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ABSTRACT

Seeking good designs is a central goal of many important domains, such as robotics,
integrated circuits (IC), medicine, and materials science. These design problems
are expensive, time-consuming, and traditionally performed by human experts.
Moreover, the barriers to domain knowledge make it challenging to propose a
universal solution that generalizes to different design problems. In this paper, we
propose a new method called Efficient Design and Stable Control (EDiSon) for
automatic design and control in different design problems. The key ideas of our
method are (1) interactive sequential modeling of the design and control process
and (2) adaptive exploration and design replay. To decompose the difficulty of
learning design and control as a whole, we leverage sequential modeling for both
the design process and control process, with a design policy to generate step-by-
step design proposals and a control policy to optimize the objective by operating
the design. With deep reinforcement learning (RL), the policies learn to find
good designs by maximizing a reward signal that evaluates the quality of designs.
Furthermore, we propose an adaptive exploration and replay strategy based on a
design memory that maintains high-quality designs generated so far. By regulating
between constructing a design from scratch or replaying a design from memory to
refine it, EDiSon balances the trade-off between exploration and exploitation in the
design space and stabilizes the learning of the control policy. In the experiments,
we evaluate our method in robotic morphology design and Tetris-based design
tasks. Our results show that our method effectively learns to explore high-quality
designs and outperforms previous results in terms of design score and efficiency.

1 INTRODUCTION

Design optimization presents a key challenge across various domains such as robotics (Gupta et al.,
2021), integrated circuits (IC) (Mirhoseini et al., 2021), medicine (Coley et al., 2017), and materials
science (Ghugare et al., 2023; Govindarajan et al., 2024). Traditionally, design problems are tackled
by human experts through iterative manual experimentation, incurring significant costs in both time
and resources. Moreover, the required specialized domain knowledge further complicates the design
process and increases the need for domain expertise, hindering the generalizability of traditional
approaches. Therefore, developing an efficient and general framework for different design problems
with little human intervention and specialized domain knowledge is essential.

Recent advancements in reinforcement learning (RL) have made design automation a promising
application (Jeong & Jo, 2021; Budak et al., 2022; Dworschak et al., 2022; Govindarajan et al.,
2024). RL can rapidly discover and test potential solutions through interacting with design simulators
(Sternke & Karpiak, 2023), enabling faster exploration than humans. However, the combinatorial
complexity of design space often results in very few valuable designs as well as exponentially many
paths to find them (Mouret & Clune, 2015; Colas et al., 2020). In addition to the difficulty of exploring
valuable designs in a large and complex space, the challenge is further exacerbated when constructing
the design, which is only part of the problem. This occurs when a given design also requires a control
policy to achieve its task and evaluate the quality of each design (Gupta et al., 2021). For instance,
constructing a robot optimized for locomotion requires both a suitable morphology design and a
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Figure 1: The illustration of Efficient Design and Stable Control (EDiSon). The design policy takes
steps to generate the design, which is followed by the control policy. Both the design policy and
control policy learn from the return signals. Moreover, the design memory selectively stores and
reuses the designs to balance the exploration-exploitation with a bandit meta-controller.

control policy that maximizes the robot’s locomotion capabilities, inducing a multi-level optimization
problem.

In the multi-level optimization problem, we have to address two distinct challenges: (1) Constructing
the design as a Markov Decision Process (MDP) with unique transition dynamics and (2) Learning a
control policy for that MDP. These problems, while both tractable with reinforcement learning (RL),
have different priorities. The first problem focuses on exploring the search space for optimal designs,
while the second often suffers from sample inefficiency as each new design may need a newly trained
control policy. The interaction between these creates a non-stationary optimization problem requiring
additional regularization for better convergence.

To address these challenges, we formulate design optimization as a multi-step MDP and propose a
general framework with three key components: the design MDP for design optimization, the control
MDP for control optimization, and the design buffer. The design buffer maintains a prioritized queue
of high-performing designs, reducing non-stationarity and encouraging exploration-exploitation
balance. We employ a bandit-based meta-controller to adjust the exploration probability dynamically,
ensuring efficient and adaptive learning. This approach effectively integrates design and control
optimization, leveraging past successes while continually seeking new possibilities.

Based on our general framework, we present a practical method for efficient design-and-control
automation called Efficient Design and Stable Control (EDiSon), which is illustrated in Figure 1. The
design policy iteratively generates designs, maximizing the reward signal from the control policy,
thereby guiding optimization toward promising designs. We implement design memory through a
buffer that collects high-performing and diverse designs. Our adaptive exploration and replay strategy
dynamically balances between creating new designs and refining existing ones, encouraging the
emergence of diverse, high-quality designs by effectively leveraging past successes while continually
seeking new possibilities. The main contributions of our work are summarized as follows:

• A General and Efficient RL Framework for Design Optimization: We introduce an
efficient and general framework that integrates design and control optimization into a multi-
step MDP. This framework effectively addresses the dual challenges of optimizing both
design and control policies, offering a more efficient and comprehensive approach to design
automation.

• Adaptive Exploration-Exploitation Trade-off in Design Optimization: We introduce a
practical method, EDiSon, based on adaptive exploration and design replay. Our method
leverages a bandit-based meta-controller to dynamically balance exploration and exploitation,
enhancing the efficiency of design-and-control automation. By reusing successful designs
from a design buffer, EDiSon ensures continuous improvement and optimal performance.
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• The State-of-the-art Efficiency and Performance across Various Design Tasks: Through
extensive experiments, we demonstrate that EDiSon significantly outperforms existing
methods. EDiSon achieves superior results in robotic morphology design and Tetris-based
design tasks, showcasing its effectiveness and efficiency.

2 RELATED WORK

Machine Learning for Design Autonomous design research in robotics has advanced through
various approaches that have broadly focused on optimizing morphology and control. Early works
proposed evolutionary algorithms to adapt the morphology of rigid body and soft body robots to solve
pushing or locomotion tasks (Lipson & Pollack, 2000; Hiller & Lipson, 2012). Subsequent work
extended these ideas to learning neural controllers in parallel to the morphology (Bongard & Pfeifer,
2003). Compositional Pattern-producing networks have been shown to be good for discovering new
morphologies as they could adapt to the changing number of joints in a robot (Auerbach & Bongard,
2012; Jelisavcic et al., 2019). These works illustrate the progression and integration of morphology
and control in autonomous design. In addition to robotics, machine learning (ML) has also been
applied to many other design problems, including building design (Sun et al., 2021), as well as
materials, molecular and protein design (Govindarajan et al., 2024; Ghugare et al., 2023; Watson
et al., 2023) and algorithm design (Co-Reyes et al., 2021). The difference between our problem
space and the above prior work is explicitly focusing on problems that include two stages of policy
learning: a design stage and a synthesis/policy learning stage.

