
Published in Transactions on Machine Learning Research (06/2025)

Solving Multi-agent Path Finding as an LLM Benchmark:
How, How Good and Why

Weizhe Chen weizhech@usc.edu
University of Southern California

Sven Koenig svenk@uci.edu
University of California, Irvine

Bistra Dilkina dilkina@usc.edu
University of Southern California

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8hAxEFRVQT

Abstract

The rapid success of large language models (LLMs) has spurred extensive research into their
ability to solve a wide range of tasks. However, their potential in multi-agent planning re-
mains underexplored. Multi-agent planning presents unique challenges due to the combined
complexity of coordination and long-horizon reasoning, often making it difficult to lever-
age external tools for assistance. In this paper, we introduce Multi-Agent Path Finding
(MAPF), also known as multi-robot route planning, as a novel benchmark for evaluating
the reasoning capabilities of LLMs. We first describe how the MAPF benchmark can be
adapted for LLM-based evaluation, including dataset curation and an agentic workflow for
LLMs. We show the motivating success of single-agent planning and multi-agent pathfinding
in an empty room map without obstacles, then the failure to plan on the harder room map
and maze map of the standard MAPF benchmark. We present our position on why directly
solving MAPF with LLMs has not been successful yet, and we use various experiments to
support our hypothesis. Based on our results, we discussed how researchers with different
backgrounds could help with this problem from different perspectives.

1 Introduction

Since ChatGPT came out, large language models (LLMs) have been shown to go beyond strictly language-
related tasks like translation, and to be a powerful tool in all kinds of domains. Training with very rich
and diverse datasets, LLMs incorporate a large variety of knowledge and do not require fine-tuning before
generating good solutions in many real-world applications. Over time, recent studies have shown that com-
bining LLMs with different ways of prompting can help solve problems that have some aspects of reasoning,
including examples from logical problems Yao et al. (2022); Liu et al. (2023) to controlling a robot dog
without finetuning Wang et al. (2023a).

Motivated by the success of LLMs, people are studying how well pre-trained models perform in all different
kinds of domains, and propose benchmarks. Some recent works studied the performance of LLMs on multi-
agent problems and showed LLMs can also help multi-agent coordination Chen et al. (2023b); Agashe et al.
(2023). However, they barely cover multi-agent route planning and do not look specifically into the difficulties
in the domain. In this paper, we consider the problem of multi-agent path finding (MAPF), also known
as multi-agent route planning. MAPF is the problem of moving a group of agents from their respective
start locations to their goal locations without collisions, and can be used directly to formulate real-world

1

https://openreview.net/forum?id=8hAxEFRVQT


Published in Transactions on Machine Learning Research (06/2025)

Figure 1: An illustration of our workflow.

applications like warehouse management Sharon et al. (2015); Han & Yu (2020), swarm control Li et al.
(2020), among others. In a typical warehouse scenario, around a thousand warehouse robots (agents) could
be running simultaneously in one warehouse room (scenario), and each agent needs to plan its path, which
could be as long as a hundred timesteps.

MAPF is a unique multi-agent coordination problem where coordination must be embedded within the
planning process. This makes it particularly challenging to enable LLMs to reason about coordination
effectively. While using LLMs to generate high-level guidance combined with a low-level path planner has
been effective in environments like Overcooked Agashe et al. (2023), this approach is unlikely to work for
MAPF, as effective coordination must be tightly integrated into the planning itself rather than treated as a
separate guidance layer. On the other hand, path planning is one of the easiest aspects of finding a solution
in planning problems, as a special case compared to more general problems like Blocksworld Valmeekam
et al. (2024a), due to its more interpretable state space and constraints that only involve obstacle avoidance
and movement continuity. Due to the unique challenges inherent in the MAPF problem, the effectiveness of
LLMs in solving MAPF remains uncertain.

In this paper, we aim to introduce the Multi-Agent Path Finding (MAPF) problem to the machine learning
community as a new benchmark, with a particular focus on the reasoning-intensive setting of solving MAPF
using large language models (LLMs) directly—without relying on traditional heuristic-based solvers or any
additional task-specific training. We test the LLMs by giving the scenario information to the LLM, and
let the LLM recommend the actions for each agent every single timestep. We use a high-level checker that
checks collisions between agents and obstacles to ensure the solution is valid in each step, provides error
messages to the LLM when violations occur, and iterates with the LLM until a valid solution is generated.
We first show that single-agent pathfinding can be solvable and then evaluate the performance of LLMs
on the empty map, the room map, and the maze map, which are classic maps from the standard MAPF
benchmark Stern et al. (2019). We show that LLMs can solve MAPF problems when the scenario is relatively
easy, and LLMs fail to generate any valid solution, no matter what the solution quality is, when the scenario
becomes harder. While LLMs are evolving extremely fast, and current failures may not apply to the next
generation of LLMs, we elaborate on the current failing scenarios and give our position on three aspects as
a breakdown of what kind of capability is currently missing in the LLM workflow, namely 1) the capability
to understand the scenario, 2) the context length limit, and 3) the reasoning capability. We incorporate a
list of experiments featuring various prominent prompt design alternatives, such as image-based and text-
only inputs, and with or without single-step observation information, among others. Finally, we provide a
discussion on the challenges of using LLMs for MAPF in the real world, and discuss how different researchers
could contribute to the problem from different directions.

We hope our work can serve as a building block for future research in foundation models for MAPF. And
more importantly, we hope this paper introduces LLM researchers to the unique and persistent challenges of
MAPF. We envision MAPF becoming a benchmark for evaluating future LLM advancements, particularly
in methods addressing the failure modes identified in this study.

2



Published in Transactions on Machine Learning Research (06/2025)

2 LLMs for Multi-agent Path Finding

2.1 Preliminary

The multi-agent path finding (MAPF) problem is the problem of finding a set of collision-free paths for a
set of agents in a known environment while minimizing their travel times. Specifically, in this paper, we
consider the problem in Stern et al. (2019); Li et al. (2022), which is a four-connected grid map, where each
agent is given a start cell and a goal cell. A scenario is defined as the combination of the description of the
map, indicating which cells have obstacles, and the start cells and goal cells of each agent. At each timestep,
an agent can move to an adjacent cell or stay in its current cell. A collision happens if two agents end up in
the same cell at the same timestep. Each agent remains at its goal cell after it arrives until all agents arrive
at their goals. The objective is to minimize the makespan of the solution, i.e., minimize the time when the
last agent arrives at its goal location.

With the number of parameters of LLMs being exponentially larger than the degree of freedom in small
reasoning problems, LLMs have the potential to solve some easy problems in reasoning with certain prompts
Wei et al. (2022), and break down harder problems into smaller ones to get suboptimal solutions Yang
et al. (2023). When applying to MAPF, we hope LLMs can be an alternative model to the current MAPF
reinforcement learning-based models without any additional training.

