we use the technique from [10] for de-aliasing, which employs
a second shifted sample set Mds := {µ(ρk + t)}2n−1

k=0

alongside Md := {µ(ρk)}2n−1
k=0 , where ρ and t are co-

prime. Let Φj := exp (ixj). In the noiseless case, we have
µ(ρk) =

∑n
j=1 ajΦ

ρk
j and µ(ρk + t) =

∑n
j=1(ajΦ

t
j)Φ

ρk
j . To

recover {Φt
j}nj=1, we first recover the amplitudes {aj}nj=1 and

{ajΦt
j}nj=1 from the sampling sets Md and Mds, respectively.

Then compute {Φt
j}nj=1 =

{
ajΦ

t
j

aj

}n

j=1
. Finally, since ρ and t

are co-prime, the intersection of the candidate sets for eiρxj

and eitxj contains exactly one element. For noisy samples, we
first match the aliased nodes {Φ̃ρ

j} and {Φ̂ρ
j} before division.

A more stable solution can be achieved using additional shifted
sample sets; see [10], [8] for the full details.

Summarizing the above, Algorithm 1 can be applied to any
SR method to generate its decimated version.

Algorithm 1 Decimated SR method

Require: M , {µ̂(ω)}ω∈[−Ω,Ω], Ω, n, SRmethod(·).
1: Select Admissible Decimation parameter:
2: (a) Select ρ := argmaxρ′∈I∩N{σM+1(Tρ′)}.
3: (b) Find t such that ρ and t are co-prime.
4: Solve for Decimated and Shifted samples:
5: (a) {Φ̃ρ

j , ãj}nj=1 = SRmethod(Md).
6: (b) {Φ̂ρ

j , âjΦ̂
t
j}nj=1 = SRmethod(Mds).

7: Perform De-aliasing for {Φ̃ρ
j , Φ̂

t
j} (see the text above).

8: Return the estimates {x̃j , ãj}.

Remark 3. Using Proposition 5.8 from [5], we can derive
a lower bound of 1

n2 for selecting an admissible decimation
parameter from I, enabling randomness in algorithm 1.

We introduce the Enhanced Decimated Prony Method
(EDP) and the Decimated Matrix Pencil method (DMP) as
improvements over DP and MP, respectively. EDP applies
Algorithm 1 with Prony’s method as the SR method, elim-
inating the need to solve multiple sub-Prony problems and
constructing a histogram, as done in DP. Similarly, DMP
applies Algorithm 1 with MP as the SR method.

DP and MP have a time complexity of O(Ω2) + O(∆−1)
and O(Ω3), respectively. For EDP and DMP, there are O(Ω)
natural decimation parameters in the interval I. For each, we
construct an n×n Toeplitz matrix of samples and compute its
M+1-th singular value, which requires O(n3Ω). Finding a co-
prime t ̸= 1 for ρ has a worst-case complexity of O(Ω log(Ω)),
as gcd computations take O(log(Ω)), and the search might

iterate up to Ω−1. Since matching the aliased nodes, applying
Prony’s method, MP (for 2n samples) and de-aliasing depend
only on n (fixed), the total time complexity of EDP and DMP
is O(Ω log(Ω)).

We implemented the EDP, DP, DMP and MP methods,
assigning the number of nodes for both MP and DMP as
an input and using 3n decimated samples in DMP. The
implementation is in MATLAB. We recall that for DP, Nρ

is the number of decimation parameters being tested in the
interval I and Nb is the number of bins in the constructed
histogram of node candidates. The noise in the samples is
generated from a Cauchy distribution. Each method was tested
10 times across four different SRF values. In Figure 2, we
present the mean reconstruction error of the cluster node x1

as a function of SRF. The results show that all methods achieve
high accuracy, with EDP and DMP being the fastest, offering
a speed improvement of up to two orders of magnitude.

Fig. 2: (left) single cluster configuration. (right) multi-cluster con-
figuration. For both experiments the noise level is 10−6, Nρ = 900
and Nb = 3∆−1.

Remark 4. To obtain higher accuracy for DMP, we can use
N ≫ 2n decimated samples if possible.

B. Optimality of EDP

In Figure 3, we numerically show that EDP is optimal,
meaning it achieves the min-max error bounds (Theorem 2.8 in
[5]) in the multi-cluster geometry. We plot the node/amplitude
error amplification factors (6) as a function of SRF.

Kxj
:= ϵ−1Ω|xj − x̃j |, Kaj

:= ϵ−1|aj − ãj |. (6)

Fig. 3: EDP - asymptotic optimality. For cluster node x1, Kx1 (left)
scales like SRF 2ℓ1−2, while the Ka1 (right) scales like SRF 2ℓ1−1.
For the non-cluster node x4, both Kx4 and Ka4 are lower bounded
by a constant. These scaling rates are optimal.
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