Design Optimization with RL RL has been increasingly applied to design optimization, offering
efficient methods for exploring complex design spaces. Sims (1994) pioneered the use of evolutionary
algorithms with RL principles to design virtual creatures with adaptable behaviors. Gupta et al. (2021)
demonstrated the significant impact of optimized morphologies on learning efficiency for targeted
tasks. Yuan et al. (2022) introduced an RL framework integrating transformation and control policies
to streamline robot design and operation. Ha (2019) jointly optimized agent embodiment using a
population-based REINFORCE algorithm. Schaff et al. (2019) applied RL to update distributions
over design parameters. These advancements highlight RL’s potential to automate and enhance design
optimization. RL has also been applied to many other design problems, including concrete structures
(Jeong & Jo, 2021), and electronic placement on microchips (Budak et al., 2022). These prior
methods make inroads in using RL for design, but they lack tools to cope with the non-stationarity of
the optimization to induce higher-performing solutions. In this work, we include a design buffer for
adaptively managing non-stationarity and evaluating over a larger set of tasks than prior methods.

3 BACKGROUND

In this section, we briefly review the fundamental background used in our work and describe important
aspects of settings with joint design problems and control problems.

Markov Decision Processes (MDP) Reinforcement Learning (RL) is typically formulated with the
modeling of MDP, where at every time step t, the world (including the agent) exists in a state st ∈ S ,
where the agent is able to perform actions at ∈ A. The action to take is determined according to a
policy π(at|st) which results in a new state st+1 ∈ S and reward rt = R(st,at) according to the
transition probability function P (st+1|st, st). The goal of an RL agent is to optimize its policy π

to maximize the future discounted reward J(π) = Er0,...,rT

[∑T
t=0 γ

trt

]
, where T is the max time

horizon, and γ is the discount factor.

Design-and-Control Problem In this paper, we aim to solve design problems, where we need to
find a high-quality design and control it to optimize the design objective. Consider such a design
problem with a design space D, the purpose of this problem is to find an optimal design d⋆ ∈ D
that maximizes an evaluation function F : D → R, i.e., d⋆ = maxd F (d). The evaluation function
F is not given a priori and is determined by a control process of design. For a design d, a control
policy π operates with the design that leads to a control score fπ(d), while the evaluation function
F (d) is defined to be the best control score that can be achieved within a control policy space Π, i.e.,
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Figure 2: The illustration of our general framework for learning design and control. The framework
consists of three components: the design policy, the control policy, and the design memory, which
interact with each other as described by the ordered texts.

F (d) = maxπ∈Π fπ(d). In real-world applications, one usually aims to find a set of designs that
have good evaluation scores and are diverse at the same time.

4 A GENERAL FRAMEWORK FOR LEARNING DESIGN AND CONTROL

The design problems we address involve two interconnected challenges: discovering an optimal
design (the design problem) and controlling that design to optimize a specific objective (the control
problem). This dual challenge is prevalent in scenarios like designing a robotic morphology with
a corresponding locomotion policy or creating building blocks for a geometric task. Solving these
problems is complex due to the vast combinatorial design space and the intricate landscape of the
design objective function. Additionally, control learning must generalize across various designs,
further complicating the process. The interplay between design and control exacerbates the difficulty,
as design evaluation signals are often noisy and dependent on the ongoing control learning process,
while the control problem must handle a non-stationary distribution of designs generated in real time.

To handle these challenges, in this section, we propose a general framework for learning design and
control. As illustrated in Figure 2, the framework consists of three components as introduced below.

Design As A Multi-Step MDP In this paper, we assume that the Markov assumption holds (see
Apendix C Assumption 1) allowing us to formulate the design as a multi-step MDP. The design policy
explores the design space and optimizes the design d ∈ D regarding the design evaluation signal
F (d). We use sequential modeling for the design process, i.e., the design policy starts from an initial
base design d0 and constructs it with step-by-step modifications to a final design dT . We define a
Design Markov Decision Process (Design MDP) M = (U,X, P,R, γ, ρ, E,D, g), where µ ∈ U is a
state of the design process, x ∈ X is a design action, e ∈ E is an optional external information, and
g : D ×X → D describes the deterministic change of design affected by design action:

µt ≜ (dt, et) πD (xt | µt) ≜ p (xt | dt, et) P (µt+1 | µt, xt) ≜ δdt+1
p(et+1|dt, et, xt)

ρ (µ0) ≜ p(d0, e0) dt+1 ≜ g(dt, xt) R (µt, xt) ≜

{
F (dT ) if t = T

0 otherwise
(1)

where δy denotes the Dirac delta distribution with a nonzero density only at y.

One key feature of the design-and-control problem is that each design d corresponds to an MDP task
to solve, and the design process corresponds to a process of constructing an observation spaceOd and
an action space Ad for the control task. From a finer-grained perspective, the spaces Od,Ad consist
of the subspace sets {Oi}, {Ai}, each design action xt corresponds to adding or removing a tuple
of subspaces (Oi, Ai), and the design change function g updates of the subspace sets and generates
Od,Ad based on the cartesian product of the subspaces chosen so far. Next, we move on to detail the
control task associated with the design d and the observation and action spaces Od,Ad constructed.
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Control As A Multi-Step MDP The control policy manipulates a design with the purpose of best
performing the control task. Essentially, given a design d, this is equivalent to learning the optimal
policy in a Control Markov Decision Process (Control MDP) Md = (Sd,Ad,Od,O, Pd, Rd, γ, ρd, d),
where o ∈ O is an observation of the environment and od ∈ Od is an observation of the design state
(e.g., the proprioceptive state of a robot), and Sd = O × Od. Formally, the Control MDP Md is
defined as:

st ≜
(
ot, o

d
t

)
Pd (st+1 | st, at) ≜ p(ot+1, o

d
t+1|ot, odt , at, d)

ρd (s0) ≜ p(o0, o
d
0) πC (at | st, d) ≜ p (at | ot, odt , d ) Rd (st, at) ≜ r(ot, o

d
t , at, d)

Ideally, the control policy maximizes the performance as πC = argmaxπ J(π,Md), which then
serves as the design evaluation signal, i.e., F (d) = J(πC,Md).

