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Abstract

The abundance and ease of utilizing sound, along with the fact that auditory clues1

reveal so much about what happens in the scene, make the audio-visual space a2

perfectly intuitive choice for self-supervised representation learning. However,3

the current literature suggests that training on uncurated data yields considerably4

poorer representations compared to the curated alternatives collected in supervised5

manner, and the gap only narrows when the volume of data significantly increases.6

Furthermore, the quality of learned representations is known to be heavily influ-7

enced by the size and taxonomy of the curated datasets used for self-supervised8

training. This begs the question of whether we are celebrating too early on catching9

up with supervised learning when our self-supervised efforts still rely almost exclu-10

sively on curated data. In this paper, we study the efficacy of learning from Movies11

and TV Shows as forms of uncurated data for audio-visual self-supervised learning.12

We demonstrate that a simple model based on contrastive learning, trained on a13

collection of movies and TV shows, not only dramatically outperforms more com-14

plex methods which are trained on orders of magnitudes larger uncurated datasets,15

but also performs very competitively with the state-of-the-art that learns from16

large-scale curated data. We identify that audiovisual patterns like the appearance17

of the main character or prominent scenes and mise-en-scène which frequently18

occur through the whole duration of a movie, lead to an overabundance of easy19

negative instances in the contrastive learning formulation. Capitalizing on such20

observation, we propose a hierarchical sampling policy, which despite its simplicity,21

effectively improves the performance, particularly when learning from TV shows22

which naturally face less semantic diversity.23

1 Introduction24

Recently, there has been tremendous progress in self-supervised learning from still images, where the25

standard supervised training has been outperformed in a variety of image-related tasks [7, 8, 15, 29].26

The appeal of detaching representation learning from human annotations is rooted not only in the27

non-trivial challenges of scaling-up the labeling process, but also in the ill-defined task of determining28

a proper taxonomy with generalization power and transferability. Both challenges only exacerbate as29

we move from images to videos, where the notion of time is involved and the complexity of visual30

concepts increases. Simply considering the number of training instances or even the cardinality of31

the label set is not sufficient to conclude if one large-scale supervised dataset is more suitable than32

another for transfer learning in video classification tasks [20]. That is, the abundance of attention33

which video self-supervised learning has lately received is only to be expected. While many research34

efforts in this area extend the contributions made initially in the image domain to the video domain,35
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others, including our work, have explored harnessing additional modalities such as audio or text for36

multi-modal self-supervised learning [2, 3, 4, 22, 27, 31, 37, 36, 39].37

From the current state-of-the-art one makes two major conclusions. First, the quality of learned38

representations, evaluated by fine-tuning on downstream tasks, is heavily influenced by the size and39

taxonomy of the pretraining datasets [2, 3, 39]. Second, an uncurated pretraining dataset yields40

considerably poorer representations compared to a curated one and the gap only narrows when the41

total amount of pretraining data significantly increases [3]. Curated data refers to likes of supervised42

large-scale action recognition and audio classification datasets such as Kinetics [6], IG-Kinetics43

[12], AudioSet [11], and YouTube-8M [1]. While the human-annotated labels are not accessed for44

self-supervised pretraining, videos being trimmed and from a label set of limited cardinality with45

biased sampling distribution1 implicitly acts as a sort of supervision. On the other hand, an uncurated46

data refers to likes of IG-Random[3], simply a body of unlabeled videos collected blindly with47

none of the aforementioned careful human-involvements. That being said, we know that something48

as simple as having access to a clean object-centric training data, like Imagenet, can be indirectly49

exploited by contrastive self-supervised learning in image domain to obtain additional performance50

gain [41] on the downstream tasks which exhibit similar properties. The analogous to it of course are51

the well trimmed closed-set curated datasets which are being extensively used in the literature for52

video self-supervised pretraining, while downstream evaluations focus on benchmarks with similar53

characteristics. Our work aims at comprehensively exploring the efficacy of learning from Movies54

and TV Shows, as forms of uncurated data, for audio-visual self-supervised learning.55