2.2 Benchmark Protocol

2.2.1 Dataset Files

Multi-Agent Path Finding (MAPF) is a well-established research domain within classical planning, supported
by a comprehensive benchmark dataset introduced by Stern et al. Stern et al. (2019).

The dataset comprises 33 maps, each provided both as an image and as a corresponding symbolic textual
representation, where ‘@’ denotes fixed obstacles and ‘.’ represents free cells. For each map, two class of
scenario files are available, corresponding to different agent distribution strategies: (i) agents distributed
uniformly across the map, and (ii) agents placed based on random coordinate generation, resulting in a less
uniform spatial distribution. By default, we will use the first setting in this paper. Each scenario file contains
a list of start and goal positions for agents. When evaluating a scenario with n agents, the first n entries in
the scenario file are used to specify the corresponding start and goal locations. For repeated evaluations on
the same map with different start-goal combinations, scenario files are used in sequential order, beginning
with scenario file 1.

The maps in the dataset can be categorized into several distinct layout types, each presenting unique chal-
lenges and requiring different planning capabilities. Every map is assigned a descriptive name that encodes
its structural characteristics. For instance, “Maze-32-32-2” indicates that the map belongs to the maze class,
has dimensions of 32 × 32, and is the second instance of this type in the benchmark. In this work, due
to the current limitations of LLMs in complex spatial reasoning tasks, we focus our experiments on three
representative maps: EMPTY-8-8, ROOM-32-32-4, and MAZE-32-32-2. We encourage the community to
also use the same map we are using as a starting point, and use the remaining maps and more scenarios
when the capability of LLMs becomes better. For potential training, the map can be used, but the scenario
files should not be directly trained on to avoid overfitting.

2.2.2 Evaluation Metrics

The metrics of the problem primarily consists of success rate and solution quality. Success rate is about
whether the solver can find a complete solution for the given scenario that is collision-free and every agent
has reached their goal. The solution quality is defined as the makespan, i.e., the time spent from when all
the agents start moving to when the last agent reaches its goal. There is also the variant of the sum of cost,
defined as the total sum of time all agents spent to reach their goal, respectively. Given the current success
rate of LLMs, we will leave the solution quality metrics for future research.

3



Published in Transactions on Machine Learning Research (06/2025)

While the objective of the problem is to let LLM solve the problem through the workflow, we cannot allocate
infinity budget on the problem and infinitely loop in the magnetic workflow. Thus, we define a solution
generation to be successful if it does not fail because of any of the following, and early-stop the generation
correspondingly:

1. Fails to generate a plan whose number of steps is at most 3 times that of the optimal plan.

2. Fails 5 consecutive times in a single step after we provided the first round of feedback, specifying
whether the current solution is correct or not.

2.3 Methods

In this paper, we focus on using LLMs to solve the MAPF problem directly. However, it is obvious that
current ML models cannot be perfect solvers in their first trial, and we introduce a high-level collision checker
to ensure the plan generated by the LLM is valid. We inform the LLM about the mistake in the current
solution, if any. Unlike some previous works Yao et al. (2022); Yang et al. (2023), our checker is not another
LLM both because it is extremely easy and efficient to detect collisions by a rule-based detector in linear
time, and also because the LLM fails to always correctly identify the collisions. A detailed comparison is
provided in the appendix. In this checker, we not only check for agent-to-agent collisions but also check for
any collision with the fixed obstacles. We do not provide any additional guidance on how the LLM should
resolve this. By default, all the information, like coordinates, is provided in text, and we will later discuss
the performance difference caused by different input formats.

Following the common practice of LLMs Kambhampati et al.; Chen et al. (2023b), we build an agentic
workflow shown in Fig. 1. As existing learning-based approaches Damani et al. (2021), we give LLMs
stepwise local information and let the LLM choose the actions of agents step-by-step. This step-by-step
(SBS) generation is different from the popular chain-of-thoughts idea Wei et al. (2022) used in LLMs by
not introducing more intermediate reasoning processes in the generation. Instead, it breaks down the whole
planning task into smaller single-step tasks, so the LLM does not need to be fully correct before we can use
some results from it. Later in the paper, we compare SBS with a variant that generates the whole plan in
one shot (OS) with the help of chain-of-thought prompts and show the comparison in Table. 2. We start by
giving the LLM the system prompt to become a solver for the MAPF problem. This part is fixed within
each map, and differs in the map description part in different maps. Then, we start the user prompt by
providing the scenario information, which includes where the obstacles are, as well as the start location and
the goal locations of each agent. We found that providing LLMs with specific local information about viable
actions for the immediate next step significantly helps them avoid collisions with static obstacles, so we
provide a single-step observation (SSO) in the prompt by default. Then we start to read the output of the
LLM, use the checker to determine whether the output of the LLM is valid, and either output the errors to
let the LLM correct on the current step, or tell the LLM to move on to the next step with the information
that is specifically for the next step. To address the total token limit, we leverage the fact that MAPF is a
Markov decision process where each state is independent of its previous states, and we restart the prompt
from scratch, i.e., treat the current agent locations as their starting point, whenever the current context to
be fed into the LLM is longer than the model limits.

Although there are numerous possible strategies for constructing prompts for LLMs, we defer a detailed
discussion to the next section, where we use different prompt designs to help analyze the causes of failure.
The prompts used in our experiments are provided in the appendix.

2.4 Benchmarking Results

2.4.1 General Experiment Settings

Each setting in the experiment is tested on 5 different scenarios in the standard MAPF benchmark Stern
et al. (2019). By default, we are using the GPT-4-1106-preview model, also known as the GPT-4-turbo
model with temperature 0 and seed 42.

4



Published in Transactions on Machine Learning Research (06/2025)

Map Dist Success Rate (%)
OS SBS A*

[2, 8) 80 100 100
Room [8, 16) 40 100 100

[16, 32) 40 80 100
[32, 100) 20 40 100

Maze [2, 8) 20 80 100
[8, 16) 0 20 100

Table 1: The success rate of solving single-agent
path finding with GPT-4-turbo on room-32-32-4
and maze maps with varying ground-truth short-
est path distance (Dist). OS and SBS are different
prompt versions for LLMs, while A* is a search-
based baseline that is purely included to demon-
strate the failure of LLMs compared to previous
algorithms. The names of the methods are simpli-
fied. For OS, it is combined with GO and TOM,
and for SBS, it is combined with GO+SSO and
TOM. All the details for these settings are de-
scribed later.