Design Memory The design memory maintains a design buffer B = {di}. The designs generated
by the design policy are kept in B selectively according to their evaluation (i.e., the maintenance
module), e.g., with a probability p(d) ∝ F (d). Meanwhile, it provides designs for the learning of the
design policy and the control policy (i.e., the replay module)

Our framework presents a unified mathematical model for design-and-control problems. Because
the co-optimization of an MDP choice and a solution to the chosen MDP is non-stationary, our
framework introduced a buffer to store recent high-value designs which also induces control of the
non-stationarity of the designs. Specifically, the design memory keeps useful knowledge of diverse
sets of best-performing designs to accelerate the learning process. In learning the design policy, the
design memory enables the realization of an exploitation-exploration balance in the design space
that also helps find good designs efficiently. In the learning of the control policy, the design memory
stabilizes the distribution change of design MDPs and reduces the difficulty of learning over multiple
designs, thus leading to better design evaluation.

5 EFFICIENT DESIGN AND STABLE CONTROL (EDISON)

In this section, we describe our approach to improving design optimization with RL by actively
reusing designs and adaptively balancing the exploration-exploitation trade-off.

5.1 JOINT OPTIMIZATION OF DESIGN AND CONTROL USING REINFORCEMENT LEARNING

We leverage reinforcement learning to design the optimization by dividing the task into two distinct
stages. The first stage, the design stage, identifies the optimal design for the control task. The second
stage, the control stage, utilizes the generated design to complete the task, with RL agents evaluating
each design based on reward feedback from the environment.

The optimization objective for the design stage can be formulated as:

d∗ = argmax
d∈D

F (d) (2)

Where F is the evaluation function for each design d. In our method, designs are evaluated during
the control stage using a control policy π, making F dependent on π: F = J(π, d) = Gd,π =

Eπ,d

[∑H
t=0 γ

trt

]
. Thus, the joint design and control optimization can be formulated as:

Design Stage: d∗ = argmax
d

J (π, d)

Control Stage: π∗ = argmax
π

J(π, d)
(3)

As mentioned in Sec. 4, the agents typically learn two sub-policies, πD and πC , to address this
joint optimization. The design policy πD generates each design dt from an initial design d0, and the
control policy πC rolls out the control trajectory to evaluate each design.

While methods like Transform2Act (Yuan et al., 2022) have been successful, they often ignore the
exploitation and reuse of previously discovered designs, starting from scratch with a less informative
d0, leading to inefficiency. In this paper, we propose a new design-and-control paradigm that actively
exploits learned designs, enhancing efficiency and performance.
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5.2 EXPLORATION AND EXPLOITATION IN DESIGN SPACE

In this paper, we propose two general design methods. The first method involves designing from
scratch, allowing for greater freedom to explore the entire design space. However, solely exploring
the design space without exploiting current designs is often less effective. Therefore, the second
method involves designing from good examples dgood , enabling the agent to leverage useful and
informative designs. This approach closely mirrors human design processes, where we often base
our designs on prior work and masterpieces with exemplary performance. In practice, these good
examples can be sourced from a design history or provided by humans prior to training.

For fairness, we propose not to rely on artificially given good examples. Instead, we let the agents
exploit good examples they found throughout the entire learning process. To facilitate this, we
implement a design buffer B to store good designs encountered during training. Whenever the agent
needs to design based on an example, it samples a good design dgood ∼ PB from this buffer, wherein
PB = softmax(Gd). More implementation details of our design buffer can be found in App. G.

However, solely relying on existing good examples can lead to sub-optimal solutions by failing to
explore the design space adequately. Ideally, the agent should first explore the entire design space
and, once good designs have been identified, actively exploit these examples to inform further design
efforts. To balance exploration and exploitation, we propose a hybrid approach combining two
methods: (1) Exploration: designing from scratch and (2) Exploitation: designing from good
examples. During each design stage in training, the agent decides to design from scratch with
probability p and to design from good examples with probability 1− p. We call this probability p the
design exploration rate which allows us to control exploration throughout the training process:{

Exploration: Design from Scratch, p

Exploitation: Design from Good Examples (Design Reuse), 1− p
(4)

By adjusting the probability p, we can achieve an optimal trade-off between exploration and exploita-
tion in the design optimization problem. Even with a fixed probability p, this method outperforms
the original Transform2Act which is equivalent to the special case where p = 1 and the agent con-
stantly explores the design space from scratch. Our method offers better performance and efficiency,
demonstrating the benefits of integrating both exploration and exploitation in the design process.

5.3 ADAPTIVE EXPLORATION IN DESIGN OPTIMIZATION

A fixed probability p helps balance exploration and exploitation but fails to let agents adaptively
choose the best design method during different learning stages. Early in training, agents should
explore widely using a higher p, while later stages should exploit good designs with a lower p.

To address this, we propose a meta-controller that dynamically adjusts the design exploration rate p,
balancing exploration and exploitation. We use a multi-armed bandit (MAB) approach, where each
bandit has two arms: arm = 0 for design from scratch and arm = 1 for design from good examples.
At the start of each trajectory, the actor samples an arm k ∈ K = {0, 1} using the probability
distribution PK = eScorek∑

j eScorej
. The design exploration rate p is given by p = Parm=0.

We use the Upper-Confidence Bound (UCB) score to manage the trade-off:

Scorek = Vk + c ·

√√√√ log
(
1 +

∑K
j ̸=k Nj

)
1 +Nk

(5)

where Nk is the number of visits to arm k, Vk is the expected value of the returns, and the UCB
term (i.e., the second term) ensures the agent doesn’t repeatedly select the same arm, avoiding quick
convergence to suboptimal solutions.

After sampling an arm, the agent decides whether to reuse a base design from the buffer B or design
from scratch. The design policy πD and control policy πC are applied to obtain a trajectory τi and
the return Gi, which updates the reward model Vk for the selected arm. To handle non-stationarity,
we ensemble several MABs with different hyperparameters, allowing the agent to adapt to changing
environments and maintain robust performance. More details are in the App. F.
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5.4 EFFICIENT DESIGN AND STABLE CONTROL (EDISON) ALGORITHM

We summarize the complete process of our method in Algorithm 1, which illustrates the core steps of
the Efficient Design and Stable Control (EDiSon) framework. The algorithm iterates over multiple
design and control steps, dynamically adjusting between exploration and exploitation, and refining
the policies over time to converge on an optimal design and control policy.

