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Fig. 1: SpaRP handles open-world 3D reconstruction and pose estimation from un-
posed sparse-view images, delivering results in approximately 20 seconds.

Abstract. Open-world 3D generation has recently attracted consider-
able attention. While many single-image-to-3D methods have yielded vi-
sually appealing outcomes, they often lack sufficient controllability and
tend to produce hallucinated regions that may not align with users’ ex-
pectations. In this paper, we explore an important scenario in which the
input consists of one or a few unposed 2D images of a single object, with
little or no overlap. We propose a novel method, SpaRP, to reconstruct
a 3D textured mesh and estimate the relative camera poses for these
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sparse-view images. SpaRP distills knowledge from 2D diffusion models
and finetunes them to implicitly deduce the 3D spatial relationships be-
tween the sparse views. The diffusion model is trained to jointly predict
surrogate representations for camera poses and multi-view images of the
object under known poses, integrating all information from the input
sparse views. These predictions are then leveraged to accomplish 3D re-
construction and pose estimation, and the reconstructed 3D model can be
used to further refine the camera poses of input views. Through extensive
experiments on three datasets, we demonstrate that our method not only
significantly outperforms baseline methods in terms of 3D reconstruction
quality and pose prediction accuracy but also exhibits strong efficiency.
It requires only about 20 seconds to produce a textured mesh and camera
poses for the input views. Project page: https://chaoxu.xyz/sparp.

Keywords: Sparse-View 3D Reconstruction · Pose Estimation · Open-
World Generation

1 Introduction
3D object reconstruction is a long-standing problem with applications span-
ning 3D content creation, augmented reality, virtual reality, and robotics, among
others. Although traditional photogrammetry [1, 57, 64] and recent neural field
methods [43, 77, 91] have made significant strides in reconstructing high-fidelity
geometry and appearance, they typically require dense view inputs. However, in
many practical scenarios, such as in e-commerce and consumer capture situa-
tions, acquiring a comprehensive set of high-resolution images along with precise
camera data is not always feasible.

On the other end of the spectrum, the tasks of converting a single image to 3D
and text to 3D have recently seen substantial progress [28,30,32,46,62,80], thanks
to the rich priors embedded in 2D diffusion models [50, 53, 54] and pre-training
on extensive 3D datasets [9]. These methods may achieve high-quality geometry
and texture that matches the input view, but they also introduce ambiguities
in the regions not visible in the input image (such as the back view). Although
these methods attempt to hallucinate reasonable interpretations of these invisible
areas, the generated regions may not always align with users’ expectations, and
users often lack sufficient control over these ambiguous regions.

In this paper, we explore a critical scenario where the input consists of one
or a few unposed 2D images of a single object. The images are captured from
arbitrarily distributed camera poses, often with little to no overlap. We tackle
both the 3D reconstruction and pose estimation of input images under this sparse
view setting. Note that, in dense view setting, traditional Structure-from-Motion
(SfM) solvers (e.g., COLMAP [58]) are typically employed for pose estimation.
However, with sparse view inputs, these solvers often become unreliable and tend
to fail due to insufficient overlapping visual cues. This issue is the main reason
why existing sparse view reconstruction methods [22, 39, 97] generally require
known camera poses as input. While some recent methods have attempted pose-
free reconstruction and pose estimation for sparse views [17, 18, 29, 63, 95], they
are usually trained on a predefined small set of object categories and exhibit
poor generalization to unseen object categories.

https://chaoxu.xyz/sparp
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In response, we propose an innovative class-agnostic approach called SpaRP,
capable of processing arbitrary object categories with unposed sparse views.
Our inspiration comes from recent breakthroughs in open-domain single-image-
to-3D methods. They leverage 2D diffusion models (e.g., Stable Diffusion [53])
to generate novel viewpoints of an object [35], and even consistent multi-view
images from a single input image [28, 36, 38, 60, 62], by finetuning the diffusion
models with corresponding multi-view image pairs. These discoveries imply that
2D diffusion models harbor rich priors concerning 3D objects. Instead of merely
producing multi-view images, we contemplate leveraging 2D diffusion models to
examine a set of unposed input images from sparse viewpoints, infer their spatial
interrelationships, and recover relative camera poses and underlying 3D shapes.