Map n Success Rate (%)
OS SBS CBS

2 20 100 100
Empty 4 0 100 100

8 0 100 100
16 0 60 100
2 20 100 100

Room 4 0 80 100
8 0 20 100

Maze 2 0 0 100

Table 2: The success rate of solving MAPF
with GPT-4-turbo on empty-8-8, room-32-32-4
and maze-32-32-2 maps with varying numbers of
agents (n). OS and SBS are different prompt ver-
sions for LLMs, while CBS is a search-based algo-
rithm that is commonly used in MAPF. For OS,
it is combined with GO and TOM, and for SBS,
it is combined with GO+SSO and TOM. All the
details for these settings are described later.

We do not consider any token limit error in this paper because we restart at each step to clean its travel
history if the token limit is too long, and 5 times in a single step guarantees that the message length in one
step is within the token limit.

2.4.2 Single-agent Path Finding Results

As discussed in previous work Valmeekam et al. (2024a), while LLM might not know how to generate an
optimal plan, our results show that it could generate some plan regardless of the optimality. As shown in
Table. 1, we found that LLM could generate a plan after a few iterations in relatively easy scenarios. We
observe that with the growing groud-truth shortest path length, the success rate of LLM drops significantly,
especially in the one-shot settings (OS). In the maze scenario, it is hard to find one solution even in the
smallest case, and we will discuss the reasons in the next section. In contrast, traditional search-based
algorithms like A* solve the problem at the same scale very easily.

We also found that the cause of failing in pathfinding is different from the cause of failing in general planning
tasks where the generated plan is invalid, usually by breaking requisite constraints Valmeekam et al. (2023).
In path planning, the only constraint is that one agent needs to move to an adjacent cell and cannot jump
across the map. This is a very easy task for LLM to follow, and thus, in our experiments, we never see the
LLM failing due to that constraint, even if the only instruction about this constraint is "in a 4-connected
grid". Building on our findings in single-agent path planning, we posit that large language models (LLMs)
hold promise for generating effective solutions to multi-agent path finding (MAPF) problems. In particular,
small-scale MAPF scenarios may serve as both a practical application domain and a distinctive benchmark
for evaluating the reasoning and planning capabilities of LLMs.

2.4.3 Multi-agent Path Finding Results

We start by showing that LLMs can be a promising solver in easy domains. We test the performance of
LLMs on the empty map from the MAPF benchmark Stern et al. (2019), which has no obstacles at all and
only requires the agents to not collide with each other. The results are shown in Table. 2. We observe that
for smaller-scale problems that have fewer agents, GPT-4 can successfully generate valid solutions with the
workflow. However, GPT-4 with the same workflow fails to generate valid solutions when more agents are
on the same map, while classic algorithms like conflict-based search (CBS) easily maintain a perfect success
rate in solving the problem. We also observe that one-shot (OS) generation fails to generate solutions even

5



Published in Transactions on Machine Learning Research (06/2025)

Figure 2: The room-32-32-4 map (left) and
the maze-32-32-2 map (right). The picture
is vertically flipped to match the common
knowledge that higher vertical positions in-
dicate greater values.

(a) (b)

Figure 3: Two examples of the MAPF problem, which are
also known as the symmetry breaking examples for MAPF
community, where black denotes a fixed obstacle. In 3a,
every pair of shortest path will collide with each other. In
3b, every pair of shortest paths will collide in cell (2, 1).

in scenarios with 4 agents. This is because the whole plan is quite long, and the total number of possible
failures is the product of possible failure at each step, making it inefficient to find a valid solution.

Motivated by the success on the empty map, we tested the same workflow on the room-32-32-1 map and the
maze-32-32-2 map, which is shown in Fig. 2. The results are shown in Table. 2. In this case, we found that
LLMs fail to generate solutions when the number of agents is already quite small, and that LLMs completely
fail on the maze-32-32-map even with only 2 agents. Motivated by the superior performance of SBS over
OS, we adopt SBS for the remainder of the paper without further specification.

In our experiments, we observe that LLMs fail in the empty map scenario with 16 agents due to a rare case
of consecutive missteps in a single planning step. In all other cases, failures arise from overly long solution
paths. Specifically, 77% of the failures are caused by oscillatory behavior, where agents repeatedly move
within a confined area, while the remaining failures result from unnecessarily long detours.

3 Cause of Failures

Given the rapid pace of advancement in large language models, it remains uncertain how long current limi-
tations will persist. Nonetheless, systematically analyzing these failures and identifying their root causes is
essential for progress. Specifically, we categorize the failure modes into three underlying sources from the per-
spective of natural language models: general reasoning capability, long-context capability, and understanding
symbolic information.

3.1 Reasoning Capability

In this paper, we focus on optimizing the makespan of the MAPF solution, and making the agents prefer
to wait rather than detour in small scenarios that do not lead to endless waiting. We calculate the average
ratio of makespan to the maximum length among the single agent shortest paths (a standard normalization
practice in MAPF as this provides a valid lower bound on the optimal MAPF solution), and in scenarios
that are successfully solved as denoted by the ones in Table 2, this average is 1.5. This means that LLMs can
mostly succeed in scenarios that do not need a lot of waiting, and in most steps, they only need to go in the
two directions aligned with the goal’s direction. LLM fails in other scenarios because it needs pathfinding in
complex environments. A simple example of the failure of path finding is shown in Fig. 3, and we provide
the output of the first step in Fig. 4. While waiting for one step can clearly lead to the optimal solution
that has a makespan of 5, the LLM chose to move agent 2 to the left and resulting in a total makespan of 6.
This example shows that LLM does not understand what makespan is and how to optimize for makespan.

On the other hand, when we look at the average number of iterations for prompts with both global obstacle
observation in the first user prompt and single-step obstacle observations(GO+SSO) in Table. 3, it is still
not very close to 1 which means no iterations at all. This is because even if we have explicitly let the LLM
list all the coordinates of agents, it does not have the capability to check the answers itself without the use

6



Published in Transactions on Machine Learning Research (06/2025)

Step 1:
Agent 1:
Current: (0,2)
Goal: (3,1)
Move: Right to (1,2)

Agent 2:
Current: (1,3)
Goal: (2,0)
Move: Down to (1,2)

After the move, the coordinates of the agents are:
Agent 1: (1,2)
Agent 2: (1,2)

There is a collision between Agent 1 and 2. I will regenerate another solution immediately.
...
Agent 2:
Current: (1,3)
Goal: (2,0)
Move: Left to (0,3)

...

Figure 4: Part of the output from GPT-4-turbo for the symmetry breaking example in Fig. 3b. Full example
is provided in the appendix.

of external tools. More specifically, LLMs are not guaranteed to tell whether a list of tuples of numbers
has any duplicates, and can often fail because of this. We also observe that the GPT-4-8K model requires
more iterations compared to the GPT-4-Turbo model, which we attribute either to increased information
retention challenges in the former or to the enhanced capacity of the latter.