Algorithm 1 EDiSon

Require: number of training iterations N , simple initial design dnull, initial design d0, design buffer
B, bandit MAB, design policy πD, control policy πC , length of design stage T

1: Initialize design policy πD and control policy πC

2: Initialize design buffer B ← (design = dnull, value = 0)
3: Initialize training data replay bufferM← ∅
4: for iteration i = 1 to N do
5: while not reaching batch size do
6: for jth trajectory τj do
7: // Design Stage
8: Sample arm kj from the bandit MAB;
9: if kj = 0 then

10: d0 ← dnull ▷ Design from scratch;
11: else
12: d0 ← Sample from Buffer(B) ▷ Design Reuse
13: end if
14: for iteration t = 1 to T do
15: Sample design actions adt using πD

16: Update design dt with sampled actions adt
17: end for
18: // Control Stage
19: Use πC to rollout control trajectory with design dT , obtain trajectory return Gj

20: Store trajectory j in data replay bufferM← τj
21: Update design buffer B ← (design = dT , value = Gj)
22: Update bandit with (kj , Gj)
23: end for
24: end while
25: Update πC and πD using PPO with samples fromM
26: end for
27: return Optimal design d∗, control policy πC , design policy πD

6 EXPERIMENTAL RESULTS

Our experiments are designed to evaluate the effectiveness of our methods across various design opti-
mization tasks, from robotic morphology design to microfabrication-inspired problems. Specifically,
we explore Tetris-like design challenges, where a set of designed blocks is manipulated to achieve
either a Tetris or target deposition pattern. We propose to address the following questions:

1. How does EDiSon perform compared to prior work in various design tasks (See Figure 3)?
Can our methods find better designs (See Figure 5)?

2. How much does adaptively balancing the exploration and exploitation in design optimization
assist in finding higher-value solutions (See Figure 6)? Why not just use a fixed design
exploration rate p (See Figure 6)?

3. How much do core components of our framework, such as design reuse and adaptive
exploration-exploitation trade-off, contribute to the results (See Figure 7)?

6.1 EXPERIMENTAL SETUP

We conduct experiments across several design-based tasks, including robotic morphology design and
Tetris-based design problems. To ensure a fair comparison, we follow the same settings and network

7
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structure for the robotic morphology design tasks as Transform2Act (Yuan et al., 2022) and adopt a
3-layer MLP for all policies and critics in the Tetris-related task. We use PPO (Schulman et al., 2017)
to learn both our design policy, control policy, and critics. We utilize a separate evaluation process to
continuously record scores, measuring the undiscounted episodic returns averaged over five seeds. To
provide comprehensive insights, we present full learning curves for each task, addressing any issues
associated with aggregated metrics. In addition to the average score, we highlight the best designs
discovered by our agent during the learning process, showcasing our method’s superiority in design
exploration. More implementation details can be found in App. I.

Environments. We evaluate our algorithm on the following tasks: (1) Swimmer: A 2D agent
operating in water with 0.1 viscosity, confined to the xy-plane, aiming to maximize forward speed
along the x-axis. (2) 2D Locomotion: A 2D agent in the xz-plane that moves forward as quickly
as possible, with rewards based on forward velocity. (3) 3D Locomotion: A 3D agent navigating
along the x-axis, striving for maximum forward speed, rewarded based on velocity. (4) Gap Crosser:
A 2D agent navigating across periodic gaps on the xz-plane, with rewards linked to forward speed.
Additionally, we provide supplementary results for other design tasks, such as Tetris rewarded by
playtime (i.e., design blocks to play Tetris longer) and Microfabrication Deposition rewarded by
matching rate (i.e., design blocks to etch the deposition layers and match target pattern better) to
further demonstrate our method’s capabilities beyond robot design tasks (see App. L). More details
about these tasks can be found in App. D.
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Figure 3: Baseline Comparison in Robotic Morphology Design Tasks. The upper panel (i.e., a-d)
is the comparison in terms of average return, and the lower panel (i.e., e-h) is for the score of best
design discovered (Top 1 Score). For each robot task, we plot the mean and standard deviation of
total rewards against the number of simulation steps for all methods. Each curve shows a smoothed
moving average over 5 points.

6.2 SUMMARY OF RESULTS

Our experimental results in Figure 3 demonstrate the superiority of our proposed methods over
the baseline, Transform2Act. The Bandit approach consistently achieves higher returns across all
tasks, illustrating its effectiveness in dynamically balancing exploration and exploitation. This
adaptability is crucial for optimizing performance in varied and complex environments. While the
fixed design exploration parameter p also shows improvements, it remains inferior to the Bandit
method, underscoring the importance of an adaptive balance in design optimization. The success
of our methods can be attributed to several key factors: (1) Design Reuse: By leveraging effective
designs discovered during the training process, our methods avoid the inefficiencies of always starting
from scratch. Reusing successful designs enhances learning efficiency and accelerates performance
improvements. (2) Adaptive Trade-off: The Bandit method enables the agent to dynamically adjust
its exploration-exploitation balance during design optimization, leading to more efficient learning and
higher performance. This adaptability ensures that the agent explores new designs early in training
and exploits successful designs as they are discovered.
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Figure 4: Baseline Comparison and Best Design Discovered in Tetris-Based Tasks. (a) and (b)
show the learning curve in Tetris-like Tasks. (c) and (d) show the best design in Tetris Tasks, where
agents have to find 4 blocks, each represented as a 3 × 3 grid with 4 squares filled (the white one).
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Figure 5: Best Design Discovered in Robotic Morphology Design Tasks. (a) and (b) show the best
designs found in the Gap Crosser task by our method (reward: 11572) and Transform2Act (reward:
4579). (c) and (d) illustrate the best designs found in the 2D Locomotion task by our method (reward:
15459) and Transform2Act (reward: 11416). More discovered designs can be found in App. E.
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Figure 6: Case Study Results. For each robot task, we plot the mean and standard deviation of total
rewards against the number of simulation steps for all methods.

Similar results are observed in Tetris-related design tasks in Figure 4, where our method stabilizes
learning curves, as detailed in Appendix L. Additionally, in the Microfabrication Deposition tasks
shown in Figure 4, our method achieves better final performance than the Transform2Act method,
demonstrating our effectiveness and adaptability across a range of tasks.

