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ABSTRACT

In a multi-follower Bayesian Stackelberg game, a leader plays a mixed strategy
over L actions to which n ≥ 1 followers, each having one of K possible private
types, best respond. The leader’s optimal strategy depends on the distribution of
the followers’ private types. We study an online learning version of this prob-
lem: a leader interacts for T rounds with n followers with types sampled from
an unknown distribution every round. The leader’s goal is to minimize regret,
defined as the difference between the cumulative utility of the optimal strategy
and that of the actually chosen strategies. We design learning algorithms for the
leader under different feedback settings. Under type feedback, where the leader
observes the followers’ types after each round, we design algorithms that achieve
O
(√

min{L log(nKAT ), nK} · T
)

regret for independent type distributions and
O
(√

min{L log(nKAT ), Kn} · T
)

regret for general type distributions. Interest-
ingly, those bounds do not grow with n at a polynomial rate. Under action feedback,
where the leader only observes the followers’ actions, we design algorithms with
O(min{

√
nLKLA2LLT log T , Kn

√
T log T}) regret. We also provide a lower

bound of Ω(
√
min{L, nK}T ), almost matching the type-feedback upper bounds.

1 INTRODUCTION

Stackelberg games are a fundamental model of strategic interaction in multi-agent systems. Unlike
normal-form games where all agents simultaneously play their strategy, Stackelberg games model
a leader committing to their strategy; the remaining follower(s) take their actions after observing
the leader’s commitment (Conitzer & Sandholm, 2006; Von Stackelberg, 2010). Such asymmetric
interactions are ubiquitous in a wide range of setting, from a firm entering a market dominated by
an established competitor (Von Stackelberg, 2010), to an online platform releasing features that
influence consumers on that platform (Zhao et al., 2023; Cao et al., 2024), to security games (Balcan
et al., 2015; Sinha et al., 2018) to strategic machine learning (Hardt et al., 2016; Hossain et al.,
2024). They also form the foundation of seminal models in computational economics like Bayesian
Persuasion (Kamenica & Gentzkow, 2011) or contract design (Dütting et al., 2024) that capture more
structured settings with asymmetries relating to information or payouts respectively.

In these settings and beyond, there is one key question: what is the optimal strategy for the leader to
commit to? Answering this question requires knowing how the follower(s) will react to the leader’s
strategy, which typically boils down to knowing the followers’ utilities. The Bayesian approach
attempts to relax this complete information assumption. Pioneering works like Conitzer & Sandholm
(2006) assume that followers’ utilities are parametrized by hidden types from a known distribution.
Here, the leader aims to compute the Bayesian Stackelberg Equilibrium: the strategy maximizing the
leader’s expected utility with the followers’ types drawn from the known distribution.

In many of the settings mentioned, even the Bayesian perspective may be too strong and unrealistic:
the leader (e.g., online platform, dominant firm) may only know the structure of the followers’ utilities
but not the distribution of their types (Cole & Roughgarden, 2014). While not much can be achieved
in a single round of such a game, the leader can often interact with the followers over multiple rounds
and learn about them over time. The leader must, however, balance learning with playing the optimal
strategy given current information – the well-known exploration-exploitation trade-off in the online
learning literature.
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Our Contributions: This paper comprehensively studies the learning and computational problem
for an online Bayesian Stackelberg game (BSG). Specifically, we consider the interaction over T
rounds between a leader and n followers, each realizing one of K possible private types at each
round. To our knowledge, this is the first work on online learning in BSGs with multiple followers.
We study two feedback models: observing realized types of the followers, or observing their best-
responding actions, after each round. Our core objective is exploring how these feedback models
affect the learnability of the optimal strategy, which is challenging for several reasons. First, with
multiple followers, the unknown joint type space is exponentially large. Further, followers’ taking
best-responding actions means that the leader’s utility function is discontinuous and non-convex.
Lastly, even the offline single-follower version of this problem has known computational challenges
(Conitzer & Sandholm, 2006). A key technical tool used to unravel this is a geometric characterization
of the leader’s strategy space in terms of best-response regions (presented in Section 3). Section 4
uses this and an observation about learning type distributions vis-a-vis learning utility to provide
algorithms for both general type distributions and independent ones. A matching lower bound is
also provided. Section 5 then studies algorithms for the action feedback case, where we leverage
our geometric insights along with techniques from linear bandits. Table 1 summarizes our results.
Throughout, we comment on the computational complexity of our algorithms and uncover interesting
trade-offs that situate our work with the broader literature on Stackelberg games.

Table 1: Regret bounds for learning the optimal leader strategy in Bayesian Stackelberg games with
n followers under various settings. The Õ(·) notation omits logarithmic factors.

Type Feedback
Action Feedback

Independent types General types

Upp. Bound Õ(
√

min{L, nK}T ) Õ(
√

min{L, Kn}T ) Õ(min{
√
nLKLA2LL, Kn}

√
T )

Low. Bound Ω(
√
min{L, nK}T ) Ω(

√
min{L, nK}T ) Ω(

√
min{L, nK}T )

Related Works: Our work contributes to the growing literature on the computational and learning
aspects of Stackelberg games (Conitzer & Sandholm, 2006; Conitzer & Korzhyk, 2011; Castiglioni
et al., 2020; Zhu et al., 2023). In particular, Letchford et al. (2009); Peng et al. (2019); Bacchiocchi
et al. (2024) study learning in single-follower non-Bayesian Stackelberg games. Like our work,
they assume that the follower myopically best responds in each round. However, they assume the
follower’s utility function to be fixed but unknown, whereas we consider a Bayesian setting in which
followers have unknown stochastic types that parameterize a known utility function.

Closer to our work, Balcan et al. (2015; 2025) design online learning algorithms with poly(K)
√
T

regrets for Bayesian Stackelberg games with a single follower with unknown type distribution, while
Bernasconi et al. (2023) obtain Õ(K3n/2

√
T ) regret for multi-receiver Bayesian persuasion problem

(which is similar to multi-follower Bayesian Stackelberg game) by a reduction to adversarial linear
bandit problem. Adopting previous techniques would lead to a poly(Kn)

√
T regret bound in our

multi-follower setting, which is exponential in the number of followers n (see details in Section 5)
and undesirable when followers are many. Using a different approach, we design an algorithm with
Õ(
√
nLKLA2LLT ) regret, a better result when the number of leader’s actions L is small compared

to n. The exponential dependency on L is unavoidable from a computational perspective, as Conitzer
& Sandholm (2006) show that BSGs are NP-Hard to solve with respect to L. Our algorithm combines
the Upper Confidence Bound (UCB) principle and a partition of the leader’s strategy space into
best-response regions, which is a novel approach to our knowledge.

Online Bayesian Stackelberg game can be seen as a piecewise linear stochastic bandit problem.
While linear stochastic bandit problems have been well studied (Auer et al., 2002; Dani et al., 2008;
Abbasi-yadkori et al., 2011), piecewise linearity brings additional challenges. Bacchiocchi et al.
(2025) study a single-dimensional piecewise linear stochastic bandit problem with unknown pieces;
in contrast, we have known pieces but a multi-dimensional space, so the techniques and results of
that work and ours are not directly comparable.
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2 MODEL

Multi-Follower Bayesian Stackelberg Game: We consider the interactions between a single
leader and n ≥ 1 followers. The leader has L ≥ 2 actions, denoted by L = [L] = {1, . . . , L}, and
chooses a mixed strategy x ∈ ∆(L) over them, where ∆(L) is the space of probability distributions
over the action set. We use x(ℓ) to denote the probability of the leader playing action ℓ ∈ L.1
Each follower has a finite action set A = [A]. We represent the joint action of the n followers as
a = (a1, ..., an). Each follower i also has a private type θi ∈ Θ = [K], with the vector of all follower
types denoted by θ = (θ1, ..., θn) ∈ Θn. We consider a Bayesian setting where this type vector is
drawn from a distribution D (i.e. θ ∼ D), with Di denoting the marginal distribution of θi. The
properties of this joint distribution play a key role in our results. We will consider two scenarios:

• Independent type distributions: The followers’ types are independent: D = D1 × · · · × Dn.
• General type distributions: The followers’ types can be arbitrarily correlated.

If the leader selects action ℓ and the followers select joint action a, the leader receives utility
u(ℓ,a) ∈ [0, 1] and each follower i receives utility vi(ℓ, ai, θi) ∈ [0, 1]. Observe that each follower’s
utility depends only on their own action and type, alongside the leader’s action; it does not depend
on the actions of other followers.2 For a mixed strategy x ∈ ∆(L) and followers’ actions a, the
leader’s expected utility is given by u(x,a) = Eℓ∼x[u(ℓ,a)] =

∑
ℓ∈L x(ℓ)u(ℓ,a). Likewise, the ith

follower’s expected utility under x is vi(x, ai, θi) = Eℓ∼x[vi(ℓ, ai, θ)]. We assume that the leader
knows each follower’s utility function but not their private types.

An instance of a multi-follower Bayesian Stackelberg game is defined by the tuple I =
(n,L,A,K, u, v,D). In this game, the leader first commits to a mixed strategy x without knowledge
of the followers’ types. The follower types are then jointly realized from D, and each follower selects
a best-responding action based on the leader’s strategy. It is without loss of generality to consider
followers choosing pure action since follower utilities are independent of one another.
Definition 2.1 (Followers’ Best Response). For a leader’s mixed strategy x, the best response of a
follower i with realized type θi is given by bri(θi, x) ∈ argmaxa∈A vi(x, a, θi).3 The vector of best
responses is denoted by br(θ, x) = (br1(θ1, x), ...,brn(θn, x)).

Let UD(x) = Eθ∼D[u(x,br(θ, x))] denote the leader’s expected utility when the leader commits to
mixed strategy x, the followers have their types drawn from D and best respond.
Definition 2.2 (Leader’s Optimal Strategy). For a joint follower type distribution D, the leader’s
optimal strategy, also known as the Stackelberg Equilibrium, is given as follows:

x∗ ∈ argmax
x∈∆(L)

UD(x) = argmax
x∈∆(L)

Eθ∼D[u(x,br(θ, x))].

Online Learning Model: When the leader knows the distribution D, they can compute the optimal
strategy by solving the optimization problem specified in Definition 2.2. Indeed, this is the premise
of Conitzer & Sandholm (2006). Our work examines an online learning model where the leader does
not know the type distribution D a priori; instead, the leader must learn the optimal strategy through
feedback from repeated interactions with followers over T rounds.

We examine two feedback models. In the type feedback setting, the leader observes the types θt of
the followers after each round t, whereas in the action feedback setting, the leader only observes
the actions at of the followers. Note that type feedback is strictly more informative than action
feedback since the follower’s actions can be inferred from their types by computing their best response
(Definition 2.1). We summarize the interactions at a given round t as follows:

1. The leader chooses a strategy xt ∈ ∆(L).
2. Follower types for this round are realized: θt ∼ D.

1All of our results can be generalized to the setting where the leader’s strategy space is an arbitrary compact
convex set X ⊆ Rd and the leader and followers’ utility functions u(x,a), vi(x, ai, θi) are linear (or affine)
functions of x ∈ X . Our presentation focuses on X = ∆(L) for simplicity.