Many of us can relate to an experience in movie theaters when the sound of the engine, first perceived56

by our left ear, is gradually heard more by the right ear as a car moves from the left side of the57

screen to the right side. Another example is a scene in which an object, like a helicopter, approaches58

the camera from distance and eventually flies over it. In this case, the perceived sound not only59

changes in loudness but also transitions from front to back, in concert with the visuals, giving the60

audience a more realistic feeling as if they are indeed positioned behind the camera. Besides, with61

art being inherently novel, two movies even if they share genres or revolve around similar story62

lines often deliver quite different experiences and portray distinct visuals, thanks to the extremely63

artist-driven creative process behind such productions. We hypothesize that the aforementioned high64

audio fidelity, and inherent semantic diversity characterize long-form content2 as potentially a very65

rich source for self-supervised multi-modal representation learning. It is worth emphasizing that in66

spirit of uncurated data, we not only blindly sample from a large collection of movies and TV shows67

when constructing our pretraining dataset, but also perform ablation studies on the effect of genre68

distribution, the closest we have to taxonomy in the curated datasets, confirming that the quality of69

learned representations is agnostic with respect to such statistics.70

To the best of our knowledge, we are the first to solely rely on uncurated data and study the efficacy of71

self-supervised multi-modal representation learning from movies and TV shows. Despite meaningful72

domain gap between our pretraining data and the space of downstream tasks, we obtain representations73

which are very competitive with those learned from curated datasets. This is particularly important as74

we follow a much simpler modeling approach in comparison with the state-of-the art.75

2 Related Work76

Self-supervised learning techniques define pretext tasks, mostly inspired by the natural structures77

in the data, in order to generate supervisory signals for training. Despite the plethora of proposed78

pretext tasks in the literature, these approaches can be coarsely divided into two groups, namely79

pretext learning, and pretext-invariant methods. Approaches which fall in the former bucket, usually80

apply a form of transform, randomly drawn from a parametric family, to the input data then optimize81

for predicting the parameters of the chosen transformation. Predicting the relative position of image82

patches [9], solving jigsaw puzzles [33], estimating artificial rotations [13], colorization [50], context83

encoders learned through inpainting [38], and learning by counting scale and split invariant visual84

primitives [34], are among many methods which belong to this category. Similar techniques have85

been extended from images to videos [10, 21, 24, 25, 30, 46, 48, 49], where in addition to the86

spatial context, the temporal domain, and the arrow of time have been heavily exploited. In contrast,87

1the associated taxonomy has similarities with those of downstream benchmarks [3]
2alternatively referring to movies and TV shows
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pretext-invariant methods [5, 7, 8, 15, 18, 17, 29, 35, 39, 44] are built on the concept of maximizing88

mutual information across augmented versions of a single instance, and are mostly formulated as89

contrastive learning. In other words, a pretext is used to generate different views of a single input90

for which the learning algorithm aims to maximize the intra-instance similarity, across variety of91

transformations. Our work falls within this category, however we function in a multi-modal realm92

employing both audio and video.93

Earlier works which harnessed audio and video for representation learning, have leveraged audio-94

visual temporal synchronization [22, 36], correspondence [4], and cross-modal clustering [3, 37]. The95

work by Patrick et al.[39] proposes a generalized data transformation in order to unify a variety of96

audio-visual self-supervised pretext tasks through a noise contrastive formulation. This work is close97

to ours in choice of objective function and data type, yet we employ no augmentation (except modality98

projection in the terminology of [39]), and solely focus on capitalizing the advantages of learning99

from long-form content. Morgado et al.[31] show that cross-modal discrimination is important for100

learning good audio and video representations, something which was also pointed out earlier in a101

clustering framework [3]. Beyond that, [31] generalizes the notion of instance-level positive and102

negative examples by exploring cross-modal agreement where multiple instances are grouped together103

as positives by measuring their similarity in both the video and audio feature spaces. While we also104

adopt a cross-modal noise contrastive estimation loss, we stick with the vanilla version, instance-level105

positive and negatives, and do not use any memory bank feature representations. Finally, Alayrac et106

al.[2] recently proposed a multi-modal versatile network capable of simultaneously learning from107

audio, video and text. Building on the intuition that different modalities are of different semantic108

granularity, audio and video are first compared in a fine-grained space while text is compared with109

the aforementioned modalities in a lower dimensional coarse-grained space. In our experiments, we110

compare with a variant of [2] where only audio and video modalities are utilized.111

