
Using Random Effects to Account for
High-Cardinality Categorical Features and Repeated

Measures in Deep Neural Networks

Giora Simchoni
Department of Statistics

Tel Aviv University
Tel Aviv, Israel, 69978

gsimchoni@tauex.tau.ac.il

Saharon Rosset
Department of Statistics

Tel Aviv University
Tel Aviv, Israel, 69978

saharon@tauex.tau.ac.il

Abstract

High-cardinality categorical features are a major challenge for machine learning
methods in general and for deep learning in particular. Existing solutions such as
one-hot encoding and entity embeddings can be hard to scale when the cardinality
is very high, require much space, are hard to interpret or may overfit the data. A
special scenario of interest is that of repeated measures, where the categorical
feature is the identity of the individual or object, and each object is measured
several times, possibly under different conditions (values of the other features).
We propose accounting for high-cardinality categorical features as random effects
variables in a regression setting, and consequently adopt the corresponding negative
log likelihood loss from the linear mixed models (LMM) statistical literature and in-
tegrate it in a deep learning framework. We test our model which we call LMMNN
on simulated as well as real datasets with a single categorical feature with high
cardinality, using various baseline neural networks architectures such as convolu-
tional networks and LSTM, and various applications in e-commerce, healthcare and
computer vision. Our results show that treating high-cardinality categorical features
as random effects leads to a significant improvement in prediction performance
compared to state of the art alternatives. Potential extensions such as accounting
for multiple categorical features and classification settings are discussed. Our code
and simulations are available at https://github.com/gsimchoni/lmmnn

1 Introduction

In recent years deep neural networks (DNNs) have served as the method of choice for learning
complex non-linear relations between features of large datasets and for hard prediction tasks. Yet,
despite their advanced machinery such as stochastic gradient descent (SGD) and convolutional layers,
DNNs (as other machine learning tools) do not readily lend themselves to handling categorical
features of high cardinality. Such features are often seen in modeling tasks, a good recent example
would be Lin et al. [16] who used electronic medical records (EMR) of hospital patients to predict
hospital readmission, and had to deal with the patient’s diagnosis as a categorical feature with
thousands of levels. In a recent review Hancock and Khoshgoftaar [13] surveyed the approaches
taken by DNN practitioners for turning the levels of categorical features into numeric form, of which
the most used approaches are one-hot encoding (OHE) and entity embeddings. OHE and embeddings
also appear as the go-to solution in one of the most cited handbooks of machine learning by Géron
[9]. See Section 4 for a more detailed discussion of these approaches.

A different approach for handling high-cardinality categorical features is that of linear mixed models
(LMM), see e.g. McCulloch et al. [18]. In the LMM framework statisticians differentiate between

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/gsimchoni/lmmnn

fixed effects (FE) which are regular parameters to be estimated from the data and random effects
(RE), which are parameters that are not directly estimated, but rather treated as random variables, and
their distribution is estimated instead. This mechanism is often used to deal with high cardinality
categorical variables or "cluster" indicators. In a typical setting a statistician would be interested
in the effect few designed experimental conditions have on a dependent variable, e.g. the effect
of treatment A versus treatment B on a patient’s blood pressure. The treatment effect would be
considered a fixed effect, while the effect of the city in which a subject resides — a categorical
feature with possibly thousands of levels — would be considered a RE variable, often having normal
distribution N

(
0, σ2

b

)
with σ2

b being an unknown "variance component" to be estimated (see Section 2
for a formal description). Another common example of a RE variable is the subject of the experiment
herself, in a repeated measures setting, where a subject is treated to both treatments A and B. In such
a setting a statistician would usually deem a subject’s effect as random, i.e. coming from a possibly
infinite population of subjects, and use proper LMM machinery to handle such a variable.

In this paper we are interested in examining modern big-data predictive modeling domains, where
DNNs would be a natural choice of modeling approach, but where high dimensional categorical
variables or repeated measures are an important aspect of prediction. Examples we pursue might
include: predicting the gaze direction of a person’s eyes from repeated facial images of the same
individuals [24], detection of diabetic retinopathy from retinal fundus photographs where each patient
is photographed for both left and right eyes [11], prediction of a person’s fluid intelligence from
dozens of features including a person’s job which can take hundreds of levels [14] and predicting the
price of an Airbnb rental with host being one of tens of thousands [15].

To address such challenges we seek a simple extension to DNN which allows to treat high-cardinality
categorical features as RE and ultimately improve the network’s prediction performance in a regression
setting. We do this by generalizing the LMM-framework negative log likelihood (NLL) function
and treating it as a natural loss function for the entire network, minimizing both the "fixed" and
"random" parts, and improving the bottom line test mean squared error (MSE). We demonstrate the
superiority of our method over using existing methods such as OHE, entity embeddings and standard
LMM via R’s lme4 package (Bates et al. [2]), as well as previous attempts at integrating RE in DNN
(MeNets, Xiong et al. [22]), on both simulated and real datasets from various applications such as
healthcare and computer vision. Finally we discuss future directions, such as using RE in DNN in a
classification setting and with more complex covariance structures such as kriging.

2 A Brief Tour of Linear Mixed Models

The canonical linear model assumes:
y = Xβ + ε, (1)

where X is the n×p model matrix where the ith row is xi, β ∈ Rp is a vector of model parameters to
be estimated and ε ∈ Rn is normal i.i.d noise, i.e. ε ∼ N

(
0, σ2

eI
)
, where σ2

e is a variance parameter
and I is the n× n identity matrix.