2This no externality assumption is common in modeling a large population of agents (Dughmi & Xu, 2017;
Xu, 2020; Castiglioni et al., 2020).

3In case of ties, we assume that followers break ties in favor of the leader.
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3. Followers take their best-responding actions at = br(θ, xt) and the leader gets utility u(xt,at).
4. Under type feedback, the leader observes the type profile θt. Under action feedback, the leader

observes only the followers’ actions at.

The leader deploys a learning algorithm (based on past feedback) to select strategy xt for every round
t. We study learning algorithms that minimize the cumulative regret with respect to the optimal
equilibrium strategy (Definition 2.2). Formally defined below, minimizing this objective requires a
careful balance between exploring the strategy space while not taking too many sub-optimal strategies.
Definition 2.3. The regret of a learning algorithm that selects strategy xt at round t ∈ [T ] is:

Reg(T ) =

T∑
t=1

Eθt∼D

[
u(x∗,br(θt, x∗))− u(xt,br(θt, xt))

]
=

T∑
t=1

(
UD(x∗)− UD(xt)

)
.

Note that Reg(T ) is a random variable, because the selection of xt depends on the past type
realizations θ1, ..., θt−1. We aim to minimize the expected regret E[Reg(T )].

Lastly, our model assumes followers behave myopically, selecting their best actions based only on
the leader’s current strategy, without considering future rounds. This is consistent with the related
literature (Peng et al., 2019; Bacchiocchi et al., 2024; Letchford et al., 2009) and well-motivated in
settings like online platforms or security games where followers maximize their immediate utility.

3 BEST RESPONSE REGIONS: A GEOMETRIC PERSPECTIVE

Since the followers’ best-responding actions are sensitive to the leader’s strategy x, the leader’s
expected utility function UD(x) is discontinuous in x. This presents a key challenge to both learning
and optimizing over the leader’s strategy space. To overcome this challenge, we first show that the
leader’s strategy space ∆(L) can be partitioned into a polynomial number of non-empty best-response
regions (followers have the same best-response actions within each region). While the notion of
best-response regions has been proposed by prior works (Balcan et al., 2015; Peng et al., 2019;
Bacchiocchi et al., 2024; Yang & Zhang, 2024), those works consider single-follower cases. With
multiple followers, we will argue that the number of such regions does not increase exponentially in
the number of followers n (Lemma 3.2) – a key property to be used in later sections. At a high level,
the best-response region approach allows us to reason about the leader strategy space in a discrete
sense. This is not only instructive for regret analysis (such as for Theorem 4.1) but also facilitates
leveraging algorithms like UCB (Algorithm 3), which are defined for discrete settings.

3.1 A SINGLE FOLLOWER

To build intuition, we first consider the leader playing against a single follower (n = 1). The follower
has a utility function v(ℓ, a, θ) and a type θ ∈ Θ = [K] drawn from distribution D. Next, let
w : Θ→ A be a mapping from follower type to action – i.e. w(θ) specifies an action for type θ. For
such a mapping w, let R(w) ⊆ ∆(L) be the set of leader strategies under which the follower’s best
response action br(θ, x) is equal to w(θ) for every type θ ∈ Θ. Formally:

R(w) =
{
x ∈ ∆(L)

∣∣ br(θ, x) = w(θ), ∀θ ∈ Θ
}

=
{
x ∈ ∆(L)

∣∣ v(x,w(θ), θ) ≥ v(x, a′, θ), ∀θ ∈ Θ,∀a′ ∈ A
}

where we recall that for any action a, v(x, a, θ) =
∑

ℓ∈L x(ℓ)v(ℓ, a, θ). The set R(w) is defined
as the best-response region for mapping w. This region can also equivalently be defined as the
intersection of several halfspaces (see Figure 1 in Appendix A for a visual). In particular, let

dθ,a,a′ =
[
v(1, a, θ)− v(1, a′, θ) , . . . , v(L, a, θ)− v(L, a′, θ)

]T ∈ RL

denote the “advantage” of follower type θ taking action a over a′ at each of the L possible leader
actions. Then the halfspace H(dθ,a,a′) =

{
x ∈ ∆(L) | ⟨x, dθ,a,a′⟩ ≥ 0

}
contains all the leader

strategies under which the follower with type θ prefers action a over a′. Thus, the best-response
region is R(w) =

⋂
θ∈Θ,a∈A H(dθ,w(θ),a), the intersection of |Θ| · |A| = KA halfspaces.
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3.2 MULTIPLE FOLLOWERS

We generalize the intuitions from the single-follower case to the multi-follower case. Let W =
(w1, . . . , wn) denote a tuple of n mappings, where each wi : Θ→ A is the best-response mapping
for follower i. So, W is a mapping from joint type space Θn to joint action space An, where
W (θ) = (w1(θ1), . . . , wn(θn)) ∈ An denotes the joint action of all followers under joint type
θ = (θ1, . . . , θn). Alternatively, one can think of W as a matrix, W ∈ An×K , where each entry
wik ∈ A records the best-response action for follower i if he has type θi = k. We generalize the
notion of best-response region R(w) from the singe-follower case to the multi-follower case:
Definition 3.1 (Best-Response Region). For a matrix W ∈ An×K , the best-response region for W
is the set of leader strategies under which the followers’ best responses are given by W :

R(W ) =
{
x ∈ ∆(L)

∣∣ br(θ, x) = W (θ), ∀θ ∈ Θn
}
.

As in the single-follower case, R(W ) can be expressed as the intersection of multiple halfspaces:
R(W ) =

⋂
i∈[n],θi∈Θ,ai∈A H(dθi,wi(θi),ai

).

We make an important observation: the leader’s expected utility function UD(x) is linear in x within
each non-empty best-response region. By definition, for all θ ∈ Θn and x ∈ R(W ), we have
br(θ, x) = W (θ). So,

UD(x) =
∑
θ∈Θn

D(θ)u(x,br(θ, x)) =
∑
θ∈Θn

D(θ)
∑
ℓ∈L

x(ℓ)u(ℓ,W (θ)) =
∑
θ∈Θn

D(θ)⟨x, zW,θ⟩.

where zW,θ is the L-dimensional vector zW,θ = (u(1,W (θ)), ..., u(L,W (θ))). So, we conclude
that the leader’s expected utility is linear within each region R(W ):
Lemma 3.1. For each W , the leader’s expected utility function UD(x) is linear in x ∈ R(W ).

Although UD(x) is linear within each best-response region, it could be non-linear and even discontin-
uous across different best-response regions.

3.3 ENUMERATING BEST-RESPONSE REGIONS AND COMPUTING THE OFFLINE OPTIMAL

LetW = {W ∈ An×K | R(W ) ̸= ∅} denote the set of mappings W for which the corresponding
best-response region R(W ) is non-empty. Although the total number of W ∈ An×K is An×K , the
number of non-empty best-response regions is significantly smaller, especially when L (number of
actions of the leader) is treated as a constant. The exact characterization is given below. The proof (in
Appendix A) uses a result in computational geometry regarding the number of nonempty regions
obtained by dividing RL using O(nKA2) hyperplanes.
Lemma 3.2. The number of non-empty best-response regions, |W|, is O(nLKLA2L).

For any algorithm to leverage these best response regions, it is imperative that these regions can be
enumerated efficiently. The following lemma shows this is always possible. Intuitively, we construct
a graph where the nodes represent non-empty best-response regions and an edge exists between
W,W ′ ∈ W if and only if W and W ′ differ in exactly one entry. Traversing an edge, therefore,
corresponds to moving to an adjacent best-response region by crossing a single hyperplane boundary.
We show that this graph is always connected and can thus be efficiently traversed using breadth-first
search. The exact algorithm and proof of Lemma 3.3 are in Appendix A.
Lemma 3.3. The set of non-empty best-response regions {R(W ) : W ∈ W} can be enumerated in
poly(nL,KL, AL, L) time.

We now show that the optimal strategy within each region can be efficiently computed. Recall from
Definition 2.2 that, when given the followers’ type distribution D, computing the leader’s optimal
strategy requires solving maxx∈∆(L) Eθ∼D[u(x,br(θ, x))]. Since the leader’s utility is linear within
a region R(W ), the optimal solution within R(W ) can be computed by the following linear program:

max
x∈R(W )

∑
θ∈Θn

D(θ)u(x,br(θ)) = max
x∈R(W )

∑
θ∈Θn

D(θ)u(x,W (θ)) (1)
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where x ∈ R(W ) is given by the following set of linear constraints:{∑
ℓ∈L x(ℓ)

[
vi(ℓ, wi(θi), θi)− vi(ℓ, a

′
i, θi)

]
≥ 0, ∀i ∈ [n], ∀θi ∈ Θ, ∀a′i ∈ A,

x(ℓ) ≥ 0, ∀ℓ ∈ L, and
∑

ℓ∈L x(ℓ) = 1.
(2)

While there are O(nKA) constraints, each involving a sum over L elements, the objective involves
summing over Kn possible type profiles. While this is exponential in n, any input to the complete
information instance must provide the joint type distribution D ∈ [0, 1]K

n

as input. Thus, the time to
compute the optimal solution within each region is polynomial in the input size.

The above results imply that, given distribution D, the optimal leader strategy in BSGs can be
computed efficiently when the number L of leader’s actions is small. This is because the optimal
strategy within each best-response region R(W ) can be computed efficiently by the linear program
(1), the overall optimal strategy is the maximum over all non-empty best-response regions, and
there are at most O(nLKLA2L) such regions by Lemma 3.2. We thus showed above that BSGs
are polynomial-time solvable for a constant L. In comparison, Theorem 7 of Conitzer & Sandholm
(2006) proves that the optimal strategy is NP-hard to compute in BSGs when L is treated as a variable
and is asymptotically increasing.

4 TYPE FEEDBACK

4.1 LEARNING ALGORITHMS AND UPPER BOUNDS

General Type Distributions: We now address the core problem of learning the optimal leader
strategy from online feedback. This section considers the type-feedback setting, where the leader
observes each follower’s realized type θt = (θt1, . . . , θ

t
n) at the end of round t. We start with general

distributions – that is, the followers’ types can be arbitrarily correlated. Observing types after each
round allows us to directly estimate the unknown distribution D and compute an optimal strategy
accordingly. This is formalized in Algorithm 1:

ALGORITHM 1: Type-Feedback Algorithm – General Type Distributions

At round t = 1, pick an arbitrary strategy x1 ∈ ∆(L).
for round t ≥ 2 do

Choose xt ∈ argmaxx∈∆(L)

∑t−1
s=1 u(x,br(θ

s, x)) – the empirically optimal strategy.
Observe the followers’ types θt ∼ D.

At first glance, one might think that this algorithm might suffer a large regret because the distribution
D, which has support size |Θn| = Kn, is difficult to estimate. Indeed, the estimation error for such a

distribution using t samples is at least Ω
(√

Kn

t

)
even if D is a product distribution (namely, the types

are independent) (Lin, 2022). This suggests that the empirically optimal strategy xt might be worse

than the true optimal strategy x∗ by at least Ω
(√

Kn

t

)
, which would cause an Ω(

√
KnT ) regret in T

rounds in total. As we will show in Theorem 4.1, one analysis of Algorithm 1 achieves exactly this as
a regret upper bound. The proof (in Appendix B.2) upper bounds the single-round regret by the total
variation (TV) distance between the empirical distribution D̂

t
and the true distribution D.