3 Approach112

Notations and Architecture. Our pretraining dataset is denoted by X = {Xn|n ∈ [1 · · ·N ]},113

where Xn = {xn,m|m ∈ [1 · · ·Mn]} contains Mn non-overlapping audiovisual snippets which are114

temporally segmented from the duration of the nth long-form content in the dataset. Each snippet115

includes both audio and video modalities, formally xn,m = (an,m, vn,m), where an,m ∈ R1×P×Q116

and vn,m ∈ R3×T×H×W . T , H , and W denote the number of frames, height and width of the video,117

while P , andQ respectively stand for the number of mel filters, and audio frames. Video and audio are118

processed through 18-layers deep R(2+1)D [45] and ResNet [16] architectures, respectively referred119

to as f : R3 → Rdf and g : R1 → Rdg . Inspired by [7], we use projection heads, hf : Rdf → Rd and120

hg : Rdg → Rd, to map corresponding representations into a common d-dimensional space before121

computing the contrastive loss. The shallow architecture of hf and hg consists of two convolution122

layers, separated by Batch Normalization [19] and ReLU [32], followed by global average pooling.123

Once self-supervised pretraining finished, we discard the projection heads and fine-tune f and g for124

respective downstream tasks.125

Loss Function. With a slight abuse of notation3, B = {xi = (ai, vi)|i ∈ [1 · · ·B]} represents a126

minibatch of sizeB, where video and audio modalities associated with the ith sample, xi, are denoted127

by vi and ai. We use ziv = hf (f(vi)) and zia = hg(g(ai)) to represent the associated embeddings128

generated by projection heads, and optimize the noise-contrastive loss [14] shown in 1 in order129

to maximize the symmetric joint probability between audio and video. For the ith element in the130

minibatch, (ziv, z
i
a) serves as the positive pair, while assuming negative pairs for both modalities,131

Ni = {(ziv, zja), (zjv, zia)|j ∈ [1 · · ·B], i 6= j} constitutes the set of negative pairs.132

L = −
B∑
i=1

log

(
e(z

i
v)

ᵀ(zi
a)

e(z
i
v)

ᵀ(zi
a) +

∑
(z′

v,z
′
a)∈Ni

e(z
′
v)

ᵀ(z′
a)

)
(1)

Most of the previous works [2, 31, 39] normalize the embeddings before computing the contrastive133

loss and employ a temperature hyper-parameter, often denoted by τ as in [2, 31], to control the134

3i enumerates elements in the minibatch
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smoothness for the distribution of pairwise similarities. In contrast, we have chosen to operate in an135

unnormalized embedding space. Besides the obvious benefit of eliminating the need for tuning τ , we136

empirically show that such decision does not affect the quality of the learned representations.137

Sampling Policy. Contrastive loss function shown in Equation 1 is computed over B training138

instances, each in form of an audiovisual snippet. A naive sampling policy may ignore the fact that139

snippets comprising the pretraining dataset are in fact temporal segments that were trimmed from140

longer-form contents, i.e. movies and TV shows. Such an assumption treats our training data as141

independent and identically distributed random variables from
⋃N

n=1 Xn, which constitutes the default142

sampling policy that is commonly used in the general deep learning literature. However, in reality,143

commonalities and correlations do exist along the temporal axis of a movie or TV show, things like144

audio mastering artifacts, frequent appearance of the main character’s face and voice, thematic music,145

repetitive scenes and mise-en-scène4, all of which contribute to breaking the previously discussed146

i.i.d assumption. This is even more pronounced when we deal with multiple episodes of the same TV147

show appearing in the pretraining dataset5. Note that, sampling from no video data is going to be i.i.d148

but in this case the temporal correlations extend for much longer given our entities are movies and TV149

shows. Thus, it is more accurate to think of X having multiple underlying domains, oriented towards150

exclusive properties which different long-form contents are characterized by. We hypothesize that151

during training, model gradually discovers such patterns of commonalities, which are not semantically152

valuable, and latches onto those to quickly minimize Equation 1 leading to poor generalization6. The153

reason being B � N , hence for n ∼ U(1, N) and m 6= m′, P(xn,m ∈ B ∧ xn,m′ ∈ B) is negligible.154