In many problems, limited reasoning capabilities are often addressed through tool use. However, finding a
good way to use tools in MAPF remains particularly challenging, as it requires not only pathfinding in a
complex environment but also the strategic and efficient avoidance of collisions among all agent pairs. The
coordination between agents is required in each step, and each step only. If we let the tool, in this case, a
single-agent planner like A*, include collision avoidance, the problem is already solved as CBS Sharon et al.
(2015), where LLM did no help. On the other hand, the tools must know how collisions are supposed to be
avoided and add those constraints into the heuristic search algorithm. This paradox makes it very difficult
to use LLM with tools in MAPF.

We have also tested the o1-preview model from OpenAI, which has been shown to significantly improve
the reasoning and planning capability Valmeekam et al. (2024b). Compared to the standard rule-based
checker, which is the default for all other experiments, we introduce a human checker that analyzes the
explanation and chooses to retry when the current explanations could lead to future failure. We observe that
such an improved checker can also facilitate the generation a lot, which further indicates that the current
reward model used in training and, potentially, the inference is not correct for MAPF. Examples and more
explanations on why o1-preview leads to a worse performance compared to GPT-4-turbo in the default
settings are provided in the appendix.

3.2 Long-context capability

Because the underlying architecture of popular LLMs is transformers, which further rely on self-attention,
a longer context in the input will significantly increase the computing complexity in the process. Therefore,
in their training process, they set a maximum limit of tokens on the input and trained specifically on them.
Current large language models released will also provide a context length limit, which is as long as 200K

7



Published in Transactions on Machine Learning Research (06/2025)

Model n Success Rate (% ) Avg. Iterations

GO GO+SSO GO GO+SSO

2 80 100 2.7 1.6
GPT-4-8K 4 20 60 3.0 2.3

8 0 0 N/A N/A

2 100 100 2.1 1.2
GPT-4-128K 4 60 80 2.7 1.4

8 0 20 N/A 2.4

Table 3: The success rates and average iterations per step used until
proceed to next step in success scenarios for GPT-4 and GPT-4
Turbo, whose token limits are 8K and 128K respectively, on the
room-32-32-4 map with different number of agents(n). The name of
the variants are simplified. Both variants are tested under SBS and
TOM, with details described in other parts of the paper.

Checker Type Success Rate (% )

Rule-based 0
Human 40

Table 4: The success rate of
o1-preview (OpenAI) with different
checker type on 8 agent scenarios
(n = 8) with GO+SSO+SBS+TOM
in room-32-32-4 map.

tokens, and any request with a longer context length will be rejected. This is a long enough length for many
tasks and even able to read a textbook, and many users are satisfied with the length. Recent studies have
demonstrated that the performance of large models, such as GPT-4 Turbo with 128K context length, is not
consistent when processing inputs of 8K versus 128K tokens 1. What is even worse is that in the real-world
applications of MAPF, the total number of agents running in the environment could be up to a few thousand.
Even in the ideal case that our prompt will grow linearly to the number of agents, an environment with a
thousand agents will require a total context length of 250(tokens/agent step)∗50(steps)∗1000(agents) = 5M
tokens, which is much bigger than the current limit even without considering the related reasoning capability
under those length. Because the token limit is strict, we have introduced the restart mechanism in our
methods, and in our current experiment scale, we have to restart the LLM around every 7-10 steps in large
or complex scenarios. We also observed that the number of tokens used grows non-linearly with regard to the
number of agents due to the increasing number of iterations, and we have put the numbers in the appendix.

In table. 3, we show our results on the room map, and test with different GPT-4 models with different
context lengths, in the setting of global observation (GO) only and the version with single-step observation
(SSO). We will talk about these two settings in the next section. We found that when the context length limit
grows, the success rate also increases. This is especially helpful when the single-step observation information
that tells what valid actions each agent has is not provided. The failures here are not direct failures by
exceeding the context length limit, but from the forgetting in restart caused by reaching the context length
limits. Because of these restarts, our models often completely forget that they have been to certain locations,
and then go back and forth in certain areas with dead ends like the center room in the room map. We have
also included the o1-preview model from OpenAI Jaech et al. (2024) in the experiment on the biggest scale.
To our surprise, it is even worse than the GPT-4-turbo version. In the appendix, we provide a case study
with more detailed explanations. And because the o1 models are equipped with the capability of writing
programs that help them determine in the process, their failure of them also indicates that LLMs currently
cannot naturally link the problem of MAPF as one of the problems they can write a program to solve, e.g.,
write a CBS algorithm and solve the problem. While manually instructing the LLMs to write a code of CBS
is very easy for LLM 2, in this paper we focus on the underlying capability of LLMs to find a way to solve
MAPF themselves without any guidance.

3.3 Understanding Symbolic Information

MAPF scenarios can be broken down into a pair of start location and goal locations, together with the
map information. While understanding the coordinate version of start goal location pairs is relatively easy,
understanding the map information is hard. Trained with publicly available text, LLM learns what a specific

1https://github.com/gkamradt/LLMTest_NeedleInAHaystack
2Latest LLMs have a 100% success rate when explicitly required to write the CBS algorithm.

8



Published in Transactions on Machine Learning Research (06/2025)

n MM TOO TOM

2 100 100 100
4 20 60 80
8 0 0 20

Table 5: The success rate (%) of dif-
ferent ways of inputting the map in-
formation to LLM on Room-32-32-4
map with different number of agents
(n). All settings are combined with
SBS+GO+SSO.

Figure 5: An illustration of the difference between multimodal input
(MM), text that describes the whole map (TOM), and text that
describes the obstacles (TOO).

map means by finding similar contexts online, which mostly comes from other related fields in planning, like
solving a maze. However, one problem is that people barely provide any such information online since people
have the common knowledge of what to do with a map with code and preprocess the map information in the
code rather than explicitly provide the set of where the obstacles are as the original input. Therefore, this
leads to a lack of training data with related context about the information in the pictures or in a symbol-
based input. As we mentioned earlier, 77% of the overall failure is caused by agents detouring back and forth
in a certain area blocked by obstacles. These failures directly indicate that the LLM fails to understand the
map information provided.

Because of this, our main prompt included guidance on what action could be taken in the current step to
increase the success rate a little bit. In Table. 3, we find that while global observation can achieve a high
win rate with the support of our high-level checkers, it also increases the average number of iterations per
step. Furthermore, it fails in scenarios where SSO would be effective, as it exceeds the step limits defined in
Sec. 2.2.2. In general, LLMs fail in medium complexity maps like room, and completely fail in much harder
maps like maze, even with the help of SSO.