While this suggests that O(
√
KnT ) regret might be tight, this is interestingly not true when n is

large! That is, the intuitive lower bound that arises from the estimation error for distribution D
is not correct. Although the empirical type distribution can differ significantly from the true type
distribution, the empirical utility of any strategy x ∈ ∆(L) is actually concentrated around the true
expected utility of x with high probability. We formalize this below:

Lemma 4.1. Given t samples θ1, . . . ,θt from distribution D, let Û t(x) = 1
t

∑t
s=1 u(x,br(θ

s, x))
be the empirical expected utility of a strategy x ∈ ∆(L) computed on the t samples. Recall that
UD(x) = Eθ∼D[u(x,br(θ, x))] denotes the true expected utility of x. With probability at least 1−δ,

we have: for all x ∈ ∆(L),
∣∣UD(x)− Û t(x)

∣∣ ≤ O(√L log t
t +

√
L log(nKA)+log(1/δ)

t

)
.
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Proof sketch. By Lemma 3.2, the leader’s strategy space ∆(L) can be divided into |W| =
O(nLKLA2L) best-response regions, and the leader’s utility function UD(x) is linear inside each
region (Lemma 3.1). Because the pseudo-dimension of linear functions in an L dimensional space
are at most L, we have with probability at least 1 − δ′, the empirical utility Û t(x) on t samples

approximates the true expected utility UD(x) with accuracy O
(√

L log t
t +

√
log(1/δ′)

t

)
for every

strategy x inside a best-response region. Taking a union bound over all O(nLKLA2L) best-response
regions, i.e., letting δ′ = δ/O(nLKLA2L), proves the lemma. See details in Appendix B.1.

Note that the above concentration result holds for all strategies x ∈ ∆(L) simultaneously, instead
of for a single fixed strategy (which easily follows from Hoeffding’s inequality). This result means
that the simple Algorithm 1 can achieve a regret that is of the order

√
T , logarithmic in n, with an

additional
√
L factor. This is better for large n and small L. This new regret bound, along with the

earlier one O(
√
KnT ), is formalized in Theorem 4.1 below, with the proof given in Appendix B.2.

Theorem 4.1. The type-feedback Algorithm 1 for general type distributions achieves expected regret
O
(
min

{√
LT · log(nKAT ),

√
KnT

})
and can be implemented in poly((nKA)LLT ) time.

Theorem 4.1 also comments on the runtime of Algorithm 1, which hinges on the computability
of xt ∈ argmaxx∈∆(L)

∑t−1
s=1 u(x,br(θ

s, x)). Using the techniques developed in Section 3, this
maximization can be solved by taking the maximum over the optimal strategies from each non-empty
best-response region W ∈ W , computed using the empirical type distribution. Using Lemmas
3.2 and 3.3 and the fact that the optimal strategy within a non-empty R(W ) can be solved by the
following linear program, we obtain a runtime that is polynomial when L is constant:4

max
W∈W

{
max

x∈R(W )

t∑
s=1

u(x,W (θs)) subject to the constraints in (2)

}
. (3)

Independent Type Distributions: Algorithm 1 and the corresponding regret bound in Theorem
4.1 hold without any assumptions on the joint type distribution D. In many settings, however, the
followers’ types may be independent of one another. Intuitively, one expects learning to be easier in
such settings since it suffices to learn the marginals as opposed to the richer joint distribution. This is
indeed correct: in Algorithm 2, we build the empirical distribution D̂t

i for each marginal from samples
θ1i , . . . , θ

t
i for follower i and then take the product D̂

t
=
∏n

i=1 D̂t
i to estimate D =

∏n
i=1Di.

ALGORITHM 2: Type-Feedback Algorithm - Independent Type Distributions

At t = 1, pick an arbitrary strategy x1 ∈ ∆(L).
for round t > 1 do

Choose xt ∈ argmaxx∈∆(L) Eθ∼D̂t−1 [u(x,br(θ, x))]

Observe realized follower type (θt1, . . . , θ
t
n)

for i ∈ [n], k ∈ Θ do
D̂t

i(k) =
1
t

∑t
s=1 1 [θ

s
i = k]

D̂
t
(θ) =

∏n
i=1 D̂t

i(θi), ∀θ ∈ Θn

This algorithm achieves a much improved regret, O(
√
nKT ), formalized in Theorem 4.2 and

empirically verified in Appendix D. The proof (in Appendix B.3) is similar to the O(
√
KnT ) regret

analysis of Theorem 4.1, which upper bounds the single-round regret by the TV distance between D̂
t

and D. But for independent distributions, we can relate the TV distance with the sum of Hellinger

distances between the marginals D̂t
i and Di, which is bounded by O(

√
nK
t ) instead of O(

√
Kn

t ),

so the total regret is bounded by O(
√
nKT ). The computational complexity, though, increases to

poly((nKA)LLTKn) as the empirical product distribution D̂
t
=
∏n

i D̂t
i has support size Kn.

4Also note that Algorithm 1 does not need as input the entire utility function of the leader u(·, ·), which has
an exponential size L ·An. The algorithm only needs the utility function for the sampled types.
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Theorem 4.2. The type-feedback Algorithm 2 for independent type distributions achieves expected
regret O

(√
nKT

)
and can be implemented in poly((nKA)LLTKn) time.

Corollary 4.1. Taking the minimum of Theorems 4.1 and 4.2, we obtain a type-feedback algorithm
with expected regret O

(
min

{√
LT · log(nKAT ),

√
nKT

})
for independent type distributions.

4.2 LOWER BOUND

We then provide a lower bound result: no algorithm for online Bayesian Stackelberg game has a
better regret than Ω(

√
min{L, nK}T ). When the number of followers n is large, this lower bound

matches the previous upper bounds Õ(
√
LT ). To our knowledge, this work is the first to provide a

lower bound for the multi-follower problem and give an almost tight characterization of the factor
before the classical

√
T term. Interestingly, this Õ(

√
L) factor does not grow with n up to log factor.

Theorem 4.3. The expected regret of any type-feedback algorithm is at least Ω(
√
min{L, nK}T ).

This holds even if the followers’ types are independent and the leader’s utility does not depend ℓ.

The proof (given in Appendix B.5) involves two non-trivial reductions. First, we reduce the
distribution learning problem to a single-follower Bayesian Stackelberg game, obtaining an
Ω(
√
min{L,K}T ) lower bound. Then, we reduce the single-follower game with nK types to

a game with n followers each with K types. One might wish to reduce a single-follower game with
Kn types to an n-follower game to prove a lower bound of Ω(

√
min{L,Kn}T ) for general type

distributions, but that cannot be done easily due to no externality between the followers.

5 ACTION FEEDBACK

We now discuss the setting where the leader observes the followers’ actions after each round. This
setting is more practical yet challenging than the type-feedback setting. We present two learning
algorithms. The first algorithm achieves O(Kn

√
T log T ) regret, using a previous technique from

Bernasconi et al. (2023). The second algorithm involves a novel combination of the Upper Confidence
Bound principle and the concentration analysis of best-response regions from Lemma 4.1, achieving
O(
√
nLKLA2LLT log T ) regret. The latter is better when the number of followers n is large and

the number of leader actions L is small. We empirically simulate both approaches in Appendix D.

Linear-bandit based approach with O(Kn
√
T log T ) regret: Bernasconi et al. (2023) developed

a technique to reduce the online learning problem of solving a linear program with unknown objective
to a linear bandit instance. A spiritually similar approach can be applied here. While the optimization
problem for our Bayesian Stackelberg games (Definition 2.2) is not a linear program, we show that
under a different formulation, this can actually be solved by a single linear program (we explain the
details in the proof of Theorem5.1). We can thus leverage the techniques of Bernasconi et al. (2023)
to reduce this to a linear bandit problem. Since Bernasconi et al. (2023) considers an adversarial
online learning environment (ours is stochastic), directly applying their technique will lead to a
sub-optimal Õ(K 3n

2

√
T ) regret bound. Instead, we apply the OFUL algorithm for stochastic linear

bandit (Abbasi-yadkori et al., 2011) to obtain a better regret bound of Õ(Kn
√
T ). Instead, we apply

the OFUL algorithm for stochastic linear bandit (Abbasi-yadkori et al., 2011) to obtain a better regret
bound of Õ(Kn

√
T ). See details in Appendix C.1.

Theorem 5.1. There exists an action-feedback algorithm for online Bayesian Stackelberg game with
O(Kn

√
T log T ) regret.

Algorithm 3 with O(
√
nLKLA2LLT log T ) regret. We design a better algorithm for large n and

small L, not using Bernasconi et al. (2023)’s technique but using the “concentration over best-response
regions" idea we developed in the previous sections. Recall from Section 3 that the leader’s strategy
space can be partitioned into best-response regions: ∆(L) =

⋃
W∈W R(W ). When the leader plays

strategy x in a region R(W ), the followers’ best-response function satisfies br(θ, x) = W (θ), so

8
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the leader’s expected utility is

U(x,R(W )) =
∑
θ∈Θn

D(θ)u(x,W (θ)) =
∑

a∈An

u(x,a)
∑

θ|W (θ)=a

D(θ) =
∑

a∈An

u(x,a)P(a |R(W ))

where P(a |R(W )) =
∑

θ∈Θn:W (θ)=a D(θ) denotes the probability that the followers jointly take
action a ∈ An when the leader plays x ∈ R(W ). Since the distribution P(· |R(W )) ∈ ∆(An)
does not depend on x as long as x ∈ R(W ), playing N strategies x1, ..., xN within R(W ) yields
N observations a1, ...,aN ∼ P(· |R(W )). Using these samples, we can estimate the utility of any
other strategy x ∈ R(W ) within the same region. We define the empirical utility estimate on N

samples of joint actions as ÛN (x,R(W )) = 1
N

∑N
s=1 u(x,a

s).

Lemma 5.1. Suppose T ≥ |W|. With probability at least 1 − 1
T 2 , we have: ∀W ∈ W , ∀N ∈

{1, . . . , T}, ∀x ∈ R(W ), |U(x,R(W ))− ÛN (x,R(W ))| ≤
√

4(L+1) log(3T )
N .

The proof of this lemma is similar to the proof of Lemma 4.1 and given in Appendix C.2.

For each region W ∈ W , let N t(W ) =
∑t−1

s=1 1 [xs ∈ R(W )] be the number of times when strategies
in region R(W ) were played in the first t− 1 rounds. Given the result in Lemma 5.1, we define an
Upper Confidence Bound (UCB) on the expected utility of the optimal strategy in region R(W ):

UCBt(W ) = max
x∈R(W )

{
ÛNt(W )(x,R(W ))

}
+
√

4(L+1) log(3T )
Nt(W ) .

We design the following algorithm: at each round t, select the region W ∈ W with the highest
UCBt(W ), play the empirically optimal strategy in that region, and increment N t(W ) by 1. Full
description of the algorithm is given in Algorithm 3.