In other words, the set of negative pairs in Equation 1 mainly includes pairs for which audio and155

video come from two different movies or TV shows, thus due to the aforementioned artifacts behave156

as easy negatives.157

In order to quantitatively measure our hypothesis, we define different distributions, shown in Equation158

2, over the space of audio-visual similarity. S+ indicates the space of correct matches, i.e. where159

audio and video correspond to the same snippet. S− indicates the space where audio and video do160

not correspond yet belong to the same movie or TV show. Finally, S 6= indicates the space in which161

audio and video are sampled from two distinct long-form content, hence naturally do not correspond.162

(zn,mv )ᵀ(zn
′,m′

a ) ∼


S+, if n = n′ ∧m = m′

S−, if n = n′ ∧m 6= m′

S 6=, if n 6= n′ ∧ ∀(m,m′)
(2)

With that, and KL denoting Kullback–Leibler divergence, KL(S− ‖ S+) measures the expected163

difference between positive and negative pairs within the same movie or TV show. Ideally, this should164

increase as the training progresses, since the model gradually learns audio-video correspondence by165

minimizing Equation 1. Meanwhile, the i.i.d assumption suggests KL(S− ‖ S+) ' KL(S 6= ‖ S+)166

and KL(S− ‖ S 6=) ' 0, yet as we empirically illustrate later, KL(S− ‖ S+) < KL(S 6= ‖ S+) and167

KL(S− ‖ S 6=) is rather large, indicating that, upon convergence and on a held-out set, model has168

a harder time pushing apart negative pairs when audio and video come from the same underlying169

long-form content. Next, we explain how a simple alternative policy which samples k snippets170

from each long-form content effectively reduces both of the discrepancy measures, referring to171

KL(S− ‖ S 6=) and KL(S 6= ‖ S+)− KL(S− ‖ S+), while yielding better generalization on a range172

of downstream tasks.173

To ameliorate the aforementioned optimization challenge, we take a hierarchical approach. In174

particular, we first uniformly sample a long-form content, n ∼ U(1, N), and then draw k distinct175

snippets from Xn, creating {xn,m|m ∈Mn}, whereMn ⊂ [1 · · ·Mn] and |Mn| = k. This ensures176

that for xi ∈ B, Ni always includes 2k − 2 pairs sampled from the same movie or TV show to177

which xi belongs. By putting constraints onMn, specifically how temporally far from each other178

the k samples are drawn, we may go one step further and to some extent control the audiovisual179

similarity between snippets. This serves as an additional nob to tune for hard negative sampling.180

The intuition is that, the larger narrative of a professionally made movie or TV show is composed of181

shorter units called scene. Each scene comprises a complete event, action, or block of storytelling and182

4collectively referred to as content-exclusive artifacts
5alternatively think of it as a very long movie created by stitching different episodes together
6refer to supplemental material for illustrations of training loss
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normally takes place in one location and deals with one action. That is, if our samples are temporally183

close, it is more likely for corresponding snippets to be highly correlated and/or look/sound alike.184

k ≤ max[Mn] − min[Mn] + 1 ≤ w ≤ Mn defines the bounds on our sampling policy, where w,185

standing for a sampling window, determines the farthest two out of k samples drawn from Xn can186

be. Accordingly, w = k represents the case where all k samples are temporally adjacent, hence187

the expected audiovisual similarity is maximized due to temporal continuity in content. We show188

that having such level of hard negatives, even with a small k, prevents proper training and results in189

performance degradation. On the other hand, w =Mn indicates random sampling where no temporal190

constraint is imposed onMn, thus samples are less likely to be drawn from adjacent time-stamps.191