Specifically, we finetune a 2D diffusion model [53] to process sparse input
views by compositing them into a single image for conditioning. The diffusion
model is concurrently tuned to deduce the relative poses of the input images
and the underlying 3D objects. For the relative pose estimation branch, instead
of outputting camera poses as scalars, we task 2D diffusion models to produce
a surrogate representation: the NOCS maps [74] that embed pixel-wise corre-
spondences across different views and are more suitable for 2D diffusion models.
From these maps, we extract the relative camera poses for the sparse views us-
ing the traditional PnP algorithm [2], assuming known camera intrinsics. For the
reconstruction branch, the diffusion model is tasked to produce multi-view im-
ages of the object from fixed known camera poses, covering the entire 3D object.
This task requires the models to incorporate all information from input sparse
views and hallucinate invisible regions. We then feed the generated images with
fixed known poses into a pre-trained 3D reconstruction module [32] to create a
textured 3D mesh. We can further refine the estimated camera poses by aligning
the input views with the generated mesh through differentiable rendering [26].

We train SpaRP on the Objaverse [9] dataset with 1–6 unposed input views.
Unlike some previous methods that rely on costly per-shape optimization [83],
our method delivers 3D textured meshes along with camera poses in a much
more efficient manner, requiring only ∼16 seconds. As shown in Fig. 1, our ap-
proach can faithfully generate 3D assets that closely follow the reference unposed
images, effectively overcoming the ambiguity issue of single-image-to-3D. Exten-
sive evaluation on three datasets demonstrates the superior performance of our
method over baselines in reconstructing 3D meshes with vivid appearance and
high-fidelity geometry, alongside precise pose estimation of the input images.

2 Related Work
2.1 Sparse-View 3D Reconstruction

Reconstructing 3D objects from sparse-view images is challenging due to the
lack of visual correspondence and clues. When a small baseline between im-
ages is assumed, several methods [4, 19, 24, 37, 39, 51, 52, 70, 76, 79, 89, 93] have
pretrained generalizable models to infer surface positions by establishing pixel
correspondences and learning generalizable priors across scenes. However, these
methods often fail to produce satisfactory results when the sparse-view images
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have a large baseline. Some studies have attempted to alleviate the dependence
on dense views by incorporating priors or adding regularization [16, 22, 45, 61]
into the NeRF optimization process. Others have employed 2D diffusion priors to
generate novel-view images as additional input for the NeRF model [3,21,68,97].
For example, ReconFusion [84] trains a NeRF from sparse-view images and uses a
denoising UNet to infer some novel view images as support for the NeRF model.
EscherNet [23] utilizes Stable Diffusion for novel view synthesis and designs a
camera positional encoding module to yield more consistent images. Further-
more, some recent works [36, 38, 62] have integrated specialized loss functions
and additional modalities as inputs into NeRF-based per-scene optimization.

In contrast to these methods, our approach does not require camera poses
for the input sparse views. It is not limited to small baselines and is capable
of generating 360-degree meshes. Furthermore, without the need for per-shape
optimization, our method can quickly produce both textured meshes and camera
poses in about 20 seconds.

2.2 Pose-Free Reconstruction
Unlike the methods mentioned above, which assume known camera poses, many
studies have aimed to solve the pose-free reconstruction challenge. When pro-
vided with dense images, some approaches [31,81,86] jointly optimize the NeRF
representation along with camera parameters. However, due to the highly non-
convex nature of this optimization problem, such methods are susceptible to
initial pose guesses and can become trapped in local minima. This issue worsens
when input images are sparse, with increasing ambiguity and reduced constraint
availability. In response, numerous proposals have attempted to enhance op-
timization robustness. For example, SpaRF [71] uses dense image matches as
explicit optimization constraints, while FvOR [90] starts with coarse predictions
of camera poses and alternated updates between shape and pose.

In contrast to the optimization-based methods, there is a body of research
proposing generalizable solutions for this problem. VideoAE [25] infers scene
geometry from the first frame in a video series and estimates camera poses rel-
ative to that frame, which allows for warping scene geometry to decode new
viewpoints. SparsePose [63] first regresses and then iteratively refines camera
poses. FORGE [17] designs neural networks to infer initial camera poses, fuse
multi-view features, and decode spatial densities and colors. GRNN [72] offers
a GRU-based reconstruction method estimating the relative pose for each input
view against a global feature volume. The RelPose series [29,95] use probabilistic
modeling for relative rotation estimation between images. Other works [18, 55]
eschew explicit camera pose estimations, instead employing transformers to en-
code input views into latent scene representations for novel view synthesis.