Further investigation into the best designs found by our methods can also help us to understand
the results, which has been illustrated in Figure 5. In the Gap Crosser Task, our bipedal design
(Figure 5a) offers enhanced stability and efficiency with its upright posture and elongated limbs,
enabling better gap navigation than the sprawled configuration of Transform2Act’s design (Figure
5b). For the 2D Locomotion Task, our design (Figure 5c) optimizes limb placement by reducing an
unnecessary joint on the tail foot and adding one to the forelimb, resulting in improved speed and
agility. Conversely, Transform2Act’s design (Figure 5d) retains an additional hind limb, which seems
less efficient. Overall, our designs are more structurally optimized for their respective tasks. For the
Tetris task, our method outperforms Transform2Act by discovering four identical symmetric block
structures. Our blocks simplify the learning of the control policy, facilitate continuous gameplay, and
enable efficient line clearing. A more detailed analysis can be found in App. E.3.
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Figure 7: Ablation Study Results. The mean and standard deviation of each method over 5 random
seeds are plotted. Note that Main Method means EDiSon (ours).

6.3 CASE STUDY: EXPLORATION-EXPLOITATION TRADE-OFF

We divided the design exploration rate p into ten equal intervals from 0 to 1, creating methods with
different exploration preferences. These methods ranged from extreme exploitation (p = 0) to
extreme exploration (p = 1, corresponding to Transform2Act). The results in Figures 6a and 6b show
that different tasks have distinct optimal design exploration rates. This variability underscores that
achieving a balance between exploration and exploitation is non-trivial and crucial for success.

Additionally, we analyzed the design exploration rate control curve of our Bandit-based method
(Figure 6c). The results demonstrate that our Bandit-based meta-controller effectively adjusts the
exploration-exploitation trade-off dynamically. Our method promotes extensive exploration during
early training stages, which helps discover diverse and potentially optimal designs. As training
progresses, the meta-controller gradually shifts towards exploitation, utilizing the accumulated design
knowledge to optimize performance. This adaptability ensures that the agent efficiently explores the
design space and exploits successful designs, leading to superior performance across tasks.

6.4 ABLATION STUDIES

In our ablation studies, we examine two critical components: the adaptive exploration-exploitation
trade-off and design reuse via the design buffer. We evaluate several variants to highlight their impact:
(1) Ours w/o Bandit: Removes the adaptive mechanism. (2) Ours w/o Exploitation: Eliminates
the design buffer, requiring designs from scratch. (3) Ours w/o Exploration: Sets p to 0, disabling
exploration. (4) Our Main Method: Incorporates both components.

Figure 7 shows that both design reuse and adaptive exploration-exploitation are crucial. The design
buffer leverages successful designs, and the adaptive mechanism balances exploration and exploitation,
enhancing performance. Neither extreme exploration nor exploitation is optimal; a balanced approach,
as in our main method, yields the best results, highlighting the importance of balancing these factors
in design optimization tasks.

7 CONCLUSION AND DISCUSSION

In this paper, we presented a novel reinforcement learning framework for design optimization, demon-
strating its effectiveness across tasks ranging from robotic morphology design to Tetris-based design
challenges. Our Bandit-based meta-controller dynamically balances exploration and exploitation,
significantly outperforming existing methods like Transform2Act. Extensive experiments highlight
the importance of adaptive strategies and design reuse, revealing the limitations of a fixed exploration
rate for complex design problems. Our key contributions include an adaptive exploration-exploitation
mechanism, design reuse through a design buffer, and robust evaluation via comprehensive case
studies. These advancements enhance performance and efficiency, paving the way for future research
in design automation and impacting various domains, from robotics to material science. However, our
work has limitations. The computational complexity of our meta-controller might limit its application
in resource-constrained environments. Additionally, the quality and diversity of the design buffer are
crucial; a lack of initial diversity could compromise performance. Future work should address these
limitations to further refine and extend the applicability of our approach.
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A ADVANTAGE OF EFFICIENT DESIGN AND STABLE CONTROL (EDISON)
OVER TRANSFORM2ACT

There are three main advantages of our method (EDiSon) over Transform2Act (Yuan et al., 2022):

1. Adaptive Exploration-Exploitation Balance: Transform2Act uses a fixed exploration rate,
which is suboptimal for complex design problems. Our method introduces a Bandit-based
meta-controller that dynamically adjusts the exploration-exploitation trade-off. This adaptive
strategy allows for extensive exploration in the early stages and efficient exploitation of
successful designs in later stages, leading to superior performance across various tasks, as
demonstrated in our experimental results (see Figures 3 and 14).

2. Design Reuse with a Design Buffer: Unlike Transform2Act, which always starts from
scratch, our method leverages a design buffer to store and reuse successful designs. This
approach enhances learning efficiency by building upon previously discovered high-quality
designs. The use of a design buffer facilitates better generalization and reduces the time
required to achieve optimal performance, as evidenced by our experimental results.

3. Increased Exploration Capability: Our method allows for more extensive exploration
of design possibilities in each episode. By dynamically adjusting the exploration rate and
leveraging the design buffer, our approach can try a wider variety of designs within a shorter
period. This increased exploration capability enables our method to discover innovative and
high-performing designs more effectively than Transform2Act, leading to enhanced overall
performance and efficiency in design optimization tasks (see Figure 14).
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B DISCUSSION AND LIMITATIONS

While our method demonstrates significant improvements in design and control automation, it is
not without limitations. One notable limitation is the computational complexity associated with
our bandit-based meta-controller. The dynamic balancing of exploration and exploitation requires
substantial computational resources, which may not be readily available in all settings. This could
limit the scalability and applicability of our approach to resource-constrained environments.

Another limitation lies in the assumptions made by our method. Our approach assumes that the
design and control tasks can be adequately represented within the framework of a multi-armed
bandit problem. This assumption may not hold in all scenarios, particularly in highly complex and
dynamic environments where the relationships between design choices and performance outcomes are
non-linear and unpredictable. As a result, the effectiveness of our method may vary across different
tasks and domains.

Additionally, our method relies heavily on the quality and diversity of the design buffer. If the initial
set of designs is not sufficiently diverse or representative of the optimal design space, the performance
of our method could be adversely affected. Ensuring the robustness of the design buffer through
careful selection and continuous updating is essential to maintain the efficacy of our approach.