ALGORITHM 3: Upper Confidence Bound (UCB) for Best-Response Regions
LetW = {W | R(W ) ̸= ∅}.
for W ∈ W do

Choose any strategy x ∈ R(W ) and observe a joint action.
for round t > |W| do

for each W ∈ W do
Let N t(W ) =

∑t−1
s=1 1 [W s = W ] be the number of times region R(W ) was chosen.

Let P̂t(· |R(W )) be the empirical distribution of joint actions in the rounds where region
R(W ) was chosen: P̂t(a |R(W )) = 1

Nt(W )

∑t−1
s=1 1 [W s = W ] · 1 [as = a].

Compute the empirically optimal strategy in region R(W ):

x̂∗
R(W ) = argmax

x∈R(W )

Ea∼P̂t(·|R(W ))

[
u(x,a)

]
,

which has empirical utility û∗
R(W ) = Ea∼P̂t(·|R(W ))[u(x̂

∗
R(W ),a)].

Let UCBt(W ) = û∗
R(W ) +

√
4(L+1) log(3T )

Nt(W ) .

Let W t ∈ argmaxW∈W UCBt(W ).
Play strategy xt = x̂∗

R(W t) and observe joint action at = (at1, . . . , a
t
n).

Theorem 5.2. Algorithm 3 has expected regret O
(√

nLKLA2LL · T log T
)
.

While the full proof is in Appendix C.3, we sketch the intuition. In the classical multi-armed bandit
problem, the UCB algorithm has expected regret O(

√
mT log T ) where m is the number of arms.

In our setting, each best-response region corresponds to an arm, and the confidence bound for each

region is O(
√

L log T
Nt(W ) ). The number of arms/regions is m = |W| = O(nLKLA2L) by Lemma 3.2.

So, the regret of Algorithm 3 is at most O(
√
|W| · L · T log T ) = O(

√
nLKLA2L · L · T log T ).

Corollary 5.1. By taking the better algorithm in Theorems 5.1 and 5.2, we obtain an action-feedback
algorithm with Õ

(
min

{
Kn,
√
nLKLA2LL

}√
T
)

regret.

9
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Dependencies on various parameters: Since action-feedback is more limited than type-feedback,
the lower bound in Theorem 4.3 immediately carries over and shows that the Õ(

√
T ) regret bounds

here are tight in T . There are several subtleties in achieving tighter bounds on the remaining
parameters. Conitzer & Sandholm (2006) show that, even with known distributions, BSG are NP-
Hard to solve with respect to L; so an exponential computational dependence on L is unavoidable,
even if the regret could be made independent of L as shown in our O(Kn

√
T log T ) result. Whether

an online learning algorithm with poly(n,K,L)
√
T regret exists is an open question, but such an

algorithm will suffer an exponential runtime in L unless P = NP.

6 DISCUSSION

This work designed online learning algorithms for Bayesian Stackelberg games with multiple follow-
ers with unknown type distributions. Although the joint type space of n followers has an exponentially
large size Kn, we achieved significantly smaller regrets: Õ(

√
min{nK,L}T ) when the followers’

types are independent and observable, Õ(
√
min{Kn, L}T ) when followers’ types are correlated and

observable, and Õ(min{Kn,
√
nLKLA2LL}

√
T ) when only the followers’ actions are observed.

These results exploit various geometric properties of the leader’s strategy space. The type-feedback
bounds are tight in all parameters and the action-feedback bounds are tight in T . The exponential
dependency on L is unavoidable computationally (Conitzer & Sandholm, 2006). Further closing
the gaps between upper and lower regret bounds is an open question and will likely involve tradeoff
between different parameters and tradeoff between computation and regret.

6.1 CONNECTIONS TO THE ADVERSARIAL SETTING

Our work considers a stochastic setting – follower types are sampled from an unknown but fixed
distribution. Alternatively, one can consider a setting where followers’ types are adversarially
generated. We conjecture that the main technique behind our results, “concentration over best
response regions”, can be generalized to adversarial settings. For the action-feedback case, our
approach is to run a UCB algorithm to pick a best-response region at every round, and then pick the
empirically optimal strategy within that region. Importantly, the leader’s optimization problem within
each best-response region is linear. With stochastic follower types, the linear optimization problem
within each best-response region can be solved by empirical optimization – this algorithm needs to
be changed in the adversarial setting. In more detail:

• For the full-feedback case (leader observes the followers’ types after each round), we can run
an adversarial full-feedback multi-armed bandit algorithm (e.g., Multiplicative Weights Update)
to pick a best-response region at each round. Within each best-response region, the problem
becomes an adversarial online linear optimization problem with full feeback, to which we can
apply algorithms such as FTRL to choose leader strategies.

• For partial-feedback (leader observes the followers’ actions after each round), we can run an
adversarial partial-feedback MAB algorithm (e.g., EXP3) to pick a best-response region at
each round. Within each region, use an adversarial partial-feedback online linear optimization
algorithm to choose leader strategies.

Intuitively, best-response regions allow us (1) to tame the continuous leader action space and (2) to
reduce the problem to classical adversarial problems. Formally verifying this approach is open.

6.2 INTER-FOLLOWER EXTERNALITY

Our work assumed no externality between the followers. While the learning algorithms for multiple
followers without externality may not differ significantly from that of a single follower, one might
expect the regret bound to grow at the exponential rate of O(

√
KnT ), because the support size of the

joint type distribution is Kn. Naive analysis does lead to that regret bound. However, we show that
with a more refined analysis, the regret bounds can be improved significantly (Theorems 4.1, 5.2).

The presence of inter-follower externality leads to a simultaneous game between the followers, given
a leader strategy. Putting aside the computational difficulties of inter-follower Nash Equilibrium
(or assuming oracle access to it), some of our results in the type-feedback setting generalize. In

10
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particular, our O(
√
KnT ) result for general type distributions and O(

√
nKT ) result for independent

type distributions also apply to the setting with inter-follower externality. Our other results, which
are built on best-response region characterization and depend on the followers’ independent utility
functions, do not generalize to the externality case. The introduction of inter-follower externality
significantly complicates the analysis and algorithm for the action feedback case, since actions are
now equilibrium responses, and not just best responses to leader action. More information is needed
about the equilibrium to learn from this feedback.
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A APPENDIX FOR SECTION 3

Figure 1: A single-follower best-
response region with K = 3 types
and two follower actions and three
leader actions – A = 2, L = 3. The
triangle represents the probability
simplex ∆(L). The three hyper-
planes defined by d1(0, 1), d2(1, 0)
and d3(1, 0) partition the simplex
into best-response regions. For ex-
ample, in region R(w0,1,1), the fol-
lower best-responds with action 0
for type 1, and action 1 for types 2
and 3.

A.1 PROOF OF LEMMA 3.2

Proof. We have n followers each with K type and A actions. Each follower has K
(
A
2

)
≤ KA2

advantage vectors, where each advantage vector dθ,a,a′ corresponds to a hyperplane in RL that
separates the leader’s mixed strategy space ∆(L) ⊆ RL into two halfspaces. In total, n followers
have nKA2 hyperplanes. Those hyperplanes divide RL into at mostO((nKA2)L) = O(nLKLA2L)
regions (see, e.g., Halperin & Sharir (2017)). Each non-empty best response region is one of such
regions, so the total number is O(nLKLA2L).

A.2 PROOF OF LEMMA 3.3

ALGORITHM 4: Best-Response Region Enumeration

Let isFeasible(x, i, θ, a) = 1
[
∀a′ ∈ A,

∑
ℓ∈L x(ℓ)

(
vi(ℓ, a, θ)− vi(ℓ, a

′, θ)
)
≥ 0
]

Let findFeasible(W ) =
{
x ∈ ∆(L) | ∀i ∈ [n], θ ∈ Θ, isFeasible(x, i, θ,W [i, θ]) = 1

}
Choose a random strategy xinit ∈ ∆(L)
for i ∈ [n], θ ∈ Θ do

for a ∈ A do
if isFeasible(xinit, i, θ, a) then

Winit[i, θ] = a

Let queue = [Winit], mark Winit as visited
while queue ̸= ∅ do

W = queue.pop()
for i ∈ [n], θ ∈ Θ do

for a ∈ A and a ̸= W [i, θ] do
Let W ′ = W
Let W ′[i, θ] = a
if findFeasible(W ) ̸= ∅ and W ′ is not visited then

queue.append(W ′), mark W ′ as visited

Proof. We construct a graph G = (V,E) where V consists of the elements W , each representing a
best-response region. An edge exists between two vertices W , W ′ ∈ W if and only if W and W ′

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

differ in exactly one entry. Traversing an edge corresponds to moving between adjacent best-response
regions by crossing a hyperplane boundary.

We claim that this graph is connected. Since each vertex W corresponds to a best-response region
defined by the inequalities in (2), and the leader’s strategy space is the L-dimensional probability
simplex, the union of non-empty best response regions forms a partition of the strategy space. Because
these regions are convex polytopes sharing boundaries, the adjacent structure defined by differing
in one entry corresponds to crossing a shared facet. Starting from any non-empty region, we can
traverse to any other by crossing shared facets through adjacent regions, so the graph is connected.

Thus, to enumerate all non-empty best-response regions, we can perform a graph search (e.g.,
breadth-first search or depth-first search) starting from any initial vertex W to traverse all vertices in
O(|W |) steps, which is O(nLKLA2L) by Lemma 3.2. Specifically, at each vertex W , we examine
all its adjacent nKA vertices. For each adjacent vertex W ′, we determine whether R(W ′) is a
non-empty region by solving a feasibility linear program defined by the constraints in (2), which
runs in poly(n,K,A,L) time. Then, the total running time is poly(nL,KL, AL, L). We present the
algorithm formally in Algorithm 4.

B APPENDIX FOR SECTION 4

The following definitions will be used in the proofs for this section:

Definition B.1 (Total variation distance). For two discrete distributions D and D̂ over support Θ, the
total variation is half the L1 distance between the two distributions:

δ(D, D̂) = 1

2
||D − D̂||1 =

1

2

∑
θ∈Θ

|D(θ)− D̂(θ)|.

Definition B.2 (Hellinger distance). For two discrete distributions D and D̂ over support Θ, the
Hellinger distance is defined as

H(D, D̂) = 1√
2
∥
√
D −

√
D̂∥2 =

1√
2

√∑
θ∈Θ

(
D(θ)− D̂(θ)

)2
.

B.1 PROOF OF LEMMA 4.1

We rely on several key insights about the pseudo-dimension of a family of functions, defined below:
Definition B.3 (Definition 10.2 in Mohri et al. (2012)). Let G be a family of functions from input
space Z to real numbers R.

• A set of inputs {z1, . . . , zm} ⊆ Z is shattered by G if there exists thresholds t1, . . . , tm ∈ R such
that for any sign vector σ = (σ1, . . . , σm) ∈ {−1,+1}m, there exists a function g ∈ G satisfying
sign(g(xi)− ti) = σi for all i = 1, ...m.

• The size of the largest set of inputs that can be shattered by G is called the pseudo-dimension of
G, denoted by Pdim(G).