More recently, leveraging large vision models and diffusion models, which
have shown significant promise, new efforts have emerged for camera pose esti-
mation. PoseDiffusion [75] implements a diffusion model guided by 2D keypoint
matches to estimate poses. PF-LRM [78] adapts the LRM model [14] to predict a
point cloud for each input image, then utilizes differentiable PnP for pose estima-
tion. iFusion [83] employs an optimization pipeline to assess relative elevations
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and azimuths. It utilizes Zero123 [35] predictions as a basis and optimizes the
relative pose between two images by minimizing the reconstruction loss between
the predicted and target images.

In contrast to these existing approaches, our proposal capitalizes on the ex-
tensive priors inherent in pre-trained 2D diffusion models, thereby providing
exceptional generalizability to handle a diverse range of open-world categories.
Our method predicts camera poses and 3D mesh geometry in a single feedforward
pass, negating the need for per-shape optimization.

2.3 Open-World 3D Generation

Open-world single-image-to-3D and text-to-3D tasks have recently undergone
significant advancements. Recent 2D generative models [50, 53, 54] and vision-
language models [48] have supplied valuable priors about the 3D world, sparking
a surge in research on 3D generation. Notably, models such as DreamFusion [46],
Magic3D [30], and ProlificDreamer [80] have pioneered a line of approach to per-
shape optimization [5,6,10,15,27,40–42,44,47,49,59,66,67,73,87,88,94]. These
models optimize a 3D representation (e.g., NeRF) for each unique text or image
input, utilizing the 2D prior models for gradient guidance. Although they pro-
duce impressive results, these methods are hampered by prolonged optimization
times, often extending to several hours, and “multi-face issue” problems.

Moreover, beyond optimization-based methods, exemplified by Zero123 [35],
numerous recent studies have investigated the employment of pre-trained 2D
diffusion models for synthesizing novel views from single images or text [36, 38,
60, 62, 82, 92]. They have introduced varied strategies to foster 3D-consistent
multi-view generation. The resulting multi-view images can then serve for 3D
reconstruction, utilizing either optimization-based methods [36, 38, 62] or feed-
forward models [28,32,34].

While most existing works focus on single-image-to-3D or text-to-3D, they
often hallucinate regions that are invisible in the input image, which provides
users with limited control over those areas. In this paper, we seek to broaden the
input to encompass unposed sparse views and address both the 3D reconstruction
and pose estimation challenges in a time-efficient way—within tens of seconds.

3 Method

Given n unposed input images {Ii | i = 1, . . . , n; 1 ≤ n ≤ 6}, which illustrate
a single object from arbitrary categories, we predict their relative camera poses
ξij and reconstruct the 3D model M of the object. As illustrated in Fig. 2,
we first finetune a 2D diffusion model [53] to process the unposed sparse input
images (Sec. 3.1). The 2D diffusion model is responsible for jointly generating
grid images for both the NOCS maps of the input views, as well as multi-view
images with known camera poses. We use the predicted NOCS maps to estimate
the camera poses for the input views (Sec. 3.2). The resulting multi-view images
are fed into a two-stage 3D diffusion model for a coarse-to-fine generation of a 3D
textured mesh (Sec. 3.3). This joint training strategy allows the two branches
to complement each other. It enhances the understanding of both the input
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Fig. 2: Pipeline Overview of SpaRP. We begin by taking a sparse set of unposed
images as input, which we tile into a single composite image. This composite image
is subsequently provided to the Stable Diffusion UNet to serve as the conditioning
input. The 2D diffusion model is simultaneously finetuned to predict NOCS maps for
the input sparse views and multi-view images under known camera poses. From the
NOCS maps, we extract the camera poses corresponding to the input views. The multi-
view images are then processed by a reconstruction module to generate textured 3D
meshes. Optionally, the camera poses can be further refined using the generated mesh
for improved accuracy.

sparse views and the intrinsic properties of the 3D objects, thereby improving
the performance of both pose estimation and 3D reconstruction. Optionally, the
generated 3D mesh can also be used to further refine the camera poses (Sec. 3.4).