A linear mixed model treats the β parameters as fixed effects, and allows additional data to enter the
model in the form of a n× q matrix Z and a vector of random effects b ∈ Rq:

y = Xβ + Zb+ ε (2)
Here b are random variables, typically assumed to have a multivariate normal distribution N (0, D)
where D is a q × q positive semi-definite matrix holding usually unknown variance components to
be estimated, let these be θ, so D could be written as D(θ). The structure of this covariance matrix is
up to the researcher but there are typically simplified structures used. It is further assumed that there
is no dependence between the normal noise and the random effects, i.e. cov (ε, b) = 0.

Let us write the vector of all variance components as ψ = [σ2
e , θ]. How to estimate β, ψ? The

statistical approach of choice is maximum likelihood estimation (MLE). We write the marginal
distribution of y as N (Xβ, V) where V (ψ) = ZD(θ)Z ′ + σ2

eI , and from here it is straightforward
to see that the log likelihood is:

l(β, ψ|y) = −1

2
(y −Xβ)

′
V (ψ)−1 (y −Xβ)− 1

2
log |V (ψ)| − n

2
log 2π (3)

The MLEs for β, ψ maximize l(β, ψ|y) or equivalently minimize the negative log likelihood (NLL)
in (3). Typically maximizing the likelihood is difficult with given constraints on ψ (which are non-
negative variance components), and to get less biased estimates for ψ alternatives methods such as

2

restricted maximum likelihood estimation (REML) are preferred. For full details see e.g. McCulloch
et al. [18].

Of particular interest is the random intercepts model, in which a single categorical random variable,
such as "subject" or "city", is assumed. If this so-called "clustering" variable has q levels, then Z is
an indicator matrix holding at entry [i, j] 1 if observation i belongs to cluster j and zero otherwise. In
this case it is often assumed that the random effects for this variable are independent of one another,
hence: D = σ2

b I . In this setting V (ψ) = σ2
bZZ

′ + σ2
eI is a block diagonal matrix and its inversion

can be avoided in (3). More on that in Section 3.

How to predict ŷte in a machine learning scenario, where (X,Z, y) are typically split into training and
testing sets (Xtr, Ztr, ytr) and (Xte, Xte, yte)? In general one would use y’s conditional distribution:

ŷte = Xteβ̂ + Zteb̂, (4)

where β̂ = (X ′trV̂
−1Xtr)

−1X ′trV̂
−1ytr are the estimated fixed effects once the estimated variance

components ψ̂ are input into V̂ , and:

b̂ = D̂Z ′trV̂
−1
(
ytr −Xtrβ̂

)
(5)

is the so called best linear unbiased predictor (BLUP), as b are not actually parameters to be estimated,
but random variables to be predicted.

Sometimes, however, (4) is not possible such as in the case of the random intercepts model, where
Zte holds levels of the random variable unseen before, e.g. a new subject. In this case it is customary
to use y’s marginal distribution and predict ŷte to be Xteβ̂, i.e. without the random part. Finally,
still under the random intercepts model, it can be shown that for a given level j and corresponding
random effect b̂j , the computation can be simplified to avoid the inversion of V̂ giving:

b̂j =
nj σ̂

2
b

σ̂2
e + nj σ̂2

b

(
ȳtr;j −Xtrβj

)
, (6)

where
(
σ̂2
e , σ̂

2
b

)
are the estimated variance components, nj is the no. of observations in cluster j and

ȳtr;j and Xtrβj are the true and predicted mean values of y in cluster j respectively.

3 LMMNN: Our Proposed Approach

Let us change (2) into:
y = f (X) + g (Z) b+ ε, (7)

where f and g are non-trivial functions which DNNs are suitable for, e.g. non-linear and involving
interactions. We propose to use NLL as a natural loss function, where Xβ is replaced by the DNN
outputs f(X):

NLL(f, g, ψ|y) =
1

2
(y − f (X))

′
V (g, ψ)−1 (y − f (X)) +

1

2
log |V (g, ψ)|+ n

2
log 2π, (8)

where V (g, ψ) = g(Z)D(θ)g(Z)′+σ2
eI . Note that f and g are kept general as possible, to allow any

acceptable DNN architecture, including convolutional and recurrent neural networks. See Figure 1 for
a schematic description of our approach which we call LMMNN, in the case f and g are approximated
with a simple multilayer perceptron.

We propose using existing DNN machinery, mainly SGD, to fit the model and its variance components.
To be more specific, we implemented a custom NLL loss layer where at each epoch (8) is calculated
on a small batch typically of size 30-50 observations and auto-differentiation is handled by Keras [4].
An alternative could be using explicit formulas for the variance components ψ derivatives in case
V (ψ) is simple:

∂NLL

∂ψ
= −1

2
(y − f (X))

′
V −1

∂V

∂ψ
V −1 (y − f (X)) +

1

2
tr

(
V −1

∂V

∂ψ

)
, (9)

where ∂V
∂ψ is g(Z)∂D(θ)

∂θ g(Z)′ for the θ variance components and I for σ2
e .