Given a family of functions with a finite pseudo-dimension, and samples z1, . . . , zN drawn from a
distribution on the input space Z , the empirical mean of any function in the family will, with high
probability, be close to the true mean. Formally:
Theorem B.1 (e.g., Theorem 10.6 in Mohri et al. (2012)). Let G be a family of functions from Z to
[0, 1] with pseudo-dimension Pdim(G) = d. For any distribution F over Z , with probability at least
1− δ over the random draw of N samples z1, . . . , zN from F , the following holds for all g ∈ G,

∣∣∣Ez∼F [g(z)]−
1

N

N∑
i=1

g(zi)
∣∣∣ ≤ √

2d log 3N

N
+

√
log 1

δ

2N
.

Consider the family of linear functions over RL: G = {gx : z → ⟨x, z⟩ | x ∈ RL}. It is known that
the pseudo-dimension of this family is L:
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Lemma B.1 (e.g., Theorem 10.4 in Mohri et al. (2012)). The family of linear functions {gx : z →
⟨x, z⟩ | x ∈ RL} in RL has pseudo-dimension L.

Proof of Lemma 4.1. We now have the tools to prove Lemma 4.1. For any non-empty best-response
region defined by W ∈ W , let θ1, ..., θt ∼ D be t i.i.d samples. For each sample θi, we can directly
compute

zW,θi =
(
u(1,W (θi)), ..., u(L,W (θi))

)
.

Fix any leader strategy x ∈ R(W ). By Lemma 3.1, the leader’s expected utility by using strategy x
is UD(x) = Eθ∼D[⟨x, zW,θ⟩], which is the expectation of the linear function gx(zW,θ) = ⟨x, zW,θ⟩.
Therefore, by Theorem B.1 and Lemma B.1, we have

Pr

∀x ∈ R(W ),
∣∣∣Eθ∼D[gx(zW,θ)]−

1

t

t∑
i=1

gx(zW,θi)
∣∣∣ ≤√2L log 3t

t
+

√
log 1

δ′

2t

 ≥ 1− δ′.

By definition, UD(x) = Eθ∼D[gx(zW,θ)] and Û t(x) = 1
t

∑t
i=1 g(zW,θt). So,

Pr

∀x ∈ R(W ),
∣∣∣UD(x)− Û t(x)

∣∣∣ ≤√2L log 3t

t
+

√
log 1

δ′

2t

 ≥ 1− δ′.

Let δ′ = δ
|W| . By the union bound, with probability at least 1 − δ, the following bound holds

simultaneously for all W ∈ W and x ∈ R(W ):

∣∣∣UD(x)− Û t(x)
∣∣∣ ≤ √2L log(3t)

t
+

√
log |W|

δ

2t
= O

(√
L log t

t
+

√
L log(nKA) + log( 1δ )

t

)
,

where we used the fact |W| = O(nLKLA2L) from Lemma 3.2.

B.2 PROOF OF THEOREM 4.1

Analysis of O(
√
KnT ) Regret: Consider a Bayesian Stackelberg game with n followers each

with K types, with joint type distribution D. Let U(x,D) = Eθ∼D[u(x,br(θ, x))] be the
expected utility of the leader playing mixed strategy x when the type distribution is D. Let
x∗ = argmaxx∈∆(L) U(x,D) be the optimal strategy for D. At each round t, Algorithm 1 chooses

the optimal strategy xt = argmaxx∈∆(L) U(x, D̂
t−1

) for the empirical distribution D̂
t−1

over t− 1
samples. The total expected regret is equal to

E[Reg(T )] =
T∑

t=1

E
[
U(x∗,D)− U(xt,D)︸ ︷︷ ︸

single-round regret r(t)

]
,

We upper bound the single-round regret r(t) by the total variation distance (Definition B.1) between
D and D̂

t−1
:

Claim B.1. r(t) = U(x∗,D)− U(xt,D) ≤ 4δ(D, D̂
t−1

).

Proof.

r(t) = U(x∗,D)− U(xt,D)

= U(x∗,D)− U(x∗, D̂
t−1

) + U(x∗, D̂
t−1

)− U(xt, D̂
t−1

) + U(xt, D̂
t−1

)− U(xt,D)

≤ U(x∗,D)− U(x∗, D̂
t−1

) + 0 + U(xt, D̂
t−1

)− U(xt,D) (4)
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where (4) follows from U(x∗, D̂
t−1

) − U(xt, D̂
t−1

) ≤ 0 because xt maximizes U(x, D̂
t−1

). We
bound the first term in Equation (4) as follows:

U(x∗,D) − U(x∗, D̂
t−1

) =
∑
θ∈Θ

D(θ)u
(
x,br(θ, x)

)
−
∑
θ∈Θ

D̂
t−1

(θ)u
(
x,br(θ, x)

)
=
∑
θ∈Θ

(
D(θ)− D̂

t−1
(θ)
)
u
(
x,br(θ, x)

)
≤
∑
θ∈Θ

∣∣∣D(θ)− D̂
t−1

(θ)
∣∣∣u(x,br(θ, x))

≤
∑
θ∈Θ

∣∣∣D(θ)− D̂
t−1

(θ)
∣∣∣ · 1 = 2δ(D, D̂

t−1
).

By a symmetrical argument, the second term in Equation (4) is also bounded by 2δ(D, D̂
t−1

).

Using Claim B.1 and taking expectation, we have

E[r(t)] ≤ 4E[δ(D, D̂
t−1

)].

According to Canonne (2020), for distributions with support size Kn, E[δ(D, D̂
t−1

)] ≤ O(
√

Kn

t−1 ).

Thus, we have E[r(t)] ≤ O
(√

Kn

t−1

)
. Using the inequality

∑T
t=1

1√
t
≤ 2
√
T , we obtain

E[Reg(T )] =

T∑
t=1

E[r(t)] ≤ O

(
T∑

t=1

√
Kn

t

)
≤ O(2

√
KnT ) = O(

√
KnT ).

Analysis of O(
√
LT log(nKAT ) Regret: Consider round t ≥ 2. By Lemma 4.1, we have that

with probability at least 1− δ:∣∣∣UD(x)− Û t(x)
∣∣∣ ≤ O(√L log t

t
+

√
L log(nKA) + log( 1δ )

t

)
, ∀x ∈ ∆(L).

Suppose this event happens. Then, the regret of the algorithm at round t is bounded as follows:
r(t) = Eθ∼D

[
u(x∗,br(θ, x∗))− u(xt,br(θ, xt))

]
= UD(x∗)− UD(xt)

= UD(x∗)− Û t−1(x∗) + Û t−1(x∗)− Û t−1(xt) + Û t−1(xt)− UD(xt)

≤ Û t−1(x∗)− Û t−1(xt) + 2 · O
(√

L log(t− 1)

t− 1
+

√
L log(nKA) + log( 1δ )

t− 1

)

≤ 0 + 2 · O
(√

L log(t− 1)

t− 1
+

√
L log(nKA) + log( 1δ )

t− 1

)
,

where the last inequality follows from Û t−1(x∗)− Û t−1(xt) ≤ 0 because the algorithm selects the
strategy xt that maximizes the empirical utility Û t−1(x). Then:

E[Reg(T )] = E
[ T∑

t=1

r(t)

]

≤
T∑

t=1

(1− δ) · O
(√

L log t

t
+

√
L log(nKA) + log( 1δ )

t

)
+ δT (5)

≤ O
(√

TL log T +

√
T
(
L log(nKA) + log(

1

δ
)
))

+ δT (6)

≤ O
(√

TL(log T + log(nKA))
)

(Using inequality
√
a+
√
b ≤

√
2(a+ b))

= O
(√

TL log(nKAT )
)
.
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Equation (5) follows from the law of total expectation and the fact that the single-round regret is
bounded by 1. Equation (6) follows from the known inequality

∑T
t=1

1√
t
≤ 2
√
T . We set δ = 1

T .

Runtime Analysis: As for the computational complexity of this algorithm, note that Lemma 3.2
states that the number of non-empty best-response regions is O(nLKLA2L). As shown by Equation
(3), we can compute the optimal strategy within each best-response region using a linear program
with L variables and at most poly(nL,KL, AL, L, T ) number of constraints. Further, evaluating
each constraint and the objective function can also be accomplished in this time. Since each linear
program can be solved in poly(nL,KL, AL, L, T ) time, and we run O(nLKLA2L) linear programs
at each round, with at most T rounds, Algorithm 1 runs poly((nKA)LLT ) time.

B.3 PROOF OF THEOREM 4.2

Proof. Let D =
∏n

i=1Di denote the distribution over independent types. According to Claim B.1,
the single-round regret r(t) = U(x∗,D)− U(xt,D) satisfies

r(t) ≤ O(δ(D, D̂
t−1

)),

where D̂
t−1

=
∏n

i=1 D̂
t−1
i is the product of the empirically computed marginal type distributions.

We will use the following properties of Hellinger Distance (Definition B.2):

• (Guo et al., 2020) For any two distributions D and D̂,

H2(D, D̂) ≤ δ(D, D̂) ≤
√
2H(D, D̂). (7)

• (Guo et al., 2020) If both D and D̂ are product distributions, i.e. D =
∏n

i=1Di and D̂ =∏n
i=1 D̂i, then:

H2(D, D̂) ≤
n∑

i=1

H2
(
Di, D̂i

)
. (8)

• (Canonne, 2020) For a distribution D with support size K, the empirical distribution D̂t over t
samples from D satisfies:

E[H2(D, D̂t)] ≤ K

2t
. (9)

We now upper bound the single-round regret r(t+ 1) in expectation:

E[r(t+ 1)] ≤ O
(
E
[
δ(D, D̂

t
)
])

≤ O
(
E
[
H(D, D̂

t
)
])

by (7)

≤ O
(√

E
[
H2(D, D̂

t
)
])

because E[X2] ≥ (E[X])2

≤ O

√√√√E
[ n∑

i=1

H2(Di, D̂t
i)
] by (8)

≤ O

(√
nK

2t

)
. by (9)

Using the inequality
∑T

t=1
1√
t
≤ 2
√
T , we obtain

E[Reg(T )] =

T∑
t=1

E[r(t)] ≤
T∑

t=1

O

(√
nK

t

)
≤ O(

√
nKT ).
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B.4 Ω(
√
min{L,K}T ) LOWER BOUND IN THE SINGLE-FOLLOWER CASE

In this section, we prove a lower bound of Ω(
√
min{L,K}T ) on the expected regret of any algorithm

in the case of a single-follower (n = 1), formalized in Theorem B.2.
Theorem B.2. For single-follower Bayesian Stackelberg games where the follower has K types and
the leader has L actions, the expected regret of any type-feedback online learning algorithm is at
least Ω(

√
min{L,K}T ).

At a high level, the proof Theorem B.2 is a reduction from the distribution learning problem.
Without loss of generality, assume that min{K,L} = 2c is an even number. Further assume that
K = L = 2c.5 The single follower has K = 2c types, with type space Θ = {±1,±2, ...,±c}.
Consider a class C of distributions over Θ defined as follows:
Definition B.4 (Class of Distributions C). A distribution D = Dσ ∈ C is specified by a vector
σ = (σ1, . . . , σc) ∈ {±1}c. For each j = 1, . . . , c,

Dσ(+j) =
1

2c
(1 + σjϵ), Dσ(−j) =

1

2c
(1− σjϵ). (10)

for some ϵ > 0. Note that Dσ(+j) > Dσ(−j) if and only if σj = +1. The class C consists of 2c
distributions.