In all the experiments above, we use pure-text-based input because of the popularity and simplicity of pure-
text input. However, this was not the case before: In earlier work of reinforcement learning for MAPF,
people transformed the input into image-based input within the field of view and used neural networks like
convolutional neural network (CNN) to read the information. Therefore, as shown in Fig. 5, we propose three
different methods, which all share the same prompt of describing the problem definition and use different
versions of the prompt describing the scenario:

1. A multimodal-based method MM where we use an image to give the picture of the map, and text
to describe the problem and the scenario.

2. A text-only method TOO that describes the map by listing the coordinates of the obstacles.

3. A text-only method that describes the map by feeding the text version of the map with ‘@’ denoting
the obstacles and ‘.’ denoting an empty space, named TOM.

We test the performance of these three variants, and show the results in Table. 5. We found that with
an image-based input, the results are even worse. For example, large models can only have a high-level
idea that there is a wall in the middle area, rather than knowing there is a wall exactly from (3, 10) to
(20, 10). The failure of TOO further indicates that LLMs do not know how to combine high-level intuitions
of where obstacles are with concrete reasoning during planning. Overall, in complex environments such
as mazes and real-world city maps, LLMs cannot offer any form of guidance, not necessarily the specific
action recommendations tested in this paper, until they can accurately comprehend the relationship between
obstacles and the paths of agents.

9



Published in Transactions on Machine Learning Research (06/2025)

4 Discussion

We would like to note that the methods in this paper are not designed to either outperform the state-of-the-
art classic solvers or surpass the performance of learning-based solvers. Instead, the goal is to demonstrate
that LLMs can solve small problems simply through prompting and to analyze the factors limiting their
ability to handle larger scenarios. Specifically, current heuristic-based algorithms like conflict based search
Sharon et al. (2015) can solve all the scenarios tested in the paper in less than 0.1 second. Moving on, we
believe the three reasons for failures can each independently relate to different research directions. Improving
capability in a long context is already a popular direction in NLP, and many papers are also looking into
improving the general reasoning capability. We believe that much ongoing research has the opportunity
to improve the performance of LLMs on MAPF, and we are pleased to have more researchers test this
unique problem. Also, the recent development of building foundation models that combine language and
image generation could potentially help with the reasoning in MAPF. Image generation models like stable
diffusion Rombach et al. (2022) have shown to be a strong tool in single agent path finding Janner et al.
(2022). While these diffusion models are not designed for multi-agent planning and are even hard to apply
to MAPF, strategically using them could partially help the lack of reasoning capability. Regarding potential
finetuning, we believe more annotated data are needed to help foundation models connect the abstract
description to concrete coordinate-level knowledge of where obstacles are, and how to coordinate between
agents. Future research could finetune using their data, or at least open their data to the general public,
and let the next version of released models from industry companies include such data by automatically
getting data online. Hopefully, such data could help foundation models know that position encodings are
more important in planning problems. Additionally, our results on current rule-based checker v.s. human
checker also indicate that future research could work on building a good checker, i.e., a reward model in
large language models, to improve the performance of LLMs. However, we still acknowledge the fact that
while some certain more advanced way of solving the problems, e.g., more advanced prompts, cannot directly
address all the obstacles mentioned in the paper, it is still possible that they can be beneficial to the domain
and might lead to some additional gaps to be solved. Overall, we believe that as a unique domain, MAPF
can be a useful benchmark for general LLM researchers to test their idea on.

While our current prompt has already included a lot of common tricks for prompting the LLMs, there are
some other tricks that we found not as helpful as others on GPT-4-turbo, and we did not include them in
the final version. Specifically, this include ReAct Yao et al. (2022), CoT Wei et al. (2022) upon SBS, vision
of thoughts Wu et al. (2024), adding a whole example to the prompt as in-context learning examples, and
breaking the instructions into bullet points.

Although the success rate is one of the most important factors in measuring the performance of a solver,
there are also other challenges that need to be addressed before using LLMs in real-world scenarios. First of
all, success does not indicate anything about the quality of the solution. In our experiment, we found that
the success scenarios usually come from easier scenarios that agents mostly only need to follow their direct
shortest path. When planning gets harder, the success rate gets much worse. To improve the reasoning
capability, future researchers and users could choose to make a dataset of scenarios and their good solutions
publicly available on the internet, so when training with newer data, this specific problem could be directly
included in the training set. Furthermore, the current workflow does not include any heuristics or tool use
during the generation but only as a solution checker. Although the best approach for incorporating these
aspects remains uncertain, we believe this presents a highly challenging yet meaningful research direction.
For potential researchers going in this direction, we want to remind them to keep looking at the consistency
of the deconflict of agents, which could be seen as moving obstacles, and the deconflict of the fixed obstacles
on the map. A successful method should consider both difficulties in a similar manner.

On the other hand, latency is always a problem for LLMs when used in real-world production. If one wants
to use their own models, which is currently 500 tokens per second after using state-of-the-art system-wise
optimization like vLLM Kwon et al. (2023) for LLAMA-2 Touvron et al. (2023). However, this speed is not
enough as a typical round of output will have 1500 tokens, and it may take a few rounds before the LLM
generates a valid solution. If one wants to use models provided through API like GPT-4 from OpenAI, the
latency of the models will depend on a list of factors like network connection and server availability. In our

10



Published in Transactions on Machine Learning Research (06/2025)

paper, we typically need to wait around 15-30 seconds for one step to get completed, where less than 0.1
seconds are used for local processing.

5 Related Works

LLM for Reasoning Since the release of GPT-3, researchers have studied the effect of how they are
performing on diverse sets of problems. Ideas like chain of thought Wei et al. (2022), in context learning Ye
et al. (2023) have been shown to significantly improve the performance of LLMs in different tasks related
to reasoningFu et al. (2022); Shum et al. (2023). A recent line of work has been introduced to use natural
language as feedback in the process to introduce iterations and give LLMs more than one chance to generate
correct solutions, which has been shown to significantly help in code generation and reasoning Chen et al.
(2023a); Yang et al. (2023); Shinn et al. (2023). Specifically in LLMs for planning, there is a line of work
that shows how bad LLMs are in general planning domains Valmeekam et al. (2023; 2024a), some works on
benchmarking the performance of LLMs on task planning or travelplanning, which while share the name of
planning, focus more on reasoning Zheng et al. (2024); Xie et al. (2024), and a few papers on combining the
LLMs with search and evolutionary algorithms and improve the performance of LLMs on reasoning problems,
especially on planning problems where search are traditionally performming well Chen et al. (2024); Su et al.
(2024); Lee et al. (2025). In this paper, we are specifically looking into a specific problem in planning.