3

The main challenge in implementing mini-batch SGD on (8) is the inverse and determinant of V (g, ψ)
which may not decompose into sums on batches. An important exception is the main setting of
interest in our paper in the random intercepts model, when g(Z) = Z and V (g, ψ) is a block-diagonal
matrix. If all blocks are identical, such that each level of the categorical feature has m observations
(Xj , yj) where j = 1, . . . q, we can write V (ψ) = diag(V1, ..., Vq) where each Vj block is of size
m×m and V (ψ)j = σ2

bJm+σ2
eIm where Jm is am×m all 1s matrix. This means we can write the

inverse in (8) as block diagonal as well, V (ψ)−1 = diag(V −11 , ..., V −1q), and the log determinant in
(8) as a sum of log determinants: log |V (ψ)| =

∑q
j=1 log |Vj |. The NLL in (8) can now be written as

a sum: NLL(f, ψ|y) =
∑q
j=1

1
2 (yj − f (Xj))

′
V −1j (yj − f (Xj)) + 1

2 log |Vj |+ m
2 log 2π. Most

importantly, the gradient in (9) can be decomposed into a sum of gradients over mini-batches of size
m:

∂NLL

∂ψ
=

q∑
j=1

[
−1

2
(yj − f (Xj))

′
V −1j

∂Vj
∂ψ

V −1j (yj − f (Xj)) +
1

2
tr

(
V −1j

∂Vj
∂ψ

)]
(10)

If all blocks are not identical but small (the typical case), we can still make sure that mini-batches
consist of each level j’s nj observations. For more general cases the mini-batch approach (where
inverse and determinant are calculated on the mini-batch) still seems to work well in practice, some
related theory can be found in Chen et al. [3], see Section 6 for further discussion on more LMM
scenarios.

For prediction, we accommodate (4) as well:

ŷte = f̂ (Xte) + ĝ (Zte) b̂, (11)

where f̂ and ĝ are the outputs of the DNNs used to approximate f and g, and b̂ are the predicted
random effects with the modified BLUP: b̂ = D(ψ̂)ĝ (Ztr)

′
V (ĝ, ψ̂)−1

(
ytr − f̂ (Xtr)

)
Note further that in the likely case where g is simply the identity matrix and we are interested in a
single clustering variable as in the random intercepts model, we can also avoid inversion of V in the
loss function as described in [18], as well as in computing the modified BLUP:

b̂j =
nj σ̂

2
b

σ̂2
e + nj σ̂2

b

(
ȳtr;j − f̂ (Xtr)j

)
(12)

4 Related Work

4.1 One-Hot Encoding and and Entity Embeddings

As Hancock and Khoshgoftaar [13] state, OHE is often a "first step", and the standard method for
handling categorical features. If v of length n is a categorical feature of q distinct levels, OHE would
add q binary features z1, ..., zq , one for each level, with zli = 1 if observation i has level l in feature
v, and 0 otherwise. The main advantages of the OHE approach are that it is deterministic, fast and
highly explainable. On the downside it is hard to scale — as q can be in the tens or hundreds of
thousands as in the examples below — a burden to any algorithm even when accounting for sparse
representation of features. A second disadvantage of OHE features is how little information each
feature carries. Other methods for converting categorical features into numeric can reach a much
more meaningful representation.

One such method is entity embeddings (See e.g. Guo and Berkhahn [12]). Entity embeddings start by
feeding a neural network with feature v after it has been one-hot encoded into a q-length vector, and
using the network’s inherent loss function and back propagation algorithm to learn a low-dimensional
representation of length d (typically d << q) to each of v’s q levels. This results in a lookup table
E of dimensions q × d which serves the predictive modeling task and can also later be re-used via
transfer learning where the representation learned for one task can serve for other tasks, see e.g. Do
and Ng [6]. It is also our experience that the entity embeddings approach performs well. Apart from
that, efficient implementations make sure it scales well when q is large, unlike OHE the resulting

4

Figure 1: Schematic description of LMMNN using a simple deep MLP for fitting f and g, and
combining outputs with the NLL loss layer.

representations may carry a lot of information, and the option to perform transfer learning on these is
appealing. On the other hand, entity embeddings may consume much space (the E lookup table),
they may need to be learned for each new task and the resulting representations are usually hard to
interpret.

4.2 Previous Attempts at Combining Random Effects in DNN

There have been few previous attempts at combining random effects in DNN. The efforts we are
aware of are MeNets by Xiong et al. [22] and DeepGLMM by Tran et al. [21].

MeNets Inspired by a non-linear mixed effects model y = ν (Xβ + Zb) + ε, where ν is some
non-linear function, Xiong et al. [22] and Xiong et al. [23] propose the following model to learn fixed
effects β and random effects b:

y = f (X)β + f (X) b+ ε (13)

There are two main differences between (13) and our (7): First, the Z RE features matrix is missing,
rather the RE features are learned as the output of the neural network to a standard input X , i.e f(X).
Second, (13) uses a single neural network to learn both the fixed and random features, where (7)
is more general and allows different functions f, g for fixed and random features respectively. In
particular, (7) allows for g to be the identity function which may certainly be appropriate for high
cardinality categorical features and repeated measures and gives intuitive meaning to b.

In order to learn β and b the authors use variational expectation maximization (V-EM) combined
with SGD: A E-Step in which β̂, b̂ are updated while minimizing the standard squared loss with a
DNN, followed by a M-Step where the variance components ψ̂ are updated so as to maximize a NLL
loss similar to (8). Hence, an additional critique of MeNets could be that they essentially use two
loss functions for a single task, whereas we use NLL as a single loss function to be maximized in
the SGD framework, making our implementation simpler and easier to track. In addition, in order to
update b̂j at each E-step, there is the need to invert V̂j which is the jth RE covariance matrix of size
nj × nj . This can be hard to scale if one of the categorical feature levels has a large nj 1

1See Section 4 and the UKB dataset, when one of the levels of the categorical feature "job" has over 29,000
observations - being unemployed - and MeNets inverts a 29,000 × 29,000 matrix at each epoch.

5

Finally we note that MeNets were demonstrated in a limited context: the authors put special emphasis
on computer vision applications, mainly that of gaze estimation, as a consequence the DNN architec-
ture used by the authors is solely a convolutional network, whereas we demonstrate our results on a
broad class of DNN architectures. Moreover, the categorical clustering feature MeNets used was the
subject whose gaze was recorded, with typically only 10-50 subjects (and many repeated measures
for each subject). Below we demonstrate MeNets in a wider context and compare it to LMMNN,
illustrating the superiority of our approach in terms of both predictive performance and computation.