In the distribution learning problem, given t samples θ1, ..., θt from an unknown distribution D ∈ C,
the goal is to construct an estimator D̂ specified by a vector σ̂ ∈ {±1}c such that the expected total
variation distance (Definition B.1) satisfies E[δ(D, D̂)] ≤ O(ϵ). It is known that solving this problem
requires at least Ω( 2cϵ2 ) samples.
Theorem B.3 (e.g., (Lee & Chen, 2020; Diakonikolas & Kontonis, 2019)). When D is uniformly
sampled from the class C, any algorithm that constructs estimator D̂ using t samples from D has
expected error at least E[δ(D̂,D)] ≥ Ω(ϵ) if t ≤ O( 2cϵ2 ).

5If K > 2c, we can let the additional types to have probability 0. If L > 2c, we can let the additional actions
of the leader to have very low utility.
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Reduction from distribution learning to single-follower Bayesian Stackelberg game

Distribution learning instance: An unknown distribution D ∈ C.

Bayesian Stackelberg game instance: A single follower with type space Θ =
{±1,±2, . . . ,±c} and an unknown type distribution D. The follower has binary action set
A = {Good,Bad}. The leader has action setL = Θ = {±1,±2, . . . ,±c}. The utility functions
of the two players are:

• Follower’s utility function:

v(ℓ, a, θ) =



1 if θ = +j, ℓ = +j, a = Good
1 if θ = +j, ℓ = −j, a = Bad
1 if θ = −j, ℓ = −j, a = Good
1 if θ = −j, ℓ = +j, a = Bad
0 otherwise.

(11)

• Leader’s utility function: For any action ℓ ∈ L,

u(ℓ,Good) = 1, u(ℓ,Bad) = 0. (12)

Note that for any mixed strategy x, u(x,Good) = 1 and u(x,Bad) = 0.

Reduction:
Given an online learning algorithm Alg for Bayesian Stackelberg game with type feedback, we
use it to construct an online learning algorithm for the distribution learning problem as follows:
At each round t = 1, . . . , T ,

1. Receive the leader’s mixed strategy xt from Alg.

2. Construct an estimated distribution D̂xt = Dσ(xt) ∈ C based on vector σ(xt) defined
as follows:

σj(x
t) =

{
+1, if xt(+j) ≥ xt(−j)
−1, if xt(+j) < xt(−j). (13)

3. Observe sample θt ∼ D and feed θt to Alg.
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Lemma B.2 (Follower’s Best Response). Given the leader’s mixed strategy x ∈ ∆(Θ), for each
j ∈ {1, . . . , c}, the best-response function of a follower with type +j or −j is:

br(+j, x) =

{
Good, if x(+j) ≥ x(−j),
Bad, if x(+j) < x(−j),

br(−j, x) =

{
Good, if x(+j) < x(−j),
Bad, if x(+j) ≥ x(−j).

Proof. For a follower with type +j, their utility for choosing action Good is given by

v(x,Good,+j) = Eℓ∼x[v(ℓ,Good,+j)] =
∑
ℓ∈L

x(ℓ)v(ℓ,Good,+j) = x(+j).

Similarly, their utility for choosing action Bad is:

v(x,Bad,+j) = x(−j).

Thus, by definition, the follower with type +j best responds with Good if x(+j) ≥ x(−j).
Likewise, for a follower with type −j,

v(x,Good,−j) = x(−j),
v(x,Bad,−j) = x(+j).

Thus, a follower with type −j best responds with Bad if x(+j) ≥ x(−j), Good otherwise.

We define U(x,D) as the expected utility of the leader when using mixed strategy x under the type
distribution D. By Lemma B.2, we have

U(x,D) =
∑
θ∈Θ

D(θ)u
(
x, br(θ, x)

)
=

c∑
j=1

[
D(+j)u

(
x,br(+j, x)

)
+D(−j)u

(
x,br(−j, x)

)]
=

c∑
j=1

(1 + σjϵ

2c
1 [x(+j) ≥ x(−j)] + 1− σjϵ

2c
1 [x(+j) < x(−j)]

)
. (14)

Definition B.5 (Disagreement Function). The disagreement function Disagree(x,D) is the number
of j ∈ {1, . . . , c} where the indicators 1 [x(+j) ≥ x(−j)] and 1 [D(+j) ≥ D(−j)] differ:

Disagree
(
x,D

)
=

c∑
j=1

1
[
1 [x(+j) ≥ x(−j)] ̸= 1 [D(+j) ≥ D(−j)]

]
=

c∑
j=1

1
[
1 [x(+j) ≥ x(−j)] ̸= 1 [σj = +1]

]
.

Lemma B.3. U(D,D)− U(x,D) = ϵ
c ·Disagree(x,D). In particular, the optimal strategy for the

leader is x∗ = D.

Proof.

U(D,D)− U(x,D) =
c∑

j=1

(
1 + σjϵ

2c

(
1
[
D(+j) ≥ D(−j)

]
− 1

[
x(+j) ≥ x(−j)

])

+
1− σjϵ

2c

(
1
[
D(+j) < D(−j)

]
− 1

[
x(+j) < x(−j)

]))
.

For each term in the summation where D(+j) ≥ D(−j) and x(+j) ≥ x(−j) agree, the term
evaluates to 0. When they disagree, there are two possible cases:
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1. D(+j) ≥ D(−j) but x(+j) < x(−j). Since D(+j) ≥ D(−j) implies σj = +1, the term
simplifies to

1 + ϵ

2c
− 1− ϵ

2c
=

ϵ

c
.

2. D(+j) < D(−j) but x(+j) ≥ x(−j). Here, σj = −1, so the term simplifies to

−1− ϵ

2c
+

1 + ϵ

2c
=

ϵ

c
.

Thus, we conclude that

U(D,D)− U(x,D) = ϵ

c
·Disagree(x,D).

Lemma B.4. Let D̂x be the estimated distribution constructed from x according to Equation (13).
The total variation distance between D̂x and D is given by

δ(D̂x,D) =
ϵ

c
·Disagree(x,D).

Proof. By definition,

δ
(
D̂x,D

)
=

1

2

c∑
j=1

(∣∣∣D̂x(+j)−D(+j)
∣∣∣+ ∣∣∣D̂x(−j)−D(−j)

∣∣∣).
If x and D agree at (+j) and (−j), the corresponding term in the total variation sum is 0. Conse-
quently, we only need to consider the case when a disagreement occurs.

1. x(+j) < x(−j) while D(+j) ≥ D(−j). In this case,

D̂x(+j) =
1− ϵ

2c
, D̂x(−j) =

1 + ϵ

2c
, D(+j) =

1 + ϵ

2c
, D(−j) = 1− ϵ

2c
.

Hence, ∣∣∣D̂x(+j)−D(+j)
∣∣∣+ ∣∣∣D̂x(−j)−D(−j)

∣∣∣ =
ϵ

c
+

ϵ

c
=

2 ϵ

c
.

2. x(+j) ≥ x(−j) while D(+j) < D(−j). Similarly, we have

D̂x(+j) =
1 + ϵ

2c
, D̂x(−j) =

1− ϵ

2c
, D(+j) =

1− ϵ

2c
, D(−j) = 1 + ϵ

2c
.

Again, we have∣∣∣D̂x(+j)−D(+j)
∣∣∣+ ∣∣∣D̂x(−j)−D(−j)

∣∣∣ =
ϵ

c
+

ϵ

c
=

2 ϵ

c
.

Thus, it follows that
δ(D̂x,D) =

ϵ

c
·Disagree(x,D).

From Lemma B.3 and Lemma B.4,

U(D,D)− U(x,D) =
ϵ

c
·Disagree(x,D) = δ(D̂x,D). (15)

Consider the regret of the online learning algorithm Alg for the Bayesian Stackelberg game, where
the algorithm outputs xt at round t. By Equation (15) and Theorem B.3, the expected regret at round
t ≤ O( 2cϵ2 ) is at least

E[U(D,D)− U(xt,D)] = E[δ(D̂xt ,D)] ≥ Ω(ϵ).
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Thus, the expected regret over T rounds is at least:

E[Reg(T )] =

T∑
t=1

E[U(D,D)− U(xt,D)] ≥ min
{
T, O

(2c
ϵ2
)}
· Ω(ϵ)

≥ Ω(
√
2cT ) = Ω(

√
min{K,L}T )

where we choose ϵ =
√

2c
T .

B.5 Ω(
√
min{L, nK}T ) LOWER BOUND FOR THE MULTI-FOLLOWER CASE: PROOF OF

THEOREM 4.3

We now prove a lower bound of Ω(
√

min{L, nK}T ) on the expected regret of any online learning
algorithms for Bayesian Stackelberg games with multiple followers. Without loss of generality,
assume that nK is an even integer, and assume that the number of leader actions L ≥ nK. We do a
reduction from the single-follower problem to the multi-follower problem.

Single-Follower Bayesian Stackelberg Game instance: Consider the single-follower Bayesian
Stackelberg game instance defined in Appendix B.4, but instead of a single follower with K types, we
change the instance so that the single follower has nK types, indexed by Θ = {(i, j) : i ∈ [n], j ∈
[K]}. Suppose the single follower’s type distribution D belongs to the class C in Definition B.4 with
support size 2c = nK (instead of 2c = K). Note that for such a D ∈ C,

n∑
i=1

K∑
j=1

D(i, j) = 1 and ∀i ∈ [n],

K∑
j=1

D(i, j) = 1

n
.

The follower’s utility function v is given by (11), except that we now use θ = (i, j) to represent
a type and ℓ = (i, j) to represent a leader’s action. The leader’s action set is L = Θ, with utility
function u given by (12).

Multi-Follower Bayesian Stackelberg Game instance: We reduce the single-follower game to an
n-follower game defined below. Consider a Bayesian Stackelberg game with n followers each with
K + 1 types. The type distribution and the followers and leader’s actions and utilities are defined
below: (To distinguish the notations from the single-follower game, we use tilde notations ·̃)

• Type distribution: The followers’ types are independently distributed according to distribution
D̃ =

∏n
i=1 D̃i where the probability that follower i ∈ [n] has type j is:

D̃i(j) =

{
1− 1

100n if j = 0,
1

100D(i, j) if j = 1, . . . ,K.

• Followers’ actions and utilities: Each follower has 3 actions Ã = {Good,Bad, a0}. The utility
of a follower i with type j ̸= 0 is equal to the utility of the single follower with type (i, j).
Utilities for type j = 0 and action a0 are specially defined:

ṽi(ℓ, a, θi = j) =


v(ℓ, a, (i, j)) if θi ̸= 0 and a ̸= a0
−1 if θi ̸= 0 and a = a0,

1 if θi = 0 and a = a0,

−1 if θi = 0 and a ̸= a0.

Note that the best-response action of a follower with type 0 is always a0, regardless of the
leader’s strategy.