In general, our experimental evaluation is limited to specific tasks and environments, and while our
results are promising, further validation is needed across a broader range of applications. Future work
should explore the generalizability of our method to other design and control problems, as well as
investigate potential enhancements to address the identified limitations. By doing so, we aim to refine
our approach and extend its applicability to a wider array of real-world challenges.
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C DESIGN OPTIMIZATION AS MULTI-STEP MDP

In this section, we describe the Markov Decision Processes (MDP) used to formalize the design
and control stages of our framework. Using the robotic morphology design with the Transform2Act
approach (Yuan et al., 2022) as an example, we demonstrate how our formalizations can be applied
to analyze an existing design problem and an RL method for design optimization.
Assumption 1 (Markov Assumption of Design Optimization). We assume that the design optimization
problems we study are all Markovian, meaning that the future state depends only on the current state
and action and not on the sequence of events that preceded it. Formally, this is expressed as:

P (st+1 | st, at) = P (st+1 | st, at, st−1, at−1, . . . , s0, a0) . (6)

C.1 DESIGN AS MARKOV DECISION PROCESS

We model the design optimization process as a multi-step Markov Decision Process (MDP), enabling
a structured approach to the design stage within our reinforcement learning framework. The elements
of this MDP are defined as follows:

State st : The state at time t is represented by st ≜ (dt, ot), where dt denotes the design at the
time step t, and ot represents the state information of the task/environment. It’s worth noting that,
when the design is fully represented by dt and no more other observation can be obtained from the
environment, ot can be ignored.

Action at : The action at time t is given by at ≜ xt+1, where xt+1 indicates the next/target design
parameters. This allows the agent to modify the design iteratively.

Policy π (at | st) : The design policy maps the state to actions, which can be defined as π (at | st) ≜
pθ (xt+1 | dt, ot), where pθ is the probability distribution over the actions conditioned on the current
state and design.

State Transition P (st+1 | st, at) : The transition probability is given by P (st+1 | st, at) ≜(
δdt

, δot , δxt+1

)
, where δ denotes the Dirac delta function, ensuring deterministic transitions between

states based on the selected actions.

Initial State Distribution ρ0 (s0) : The initial state distribution is defined as ρ0 (s0) ≜
(p(d0), p(o0)), where p(d0) is the initial design distribution (which can be controlled by the design
exploration rate p), and p(o0) represents the initial distribution of the initial state information from
the environment/task.

Reward Function R (st, at) : The reward function is defined as:

R (st, at) ≜

{
r (dT ) if t = T

0 otherwise
(7)

Here, r (dT ) evaluates the quality of the final design dT . The design reward signal is sparse, because
the agent does not know how well it performs until the control stage has been conducted.
Definition C.1 (Design Optimization as a MDP). Based on the above, we formulate the design
optimization procedure to the following:

st ≜ (dt, ot) π (at | st) ≜ pθ (xt+1 | ot, dt) P (st+1 | st, at) ≜
(
δdt , δot , δxt+1

)
at ≜ xt+1 ρ0 (s0) ≜ (p(d0), p(o0)) R (st, at) ≜

{
r (dT ) if t = T

0 otherwise
(8)

in which δy is the Dirac delta distribution with nonzero density only at y. In this MDP, trajectories
consist of T time steps, leading to a termination state/design. The cumulative reward of each
trajectory equals r (dT ), making the maximization of the design reward Jdesign (θ) equivalent to
optimizing the reinforcement learning objective JRL(π) in this MDP context.
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In the following, we provide the our multi-step MDP framework for design optimization to interpret
the design stage of Transform2Act. It is important to note that, for fairness, our main method in robot-
related tasks maintains similar Skeleton Transform and Attribute Transform stages as Transform2Act,
except for incorporating design reuse with a design buffer and a bandit-based meta-controller.
In other words, our approach, which includes design reuse and the bandit-based meta-controller, can
be applied to any existing design optimization method using RL.

Robotic Morphology Design in Transform2Act Transform2Act divides the design stage into
two parts, the Skeleton Transform: construct the joint structure graph of the robot, and the Attribute
Transform: fine-tune relevant parameters such as the length of each joint structure.

In the Skeleton Transform stage, the agent follows the policy πS
θ

(
aSt | dt,Φt

)
to modify the skeletal

structure. Here, dt = (Vt, Et, At) includes the skeletal graph (Vt, Et) and joint attributes At. Φt is a
flag used to indicate the current stage (e.g., Skeleton Transform, Attribute Transform, Control) and
can be regarded as part of the environment state ot.The skeleton transform action aSt =

{
aSu,t

}
u∈Vt

changes the skeletal graph by adding or deleting joints.

The agent follows the skeleton transform sub-policy πS
θ for Ns timesteps, resulting in an updated

design dt+1 = (Vt+1, Et+1, At+1), and the policy πS
θ can be write as:

πS
θ

(
aSu,t | dt,Φt

)
=

∏
u∈Vt

πS
θ

(
aSu,t | dt,Φt

)
(9)

Since Transform2Act always design from scratch, the initial design distribution p(d0) deterministic
distribution:

d0 ∼ p(d0) ≜ dNull (10)

And the total steps of attribute transform stage is TS .

In the Attribute Transform stage, the agent modifies joint attributes using the policy πA
θ

(
aAt | dt,Φt

)
.

The attribute transform action aAt =
{
aAu,t

}
u∈Vt

adjusts continuous attributes like bone length, size,
and motor strength. The attribute transform sub-policy πA

θ

(
aAu,t | dt,Φt

)
adopts the same GNN-

based network as the skeleton transform sub-policy πS
θ . The policy distribution for the attribute

transform action is defined as:

πA
θ

(
aAu,t | dt,Φt

)
= N

(
aAu,t;µ

A
u,t,Σ

A
)

(11)

Here, µA
u,t and ΣA are shared by all joints. The new design becomes dt+1 = (Vt, Et, At+1) where

the skeleton (Vt, Et) remains unchanged. And the total steps of attribute transform stage is TA.

The reward signal is sparse for each design step, where only the final reward rT the final design dT
to achieve the robot control task with control policy πc is given as the learning signal.

C.2 CONTROL AS MARKOV DECISION PROCESS

In this part, we describe the control optimization process as a multi-step Markov Decision Process
(MDP), providing a structured approach to the control stage within our reinforcement learning
framework. The design evluation is achieved in the control stage, where the agents will interact
with the task using the final design and control policy πc. The elements of this MDP are defined as
follows:

State st : The state at time t is represented by st ≜ (dT , ot), where dT denotes the final design of
design stage, ot is the current environment observation.

Action at : The action at time t is given by at ≜ ct+1, where ct+1 indicates the next control
parameters. This allows the agent to iteratively modify the control strategy.
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Policy π (at | st) : The policy maps the state to actions, defined as π (at | st) ≜ pθ (ct+1 |
dT , ot, ct), where pθ is the probability distribution over the actions conditioned on the current
state and design.