In this case, expected audiovisual similarity (i.e. hardness of negative pairs) is mainly derived from192

global content-exclusive artifacts like, color palette, frequent appearance of the main character’s face193

and voice, repetitive scenes, and etc. The rest of the spectrum provides middle grounds where two194

samples drawn from Xn can at most be w + 1 snippets apart, something reminiscent of temporal195

locality. Our sampling policy can be easily implemented in a few lines of Python. Please refer to196

supplemental material for further details.197

4 Experiments198

4.1 Experimental Setup199

Datasets and Reproducibility. We use full-length movies and episodes of TV shows for self-200

supervised pretraining. Titles are randomly chosen from a large collection spanning over a variety of201

genres, namely Drama, Comedy, Action, Horror, Thriller, Sci-Fi and Romance. All audio is in English202

language. Our Movie dataset, consists of 3.6K films with an average duration of 105 minutes. Our TV203

dataset includes 9.2K episodes from a total of 581 shows with an average duration of 42 minutes per204

episode. Each of our datasets comprises 0.7 years worth of uncurated audiovisual content, which is205

significantly smaller than IG-Random [3] with variants at 5 and 21 years. Scaling up our pretraining206

datasets to volumes comparable to the IG-Random [3] while possible is non-trivial and demands207

dramatically larger compute resources for training, something which we currently cannot afford.208

Given that we cannot publicly release our dataset due to copyright reasons, we acknowledge that it is209

not possible for other research groups to fully reproduce our results. However, we intend to make210

available the pretrained models and hope that research community finds them, along with the other211

contributions of this work, of value whether within the context of self-supervised learning or adoption212

for various downstream tasks. We would like to emphasize that similar limitations have precedents213

in multiple earlier works including but not limited to [3, 12, 26, 43]. To evaluate the efficacy of214

self-supervised audio-visual representation learning from movies and TV shows, we follow recent215

works [3, 39, 31, 2] and benchmark UCF101[42] and HMDB51[23] for action recognition, along216

with ESC50[40] for audio classification. Results for the ablation studies are reported on the split-1 of217

the corresponding datasets. Following the standard protocol, we report the average performance over218

all splits when we are comparing with the state-of-the-art.219

Pretraining. Unless mentioned otherwise, we use video snippets with 16 frames at 5 fps. For data220

augmentation, we resize the shorter side to 190 pixels, then randomly crop them into 158×158 pixels.221

As for sound, we compute mel spectrogram from the raw audio at 48K sample rate using 96 mel222

filters and an FFT window of 2048, while the number of samples between successive frames is set to223

512. For data augmentation, we randomly drop out up to 25% from either temporal or frequency axis224

of the 2-D mel spectrogram image. Training uses a batch size of 512 and takes on average 42 hours225

on 8 NVIDIA A100 GPUs. The dimension of audio-video joint embedding space, d, is set to 512.226

Downstream Evaluation. For training on UCF101 [42] and HMDB51 [23], we use video clips that227

are 32 frames long at 10 fps. Unless mentioned otherwise, these clips are randomly chosen from the228

duration of the video instances. A scale jittering range of [181, 226] pixels is used and we randomly229

crop the video into 158 × 158 pixels. Furthermore, random horizontal flipping and color jittering230

are employed. During inference, 10 temporal clips are uniformly sampled where each is spatially231

cropped in 3 ways (left, center, right) resulting in a total of 30 views. We then average the model232

predictions across these 30 views and report top-1 classification accuracy. For training on ESC50233

[40], we use 3-seconds clips which are randomly chosen from the duration of the audio instances234

and apply time and frequency masking to spectrogram images for data augmentation. The maximum235

possible length of the mask is 50% of the corresponding axis. We do not use any scale jittering or236

random cropping on the spectrograms. During inference, 10 temporal clips are uniformly sampled237
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and we average the model predictions across these 10 views and report top-1 classification accuracy.238

For further implementation details, please refer to the supplemental material.239

(a) (b)

(c) (d)

Figure 1: Ablation study of the proposed sampling policy on reducing the discrepancy measures.

4.2 Ablation Study240

Figure 2: Effect of color jitter on the dis-
crepancy measures.