• Leader’s actions and utilities: The leader has the same action set as the single-follower game:
L = Θ = {(i, j) : i ∈ [n], j ∈ [K]}. For any leader action ℓ ∈ L,

ũ(ℓ,a) =

{
1 if n− 1 followers choose a0 and one plays Good,
0 otherwise.
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Reduction from Single-Follower Bayesian Stackelberg Game to Multi-Follower Game

Given an online learning algorithm Alg for the n-follower problem, we construct an online
learning algorithm for the single-follower problem as follows:

At each round t = 1, . . . , T :

• Obtain a strategy xt ∈ ∆(L) from algorithm Alg. Output xt.
• Receive a sample of the single follower’s type θt = (it, jt) ∼ D.
• For every follower i ∈ [n], we construct their type θti in the following way: Independently

flip a coin that lands on head with probability 1− 1
100n . If it lands on head, set the follower

type θti to 0. If it lands on tail, we select the most recent sample of the form (is = i, js)
from the history {(is, js)}ts=1, and set the follower’s type θti to js. Each sample can only
be used once. If there are insufficient samples, we halt the algorithm.

• Provide the constructed types (θt1, . . . , θ
t
n) to algorithm Alg.

In the above reduction process, if we always have sufficient samples in the third step at each round,
then the distribution of samples (θt1, . . . , θ

t) provided to algorithm Alg is equal to the type distribution
D̃ =

∏n
i=1 D̃i of the n-follower game. Thus, from algorithm Alg’s perspective, it is solving the

n-follower game with unknown type distribution D̃. We then argue that we have sufficient samples
with high probability. Let Ht

i be the number of available samples in the history that we can use to set
follower i’s type at round t, and let N t

i be the number of samples that we actually need. Define

1− δ(t) = Pr
(
∀i ∈ [n], Ht

i ≥ N t
i

)
,

which is the probability that we have sufficient samples at round t.

Claim B.2. δ(t) ≤ 2n exp
(
− t2

(
1

100n− 1
n

)2
2t

)
.

Proof. Note that Ht
i and N t

i are Binomial random variables: Ht
i ∼ Bin(t, 1

n ), N
t
i ∼ Bin(t, 1

100n ).
So, by union bound and Hoeffding’s inequality:

Pr
(
∃i ∈ [n], Ht

i < N t
i

)
≤ nPr

(
Ht

i < N t
i

)
≤ 2n exp

(
−
t2
(

1
100n −

1
n

)2
2t

)
.

Let Ũ(x) be the leader’s expected utility in the n-follower game (on type distribution D̃) and U(x)
be the leader’s utility in the single-follower game (on type distribution D). We note that, given any
strategy x ∈ ∆(L) of the leader, the best-response action of follower i with type θi = j ̸= 0 (in the
n-follower game) is equal to the best-response action of the single follower with type (i, j), namely,
bri(j, x) = br((i, j), x). Thus,

Ũ(x) = Pr[exactly one follower has a non-0 type]
· E[leader’s utility | exactly one follower has a non-0 type] + 0

=
(
1− 1

100n

)n−1 n∑
i=1

K∑
j=1

1

100
D(i, j)1

[
bri
(
j, x
)
= Good

]
=
(
1− 1

100n

)n−1 n∑
i=1

K∑
j=1

1

100
D(i, j)1

[
br
(
(i, j), x

)
= Good

]
=

1

100

(
1− 1

100n

)n−1

U(x)

≈ 1

100
e−

1
100 U(x).

Define C = 1
100 (1−

1
100n )

n−1. Let r̃(t) = Ũ(x∗)− Ũ(xt) denote the per-round regret of the online
learning algorithm Alg for the n-follower game. Let r(t) = U(x∗)− U(xt) denote the per-round
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regret of the single-follower algorithm constructed by the above reduction. Consider the expected
total regret in the n-follower game:

E[R̃eg(T )] =
T∑

t=1

E[r̃(t)]

≥
T∑

t=1

(
(1− δ(t)) · E[r̃(t)] − δ(t) · 1

)
=

T∑
t=1

(
1− δ(t)

)
· C · E[r(t)] −

T∑
t=1

δ(t)

≥ C ·
T∑

t=1

E[r(t)] −
T∑

t=1

δ(t) · C · 1 −
T∑

t=1

δ(t)

= C · E[Reg(T )] − (C + 1)

T∑
t=1

δ(t).

Now, we bound
∑T

t=1 δ(t). Consider a threshold τ such that for all t ≥ τ , we have δ(t) ≤ 1
T 2 . To

find τ , we solve

2n exp
(
− (1/100n− 1/n)2

2
τ
)
≤ 1

T 2
.

Rearranging, we choose τ such that

τ ≥ ln(2nT 2)

Cτ

where Cτ = ( 1
100n −

1
n )

2. If t ≤ τ , we bound δ(t) ≤ 1. For t > τ , we use the bound δ(t) ≤ 1
T 2 .

Now, summing over all t,
T∑

t=1

δ(t) ≤ τ + (T − τ)
1

T 2
=

ln
(
2nT 2

)
Cτ

+
T − τ

T 2
≤ O

( lnT
Cτ

+
1

T

)
= O(log T ).

Then,

E[R̃eg(T )] ≥ C · E[Reg(T )]−O(log T ).
The regret E[Reg(T )] for a single-follower game where the follower has nK types and the leader
has L = nK actions is at least Ω(

√
nKT ) by Theorem B.2. Thus, we obtain

E[R̃eg(T )] ≥ C · Ω(
√
nKT )−O(log T ) = Ω(

√
nKT ),

which is also Ω(
√
min{L, nK}T ) because L = nK.

C APPENDIX FOR SECTION 5

C.1 O(Kn
√
T log T )-REGRET ALGORITHM AND THE PROOF OF THEOREM 5.1

We show that the online learning problem for a Bayesian Stackelberg game with action feedback can
be solved with O(Kn

√
T log T ) regret, by using a technique developed by Bernasconi et al. (2023).

Bernasconi et al. (2023) showed that the online learning problem for a linear program with unknown
objective parameter can be reduced to a linear bandit problem. We first show that the Bayesian
Stackelberg game (which is not a linear program as defined in Definition 2.2) can be reformulated
as a linear program. Then, we use Bernasconi et al. (2023)’s reduction to reduce the linear program
formulation of online Bayesian Stackelberg game to a linear bandit problem. A difference between
our work and Bernasconi et al. (2023) is that, while they consider an adversarial online learning
setting, we consider a stochastic online learning setting. Directly applying Bernasconi et al. (2023)’s
result will lead to an Õ(K 3n

2

√
T ) regret bound. Instead, we apply the OFUL algorithm for stochastic

linear bandit (Abbasi-yadkori et al., 2011) to obtain a better regret bound of Õ(Kn
√
T ).
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Step 1: Reformulate Bayesian Stackelberg game as a linear program. First, we reformulate
the Bayesian Stackelberg game optimization problem maxx∈∆(L) UD(x) (Definition 2.2), which is a
nonlinear program by definition, into a linear program. Let variable x represent a joint distribution
over best-response function W ∈ AnK and the leader’s actions L. Specifically,

x = (x(W, ℓ))W∈AnK ,ℓ∈L ∈ RAnK×L, where
∑

W∈AnK ,ℓ∈L

x(W, ℓ) = 1, and x(W, ℓ) ≥ 0.

Alternatively, x can be viewed as an AnK × L-dimensional matrix, where W indexes the row and ℓ
indexes the columns. We maximize the following objective (which is linear in x):

max
x

U(x) =
∑

W∈AnK

∑
ℓ∈L

∑
θ∈Θn

D(θ)x(W, ℓ)u(ℓ,W (θ)), (16)

subject to the Incentive Compatibility (IC) constraint, meaning that the followers’ best-response
actions are consistent with W : ∀W ∈ AnK ,∀i ∈ [n],∀θi ∈ Θ,∀ai ∈ A,∑

ℓ∈L

x(W, ℓ)
(
vi(ℓ, wi(θi), θi)− vi(ℓ, ai, θi)

)
≥ 0. (17)

Lemma C.1. With known distribution D, the Bayesian Stackelberg game can be solved by the linear
program (16)(17) in the following sense: there exists a solution x to (16)(17) with only one non-zero
row x(W ∗, ·), and this row x(W ∗, ·) ∈ RL is a solution to maxx∈∆(L) UD(x).

Proof. First, we prove that the linear program (16)(17) contains an optimal solution with only one
non-zero row. Suppose an optimal solution x has two non-zero rows W1, W2:∑

ℓ∈L

x(W1, ℓ) = p1 > 0,
∑
ℓ∈L

x(W2, ℓ) = p2 > 0.

Consider the conditional expected utility of these two rows. Because, when conditioned on row i, the
conditional probability of playing action ℓ is x(W,ℓ)

p1
, we have:

u1 =
1

p1

∑
ℓ∈L

∑
θ∈Θn

x(W1, ℓ)D(θ)u(ℓ,W1(θ)),

u2 =
1

p2

∑
ℓ∈L

∑
θ∈Θn

x(W2, ℓ)D(θ)u(ℓ,W1(θ)).

Without loss of generality, assume u1 ≥ u2. We construct a new solution x′ by transferring probability
mass from row W2 to row W1. Specifically, x′ is defined as follows:

x′(W1, ℓ) =
p1 + p2

p1
x(W1, ℓ), ∀ℓ ∈ L.

x′(W2, ℓ) = 0, ∀ℓ ∈ L,
x′(Wj , ℓ) = x(Wj , ℓ), ∀ other Wj , ∀ℓ ∈ L.

It is straightforward to verify that x′ satisfies the IC constraint. Now, we show that the utility of x′ is
weakly greater than the utility of x.

U(x′) =
∑
ℓ∈L

∑
θ∈Θn

p1 + p2
p1

x(W1, ℓ)D(θ)u(ℓ,W1(θ))

+ utility from rows other than {W1,W2}
= (p1 + p2)u1 + utility from rows other than {W1,W2}
≥ p1u1 + p2u2 + utility from rows other than {W1,W2}
= U(x).

Note that the W2 row of x′ has become 0. We can apply this construction iteratively until only one
row remains non-zero, without decreasing utility, thus obtaining an optimal solution with only one
non-zero row.
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Let x∗ be an optimal solution to the linear program (16)(17) with only one non-zero row W ∗. Let
x∗
BS = maxx∈∆(L) UD(x) be an optimal solution for the Bayesian Stackelberg game. We prove that

U(x∗) = UD(x∗
BS).

First, we prove UD(x∗
BS) ≤ U(x∗). Let W ∗

BS be the best-response function corresponding to x∗
BS ,

i.e., x∗
BS ∈ R(W ∗

BS). We construct a feasible solution x to the linear program (16)(17) by setting the
row indexed by W ∗

BS to x∗
BS and assigning zero values to all other rows. By definition, x satisfies

the IC constraint, so it is a feasible solution. Moreover, x∗
BS and x achieve the same objective value

UD(x∗
BS) = U(x). By definition, U(x) is weakly less than the optimal objective value U(x∗) of the

linear program, so UD(x∗
BS) ≤ U(x∗).