State Transition P (st+1 | st, at) : The transition probability is given by P (st+1 | st, at) =
p(ot+1|ot, dT , ct+1) is given by the environment (task-wise).

Initial State Distribution ρ0 (s0) : The initial state distribution is defined as ρ0 (s0) ≜
(dT , p(o0), p(c0)), where dT is the final design, p(o0) is the initial observation from the environment
(task-wise), and p(c0) represents the initial control parameters.

Reward Function R (st, at) : The reward function is defined as:

R (st, at) ≜ r(ct+1, dT , ot) (12)

Here, r(ct+1, dT , ot) is given by the environemnt, just the well-known environment reward in also
conditioned on our final design dT .
Definition C.2 (Control Optimization as a MDP). Based on the above, we formulate the design
optimization procedure to the following:

st ≜ (dT , ot, ct) π (at | st) ≜ pθ (ct+1 | ct, dT ) P (st+1 | st, at) = p(ot+1|ot, dT , ct+1)
at ≜ ct+1 ρ0 (s0) ≜ (dT , p(o0), p(c0)) R (st, at) ≜ r(ct+1, dT , ot)

(13)
In this MDP, trajectories consist of Tc time steps, leading to a termination control state. The
cumulative reward of each trajectory equals R(τ) =

∑Tc

t=0[rt], making the maximization of the
control reward Jcontrol (θ) equivalent to optimizing the reinforcement learning objective JRL(π) in
this MDP context.

Robot Control of Transform2Act After the agent performs TS skeleton transform and TA attribute
transform actions, it enters the control stage where the agent assumes the transformed design and
interacts with the environment. A GNN-based execution policy πe

θ (a
e
t | set , dt,Φt) is used in this

stage to output motor control actions aet for each joint.

Since the agent now interacts with the environment, the policy πe
θ is conditioned on the environment

state set as well as the transformed design dt, which affects the dynamics of the environment. The
control actions are continuous. The execution policy distribution is defined as:

πe
θ

(
aeu,t | set , dt,Φt

)
= N

(
aeu,t;µ

e
u,t,Σ

e
)

(14)

where the environment state set =
{
seu,t | u ∈ Vt

}
includes the state of each node u (e.g., joint angle

and velocity). The GNN uses the environment state set and joint attributes At as input node features to
output the mean µe

u,t of each joint’s Gaussian action distribution. Σe is a state-independent learnable
diagonal covariance matrix shared by all joints. The agent applies the motor control actions aet to all
joints and the environment transitions the agent to the next environment state set+1 according to the
environment’s transition dynamics T e

(
set+1 | set , aet

)
. The design dt = dTS+TA

remains unchanged
throughout the control stage.
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(a) 3D Locomotion (b) Swimmer (c) 2D Locomotion (d) Gap Crosser

Figure 8: A random agent in each of four different taks.

D ENVIRONMENT DETAILS

D.1 ROBOT-RELATED TASK

In this part, we provide a comprehensive overview of the four robot-related environments used in our
experiments.

D.1.1 2D LOCOMOTION

The agent in this environment operates within an xz-plane with flat ground at z = 0. Each joint of
the agent can have up to three child joints. For the root joint, additional features such as height and
2D world velocity are included in the state representation. The reward function is defined as:

rt =
|xt+1 − xt|

∆t
+ 1, (15)

where xt represents the x-position of the agent and ∆t = 0.008 is the time step. An alive bonus of 1
is also incorporated into the reward. The episode terminates when the root height drops below 0.7 .

D.1.2 3D LOCOMOTION

In this environment, the agent operates in a 3D space with flat ground at z = 0. Similar to the 2D
Locomotion, each joint can have up to three child joints, with the root joint including height and 3D
world velocity in its state representation. The reward function is given by:

rt =
|xt+1 − xt|

∆t
− α · 1

N

N∑
i=1

∥ai,t∥2 (16)

where α = 0.0001 is a weighting factor for the control penalty term, N is the total number of joints,
and ∆t = 0.04

D.1.3 SWIMMER

The agent in the Swimmer environment moves in water with a viscosity of 0.1 , confined within an
xy-plane. Each joint can have up to three child joints. The root joint state includes height and 2D
world velocity. The reward function is the same as that used in 3D Locomotion.

D.1.4 GAP CROSSER

This environment presents a unique challenge where the agent must navigate across periodic gaps on
an xz-plane. The gaps have a width of 0.96 , with a period of 3.2 . The terrain height is 0.5 . Similar
to the other environments, each joint can have up to three child joints, and the root joint state includes
height, 2D world velocity, and a phase variable encoding the agent’s x-position. The reward function
is defined as:

rt =
|xt+1 − xt|

∆t
+ 0.1 (17)

with ∆t = 0.008. An alive bonus of 0.1 is also incorporated. The episode terminates when the root
height is below 1.0.
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D.1.5 OTHER INFORMATION

Similar to Transform2Act (Yuan et al., 2022), to ensure consistency across different design configura-
tions, each agent is specified using XML strings during the transform stage. The design is represented
as an XML string, which is modified based on the transform actions. At the start of the execution
stage, the modified XML string is used to reset the MuJoCo simulator and load the newly-designed
agent. This approach allows for seamless integration and evaluation of various design modifications
within the MuJoCo environment.

D.2 TETRIS-RELATED TASK

In this part, we provide a comprehensive overview of the two Tetris-related environments used in our
experiments.

D.2.1 TETRIS

In the Tetris environment, the agent manipulates falling blocks to complete horizontal lines without
gaps. Each step increments the reward by 1, promoting continuous gameplay, while termination due
to a stack reaching the top incurs a penalty of -100. During the design stage, the agent designs four
distinct blocks, providing diverse shapes to enhance gameplay. The objective is to optimize these
designs to improve performance in Tetris. Mathematically, the reward function is expressed as:

rt =

{
1 if the game continues,
−100 if the game terminates.

(18)

In practice, the maximum steps for each Tetris game round is set to 128, meaning the optimal score
for each round is 128. Our method successfully identifies blocks enabling indefinite gameplay in
Tetris.

We model the design optimization of Tetris as a multi-step MDP, which can be directly handled by
RL methods:

Design Stage In this stage, the agent designs k = 4 Tetris blocks, each represented as a 3× 3 grid
with 4 squares filled. The state at time t is denoted by st ≜ (dt, ot), where dt is the current design, t
is the time step, and ot is the task/environment state. The action at involves selecting and placing the
squares in the 3× 3 grid to form a valid Tetris block.

