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Abstract

We present ANTIDERIVBENCH: a benchmark consisting of integration problems
extracted from the challenging annual MIT Integration Bee competition. A number
of frontier, closed models as well as smaller, open-source models are evaluated
on it. Additionally, we create more challenging versions of the benchmark by
symbolically manipulating the original competition problems. We envision that the
benchmark will be useful for evaluating reasoning capabilities of LLMs and for
experimenting with post-training LLM pipelines depending on verifiable rewards.

1 Introduction

Recently, there has been substantial progress in enhancing the reasoning capabilities of LLMs.
Specifically, this effort includes applying LLMs to solve mathematical problems (Trinh et al.l 2024),
writing code (Jiang et al. |2025)), performing calculations (Charton) [2024), recognizing complex
spatial patterns (Chollet et al.| |2024)), and writing formal proofs (Yang et al., 2024)).

An important aspect of developing LLMs for these reasoning-intensive domains is evaluating their
performance. However, reliable evaluation is difficult. In particular, it poses the following challenges:

1. Avoiding data contamination: It is not unlikely that existing popular benchmarks — e.g.,
GSMSK (Cobbe et al.l 2021)) or MATH(Hendrycks et al.,[2021) — are unintentionally leaked
to the pre-training corpora of LLMs, which makes them less suitable for measuring genuine
reasoning skills. Hence, semi-synthetic benchmarks based on the popular ones have been
created, e.g., GSM-Symbolic (Mirzadeh et al.||2024) or MATH() (Srivastava et al.| 2024)).

2. Reflecting real-world problems: Synthetic, algorithmically generated benchmarks (like
those created by [Saxton et al.[(2019) or Lample & Charton| (2019)) avoid the contamination
problems, but, on the other hand, it is less clear to what extent they are representative of
practical problems encountered in real scenarios.

3. Evaluating answers: The ability to automatically and reliably evaluate the correctness of
the LLM-generated answers constitutes a significant limitation in benchmark design. For
instance, the frontier LLMs are now able to prove competition-style mathematical theorems,
but there is no way to automatically assess the correctness of natural-language proofs.

Hence, models have been developed for proving in formal mathematical languages (like
Lean (de Moura et al.L|2015))) where the proof correctness is assessed with absolute certainty.
In the natural language space, reliable evaluation is limited to problems where the LLM
answer can be easily compared to the ground truth — which in practice means it must be just
a number or other simple mathematical expression (Glazer et al., 2024).

Reliable assessment of answer correctness becomes even more important when used as a
training signal for fine-tuning models via reinforcement learning.
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In this work, we contribute to the landscape of reasoning datasets and introduce ANTIDERIVBENCHE]
a new benchmark consisting of indefinite integration problems sourced from the challenging annual
MIT Bee Integration competition

ANTIDERIVBENCH attempts to mitigate the challenges (1-3) described above: First, we provide
a method to synthetically augment the problems sourced from the competition to obtain complex,
unseen problems, but still related to the original ones. This reduces the contamination effects.

Second, our benchmark is based on human-written, competition problems reflecting real-world
difficulty of integration. [Lample & Charton|(2019) generated a large (millions of examples) dataset
of randomly sampled mathematical expressions and their integrals. Their dataset, however, is fully
synthetic, and as noted above, it may not truly reflect challenging or practical integration problems.

Third, ANTIDERIVBENCH targets evaluating reasoning in natural language, but as opposed to the
popular benchmarks with math word problems with numerical answers, here the response may be an
arbitrarily mathematical expression with one variable, composed of standard math operations and
basic functions (log, exp, trigonometric functions, efc). We evaluate the correctness of such answers
by implementing an evaluator which parses LaTeX mathematical expressions and performs symbolic
and numeric checks leveraging SymPy (Meurer et al.,[2017)) and SciPy (Virtanen et al.,2020) Python
libraries.

Integration of functions is both challenging and related to many problems arising in science and engi-
neering. In principle, there exists a complete algorithm for solving arbitrary indefinite integrals (Risch
& Protter;, |1970). However, the algorithm is complex (its description takes more than 100 pages), and
its implementations in computer algebra systems are typically incomplete (and slow).

In a concurrent work, [Tang et al.|(2025)) develop a similar integration benchmark based on problems
sourced from competitions and textbooks. However, they focus on definite integration as opposed to
indefinite ones. Additionally, we introduce symbolic augmentation techniques for generating more
challenging, unseen problems.