In the following, we discuss multiple ablation studies to241

assess our main hypothesis that, a hierarchical sampling242

policy, as described in Section 3, enables better repre-243

sentations to be learned by increasing the portion of hard244

negative pairs which the contrastive loss function observes.245

Here, pretraining uses 90% of either Movie or TV dataset,246

while the remaining 10% constitute a held-out validation247

set7 on which we report the discrepancy measures.248

Sample size (k) Figure 1a illustrates that compared to249

the baseline sampling denoted by k = 1, our approach250

(k > 1) effectively shrinks the gap between S− and S 6=251

when measured either directly or against S+. Its pattern252

of behavior also perfectly follows our earlier intuition (ref.253

Section 3). In particular, given a fixed minibatch budget,254

a larger k favors more training instances to be sampled255

from fewer number of long-form contents. That increases256

the portion of hard negative pairs, thus pushes the con-257

trastive loss to more aggressively separate mismatched258

audio-video pairs from the same movie, which leads model to maintain less of the content-exclusive259

artifacts in the embedding space. In the most extreme case, k = 64, all the training instances are260

7Given a TV show, either all or none of its episodes are included in the held-out set.
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sampled from the same movie. From Table 1, we observe that different variants of our sampling261

policy, with no imposed temporal constraint, i.e. w = Mn, outperform the baseline on all three262

downstream tasks263

Table 1: Ablation study of the proposed sam-
pling policy on different downstream tasks,
measured by top-1 classification accuracy.

pretraining dataset: Movie

k w HMDB51 ESC50 UCF101

1 – 60.32 86.50 85.69
4 Mn 61.37 89.91 85.38
8 Mn 62.09 88.75 86.06
16 Mn 62.92 88.33 86.30
32 Mn 61.04 88.00 85.98
64 Mn 61.30 86.83 85.43

16 64 60.26 87.00 83.61
16 128 60.58 86.50 85.30
16 256 62.02 87.75 84.85
16 512 61.30 87.08 85.38
16 1024 60.65 86.16 84.61
16 2048 61.83 87.66 85.11

4 4 60.19 88.00 84.66
16 16 56.86 88.75 82.71
64 64 57.45 84.58 82.68

pretraining dataset: TV

k w HMDB51 ESC50 UCF101

1 - 56.40 85.50 84.37
8 Mn 61.50 87.50 85.96
16 Mn 61.69 89.00 85.64

8 64 60.58 88.00 85.96
8 128 60.00 85.66 85.77
16 256 61.30 86.41 85.01

Sampling window (w) Smaller w forces samples264

that belong to same movie to be drawn from a shorter265

temporal window, hence growing the probability that266

they look/sound very much alike (i.e. harder neg-267

ative pairs). That is, it should further diminish the268

discrepancy measures. Figure 1b illustrates this be-269

havior where we gradually increase w while k = 16.270

However, from Table 1, it does not seem that tuning271

for w, i.e w 6= Mn, provides a meaningful gain on272

downstream tasks. This implies that commonalities273

which persist throughout the duration of a movie are274

sufficiently powerful signals to be exploited for gen-275

erating hard negatives. We hypothesize that different276

scenes both within and across different movies and277

TV shows are of variety of length, thus a fixed w278

is sub-optimal. Ideally, we should identify scene279

boundaries and and dynamically modify w during280

sampling, something which we leave for future iter-281

ations of this work.282

Temporally adjacent samples. Along the lines283

of previous observations, Figure 1c shows that in-284

deed drawing temporally adjacent snippets from285

the same long-form content, i.e. w = k, results286

in aggressively reducing the discrepancy measures.287

This behavior is agnostic with respect to k yet ex-288

acerbates as k grows. Note that, the contrastive289

loss is an instance-discrimination objective func-290

tion. Therefore, forcing it to distinguish between291

temporally adjacent snippets, that naturally sound292

and look extremely similar, leaves no choice for293

the model but to discard valuable semantic notions,294

which predictably leads to poor representations, also295

confirmed by result reported in Table 1.296

Movies vs. TV Shows. To confirm that our sampling policy behaves consistently across both movies297

and TV shows, Figure 1d illustrates the discrepancy measures computed on TV dataset. We observe298

similar effectiveness when using k and w as tuning nobs for reducing either KL(S− ‖ S 6=) or the299

gap between KL(S− ‖ S+) and KL(S 6= ‖ S+). Table 1 demonstrates that different variants of our300

approach significantly outperform the baseline, i.e. k = 1. We attribute the larger gains achieved301

when using TV instead of Movie dataset to the fact that content diversity is naturally lower when302

pretraining on TV shows since each one includes many episodes that all are characterized with the303

same content-exclusive artifacts.304

Color jitter. We have established so far that commonalities which persist throughout the duration305

of a long-form content, things likely associated with color pallet, frequent appearance of the main306

character’s face and voice, and repetitive scenes can be exploited for learning better representations.307