3.1 Tiling Sparse View Images as Input Condition

Recently, numerous studies have shown that 2D diffusion models not only pos-
sess robust open-world capabilities but also learn rich 3D geometric priors. For
instance, Stable Diffusion [53], can be finetuned to include camera view con-
trol [28, 35, 36, 38, 60, 62], enabling it to predict novel views of objects—a task
that necessitates significant 3D spatial reasoning. Consequently, we are inspired
to utilize the rich priors inherent in 2D diffusion models for the tasks of sparse
view 3D reconstruction and pose estimation.

Unlike most existing approaches that use a single RGB image as the condi-
tion and focus on synthesizing multi-view images, our goal is to take a sparse set
of input images and stimulate Stable Diffusion to infer the spatial relationships
among the input views implicitly. To accomplish this, given 1 ∼ 6 sparse views
from arbitrary camera poses, we tile them into a 3× 2 multi-view grid, as illus-
trated in Fig. 3 (c). The image in the first grid cell determines a canonical frame
(to be discussed later), while the order of the other views is inconsequential.
When there are fewer than 6 sparse views, we use empty padding for the re-
maining grid cells. This composite image then serves as the condition for Stable
Diffusion, which is expected to assimilate all information from the input sparse
views during the diffusion process.

We employ Stable Diffusion 2.1 as our base model. To adapt the original
text-conditioning to our tiled multi-view image condition, we follow [60] to apply
both local and global conditioning strategies. For local conditioning, we use the
reference-only attention mechanism [96], where we process the reference tiled
image with the denoising UNet model and append the attention keys and values
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Fig. 3: (a) Regardless of the poses of the sparse input views (in black), the output
multiviews are uniformly distributed (in red) and encompass the entire 3D object. (b)
The Normalized Object Coordinate Space (NOCS) of the object, whose orientation is
aligned with the azimuth of the first input view. (c) An example of input and output
tiled images. The elevation and azimuth of the first input view are denoted by θ0 and
ϕ0, respectively. The camera poses of the output multiview images are determined by
ϕ0. The output NOCS maps correspond to the input sparse views, and the orientation
of the coordinate frame is also determined by ϕ0.

from this image to corresponding layers in the denoising model for the target
images. This mechanism facilitates implicit yet effective interactions between
the diffusion model and the sparse views. For global conditioning, we integrate
the mean-pooled CLIP embedding of all input images—modulated by learnable
token weights—into the diffusion process, enhancing the model’s ability to grasp
the overarching semantics and structure of the sparse views.

As depicted in Figs. 2 and 3, our objective is to concurrently generate grid
images for both NOCS maps of the input views and multi-view images from
known camera poses. To achieve this, we utilize a domain switcher [38] that
enables flexible toggling between the two domains. The switcher consists of two
learnable embeddings, one for each domain, which are then injected into the
UNet of the stable diffusion models by being added to its time embedding.

3.2 Image-to-NOCS Diffusion as a Pose Estimator

Conventional Structure-from-Motion (SfM) solvers, such as COLMAP [56], rely
on feature matching for pose estimation. However, in scenarios with sparse views,
there may be little to no overlap between input views. The lack of sufficient visual
correspondence cues often renders the solvers unreliable and prone to failure.
Consequently, instead of relying on local correspondences, we leverage the rich
semantic priors embedded in 2D diffusion models for pose estimation.

One of the primary challenges is to enable 2D diffusion models to output
camera poses. While camera poses can be represented in various scalar formats
(e.g., 6-dimensional vector, four-by-four matrix, etc.), they are not native repre-
sentations for a 2D diffusion model to generate. Inspired by recent works demon-
strating that 2D diffusion models can be used to predict normal maps [38]—a
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domain different from natural images—we propose using a surrogate representa-
tion: the Normalized Object Coordinate Space (NOCS) [74]. We finetune Stable
Diffusion to predict NOCS maps for each input view.

As depicted in Fig. 3(b), a NOCS frame is determined for each set of input
sparse view images and the underlying 3D object. Specifically, the 3D shape is
normalized into a unit cube, i.e., x, y, z ∈ [0, 1]. The shape’s upward axis aligns
with the dataset’s inherent upward axis of the 3D object, typically the gravity
axis. Predicting the object’s forward-facing direction may be ambiguous, so we
rotate the 3D shape in the NOCS frame to align its forward direction (zero
azimuth) with that of the first input view, thus unambiguously establishing
the NOCS frame. For each input view, we then render a NOCS map, where
each 2D pixel (r,g,b) represents the corresponding 3D point’s position (x,y,z ) in
the defined NOCS frame, as shown in Fig. 3(c). These NOCS maps align with
the operational domain of 2D diffusion models, similar to the normal maps in
previous work [38].