Simonds & Yoshiyama (2025) develop LADDER, a self-improvement LLM post-training pipeline
involving auxiliary question generation and evaluate their models, among others, on integration
problems from 2025 edition of MIT Integration Bee. This indicates that the competition is a good
testbed for evaluating LLM training pipelines. We therefore collect and process, all the available
problems from all the years of the competition.

We believe that ANTIDERIVBENCH may be useful to the community for evaluating LLM models.
It may also serve as a testbed for RL and other LLM self-improvement pipelines, e.g., involving
proposing alternative integration problems. The benchmark, in a sense, fills the gap between the math
word problem benchmarks with numerical answers, and the formal math benchmarks, for which
training data is limited and whose usage involves engineering overhead.

2 Benchmark

We use the Mathpi software to extract all the integration problems from the original PDFs available
on the MIT Integration Bee website and turn them into IZIEX expressions. The problems consist of
both definite and indefinite integrals; we select only the indefinite ones. We also filter out expressions
involving infinite summations or products. We parse the Latex expressions using parse_latex
function from the SymPy library and convert them into SymPy format.

This yields in 243 integration problems, which we divide into two partitions:

* qualifier: 177 simpler problems from the qualification round.

* competition: 66 problems form the proper competition.

'https://github.com/BartoszPiotrowski/antiderivbench
“https://math.mit.edu/~yyaol/integrationbee.html
*https://mathpix.com/
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We also prepare synthetic augmentations of the 66 competition problems, based on the linearity of
integration:

/a-f(x)+b-g(x)dx:a-/f(x)dx+b-/g(x)dx (1)

as well as the substitution rule for integration:
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where u = g(z). The augmented problems form three subsets (each of size 66 - 3 = 198):

e lin_comb: where each of the competition problems is linearly combined with
three randomly selected qualifier problems using random integer coefficients a,b €
{-9,-8,...,—-1,1,...,8,9}.

* subst_poly: where for each f(z) € competition we randomly generate three polynomi-
als g(z) = ax®+bx?+cxr+d where a, b, c,d € {—9, -8, ..., 8,9} and construct integrals
J f(g(z)) - ¢’ (z) dz. To solve it, the model will need to first spot the substitution pattern,
which in turn requires to be able to integrate ¢’(x) (an easy task in case of polynomial g(x)).

* subst_hard: where the problems are generated in the same way as above, but this time
g(x)’s are not polynomials, but randomly selected functions from qualifier. Intuitively,
this should make such problems more difficult than those from subst_poly.

For all the above augmentation procedures, once a new function has been created, we run SymPy’s
simplify function in order to potentially change the structure of the expression and make its initial
form more difficult to notice.

Below there are examples of problems from ANTIDERIVBENCH: the first from qualifier, the
second from competition, the last from subst_hard.
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3 Evaluator

Assessing the correctness of the model’s answer F'(z) for the indefinite integral | f(z) dz boils down
to computing F”(x) and comparing it to f(x). However, in general, the functional equivalence is
undecidable. We implement an approximate procedure for determining the answer correctness that,
in practice, captures the functional equivalence in a vast majority of cases. The steps are as follows:

1. We extract the answer F'(z) from the model’s generation using SymPy’s parse_latexﬂ

2. We compute F’(x) (using SymPy’s diff) and starting with F’(z) — f(x), we execute a
chain of SymPy’s simplifying procedures. If we obtain 0, the check concludes positively.

3. Otherwise, we attempt to compute the integral [ f(z)dz by SymPy’s integrate and
compare it to F'(x) as above. If successful, the check concludes positively.

4. Otherwise, we evaluate |F"(z) — f(z)| forz € U;cqy 10003 {8 —is 55 5 - If there is 2
in this set for which |F’(z) — f(x)| > 1078, we conclude the check negatively.

5. Otherwise, we attempt to maximize |F’'(xz) — f(z)| using SciPy’s minimize_scalar.
Again, if the obtained value is > 1078, the check concludes negatively.

6. Otherwise, the check concludes positively.

*As parse_latex fails to parse some more complicated but correct Latex expression (e.g., those containing
less usual trigonometric functions like arctanh), we write additional code to handle (most of) these cases.