Then, we prove U(x∗) ≤ UD(x∗
BS). Suppose the leader uses the strategy defined by the non-zero

row of x∗, which is x∗(W ∗, ·) ∈ ∆(L). By the IC constraint of the linear program, the best-response
function of the followers is equal to W ∗, so the expected utility of the leader is exactly equal to U(x∗),
which is ≤ UD(x∗

BS) because x∗
BS is an optimal solution for the Bayesian Stackelberg game.

Step 2: Reduce online Bayesian Stackelberg game to a linear bandit problem. Based on the
linear program formulation (16)(17), we then reduce the online Bayesian Stackelberg game problem
to a linear bandit problem, using the technique in Bernasconi et al. (2023). Let X ⊆ ∆(AnK × L)
be the set of feasible solutions to the linear program (16)(17). We define the loss of a strategy x ∈ X
when the follower types are θ ∈ [K]n as:

Lθ(x) = −
∑

W∈AnK

∑
ℓ∈L

x(W, ℓ)u(ℓ,W (θ)).

We define a linear map ϕ : X → RKn

that maps a strategy x ∈ X to a vector in RKn

, representing
the loss of the strategy for each type profile:

ϕ(x) =

 Lθ1
(x)
...

LθKn (x)

 ∈ RKn

.

Its inverse, ϕ† : RKn → X maps a loss vector back to a strategy. Let coϕ(X ) denote the convex hull
of the image set of ϕ.

Let R be a stochastic linear bandit algorithm with decision space coϕ(X ) ⊆ RKn

. In particular, we
let R be the OFUL algorithm (Abbasi-yadkori et al., 2011). At each round, R outputs a strategy
zt ∈ coϕ(X ), and we invoke a Carathédory oracle to decompose zt into Kn + 1 elements from
ϕ(X ), forming a convex combination.6 We then sample one of the elements ztj , and apply the inverse
map ϕ† to obtain a strategy xt ∈ X for the leader. After playing strategy xt, we observe the utility
ut = u(ℓt,at) and feed the utility feedback to R.

Theorem C.1. The expected regret of Algorithm 5 is O(Kn
√
T log T ).

Proof. Because xt ∈ X = ∆(AnK × L) is a feasible solutions to the linear program (16)(17), it
satisfies the IC constraint. So, when the leader plays xt(W, ·)/p(W ) ∈ ∆(L), the followers (with
types θ) will best respond according to the function W (θ). Thus, the leader’s expected utility at
round t is∑

W∈AnK

p(W )
∑
ℓ∈L

xt(W, ℓ)

p(W )

∑
θ∈[K]n

D(θ)u(ℓ,W (θ)) = U(xt) = −Eθ∼D[Lθ(x
t)].

Then, the regret of Algorithm 5 in T rounds can be expressed as

Reg(T ) =

T∑
t=1

(
Eθ∼D[Lθ(x

t)]− Eθ∼D[Lθ(x
∗)]
)
,

6The Carathédory oracle is based on the well-known Carathédory Theorem.
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ALGORITHM 5: Linear Bandit Algorithm for Bayesian Stackelberg Games
Input :A linear bandit algorithm R over decision space coϕ(X ), where R.RECOMMEND()

returns an element in coϕ(X ), and R.OBSERVELOSS takes the loss feedback.
1 for each round t do
2 Use R.RECOMMEND() to obtain zt ∈ co ϕ(X ) ⊆ RKn

.
3 Call a Carathéodory oracle with input (zt, ϕ(X )), which returns Kn + 1 elements

{zti , λt
i}i∈[Kn+1] such that:

zt =

Kn+1∑
i=1

λt
iz

t
i , where

Kn+1∑
i=1

λt
i = 1.

4 Draw an index j ∈ {1, . . . ,Kn + 1} with probabilities λt
j .

5 Compute xt ← ϕ†(ztj). Note that xt ∈ X = ∆(AnK × L) is a matrix.
6 Play xt in the following sense: sample a row W ∈ AnK with probability

p(W ) =
∑

ℓ∈L xt(W, ℓ), then play the mixed strategy xt(W, ·)/p(W ) ∈ ∆(L).
7 Observe the realized utility ut = u(ℓt,at).
8 Feed the loss to R by calling R.OBSERVELOSS(−ut).
9 We let R be the OFUL algorithm (Abbasi-yadkori et al., 2011).

where x∗ is the optimal strategy in X , which minimizes the expected loss (maximizes expected
utility). Let RegR,coϕ(X )(T ) be the expected regret of the linear bandit algorithm R on decision
space coϕ(X ) in T rounds. According to the Theorem 3.1 of Bernasconi et al. (2023),

Reg(T ) ≤ RegR,coϕ(X )(T ).

We let R be the OFUL algorithm (Abbasi-yadkori et al., 2011). For any z ∈ coϕ(X ) ⊆ RKn

, the
stochastic loss of z can be expressed as Lt = ⟨z,D⟩+ ηt, with |Lt| ≤ 1, ∥D∥2 ≤ ∥D∥1 = 1, and
ηt being a bounded zero-mean noise. Then, from Abbasi-yadkori et al. (2011)’s Theorem 3, we have
with probability at least 1− δ,

RegR,coϕ(X )(T ) ≤ 4

√
TKn log

(
λ+

TL

Kn

)
·

(
λ1/2 +

√
2 log

(
1

δ

)
+Kn log

(
1 +

TL

λKn

))
where λ is a tunable parameter in the OFUL algorithm. By setting λ = 1 and δ = 1

T , we obtain

E[Reg(T )] ≤ (1− δ) ·O(Kn
√
T log T ) + δ · T = O(Kn

√
T log T ).

C.2 PROOF OF LEMMA 5.1

We can express the leader’s utility function as

u(x,a) =
∑
ℓ∈L

x(ℓ)u(ℓ,a) = ⟨x, ua⟩

where vector ua = (u(ℓ,a))ℓ∈L ∈ RL. Note that u(x,a) is a linear function of ua. Consequently,
the expected utility of a strategy x ∈ R(W ) on the true distribution D is given by

U(x,R(W )) = Ea∼P(·|R(W ))[⟨x, ua⟩].

Given samples a1, ...,aN , we can compute ua1 , ..., uaN because we know the utility function. By
Lemma B.1, the pseudo-dimension of the family of linear functions {⟨x, ·⟩ | x ∈ R(W ) ∈ RL} is L.
Applying Theorem B.1, with N samples, we have

Pr

∃x ∈ R(W ),
∣∣U(x,R(W ))− ÛN (x,R(W ))

∣∣ >√2L log 3N

N
+

√
log 1

δ

2N

 ≤ δ.
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Let δ = 1
T 4 . Taking a union bound over all N ∈ {1, ..., T} and all W ∈ W , we obtain

Pr

[
∃W ∈ W,∃N ∈ [T ],∃x ∈ R(W ),

∣∣U(x,R(W ))− ÛN (x,R(W ))
∣∣ >√2L log(3N)

N
+

√
log T 4

2N

]
≤ |W|Tδ =

|W|T
T 4

≤ 1

T 2

(assuming T ≥ |W|). Thus, with probability at least 1 − 1
T 2 , for every W ∈ W , N ∈ [T ], and

x ∈ R(W ), we have

∣∣U(x,R(W ))− ÛN (x,R(W ))
∣∣ ≤ √

4(L+ 1) log(3T )

t

using the inequality
√
a+
√
b ≤

√
2(a+ b).

C.3 PROOF OF THEOREM 5.2

By Lemma 5.1, the event

C =

[
∀W ∈ W,∀N ∈ [T ],∀x ∈ R(W ),

∣∣∣U(x,R(W ))− ÛN (x,R(W ))
∣∣∣ ≤√4(L+ 1) log(3T )

N

]
happens with probability at least 1− 1

T 2 . Suppose C happens. The regret at round t is given by

r(t) = U(x∗, R(W ∗))− U(xt, R(W t)).

For any strategy x ∈ R(W ), we define the upper confidence bound of its utility as

UCBt(x) = ÛNt(W )(x,R(W )) +

√
4(L+ 1) log(3T )

N t(W )
.

Since C holds, it follows that
U(x∗, R(W ∗)) ≤ UCBt(x∗).

Because the UCB algorithm chooses the strategy with the highest upper confidence bound at round t,
we have UCBt(x∗) ≤ UCBt(xt). Thus,

r(t) ≤ UCBt(x∗)− U(xt, R(W t))

≤ UCBt(xt)− U(xt, R(W t))

= ÛNt(W )(x
t, R(W t))− U(xt, R(W t)) +

√
4(L+ 1) log(3T )

N t(W t)

≤ 2

√
4(L+ 1) log(3T )

N t(W t)
.

The total regret is at most

Reg(T ) =

T∑
t=1

r(t)

≤ 2

T∑
t=1

√
4(L+ 1) log(3T )

N t(W t)

= 2
∑

W∈W

NT (W )∑
m=1

√
4(L+ 1) log(3T )

m

≤ 8
∑

W∈W

√
NT (W ) · (L+ 1) · log(3T )
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where we applied the inequality
∑N

m=1

√
1
m ≤ 2

√
N . By Jensen’s inequality,

1

|W|
∑

W∈W

√
NT (W ) ≤

√
1

|W|
∑

W∈W
NT (W ) =

√
1

|W|
T .

Thus,

Reg(T ) ≤ 8
∑

W∈W

√
|W|T ·

√
(L+ 1) log(3T )

= O
(√
|W|L · T log T

)
= O

(√
nLKLA2LL · T log T

)
where we used |W| = O(nLKLA2L) from Lemma 3.2.

Finally, considering the case where C does not happen (which has probability at most 1
T 2 ),

E[Reg(T )] =
(
1− 1

T 2

)
O
(√

nLKLA2LL · T log T
)
+

1

T 2
· T ≤ O

(√
nLKLA2LL · T log T

)
.

D SIMULATIONS

We empirically simulate and validate the results of the studied algorithms in both the type-feedback
setting and action feedback setting. For the former, we consider the independent type setting to
understand how much better, in practice, is Algorithm 2 (customized for independent types) as
opposed to the general purpose Algorithm 1 (works for general type distributions). We consider
an (L = 2,K = 6, A = 2, n = 2) instance and simulate the results in Figure 2. As expected, the
specialized algorithm does indeed outperform the general one.

For the action feedback case, we empirically compare our UCB-based Algorithm 3 with the linear
bandit approach inspired by Bernasconi et al. (2023), Algorithm 5. We especially consider the small
n,L regime where our theory does not provide any concrete guidance. Shown in Figure 3, we
consider an (L = 2,K = 6, A = 2, n = 2) instance and observe the advantage of the UCB-based
algorithm over the linear bandit one.

Figure 2: Cumulative regret from the type-
feedback based Algorithms 1 and 2 for an (L =
2,K = 6, A = 2, n = 2) instance with inde-
pendent types. We plot the average over 2000
simulations with 90% confidence intervals.

Figure 3: Cumulative regret from Algorithm
5 (the Linear-Bandit approach inspired by
Bernasconi et al. (2023)) and Algorithm 3 for
an (L = 2,K = 6, A = 2, n = 2) instance. We
plot the average over 2000 simulations with 90%
confidence intervals.
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