To facilitate interactions between NOCS maps from different views and gen-
erate more 3D-consistent NOCS maps, we tile all NOCS maps into a 3× 2 grid
image as the input condition (see Sec. 3.1), following the same tiling order and
the empty padding convention. We finetune Stable Diffusion to generate these
multi-view tiled NOCS maps, so the 2D diffusion model can attend to both the
input sparse views and their NOCS maps during the diffusion process.

After generating the NOCS maps for the input sparse views, we employ a
traditional Perspective-n-Point (PnP) solver [2] to compute the poses {ξpnp

i }
from the NOCS frame to the camera frames of each input view by minimizing
the reprojection error:

ξpnp
i = arg min

ξi∈SE(3)

mi∑
j=1

∥pi,j − proj(qi,j , ξi)∥22, (1)

where pi,j represents the jth pixel’s location in the ith NOCS map; qi,j is the
corresponding 3D point location in the NOCS frame; mi is the number of pix-
els for the ith view, and proj is the perspective projection operation. Note that
the PnP algorithm assumes known camera intrinsics and optimizes only for the
camera extrinsics. A RANSAC scheme is applied during the PnP computation
for outlier removal, enhancing the robustness of the pose prediction to bound-
ary noises and errors from the 2D diffusion model. As all NOCS maps share a
common NOCS frame, we can thus determine the relative camera poses between
views i and i′ through ξ−1

i ξi′ .

3.3 Multi-View Prediction for 3D Reconstruction

We follow the paradigm of recent single-image-to-3D methods [28,32] by initially
generating multi-view images and subsequently using a feed-forward 3D recon-
struction module to convert these images into a 3D representation. It is note-
worthy that the input sparse views might not encompass the entire 3D objects,
nor provide adequate information for 3D reconstruction. Therefore, we propose
to predict multi-view images at uniformly distributed camera poses first, and
then use these predicted images for 3D reconstruction.
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Unlike traditional novel view synthesis [35], our approach employs a fixed
camera configuration for target multi-views. As depicted in Fig. 3, our target
multi-view images consist of six views with alternating 20◦ and −10◦ elevations,
and 60◦-spaced azimuths relative to the first input view. Although the eleva-
tion angles are set absolutely, the azimuth angles are relative to the azimuth of
the first input sparse view to resolve the ambiguity in face-forwarding directions.
Furthermore, We maintain consistent camera intrinsics across target views, inde-
pendent of input views. These strategies mitigate challenges in predicting camera
intrinsics and elevation during the 3D reconstruction process. Existing methods
hindered by this issue may be sensitive to intrinsic variations and often depend
on predicting [34] or requiring user-specified [36,65,66] input image elevations.

Similar to NOCS map prediction, we tile all six views into a 3×2 grid image
and finetune Stable Diffusion to generate this tiled image. The 2D diffusion
model, conditioned on the input sparse views, aims to incorporate all information
from input views, deduce the underlying 3D objects, and predict the multi-view
images at the predetermined camera poses. Although the predicted poses of input
sparse views (Sec. 3.2) are not directly employed in the 3D reconstruction, the
joint training of NOCS prediction and multi-view prediction branches implicitly
complement each other and boost the performance of both tasks.

Upon generating the multi-view images at known camera poses, we utilize
the multi-view to 3D reconstruction module proposed in [32] to lift these images
to 3D. The reconstruction module adopts a two-stage coarse-to-fine approach,
which involves initially extracting the 2D features of the generated multi-view
images, aggregating them with the known camera poses, and constructing a 3D
cost volume. This 3D cost volume acts as the condition for the 3D diffusion
networks. In the coarse stage, a low-resolution 643 3D occupancy volume is pro-
duced. This is subsequently refined to yield a high-resolution 1283 SDF (Signed
Distance Field) volume with colors. Finally, a textured mesh is derived from the
SDF volume employing the marching cubes algorithm.