LLM for Multi-agent Systems While there is extensive research on using LLMs for many different
problems, there is little work that addresses the problem of LLM for multi-agent systems in the beginning.
As time proceeds, there has been a list of works that promote research in social behavior by creating multi-
agent environment powered by a lot of LLM agents Tan et al. (2023), create dialogue-based games with LLM
Schlangen (2023). Recent work has shown that dialogue between multiple agents can help remove factual
errors Du et al. (2023); Wang et al. (2023b). When it comes to solving problems related to multi-agent
system, there are some works that are related to robotics Zhang et al. (2023); Mandi et al. (2023) while
limited to the scale of two to three agents. Chen et al. (2023b) studied whether using a more decentralized
controller can help to solve the context length limit problem when the number of agents is higher, and
concluded that in a centralized controller environment, creating separate LLMs for different agents does not
help improve the success rate. While they succeed in their domains, in this paper, we specifically look at the
problem of MAPF, and we show the cause of failure in the MAPF problem because of its unique challenges.

Multi-agent Path Finding Multi-agent path finding (MAPF) is a problem that has won much attention
in recent years because of its close relationship to real-world applications. It has previously been solved
with more classic methods like heuristic search algorithms Sharon et al. (2015); Li et al. (2021); Okumura
(2023), rule-based algorithms Han & Yu (2020), and reduction-based algorithms Surynek et al. (2016). While
learning-based approaches have not yet outperformed classic approaches, they have also begun to win a lot
more focus for their fast inference time and generalizability. PRIMAL Sartoretti et al. (2019) proposed to
learn a policy for MAPF using a combination of reinforcement learning and imitation learning. Following
that, a group of works proposed a diverse set of methods from building curriculum Damani et al. (2021) to
follow guidance from classic methods in each step Skrynnik et al. (2023). In this paper, we focus on using
LLM, which is a learning-based approach but is not specifically fine-tuned for MAPF problems.

6 Conclusion

In this work, we introduce the Multi-Agent Path Finding (MAPF) problem as a novel and structured bench-
mark for evaluating the reasoning capabilities of large language models (LLMs). We present a framework
for formulating MAPF as a benchmark task and empirically demonstrate that, while LLMs can solve sim-
ple MAPF instances, their performance degrades significantly as problem complexity increases. To better
understand the specific challenges posed by this benchmark, we analyze the failure modes of LLMs and
categorize them into three distinct capability gaps, namely reasoning capability, long-context capability, and
understanding symbolic information. Through extensive experiments, we validate this categorization and

11



Published in Transactions on Machine Learning Research (06/2025)

discuss how addressing these challenges may require insights from diverse research communities, including
planning, representation learning, and natural language understanding.

Acknowledgements

The National Science Foundation (NSF) supported the research under grant number 2112533: "NSF Artificial
Intelligence Research Institute for Advances in Optimization (AI4OPT)".

References
Saaket Agashe, Yue Fan, and Xin Eric Wang. Evaluating multi-agent coordination abilities in large language

models. arXiv preprint arXiv:2310.03903, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-
debug. arXiv preprint arXiv:2304.05128, 2023a.

Yanan Chen, Ali Pesaranghader, Tanmana Sadhu, and Dong Hoon Yi. Can we rely on llm agents to draft
long-horizon plans? let’s take travelplanner as an example. arXiv preprint arXiv:2408.06318, 2024.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot collaboration
with large language models: Centralized or decentralized systems? arXiv preprint arXiv:2309.15943,
2023b.

Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. Primal$_2$: Pathfinding via
reinforcement and imitation multi-agent learning - lifelong. IEEE Robotics Autom. Lett., 6(2):2666–2673,
2021. doi: 10.1109/LRA.2021.3062803. URL https://doi.org/10.1109/LRA.2021.3062803.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factuality
and reasoning in language models through multiagent debate. CoRR, abs/2305.14325, 2023. doi: 10.
48550/ARXIV.2305.14325. URL https://doi.org/10.48550/arXiv.2305.14325.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting for
multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Shuai D. Han and Jingjin Yu. DDM: fast near-optimal multi-robot path planning using diversified-path and
optimal sub-problem solution database heuristics. IEEE Robotics Autom. Lett., 2:1350–1357, 2020.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Alek-
sander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720,
2024.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bhambri,
Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning in llm-modulo
frameworks. In Forty-first International Conference on Machine Learning.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans, and Xinyun
Chen. Evolving deeper llm thinking. arXiv preprint arXiv:2501.09891, 2025.

12

https://doi.org/10.1109/LRA.2021.3062803
https://doi.org/10.48550/arXiv.2305.14325


Published in Transactions on Machine Learning Research (06/2025)

Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, T. K. Satish Kumar, and Sven Koenig. Moving agents
in formation in congested environments. In Daniel Harabor and Mauro Vallati (eds.), Proceedings of the
Thirteenth International Symposium on Combinatorial Search, SOCS 2020, Online Conference [Vienna,
Austria], 26-28 May 2020, pp. 131–132. AAAI Press, 2020. doi: 10.1609/SOCS.V11I1.18525. URL https:
//doi.org/10.1609/socs.v11i1.18525.

Jiaoyang Li, Wheeler Ruml, and Sven Koenig. Eecbs: A bounded-suboptimal search for multi-agent path
finding. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 12353–12362,
2021.

Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. MAPF-LNS2: fast repairing
for multi-agent path finding via large neighborhood search. In Proceedings of the Thirty-Sixth Conference
on Artificial Intelligence (AAAI), pp. 10256–10265. AAAI Press, 2022.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-agent
collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170, 2023.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large language
models. arXiv preprint arXiv:2307.04738, 2023.

Keisuke Okumura. Lacam: Search-based algorithm for quick multi-agent pathfinding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 11655–11662, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar, Sven Koenig, and Howie
Choset. PRIMAL: pathfinding via reinforcement and imitation multi-agent learning. IEEE Robotics
Autom. Lett., 4(3):2378–2385, 2019. doi: 10.1109/LRA.2019.2903261. URL https://doi.org/10.1109/
LRA.2019.2903261.

David Schlangen. Dialogue games for benchmarking language understanding: Motivation, taxonomy, strat-
egy. arXiv preprint arXiv:2304.07007, 2023.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for optimal multi-
agent pathfinding. Artif. Intell., pp. 40–66, 2015.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

KaShun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with chain-
of-thought from labeled data. arXiv preprint arXiv:2302.12822, 2023.

Alexey Skrynnik, Anton Andreychuk, Maria Nesterova, Konstantin Yakovlev, and Aleksandr Panov. Learn
to follow: Decentralized lifelong multi-agent pathfinding via planning and learning. arXiv preprint
arXiv:2310.01207, 2023.