DeepGLMM A different approach taken by Tran et al. [21] is based on a very specific mixed
effects model, in which each subject i is repeatedly measured at different times t for some response
yit which can be continuous as well as discrete, as modeled by generalized linear models (GLM). In
such a model it makes sense to not only have a random intercept for each subject but also a random
slope ai. The authors write:

g(µit) = f(x
(1)
it , w, β

(1)) + (β(2) + ai)
′x

(2)
it , (14)

where w are the network parameters, x(1) and x(2) are the features expected to have nonlinear and
linear effects, respectively, β(1) and β(2) are the fixed nonlinear and linear effects respectively, and
µ = E(y|x), via some link function g, e.g. the logit function for binary y. A Bayesian approach
based on variational approximation is used to maximize the likelihood for (14).

We note that (14) is similar to our criterion in (7), when g is the identity function and y is linear in
Z, the RE features matrix. We further acknowledge that our approach is only currently applicable
for a continuous y (though see future directions in Section 6). However, the variational approxima-
tion algorithm proposed in DeepGLMM, which combines numerous elements such as importance
sampling, factor covariance, variable selection as well as choice of priors makes it challenging to
implement, let alone use as a "plug-in" for different DNN architectures as we strive to do. Due to
the high conceptual and computational complexity of DeepGLMM we were not able to implement
and test it below like MeNets — it cannot scale to problems of the size we consider and to diverse
architectures.

5 Results

5.1 Simulated Data

We start with a simple random intercepts model simulation, in which n = 100, 000 and there is a
single categorical random variable with q levels (q ∈ {100, 1000, 10000}), such that Z is a n × q
binary matrix, and b is a q-length vector of i.i.d random effects, sampled from a N

(
0, σ2

b

)
distribution

(σ2
b ∈ {0.1, 1, 10}). The q levels are not evenly distributed among the N observations, rather we

use a multinomial distribution sampling, for more details see our code and description in additional
material. There are 10 fixed features in X non-linearly related to y:

y = (X1 + · · ·+X10) · cos(X1 + · · ·+X10) + 2 ·X1 ·X2 + Zb+ ε (15)

Notice in this case g is assumed to be the identity function. We sample X features from a U (−1, 1)
distribution, ε from a N

(
0, σ2

e

)
distribution where we keep σ2

e = 1 always. We perform 5 iterations
for each (q, σ2

b) combination (9 combinations in total), in which we sample the data, randomly split
it into training (80%) and testing (20%), train our models to predict ŷte and compare the bottom-
line MSEs in predicting yte. We compare our model’s MSE to those of R’s lme4 package results
(i.e. standard LMM), MeNets, OHE, entity embeddings and ignoring the categorical feature in Z
altogether. We use the same DNN architecture for all neural networks, that is 4 hidden layers with
100, 50, 25, 12 neurons, a ReLU activation and a Dropout of 25% in each, and a final output layer
with a single neuron. The loss we use is squared error loss (MSE) for OHE, embeddings and ignoring
the RE, and NLL for LMMNN and MeNets (as mentioned above, MeNets uses squared loss for
estimating fixed effects and NLL for variance components only). For both losses we use a batch size
of 30 and an early stopping rule where training is stopped if no improvement in validation loss is seen
within 10 epochs. We initialize both σ̂2

e , σ̂
2
b to be 1.0 where appropriate: R’s lme4 and LMMNN, and

compare the resulting final estimates for these two methods. All runs are made on a Nvidia Quadro
P620 GPU on a Windows machine, with Keras [4] and Tensorflow [1], with our own NLL loss layer
for LMMNN, available on Github.

6

Table 1: Simulated model with g(Z) = Z, mean test MSEs and standard errors in parentheses. Bold
results are non-inferior to the best result in a paired t-test. Hence, LMMNN is significantly better
than all competitors in all scenarios.

σ2
b q Ignore OHE Embeddings lme4 MeNets LMMNN

0.1 102 1.25 (.012) 1.20 (.010) 1.18 (.006) 2.92 (.017) 1.15 (.013) 1.14 (.010)
103 1.23 (.009) 1.31 (.008) 1.24 (.004) 2.96 (.022) 1.40 (.065) 1.14 (.009)
104 1.22 (.004) 1.54 (.008) 1.56 (.007) 2.97 (.014) 1.51 (.133) 1.17 (.010)

1 102 2.17 (.041) 1.23 (.008) 1.21 (.010) 2.93 (.013) 1.22 (.022) 1.09 (.010)
103 2.16 (.015) 1.39 (.015) 1.32 (.014) 2.94 (.013) 1.42 (.091) 1.14 (.006)
104 2.14 (.013) 1.68 (.013) 1.68 (.013) 3.17 (.021) 1.66 (.056) 1.27 (.014)

10 102 10.45 (.38) 1.56 (.044) 1.57 (.039) 2.92 (.012) 1.86 (.156) 1.10 (.013)
103 11.37 (.11) 1.75 (.022) 1.72 (.041) 2.95 (.024) 2.19 (.143) 1.12 (.015)
104 11.31 (.04) 2.34 (.027) 2.20 (.033) 3.37 (.020) 3.29 (.423) 1.32 (.007)

Table 2: Simulated model, estimated variance components on average

g(Z) = Z g(Z) = ZW

lme4 LMMNN lme4 LMMNN
σ2
b q σ̂2

e σ̂2
b σ̂2

e σ̂2
b σ̂2

e σ̂2
b σ̂2

e σ̂2
b

0.1 102 2.92 0.09 1.12 0.10 2.92 0.49 1.09 0.15
103 2.91 0.10 1.16 0.10 2.91 3.52 0.92 0.16
104 2.90 0.10 1.17 0.17 2.91 33.8 0.19 0.16