3.4 Pose Refinement with Reconstructed 3D Model

In Section 3.2, we finetune diffusion models for NOCS map prediction and cam-
era pose estimation. However, due to the hallucinatory and stochastic nature
of diffusion models, unavoidable errors may exist. The generated 3D mesh M,
though not perfect, provides a multi-view consistent and explicit 3D structure.
We can further refine the coarse poses predicted from the NOCS maps by lever-
aging the reconstructed 3D shape.
Pose Refinement via Differentiable Rendering. Starting with initial poses
{ξpnp

i } extracted from the predicted NOCS maps, we refine them through dif-
ferentiable rendering [26]. Specifically, we render the generated mesh M at op-
timizing camera poses ξi. We minimize the rendering loss between the rendered
image Iri = R(M, ξi) and the input image Ii to obtain the optimally fitted
camera pose ξ∗i . The optimization process can be formulated as:

ξ∗i = arg min
ξi∈SE(3)

(λ · Lmask(I
r
i , Ii) + µ · Lrgb(I

r
i , Ii)), (2)



10 Xu et al.

Table 1: Evaluation Results for Pose Estimation. We compare our method with
RelPose++ [29], FORGE [17], and iFusion [83] on three unseen datasets: OmniOb-
ject3D [85], GSO [12], and ABO [7]. 500 objects are sampled for each dataset.

Dataset Method Rot. Err↓ Acc.@15◦ ↑ Acc.@30◦ ↑ Trans. Err↓ Time↓

GSO [12]

RelPose++ 103.24 0.011 0.033 4.84 3.6s
FORGE 111.40 0.004 0.020 4.21 440s
iFusion (ninit=1) 95.15 0.208 0.258 3.65 64s
iFusion (ninit=4) 8.61 0.651 0.759 0.49 256s
Ours (w/o refine) 13.02 0.537 0.616 0.58 10s
Ours (ninit=1) 9.87 0.563 0.617 0.42 27s
Ours (ninit=4) 5.28 0.750 0.787 0.23 57s

OO3D [85]

RelPose++ 105.05 0.008 0.046 7.38 3.6s
FORGE 99.27 0.014 0.063 7.27 440s
iFusion (ninit=1) 91.15 0.166 0.271 4.77 64s
iFusion (ninit=4) 15.08 0.498 0.721 1.12 256s
Ours (w/o refine) 14.75 0.508 0.725 0.90 10s
Ours (ninit=1) 13.40 0.544 0.730 0.89 27s
Ours (ninit=4) 10.07 0.668 0.849 0.63 57s

ABO [7]

RelPose++ 103.14 0.017 0.039 5.01 3.6s
FORGE 110.64 0.005 0.023 4.18 440s
iFusion (ninit=1) 96.65 0.186 0.219 3.88 64s
iFusion (ninit=4) 8.55 0.578 0.631 0.68 256s
Ours (w/o refine) 10.87 0.554 0.597 0.49 10s
Ours (ninit=1) 9.30 0.565 0.600 0.43 27s
Ours (ninit=4) 5.80 0.675 0.701 0.27 57s

where Lmask and Lrgb are the cross-entropy and MSE losses computed for the
foreground masks and the RGB values, respectively, and λ and µ are two weight-
ing coefficients. The refinement process is lightweight and can be completed in
just one second, given the generated mesh.
Mixture of Experts (MoE). The NOCS pose predictions are inherently stochas-
tic and may not produce an accurate pose in a single pass. For instance, with
objects possessing certain symmetries, the diffusion model may predict only one
of the possible symmetric poses. We employ a Mixture of Experts (MoE) strategy
to further refine the pose, which is simple but effective. Specifically, we generate
multiple NOCS maps for each input view using different seeds. We then select
the pose that minimizes the rendering loss based on the refinement results with
the generated 3D mesh. This technique effectively reduces pose estimation error,
as quantitatively validated by the ablation study in the supplementary materials.

4 Experiments
4.1 Evaluation Settings
Training Datasets and Details. We train our models on a curated subset
of 100k shapes from the Objaverse dataset [9]. Considering the variable qual-
ity of the original Objaverse dataset, we opted to filter out higher-quality data
by initially manually annotating 8,000 3D objects based on overall geometry
quality and texture preferences. Subsequently, we train MLP models for quality
rating classification and texture score regression, utilizing their multimodal fea-
tures [33]. Based on the predictions of these models, we select shapes that are
rated as high-quality and have top texture scores. Further details about the data
filtering process are included in the supplementary materials.
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Fig. 4: Qualitative Results on 3D Reconstruction. Zero123XL [8], One2345 [34],
and TripoSR [69] are single-image-to-3D methods, each utilizing only the first input
image. iFusion [83], EscherNet [23], and our approach take all input images (the first
row). Textured meshes and mesh normal renderings are shown. Shapes come from the
OmniObject3D [85] and GSO [12] datasets.