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang Li, Dor
Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Proceedings of the Twelfth Annual Symposium on Combinatorial
Search (SoCS), pp. 151–159. AAAI Press, 2019.

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dualformer:
Controllable fast and slow thinking by learning with randomized reasoning traces. arXiv preprint
arXiv:2410.09918, 2024.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT approach to multi-agent path
finding under the sum of costs objective. In 22nd European Conference on Artificial Intelligence (ECAI),
volume 285 of Frontiers in Artificial Intelligence and Applications, pp. 810–818. IOS Press, 2016.

13

https://doi.org/10.1609/socs.v11i1.18525
https://doi.org/10.1609/socs.v11i1.18525
https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1109/LRA.2019.2903261


Published in Transactions on Machine Learning Research (06/2025)

Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Kraehenbuehl. Language conditioned
traffic generation. arXiv preprint arXiv:2307.07947, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Au-
rélien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models–a critical investigation. arXiv preprint arXiv:2305.15771, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
Planbench: An extensible benchmark for evaluating large language models on planning and reasoning
about change. Advances in Neural Information Processing Systems, 36, 2024a.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a prelim-
inary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024b.

Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil Sreenath. Prompt a robot to walk with large language
models. arXiv preprint arXiv:2309.09969, 2023a.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing cognitive
synergy in large language models: A task-solving agent through multi-persona self-collaboration. CoRR,
abs/2307.05300, 2023b. doi: 10.48550/ARXIV.2307.05300. URL https://doi.org/10.48550/arXiv.
2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large lan-
guage models. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s eye of llms:
Visualization-of-thought elicits spatial reasoning in large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, and Minjoon Seo. In-context
instruction learning. arXiv preprint arXiv:2302.14691, 2023.

14

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.05300
https://doi.org/10.48550/arXiv.2307.05300
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html


Published in Transactions on Machine Learning Research (06/2025)

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu,
and Chuang Gan. Building cooperative embodied agents modularly with large language models. arXiv
preprint arXiv:2307.02485, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on natural language
planning. arXiv preprint arXiv:2406.04520, 2024.

A Complete Prompts

You are a decision-maker in a warehouse system that is running as a 4-connected grid-based multi-agent path
finding system of [[Map Description]]. You will be provided with the current scenario in which you need to
choose actions for each agent, i.e., the detailed information that provides where the obstacles are, together with
each agent’s current location and goal locations. The objective is to minimize the time of the agent who arrives
at its goal location at the latest while keeping no agents from colliding with each other at any timestep. You only
need to consider collision between two agents located in the same cell after each move. On each timestep, you
could choose one action from moving up, moving down, moving left, moving right, and staying without moving.
You should try to avoid collisions not only in the current timestep but also look ahead to a few timesteps if it
is important to avoid future collisions.
Remember that to avoid a collision, normally, only one agent needs to change their action from the original
action. Nevertheless, your job is not to generate a whole path but to do it step-by-step, and the information
on whether a specific action is valid or not is provided in each single step. Remember that the given action is
based on the obstacles, so the available action will not change if the agent chooses to stay at the same location.
You only need to give a single-step action for each agent to follow; do not give more steps until I tell you to.
First, give your solution in the same format as follows, with some explanation if the agent is not moving or
moving in a direction that is not towards its goal. (This is not the actual scenario, but an example of the desired
output format. You will be provided with the actual scenario later):
Step 1:
Agent 1:
Current: (1,0)
Goal: (1,0)
Move: Stay, as it has already reached its goal.

Agent 2:
Current: (5,4)
Goal: (5,6)
Move: Up to (5,5)

Agent 3:
Current: (0,7)
Goal: (6,4)
Move: Right to (1,7)

Then, validate your solution by listing all the coordinates of the agents after the move and check if there is any
pair of agents that have the same coordinates. If there is a collision by mistake, regenerate another solution
immediately and validate again by listing the coordinates of all the agents until you get a collision-free solution.
Finally, end your output with your validated solution in a new paragraph with the format of a sequence of :
[[Agent_id]]: [[Coordinate]].

Figure 6: An example of the system prompt to specify the MAPF system and the objective. The text
highlight in blue will be replaced by map description. For example, in room-32-32-4, the prompt will be
’room-like map with size 32*32’.

In Fig. 6, we give our system prompt. Between different maps, the only thing that changed is the text
highlighted in blue, and all other parts are the same. We provide the user prompts in Fig. 7 and Fig. 8.

15



Published in Transactions on Machine Learning Research (06/2025)

Agent 1 is currently in (0,2), and wants to go to (3,1).
Agent 2 is currently in (1,3), and wants to go to (2,0).
The map is as follows, where ’@’ denotes a cell with an obstacle that an agent cannot pass, and ’.’ denotes an
empty cell that an agent can pass.
The bottom-left cell is (0,0) and the bottom-right cell is (31,0):
....
...@
....
.@..
In the next step:
Agent 1 can move [’stay at (0, 2)’, ’right to (1, 2)’, ’up to (0, 3)’, ’down to (0, 1)’].
Agent 2 can move [’stay at (1, 3)’, ’left to (0, 3)’, ’right to (2, 3)’, ’down to (1, 2)’].

Figure 7: An example of the user prompt for describing the scenario. Text in blue is a scenario-specific
prompt, while text in orange is a map-specific prompt. In the experiments on the empty map, only the first
blue paragraph will be provided, and all text starting from the black paragraph is removed because there
are no obstacles. The text in purple is the single-step observation (SSO) information.

[[Success]]
Good job. Keep moving. In the next step:
Agent 1 can move [’stay at (0, 2)’, ’right to (1, 2)’, ’up to (0, 3)’, ’down to (0, 1)’].
Agent 2 can move [’stay at (1, 3)’, ’left to (0, 3)’, ’right to (2, 3)’, ’down to (1, 2)’].
[[Failure]]
You are wrong. Agents (1,2), and (4,5) are colliding with each other. Please correct the current step.
You are wrong. Agent 2,4 is colliding with obstacles. Please correct the current step.

Figure 8: An example of the user prompt starting from the second step. While here we demonstrate a few
options, only one of them, i.e., text in one color, will be provided to the LLM in one iteration.

B Token Length Grows

In Fig. 9, we show the average prompt length per agent per step, which includes both the input and the
output. We found that with the growing number of agents, this average is also growing, which means that
the output length is growing faster than linear. This contributes to the fact that the more agents, the more
complex the environment, and thus, the longer the explanation and the more iterations until a correct plan
is found. We also observe that in failing scenarios where the agents go back and forth, the token length is
generally shorter, given that they did not run into the iterative deconflict process, which takes a lot of tokens
to solve.