1 102 2.90 1.01 1.12 1.00 2.91 2.44 1.07 0.41
103 2.90 0.98 1.15 1.00 2.90 32.0 0.84 0.43
104 2.90 0.99 1.26 1.02 2.92 336.6 0.19 0.35

10 102 2.90 10.13 1.04 9.24 2.89 32.9 1.06 2.21
103 2.91 10.02 1.12 10.01 2.89 337.8 0.75 1.30
104 2.91 10.01 1.34 9.72 2.90 3305.6 0.22 1.98

Table 1 summarizes the test MSE results and Table 2 (left) summarizes the estimated variance
components results. As can be seen LMMNN reaches the smallest test MSE on average and with
a considerable gap from the other methods, when standard errors are taken into account. This is
particularly true when RE variance σ2

b and cardinality q are high. As for the estimated variance
components σ̂2

e , σ̂
2
b , LMMNN reaches a good estimation for both, while R’s lme4 reaches a poor

estimation for σ2
e without adding appropriate non-linear and interaction terms, resulting in worse

prediction performance. We also plot in additional material Figure 1 the predicted random effects
b̂ vs. the true random effects b for different qs, the category size distribution and also ŷte vs. yte.
Finally Table 1 in additional material summarizes mean runtime and number of epochs.

A more challenging scenario is when g is some linear transformation Wq×d of Z into a lower
dimension d:

y = (X1 + · · ·+X10) · cos(X1 + · · ·+X10) + 2 ·X1 ·X2 + ZWb+ ε, (16)
where we use d = 0.1 · q and sample W from a U (−1, 1) distribution. b is now a d-length vector
of random effects, sampled from a N

(
0, σ2

b

)
distribution (σ2

b ∈ {0.1, 1, 10}). We use a Keras
Embedding layer on Z to learn W , and notice now we cannot avoid inversion of V when calculating
the loss in (8) or in predicting b̂ in (5). V is a N ×N matrix, so it is perfectly reasonable to invert
it for a batch size of 30, but for predicting b̂ on the entire training set at the end of training this
means creating and inverting a matrix of dimensions 80,000 × 80,000. In practice we sample 10,000
observations from the training set for estimating V and this seems to work well, as summarized by
Table 3 which shows the test MSE scores for all methods. Our method performs the best especially at
high cardinality q where the reduction in MSE can go over 80%. We do note that LMMNN struggles

7

Table 3: Simulated model with g(Z) = ZW , mean test MSEs and standard errors in parentheses.
Bold results are non-inferior to the best result in a paired t-test.

σ2
b q Ignore OHE Embeddings lme4 MeNets LMMNN

0.1 102 1.42 (.039) 1.22 (.018) 1.19 (.024) 2.91 (.021) 1.25 (.084) 1.13 (.013)
103 4.92 (.345) 1.49 (.033) 1.43 (.035) 2.95 (.020) 1.44 (.061) 1.16 (.013)
104 35.1 (.456) 3.25 (.086) 3.39 (.116) 3.42 (.036) 7.35 (1.9) 1.59 (.023)

1 102 4.13 (.626) 1.32 (.025) 1.31 (.033) 2.88 (.023) 1.40 (.106) 1.16 (.011)
103 35.6 (2.78) 2.49 (.151) 2.56 (.355) 2.96 (.045) 7.00 (1.9) 1.19 (.028)
104 334 (18) 9.13 (2.29) 14.4 (2.89) 4.29 (.1) 143.3 (32) 3.43 (.757)

10 102 32.5 (6.86) 1.74 (.121) 2.43 (.317) 2.90 (.023) 12.0 (3.03) 1.12 (.012)
103 324 (25) 8.94 (.79) 9.27 (.92) 2.96 (.031) 164 (18) 1.20 (.020)
104 3337 (134) 60.1 (4.6) 91.1 (4.5) 13.8 (1.2) 2880 (463) 13.3 (2.0)

in finding good σ̂2
e , σ̂

2
b estimates in such a complex scenario, as summarized in Table 2 (right), but its

estimates are still substantially better than those of R’s lme4.

5.2 Real Data

We first describe the datasets and prediction tasks used in this work.

Estimating physical activity from self-reported behaviors from the UK Biobank The UK
Biobank is an ongoing large scale cohort study where over 500,000 individuals across the UK
aged 40-69 were first invited to 22 assessment centers in 2006-2010, surveyed and measured for
various behaviors and metrics, such as gender, job, personal habits, current and historical health
status [20]. Participants’ information has been de-identified and strict protocols exist for obtaining
and disposing of the UK Biobank data. Several sub-samples of this cohort have also been invited
to participate in more expensive and time consuming surveys such as neuroimaging and genome
sequencing. One sub-sample of over 100,000 participants wore a wrist-mounted accelerometer for a
period of 7 days [7]. We follow Pearce et al. [19] who attempted to predict these accelerometer-based
physical activity (PA) data from much more readily available 14 self-reported behaviors such as no.
of hours watching TV and sleeping, and gender. The motivation behind doing so is that physical
activity is a strong marker for diseases outcomes such as cancer and respiratory disease mortality, yet
it is hard to measure. The authors used linear regression and ignored some important features. Of
particular interest here is the current job feature, a categorical feature with over 300 levels, unevenly
distributed across participants. We attempt to improve prediction of physical activity by adding the
job feature and using DNN in a LMMNN approach.