That is, one may naturally assume that employing data augmentation techniques like color jitter308

should be helpful since by distorting content-exclusive visual artifacts, color jitter is expected to309

reduce KL(S− ‖ S 6=). Figure 2 illustrates the effect of color jitter, where brightness, contrast, and310

saturation jitter values are chosen uniformly from [max(0, 1 − σ), 1 + σ]. We observe that color311

jitter reduces the discrepancy measures for the baseline but not as much as it can be obtained by our312

proposed sampling policy (k > 1), and even then according to Table 2 only yields a slight gain on313

downstream tasks.314

`2-normalized feature space. The common practice [2, 31, 39, 7] is to compute contrastive loss in315

an `2-normalized feature space, where according to [47] the temperature hyper-parameter, τ , controls316
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Table 4: Effect of self-supervised learning from curated versus uncurated data on different downstream
tasks. The “years” column indicates the duration of the pretraining datasets in years.

method pretraining dataset uncurated years HMDB51 ESC50 UCF101

Ours Movie 3 0.7 62.9 88.3 86.3
Ours TV 3 0.7 61.7 89.0 85.6
XDC[3] IG-Random16M 3 5 55.2 84.3 84.1
XDC[3] IG-Random65M 3 21 61.2 86.3 88.8

XDC[3] IG-Kinetics16M 7 5 57.3 82.5 87.6
XDC[3] IG-Kinetics65M 7 21 63.1 84.8 91.5

the strength of penalties on hard negative samples. We explored this with two widely-used τ values.317

From Table 2, we observe that compared to operating in an unnormalized embedding space, adopting318

such design choice results in a large performance drop on HMDB51[23] while other downstream319

benchmarks see only negligible gains.320

Table 2: Effect of color jitter (σ) and comput-
ing contrastive loss in `2-normalized embed-
ding space with temperature hyper-parameter
(τ ) on different downstream tasks.

k σ HMDB51 ESC50 UCF101

1 0.0 60.32 86.50 85.69
16 0.0 62.92 88.33 86.30

1 1.0 60.45 87.66 84.82
16 0.5 60.13 87.75 85.98
16 1.0 61.11 88.33 85.93

k τ HMDB51 ESC50 UCF101

16 0.07 60.78 87.08 86.86
16 0.30 60.78 89.25 85.72

Table 3: Effect of genre distribution in Movie
dataset on different downstream tasks. Experi-
ments are conducted with input spatial resolu-
tion of 112× 112 pixels.

setting HMDB51 ESC50 UCF101

i 57.58 86.50 82.44
ii 56.99 85.50 82.39

iii 56.27 85.25 82.87
iv 56.40 86.75 83.24

Curated vs. Uncurated data. To the best of321

our knowledge, the only other uncurated dataset322

used for audio-visual self-supervised learning is IG-323

Random[3]8. Table 4 confirms that learning from un-324

curated movies and TV shows is extremely effective.325

Our results significantly exceed those of XDC[3]326

obtained on IG-Random16M despite using a sim-327

pler model and 7 times smaller volume of pretrain-328

ing data. Even in comparison to IG-Random65M329

with 30 times larger data, we obtain better perfor-330

mances on 2 out of 3 benchmarks. The most promis-331

ing of our findings though is how competitive our332

results are against XDC[3] when it is trained on333

variants of IG-Kinetics which are not only curated334

but also orders of magnitude larger. With all that,335

we confidently reject the notion that audio-visual336

self-supervised learning from uncurated data con-337

siderably lags behind utilizing large-scale curated338

datasets.339

Effect of genre. The distribution of genre among340

movies used in our pretraining is the closest we341

have to taxonomy in the curated datasets. So, it is342

worth examining the quality of our learned repre-343

sentations under various genre distributions. To do344

so, given a fixed pretraining budget (N =1.6K), we345

compare four different scenarios where movies used346

in the pretraining are distributed i) non-uniformly347

over all genres except Drama, and Comedies, ii)348

non-uniformly over Drama, and Comedies, iii) uni-349

formly over all genres, and iv) non-uniformly over350

all genres. Table 3 confirms that indeed there is very little difference between the aforementioned351

setups when it comes to transfer learning to the downstream tasks.352

4.3 Comparison with state-of-the-art353

Table 5 compares our proposed approach of learning from Movies and TV shows against the best354

performing audio-visual self-supervised learning methods. In general, our numbers are comparable355

with the best existing results reported in the literature, even with much less data and considerably356

simpler model/training procedure9. It is interesting that training on Movie dataset alone obtains357