For each 3D shape, we render 10 sets of images using BlenderProc [11].
Each set comprises 6 input images, 6 output multi-view images, and 6 NOCS
maps. To mimic real-world conditions and ensure model robustness, we randomly
sample camera intrinsics and extrinsics, as well as environment maps for the
input images. For the output multi-view images, their intrinsics remain constant,
while the extrinsics are derived from a fixed delta pose and the azimuth of the
input images. Each set of input and output images shares the same environment
map. During training, we randomly selected between 1 to 6 views as sparse input
views, with the first view of each set always being included. We train the model
utilizing 8 A100 GPUs for approximately 3 days.
Baselines. For 3D reconstruction, we compare our method with both state-of-
the-art single-image-to-3D and sparse-view-to-3D baselines. Single-view-to-3D
methods we evaluate include optimization-based approaches, such as Zero123
XL [8], SyncDreamer [36], and DreamGaussian [66], as well as feed-forward meth-
ods like One-2-3-45 [34] and Shap-E [20]. For sparse-view methods, we consider
two recent open-source approaches as baselines: iFusion [83] and EscherNet [23].
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Table 2: Quantitative Comparison on 3D Reconstruction. Evaluated on the
complete GSO [12] dataset, which contains 1,030 3D objects. Five single-image-to-3D
methods [8, 20,34,36,66] and two sparse-view methods [23,83] are compared.

ninput Method F-Score (%)↑ CLIP-Sim↑ PSNR↑ LPIPS↓ Time↓

1

Zero123 XL [8] 91.6 73.1 18.16 0.136 20min
Shap-E [20] 91.8 73.1 18.96 0.140 27s

One-2-3-45 [34] 90.4 70.8 19.07 0.133 45s
SyncDreamer [36] 84.8 68.9 16.86 0.145 6min

DreamGaussian [66] 81.0 68.4 17.88 0.147 2min
Ours 95.7 78.2 19.87 0.124 16s

6
iFusion [83] 88.5 66.7 16.2 0.151 28min

EscherNet [23] 94.8 65.9 16.6 0.139 9min
Ours 96.9 78.1 19.3 0.123 16s

Fig. 5: Single-View vs. Sparse-View for 3D Reconstruction. We compare the
results of our method when using single-view and sparse-view inputs.

We utilize ThreeStudio [13]’s implementation for Zero123 XL and the official
implementations for the other baselines. Specifically, for iFusion, we use their
official reconstruction pipeline integrated with Zero123 XL.

For sparse-view pose estimation, we compare our method with state-of-the-
art approaches including RelPose++ [29], FORGE [17], and iFusion [83]. The
latter two are optimization-based while [29] is a feed-forward method.
Evaluation Datasets. For 3D reconstruction, we evaluate the methods on the
entire GSO [12] dataset, which comprises 1,030 3D shapes; none of these shapes
were seen during our training. For each 3D shape, we randomly render six views
as input images. For single-image-to-3D methods, a fixed-view image is taken
as input following [34]. We carefully align the predictions with the ground truth
meshes before calculating the metrics. Please refer to the supplementary mate-
rials for detailed information on shape alignment and the evaluation metrics.

For pose estimation, we evaluate the approaches on three datasets: OmniOb-
ject3D [85] and GSO [12], both captured from real scans, and ABO [7], a syn-
thetic dataset created by artists. For each dataset, we randomly choose 500
objects and render five random sparse views per shape. We follow iFusion [83]
to report the rotation accuracy and the median error in rotation and translation
across all image pairs. More details are provided in the supplementary materials.
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Table 3: Ablation Study on the Number of Input Views. Evaluated on the
GSO dataset [12].

n views Rot. Err↓ Acc.@5◦ ↑ Trans. Err↓ F-Score (%)↑ CLIP-Sim↑ PSNR↑

1 – – – 89.1 74.9 17.7
2 8.56 0.32 0.42 93.3 76.5 18.3
4 6.03 0.43 0.28 96.0 77.6 19.0
6 5.28 0.48 0.25 96.9 78.1 19.3

Fig. 6: Ablation Study on Pose Refinement. We showcase the input images,
predicted NOCS maps, and converted poses. The ground truth poses are in black,
while the predicted poses before and after refinement are in blue and red, respectively.