Table 1: Performance of LLMs on MIT Integration Bee problems and their synthetic augmentations.
We also include the performance of the SymPy’s integrate procedure (with 10 s time limit).

data partition model / method pass@1 pass@16 pass@64
SymPy 83.1% - -
Gemini 2.5 Flash 92.4% 94.4% 94.9%
qualifier GPT-40 52.2% 81.5% 88.1%

Qwen 3 8B (non-thinking mode)  77.7% 93.7% 95.5%
Qwen 3 8B (thinking mode) 55.5% 77.5% 93.8%

Llama 3.1 8B 7.0% 39.2% 59.9%
SymPy 65.1% - -
Gemini 2.5 Flash 78.7% 86.3% 86.4%
competition GPT-40 24.5% 54.6% 63.6%

Qwen 3 8B (non-thinking mode)  49.1% 79.2% 84.8%
Qwen 3 8B (thinking mode) 77.8% 87.8% 87.9%

Llama 3.1 8B 0.7% 8.3% 15.2%
SymPy 53.0% - -
Gemini 2.5 Flash 70.3% 83.8% 84.8%
lin_comb GPT-4o 4.1% 15.6% 22.2%

Qwen 3 8B (non-thinking mode) 18.9 % 49.2% 57.7%
Qwen 3 8B (thinking mode) 62.6% 83.5% 86.9%

Llama 3.1 8B 0.0% 0.2% 0.5%
SymPy 42.4% - -
Gemini 2.5 Flash 51.4% 65.7% 67.1%
subst_poly GPT-40 4.3% 17.1% 21.2%

Qwen 3 8B (non-thinking mode)  13.1% 38.5% 48.0%
Qwen 3 8B (thinking mode) 45.9% 62.8% 66.2%

Llama 3.1 8B 0.1% 2.6% 3.5%
SymPy 16.7% - -
Gemini 2.5 Flash 59.5% 78.1% 81.7%
subst_hard GPT-40 3.4% 15.1% 22.7%

Qwen 3 8B (non-thinking mode)  15.3% 46.1% 58.1%
Qwen 3 8B (thinking mode) 56.0% 77.5% 81.3%
Llama 3.1 8B 0.1% 0.3% 3.0%

4 Experiments

We evaluate the following models on the benchmark: Gemini 2.5 Flash, GPT-40, Qwen3 8B (including
its thinking mode), and Llama 3.1 8B. For each, we set the generation temperature of 1.0 and the
maximum generation length of 16, 384 tokens. For each of the problems, we generate 64 samples.

The results for qualifier and competition benchmark subsets based on the original problems, as
well as for the three synthetically augmented datasets are shown in Table[T] In addition to the models’
performance, we also evaluate SymPy’s integrate function, which implements part of the Risch
algorithm for integration. We impose a 10-second timeout on the procedure.

Overall, the best-performing models are Gemini 2.5 Flash and Qwen3 8B in thinking mode, which
achieved solid pass@64 scores of 8§6.4% and 87.9% on competition, respectively. It is surprising,
given Qwen’s small size. The third best result was achieved by Qwen3 8B in non-thinking mode,
where it used on average about 6.5 times less tokens compared to the thinking mode.

Also, surprisingly, the results of Gemini and Qwen with thinking mode on subst_hard and
lin_comb are not much worse than on competition. However, for the other models, the per-
formance differences between these subsets are much more significant (especially for GPT-40).

Predictably, qualifier turned out to be overall simpler than competition. However, somewhat
counterintuitively, subst_hard turned out to be simpler than subst_poly.



Llama 3.1 8B, as a model that was not trained for reasoning problems, was the weakest of the
evaluated models. Still, it achieved a reasonably good pass@64 on qualifier.

SymPy’s integrate procedure performed weaker that Qwen3 and Gemini 2.5 across all the parti-
tions. Unlike the models, its performance on subst_hard was much lower than on subst_poly.

5 Conclusion

We believe that ANTIDERIVBENCH is a useful benchmark for evaluating mathematical capabilities
of language models, and may also serve as an environment for RL-training pipelines.

The presented way of mechanically augmenting existing integration problems can be extended and
used to produce even more challenging problems, if needed.
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Appendix

Prompts used in experiments

Compute the integral of the following function:

{x}

Think step by step. Put the final answer in \boxed{ }
using LaTeX notation.

Figure 1: The prompt used for integrating functions with tested LLMs.
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