8the data is not publicly available, and similarly the implementation to train XDC[3]
9supplemental material includes comparison of training costs
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Table 5: Comparison with state-of-the-art. Dataset abbreviations: AudioSet[11], HowTo100M[28],
IG-Kinetics65M [12]; their length in years is given in the “years” column. “Arch.” denotes the
architecture of video backbone (f ). [2]† indicates when the corresponding model use only audio and
video, and not text modality. For a fair comparison, when using only Movie dataset, we train for
twice as many epochs as our other variants in order to match their total number of gradient updates.

Method Arch. pretraining dataset curated years HMDB51 UCF101 ESC50

GDT[39] R(2+1)D-18 AS 3 1 66.1 92.5 88.5
GDT[39] R(2+1)D-18 IG65M 3 21 72.8 95.2
XDC[3] R(2+1)D-18 AS 3 1 61.0 91.2 84.8
XDC[3] R(2+1)D-18 IG65M 3 21 67.4 94.2
AVTS[22] MC3 AS 3 1 61.6 89.0 82.3
AVID[31] R(2+1)D-18 AS 3 1 64.7 91.5 89.1
MMV[2]† R(2+1)D-18 AS 3 1 70.1 91.5 85.6
MMV[2]† S3D-G AS 3 1 68.2 90.1 86.1
MMV[2]† S3D-G AS+HT 3 16 68.3 91.1 87.2

Ours (k=16) R(2+1)D-18 Movie 7 0.7 64.5 87.9 88.8
Ours (k=8) R(2+1)D-18 Movie+TV 7 1.4 65.0 87.7 89.1
Ours (k=16) R(2+1)D-18 Movie+TV 7 1.4 65.1 88.5 89.1
Ours (k=32) R(2+1)D-18 Movie+TV 7 1.4 65.6 88.7 88.2

comparable performance to the cases where both TV and Movie datasets are used for pretraining.358

This further confirms the richness of the training data which movies and TV shows can provide359

to self-supervised learning problems. We also see that increasing k even beyond 8 gives further360

incremental gains on action recognition benchmarks.361

5 Conclusion362

Despite its amazing recent progress, state-of-the-art self-supervised learning still heavily relies on363

supervised, i.e. curated, large-scale datasets for pretraining. In this work, we have shown that364

pretraining solely on uncurated data in forms of movies and TV shows, even at a comparatively365

small scale, can give rise to representations which are capable of competing with the state-of-the-366

art of more complex architectures trained on larger curated datasets. This comes contrary to the367

current literature which tends to suggest that learning from uncurated data largely falls behind368

the use of curated alternatives. We intentionally made design decisions to keep our approach and369

training strategy as simple as possible to demonstrate that learning decently powerful audio-visual370

representations does not necessarily require gigantic data and compute resources. Through extensive371

set of experiments, our work establishes for the first time the efficacy of self-supervised learning of372

audio-visual representations from movies and TV shows.373

6 Broader impact374

Potential benefits. Our work shows that competitive multimodal representations can be learned375

from a comparatively small volume of uncurated data in the form of movies and TV shows. Besides376

minimizing any sort of human-involvement, which we believe must have already been paid an377

extra attention to in the literature, our work demonstrates that one does not require gigantic data and378

compute resources for effective self-supervised pretraining. Such results promise a more democratized379

research arena where smaller groups are not alienated due lack of sufficient compute resources. More380

importantly, lowering the compute requirements naturally reduces any environmental effects which381

training these models can potentially have.382

Potential risks. Any machine learning method is susceptible to the potential underlying biases in383

the data. This is more important for self-supervised methods that deal with huge volumes, often not384

evaluated by diverse group of humans for any fairness concerns. The same is generally true in our385

case which requires us to make sure that titles that are included in training are diverse and inclusive.386
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