Estimating Drugs 1-10 rating from textual reviews from Drugs.com The website drugs.com is
an online pharmaceutical database of drugs, providing information, reviews and ratings of thousands
of doctor prescribed drugs. Gräßer et al. [10] scraped drugs.com for over 215,000 anonymized reviews
and ratings which are available in the UCI Machine Learning Repository [8]. The authors discretized
the 1-10 ratings into "negative", "neutral" and "positive" sentiments and used logistic regression on
the text reviews processed to n-grams, to predict sentiment in a classification framework. Here we
predict the rating itself in a regression framework using DNN, with a standard word embeddings
layer followed by a LSTM layer and a single neuron output. A high-cardinality categorical feature
which should improve prediction is the drug itself and there are over 3,600 drugs reviewed and rated
in this dataset (so each drug has about 60 reviews on average, but these are unevenly distributed).

Landmark localization in CelebA facial images The CelebA dataset (Liu et al. [17]) contains
202,599 cropped facial images from 10,177 celebrities, where each celebrity has between 1 and
35 images, annotated for various attributes and landmarks such as the location of the tip of the
nose and mouth. We use two convolutional neural networks to predict the (X,Y) location of the
nose and expect that treating facial images from the same individual as repeated measures should
improve prediction. Therefore, the celebrity identity itself is the RE feature used here in the LMMNN
framework.

8

http://drugs.com/

Table 4: Real data features summary table

Dataset n q p Categorical y Input Type DNN

UKB PA 96K 350 15 job PA Tabular MLP
Drugs 215K 3.6K 10K drug rating Text LSTM
CelebA 202K 10K 218x178x3 identity noseX-Y Images CNN
Airbnb 50K 40K 196 host log(price) Tabular MLP

Table 5: Real data 5-CV mean test MSEs and standard errors in parentheses. Bold results are
non-inferior to the best result in a paired t-test.

Dataset Ignore OHE Embeddings MeNets LMMNN

UKB PA 0.812 (.008) 0.816 (.009) 0.817 (.010) 0.811 (.009) 0.809 (.008)
Drugs 2.74 (.032) 2.77 (.005) 2.72 (.051) 2.81 (.031) 2.66 (.006)
CelebA noseX 1.68 (.05) – 3.6 (.3) 7.6 (.3) 1.54 (.07)
CelebA noseY 1.64 (.09) – 2.5 (.2) 12.3 (1.1) 1.39 (.04)
Airbnb 0.156 (.002) – 0.158 (.003) 0.153 (.003) 0.142 (.002)

Predicting prices of Airbnb rentals The website insideairbnb.com scrapes publicly available data
from Airbnb rentals under the CC0 1.0 license [5]. Kalehbasti et al. [15] attempted to predict the log
price of a rental from various features such as neighborhood, number of rooms and textual features
extracted from reviews, overall 755 features. After performing variable selection they used multiple
methods including DNN and found support vector regression (SVR) to give the best result in terms
of test MSE. Their dataset holds about 50,000 listings with over 39,000 hosts which they did not even
consider when performing variable selection. Some hosts publish only 1 rental, while some over 100.

In each dataset we use the same baseline DNN architecture detailed in the original analysis, if
available. If the original analysis did not include the use of DNNs or did not provide specific details,
we use a standard architecture such as the LSTM used for modeling the Drugs dataset reviews. The
RE variable is either ignored, goes through embeddings or OHE (if possible computationally) before
entering the network, used in the MeNets framework or used in the LMMNN framework, where we
use g(Z) = Z always. For specifics on baseline network architecture for each dataset see additional
material. We perform 5-fold cross validation where in each iteration we use 10% of the train set
(which is 80% of the entire data) as validation data, and train the network until no improvement in
validation loss is seen within 10 epochs. All runs are made on Google Colab Pro, with a Nvidia Tesla
P100 GPU.

Table 4 describes the datasets in general, Table 5 summarizes the test MSE results and Table 3 in
additional material summarizes mean runtime and number of epochs. It can be seen that including
the high-cardinality variable in each of these datasets within a LMMNN framework achieves the
lowest test MSE. We also refer the reader to additional material Figure 2 where we show true test
y vs. predicted y scatter plots. Comparing to the results of the original papers is challenging since
not all have supplied data and methods in a fully reproducible way and they use different metrics.
Notwithstanding, we can verify our results are at least comparable in performance: For estimating
physical activity in the UK Biobank, Pearce et al. [19] report achieving a test R2 of between 14 and
17%, while LMMNN achieves on average 19% (higher is better). For estimating drugs rating from
text reviews we cannot compare to Gräßer et al. [10] results as they worked in a classification setting.
For localizing the nose in the CelebA facial images, we are not aware of any MSE benchmarks but
note that the LMMNN result of less than 2 pixels on average seems satisfactory. Finally, for the
Airbnb rental price prediction, Kalehbasti et al. [15] report achieving a test MSE measure of 0.157
for a neural network, while LMMNN achieves on average a mean test MSE of 0.142, which is even
better than the best result they achieved with SVR, 0.147.

6 LMM Extensions

The current paper is focused on regression settings with a single categorical feature, e.g. the subject
with repeated measurements, as we wanted to take advantage of the computationally attractive LMM

9

http://insideairbnb.com/
https://creativecommons.org/publicdomain/zero/1.0/

Table 6: Simulated model with g(Z) = Z and two categorical features, mean test MSEs and standard
errors in parentheses. Bold results are non-inferior to the best result in a paired t-test.