C Comparison Between Rule-based Checker and LLM as Checker

In many domains, people are using LLM as the checker and provide feedback to another LLM, which serves
as an actor. While we choose to use a rule-based checker because of its reliability and speed, here we provide
some results on how bad the performance of an LLM-based checker could be. We randomly picked 50
different steps of information that need the checker to verify from our discussion history. And the success
rate is 76%, and the average time spent for each check is 3 seconds. This success rate is why we choose to
use the rule-based checker.

16



Published in Transactions on Machine Learning Research (06/2025)

Figure 9: Average token length per agent step on success scenarios.

D Complete Failing Example

While due to space limits, we have only provided part of the example of the symmetry breaking examples
in the main paper, here we provide the full example in Fig. 10 on the corresponding step as an example of
what will happen in one step of LLM response.

E Case Study on GPT-o1-preview

In the main paper, we showed that the model of (GPT-)o1-preview has a worse performance than the
previous GPT-4-turbo. To study this anomaly, we provide a case study here.

As shown in Fig. 11, compared to the previous version, GPT-o1-preview now learns to explicitly try to
find an alternative route, and also, it now learns to use its previous history more strategically. After the
model has found out that moving right is probably not helpful to him, it will not try to go right again.
However, this is making the result worse, given the current capability of the model is not strong enough.
We observe that while at location (1, 17), agent 5 could have moved up, GPT-o1-preview still chose to go
back to the left. This fails to meet the motivation of trying to find an alternative path when meeting an
obstacle. It is noteworthy that after a retry, it chooses to move up and end up in a successful final plan.
Similar scenarios happens which leads to the improvement in Table. 11, which shows that GPT-o1-preview
has the capability of at least matching the performance of the previous model, but the current result is
coming from the randomness of LLMs. Also, this opens up the potential for future research to study how to
automatically integrate the regeneration process when provided with a more advanced checker. This checker
would need to go beyond merely assessing the final output, like the current checker, and instead evaluate
the entire reasoning process. The checker should be able to predict whether the current explanations are
likely to lead to failure in future steps, rather than simply determining if the current step is correct. This
aligns with evaluating the Qπ value in a Markov decision process, where π represents the generation policy
of the large language model (LLM). Unlike V ∗, which evaluates the current state based on an optimal policy,
Qπ would allow the model to assess whether the current action will result in long-term success or failure
in tasks such as MAPF. For instance, the checker should recognize that while the agent could theoretically
move back to (1, 17) later, if it chooses to move left to (0, 17) at step 6, the model’s policy will not opt for
this, indicating the need for regeneration at this step rather than later. It is also noteworthy that even when
large reasoning models (LRM) like GPT-o1-preview have success at some point, it will also introduce a much

17



Published in Transactions on Machine Learning Research (06/2025)

Step 1:
Agent 1:
Current: (0,2)
Goal: (3,1)
Move: Right to (1,2)

Agent 2:
Current: (1,3)
Goal: (2,0)
Move: Down to (1,2)

After the move, the coordinates of the agents are:
Agent 1: (1,2)
Agent 2: (1,2)

There is a collision between Agent 1 and 2. I will regenerate another solution immediately.

Step 1 (Regenerated):
Agent 1:
Current: (0,2)
Goal: (3,1)
Move: Down to (0,1)

Agent 2:
Current: (1,3)
Goal: (2,0)
Move: Left to (0,3)

After the move, the coordinates of the agents are:
Agent 1: (0,1)
Agent 2: (0,3)

There is no collision. Here is the validated solution:

Agent 1: (0,1)
Agent 2: (0,3)

Figure 10: The output from GPT-4-turbo for the symmetry breaking example in Fig. 3b.

longer inference time and make it even harder to deploy in the real world. We also provide another example
in Fig. 12, where GPT-o1-preview has also shown its reasoning of trying one step, and going back. However,
this example goes back directly because it sees no option to go to the goal location after the detour. This is
one of the examples that LLM still fails even after we incorporate the human checker in the middle because
it still does not have a strong capability in path planning.

18



Published in Transactions on Machine Learning Research (06/2025)

<Assistant>
Step 5:
...
Agent 5:
Current: (0,17)
Goal: (0,23)
Move: Right to (1,17), aiming to find a path upwards since moving up is blocked.
...
<User>
Keep moving. In the next step, ...
<Assistant>
...
Charting new routes...
Agent 5 is mapping out new paths towards (0,23). Moving left or up from (1,17) could be viable, but obstacles
might alter their course. Interessen her own challenges and adjusting trajectory.
...
Step 6:
...
Agent 5:
Current: (1,17)
Goal: (0,23)
Move: Left to (0,17)
...
<User>
Keep moving. In the next step, ...
<Assistant>
Step 7:
...
Agent 5:
Current: (0,17)
Goal: (0,23)
Move: Stay at (0,17), as moving right doesn’t help and moving up is blocked.
...

Figure 11: An example of part of the output from GPT-o1-preview model. The main difference compared
to previous model in the reasoning is highlighted in red. Italics are the part shown as the thought of
GPT-o1-preview in the web version.

19



Published in Transactions on Machine Learning Research (06/2025)

<Assistant>
Step 8:
...
Agent 3:
Current: (17,5)
Goal: (17,1)
Move: Up to (17,6)
Explanation: Moving up to find a path that allows decreasing the y-coordinate towards the goal.
...
<User>
Keep moving. In the next step, ...
<Assistant>
Step 9:
...
Agent 3:
Current: (17,6)
Goal: (17,1)
Available moves: [’stay at (17,6)’, ’right to (18,6)’, ’up to (17,7)’, ’down to (17,5)’]
Move: Down to (17,5)
...
<User>
Keep moving. In the next step, ...
<Assistant>
Step 10:
...
Agent 3:
Current: (17,5)
Goal: (17,1)
Available moves: [’stay at (17,5)’, ’left to (16,5)’, ’right to (18,5)’, ’up to (17,6)’]
Move: Stay at (17,5)
Explanation: No available moves bring Agent 3 closer to its goal without moving away.
...

Figure 12: Another example of part of the output from GPT-o1-preview model.

20


	Introduction
	LLMs for Multi-agent Path Finding
	Preliminary
	Benchmark Protocol
	Dataset Files
	Evaluation Metrics

	Methods
	Benchmarking Results
	General Experiment Settings
	Single-agent Path Finding Results
	Multi-agent Path Finding Results


	Cause of Failures
	Reasoning Capability
	Long-context capability
	Understanding Symbolic Information

	Discussion
	Related Works
	Conclusion
	Complete Prompts
	Token Length Grows
	Comparison Between Rule-based Checker and LLM as Checker
	Complete Failing Example
	Case Study on GPT-o1-preview