4.2 Experiment Results

Pose Prediction. We report the pose estimation results in Tab. 1, where it is
evident that SpaRP outperforms all baseline methods by a significant margin. It
is worth noting that RelPose++ [29] and FORGE [17] struggle to yield satisfac-
tory results for our open-world evaluation images. iFusion, an optimization-based
approach, is prone to becoming trapped in local minima. With only one initial
pose (ninit = 1), it also fails to produce adequate results. In contrast, our method
leverages priors from 2D diffusion models and can generate acceptable results
in a single forward pass. Even without any additional refinement (w/o refine),
our method can already produce results similar to iFusion with four initial poses
(ninit = 4), while being far more efficient, requiring just 1/25 of the runtime.
With the integration of further refinement through a mixture of experts, our
method achieves even better performance.
3D Reconstruction. We present the qualitative results in Fig. 4. With only
a single-view input, single-image-to-3D methods fail to produce meshes that
faithfully match the entire structure and details of the ground truth mesh. For
instance, most single-view baseline methods are unable to reconstruct the stems
of the artichoke, the back of the firetruck, the red saddle on Yoshi, and the
two separate legs of Kirby standing on the ground. In contrast, sparse-view
methods yield results that are much closer to the ground truth by incorporating
information from multiple sparse views. Compared to iFusion, EscherNet, our
method generates meshes with higher-quality geometry and textures that more
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Table 4: Effect of Joint Training. Evaluated on 500 objects from GSO [12].

Method Rot. Err↓ Acc.@15◦ ↑ Acc.@30◦ ↑ Trans. Err↓ F-Score (%)↑ CLIP-Sim↑ PSNR↑

Separate 9.87 0.563 0.617 0.42 96.81 78.36 19.03
Joint 8.57 0.601 0.677 0.37 97.12 78.90 19.42

accurately match the input sparse views. We report the quantitative results
in Tab. 2, where our method significantly outperforms both single-view-to-3D
and sparse-view approaches in terms of both 2D and 3D metrics. Moreover, our
method exhibits superior efficiency, being much faster than the baseline methods.

4.3 Analysis

Single View vs. Sparse Views. In Fig. 5, we present the results obtained
by our method when provided with single-view and sparse-view inputs. With a
single-view input, our method can still generate reasonable results, yet it may not
accurately capture the structures and details of the regions that are not visible.
Our method demonstrates the capability to effectively integrate information from
all sparse-view inputs provided.
Number of Views. In Tab. 3, we quantitatively showcase the impact of the
number of views on both 3D reconstruction and pose estimation. We observe
that incorporating more input views enables the 2D diffusion network to better
grasp their spatial relationships and underlying 3D objects, boosting both tasks.
Pose Refinement. While the predicted NOCS maps can be directly converted
into camera poses, we have found that these poses can be further refined through
alignment with the generated 3D meshes. Fig. 6 showcases the predicted poses
before and after refinement. Although both are generally very close to the ground
truth poses, refinement can further reduce the error.
Number of Experts. We employ a mixture-of-experts strategy to address the
ambiguity issues related to NOCS prediction for symmetric objects. By using
this strategy and increasing the number of experts, there is a substantial in-
crease in pose estimation accuracy. Please refer to the supplementary material
for quantitative ablation studies.
Joint Training. We finetune 2D diffusion models to jointly predict NOCS
maps and multi-view images from sparse, unposed views by leveraging a do-
main switcher. As shown in Tab. 4, this joint training strategy enables the two
branches to implicitly interact and complement each other, enhancing the inter-
pretation of both the input sparse views and the intrinsic properties of the 3D
objects, which in turn improves the performance of each task.

5 Conclusion

We present SpaRP, a novel method for 3D reconstruction and pose estimation
using unposed sparse-view images. Our method leverages rich priors embedded
in 2D diffusion models and exhibits strong open-world generalizability. Without
the need for per-shape optimization, it can deliver high-quality textured meshes,
along with accurate camera poses, in approximately 20 seconds.
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