σ2
b1 σ2

b2 q1 q2 Ignore OHE Embeddings lme4 LMMNN

0.5 0.5 103 103 2.18 (.03) 1.45 (.02) 1.34 (.01) 2.97 (.03) 1.13 (.01)
103 104 2.15 (.02) 1.70 (.01) 1.68 (.02) 3.12 (.03) 1.23 (.01)
104 104 2.13 (.02) 1.83 (.02) 1.80 (.02) 3.23 (.03) 1.30 (.00)

0.5 5.0 103 103 6.73 (.04) 1.66 (.03) 1.57 (.02) 3.00 (.04) 1.12 (.00)
103 104 6.75 (.04) 2.20 (.03) 2.01 (.03) 3.31 (.02) 1.29 (.01)
104 103 6.50 (.05) 1.88 (.03) 1.92 (.04) 3.15 (.01) 1.23 (.01)
104 104 6.68 (.12) 2.48 (.03) 2.16 (.02) 3.43 (.01) 1.37 (.01)

5.0 5.0 103 103 11.26 (.19) 1.83 (.02) 1.80 (.07) 2.97 (.02) 1.14 (.02)
103 104 11.33 (.19) 2.36 (.03) 2.11 (.02) 3.32 (.02) 1.30 (.01)
104 104 11.24 (.09) 3.02 (.03) 2.55 (.000) 3.69 (.02) 1.49 (.02)

feature described in equation (6) of avoiding any matrix inversions in calculating the predicted
RE and the NLL loss. However, in further experimenting with LMMNN we note that it seems to
perform well with more complex mixed effects scenarios which do necessitate inverting part of the
V covariance matrix in equation (8) on each mini-batch during training. Apart from the simulation in
which we defined g(Z) = ZW and used embeddings in the network architecture, other scenarios
include having multiple categorical features, the random slopes model which adds a "slope" random
effect to each categorical level, and even kriging over random fields, where V is assumed to contain
spatio-temporal dependencies.

To give the reader a flavour for how LMMNN can be generalized to more scenarios, consider a
situation of two uncorrelated categorical features, having q1 and q2 levels. Now Z in (7) is an
indicator matrix of size n× (q1 + q2), b of size q1 + q2 distributes as before N (0, D), only now D is
of size (q1 + q2)× (q1 + q2), and has structure:

D =

[
σ2
b1Iq1 0q1×q2

0q2×q1 σ2
b2Iq2

]
, (17)

Now ψ holds three variance components [σ2
e , σ

2
b1, σ

2
b2], and we can write the NLL and its derivatives

in (8) and (9) exactly as before. However, notice that V in this case is not necessarily block-diagonal
anymore, and LMMNN calculates the inverse on part of it for each mini-batch.

We show in Table 6 the mean test MSE results of a simulation similar to the first simulation in
Section 5.1, where g is the identity matrix, f is in (15), σ2

e = 1, n = 100, 000, using the same DNN
architectures and rules. In fact the only difference from the simulation in Section 5.1 is that now we
have two high-cardinality uncorrelated categorical features, we vary q1, q2, σ2

b1, σ
2
b2 and LMMNN

now has to estimate three variance components. As can be seen, LMMNN’s performance is superior
to all other methods. It also estimates the variance components quite accurately when compared to
R’s lme4, with a certain cost in runtime, see Tables 4 and 5 in additional material.

7 Conclusion

In this work we propose to treat high-cardinality categorical features in DNN as RE variables, to avoid
the possible pitfalls of overfitting, over-parameterization and scalability issues often encountered
when opting to use OHE or entity embeddings. LMMNN introduces a novel negative log likelihood
loss function inspired by the well researched linear mixed effects model and its positive effect on
DNN prediction performance is shown, with a simple implementation in Keras which can be plugged
in to almost any regression DNN architecture, and is freely available on Github.

Treating categorical features with many levels in DNN as random effects seems to be promising as
our simulated and real data results show and we intend to further pursue this direction in future work.

10

Acknowledgments and Disclosure of Funding

This study was supported in part by a fellowship from the Edmond J. Safra Center for Bioinformatics
at Tel-Aviv University, and by Israeli Science Foundation grant 1804/16. UK Biobank research has
been conducted using the UK Biobank Resource under Application Number 56885.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[2] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67(1):1–48, 2015. doi: 10.18637/jss.v067.
i01.

[3] Hao Chen, Lili Zheng, Raed AL Kontar, and Garvesh Raskutti. Stochastic gradient descent
in correlated settings: A study on gaussian processes. In H. Larochelle, M. Ranzato, R. Had-
sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 2722–2733. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/1cb524b5a3f3f82be4a7d954063c07e2-Paper.pdf.

[4] François Chollet et al. Keras. https://keras.io, 2015.

[5] Murray Cox. Inside airbnb: Adding data to the debate. http://insideairbnb.com/
get-the-data.html, 2021. [Online; accessed 7-April-2021].

[6] Chuong B. Do and Andrew Y. Ng. Transfer learning for text classification. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, vol-
ume 18. MIT Press, 2006. URL https://proceedings.neurips.cc/paper/2005/file/
bf2fb7d1825a1df3ca308ad0bf48591e-Paper.pdf.

[7] Aiden Doherty, Dan Jackson, Nils Hammerla, Thomas Plötz, Patrick Olivier, Malcolm H.
Granat, Tom White, Vincent T. van Hees, Michael I. Trenell, Christoper G. Owen, Stephen J.
Preece, Rob Gillions, Simon Sheard, Tim Peakman, Soren Brage, and Nicholas J. Wareham.
Large scale population assessment of physical activity using wrist worn accelerometers: The uk
biobank study. PLOS ONE, 12(2):1–14, 02 2017. doi: 10.1371/journal.pone.0169649. URL
https://doi.org/10.1371/journal.pone.0169649.

[8] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[9] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

[10] Felix Gräßer, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder. Aspect-based
sentiment analysis of drug reviews applying cross-domain and cross-data learning. In Proceed-
ings of the 2018 International Conference on Digital Health, DH ’18, page 121–125, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450364935. doi:
10.1145/3194658.3194677. URL https://doi.org/10.1145/3194658.3194677.

[11] Varun Gulshan, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu, Arunachalam
Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros,
Ramasamy Kim, Rajiv Raman, Philip C. Nelson, Jessica L. Mega, and Dale R. Webster. Devel-
opment and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs. JAMA, 316(22):2402–2410, 12 2016. ISSN 0098-7484. doi:
10.1001/jama.2016.17216. URL https://doi.org/10.1001/jama.2016.17216.

11

https://www.tensorflow.org/
https://www.tensorflow.org/
https://proceedings.neurips.cc/paper/2020/file/1cb524b5a3f3f82be4a7d954063c07e2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1cb524b5a3f3f82be4a7d954063c07e2-Paper.pdf
https://keras.io
http://insideairbnb.com/get-the-data.html
http://insideairbnb.com/get-the-data.html
https://proceedings.neurips.cc/paper/2005/file/bf2fb7d1825a1df3ca308ad0bf48591e-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/bf2fb7d1825a1df3ca308ad0bf48591e-Paper.pdf
https://doi.org/10.1371/journal.pone.0169649
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/3194658.3194677
https://doi.org/10.1001/jama.2016.17216

[12] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables, 2016.

[13] John T. Hancock and Taghi M. Khoshgoftaar. Survey on categorical data for neural networks.
Journal of Big Data, 7(1):28, Apr 2020. ISSN 2196-1115. doi: 10.1186/s40537-020-00305-w.
URL https://doi.org/10.1186/s40537-020-00305-w.

[14] Tong He, Ru Kong, Avram J. Holmes, Minh Nguyen, Mert R. Sabuncu, Simon B. Eick-
hoff, Danilo Bzdok, Jiashi Feng, and B.T. Thomas Yeo. Deep neural networks and ker-
nel regression achieve comparable accuracies for functional connectivity prediction of be-
havior and demographics. NeuroImage, 206:116276, 2020. ISSN 1053-8119. doi: https:
//doi.org/10.1016/j.neuroimage.2019.116276. URL https://www.sciencedirect.com/
science/article/pii/S1053811919308675.

[15] Pouya Rezazadeh Kalehbasti, Liubov Nikolenko, and Hoormazd Rezaei. Airbnb price prediction
using machine learning and sentiment analysis, 2019.

[16] Yu-Wei Lin, Yuqian Zhou, Faraz Faghri, Michael J. Shaw, and Roy H. Campbell. Analysis and
prediction of unplanned intensive care unit readmission using recurrent neural networks with
long short-term memory. PLoS ONE, 14(7), July 2019. doi: 10.1371/journal.pone.0218942.
URL https://doi.org/10.1371/journal.pone.0218942.

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[18] Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus. Generalized, Linear, and Mixed
Models. John Wiley and Sons, Inc., June 2008. ISBN 978-0-470-07371-1.

[19] Matthew Pearce, Tessa Strain, Youngwon Kim, Stephen J. Sharp, Kate Westgate, Katrien
Wijndaele, Tomas Gonzales, Nicholas J. Wareham, and Søren Brage. Estimating physical
activity from self-reported behaviours in large-scale population studies using network harmoni-
sation: findings from uk biobank and associations with disease outcomes. International Journal
of Behavioral Nutrition and Physical Activity, 17(1):40, Mar 2020. ISSN 1479-5868. doi:
10.1186/s12966-020-00937-4. URL https://doi.org/10.1186/s12966-020-00937-4.

[20] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul
Downey, Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill
Pell, Alan Silman, Alan Young, Tim Sprosen, Tim Peakman, and Rory Collins. Uk biobank: An
open access resource for identifying the causes of a wide range of complex diseases of middle
and old age. PLOS Medicine, 12(3):1–10, 03 2015. doi: 10.1371/journal.pmed.1001779. URL
https://doi.org/10.1371/journal.pmed.1001779.

[21] Minh-Ngoc Tran, Nghia Nguyen, David Nott, and Robert Kohn. Bayesian deep net glm and
glmm. Journal of Computational and Graphical Statistics, 29(1):97–113, 2020. doi: 10.1080/
10618600.2019.1637747. URL https://doi.org/10.1080/10618600.2019.1637747.

[22] Yunyang Xiong, Hyunwoo J. Kim, and Vikas Singh. Mixed effects neural networks (menets)
with applications to gaze estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[23] Yunyang Xiong, Hyunwoo J. Kim, Bhargav Tangirala, Ronak Mehta, Sterling C. Johnson, and
Vikas Singh. On training deep 3d cnn models with dependent samples in neuroimaging. In
Albert C. S. Chung, James C. Gee, Paul A. Yushkevich, and Siqi Bao, editors, Information
Processing in Medical Imaging, pages 99–111, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-20351-1.

[24] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-based gaze
estimation in the wild. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4511–4520, June 2015.

12

https://doi.org/10.1186/s40537-020-00305-w
https://www.sciencedirect.com/science/article/pii/S1053811919308675
https://www.sciencedirect.com/science/article/pii/S1053811919308675
https://doi.org/10.1371/journal.pone.0218942
https://doi.org/10.1186/s12966-020-00937-4
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1080/10618600.2019.1637747

	Introduction
	A Brief Tour of Linear Mixed Models
	LMMNN: Our Proposed Approach
	Related Work
	One-Hot Encoding and and Entity Embeddings
	Previous Attempts at Combining Random Effects in DNN

	Results
	Simulated Data
	Real Data

	LMM Extensions
	Conclusion