The policy π(at | st) maps the state to actions, defined as:

π(at | st) ≜ pθ(xt+1 | dt, ot) (19)

where pθ is the probability distribution over the actions conditioned on the current state and design.

The transition probability P (st+1 | st, at) is given by:

P (st+1 | st, at) ≜ (δdt , δxt+1 , δot) (20)

where δ denotes the Dirac delta function, ensuring deterministic transitions between states based on
the selected actions.

The initial state distribution ρ0(s0) is defined as:

ρ0(s0) ≜ (p(d0), p(o0)) (21)

where p(d0) is the initial design distribution and p(o0) represents the initial environment
state/observation distribution.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Tetris (Start) (b) Tetris (End)

(c) Pattern Matching (Start) (d) Pattern Matching (End)

(e) Microfabrication Deposition (Start)

(f) Microfabrication Deposition (End)

Figure 9: Our agent in each of Tetris-like tasks. In the pattern matching task (i.e., (c) and (d)). The
left is the target pattern and the right is the one constructed by the agent using designed blocks. For
the Microfabrication Deposition task, the goal of our agent is similar to the pattern matching
tasks where the Target chip structure (i.e., target pattern) is given by human experts. And the
design blocks have larger dimension and design space. Even so, our algorithm can still complete
the automated design of the target structure very well, see (e) and (f).

Control Stage After designing the Tetris blocks, the agent enters the control stage, where the
objective is to play the Tetris game using the designed blocks. The control stage is modeled similarly
to the execution stage in a standard MDP framework.
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In the control stage, the state st includes the current game board configuration and the current Tetris
block being placed. The action at involves moving and rotating the Tetris block to place it on the
board.

The policy πc(at | st) maps the state to control actions, defined as:

πc(at | st) ≜ pcθ(at | st, dt) (22)

where dt is the design of the Tetris block and pcθ is the probability distribution over the control actions.

The transition probability P (st+1 | st, at) is determined by the game dynamics:

P (st+1 | st, at) = T c(st+1 | st, at) (23)

where T c represents the transition function of the Tetris game.

The initial state distribution ρc0(s0) is defined by the initial game board configuration and the first
Tetris block to be placed.

The reward function Rc(st, at) in the control stage is given by the game score obtained by clearing
lines:

Rc(st, at) ≜ rc(st+1) (24)

where rc is the reward function of the Tetris game.

The overall objective in the control stage is to maximize the cumulative reward, which corresponds to
achieving the highest possible score in the Tetris game using the designed blocks.

D.2.2 PATTERN MATCHING (MICROFABRICATION)

The Pattern Matching environment challenges the agent to arrange blocks to match a target pattern
within a grid. The reward is based on the success of the matching process, with a matching rate of
1 for a perfect match. During the design stage, the agent designs four different blocks to achieve
various target patterns. The objective is to optimize these designs to improve the agent’s ability to
accurately and efficiently match the given patterns. The reward function is defined as:

rt = matching_rate(st, g) (25)

where st represents the state of the grid at time t, and g is the target pattern. The matching rate
measures how well the current grid state matches the target pattern, with a maximum value of 1 for a
perfect match. In our experiments, our method achieves a matching rate of approximately 97%.

Design Stage of Pattern Matching In the design stage, the agent designs k = 4 different pattern
blocks. Each block is a 3× 3 grid where the agent places squares to form specific patterns.

The state at time t is represented by st ≜ (dt, ot), where dt denotes the current design, and ot
represents the state of the task/environment. The action at at time t involves selecting and placing the
squares in the 3× 3 grid to form a valid pattern block.

The policy π(at | st) maps the state to actions, defined as:

π(at | st) ≜ pθ(xt+1 | dt, ot) (26)

where pθ is the probability distribution over the actions conditioned on the current state and design.

The transition probability P (st+1 | st, at) is given by:

P (st+1 | st, at) ≜ (δdt , δxt+1 , δot) (27)
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where δ denotes the Dirac delta function, ensuring deterministic transitions between states based on
the selected actions.

The initial state distribution ρ0(s0) is defined as:

ρ0(s0) ≜ (p(d0), p(o0)) (28)

where p(d0) is the initial design distribution, and p(o0) represents the initial environment
state/observation distribution.

The reward function R(st, at) in the design stage is defined as:

R(st, at) ≜

{
r(dT ) = matching_rate(dT , g) if t = T,

0 otherwise
(29)

where r(dT ) evaluates the quality of the final design dT .

We model the design optimization of Pattern Matching as a multi-step MDP, which can be directly
handled by RL methods:

Control Stage of Pattern Matching Task After designing the pattern blocks, the agent enters the
control stage, where the objective is to match the designed patterns with a target pattern. This stage is
modeled similarly to the execution stage in a standard MDP framework.

In the control stage, the state st includes the current target pattern configuration and the current
pattern block being placed. The action at involves selecting and placing the designed pattern block
onto the target grid.

The policy πc(at | st) maps the state to control actions, defined as:

πc(at | st) ≜ pcθ(at | st, dt) (30)

where dt is the design of the pattern block, and pcθ is the probability distribution over the control
actions.

The transition probability P (st+1 | st, at) is determined by the pattern matching dynamics:

P (st+1 | st, at) = T c(st+1 | st, at) (31)

where T c represents the transition function of the pattern matching task.

The initial state distribution ρc0(s0) is defined by the initial target pattern configuration and the first
pattern block to be placed. The overall goal in the control stage is to maximize the matching rate by
optimally placing the designed blocks on the grid.

D.3 MICROFABRICATION DEPOSITION TASK

The Deposition environment is similar to the Pattern Matching task, but the agent must match three
layers of different colours instead and remove material as opposed to adding. The agent still only has
access to four blocks in the problem. We use a delta reward function for the reward signal:

rt = matching_rate(st, g)−matching_rate(st−1, g), (32)

where again st is the grid’s state at time t and g is the three-layer pattern of interest. This reward led
to better matching rates for this task in practice. Otherwise, both the control phase and the design
phases behave the same in the pattern-matching environment.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Ours (b) Transform2Act

Figure 10: Best Design Found in Gap Crosser Task.

E BEST DESIGN FOUND BY OUR METHOD

In this section, we would like to share, analyze and interpretate some good design our method found
in different tasks.

E.1 GAP CROSSER

In Figure 10, the two designs for the Gap Crosser task exhibit significant differences in morphology,
which impact their performance in navigating the environment’s periodic gaps. Our design (See
Figure 10a), which features a bipedal form, offers several advantages over the design discovered by
Transform2Act (See Figure 10b). Let’s analyze these differences and their implications in detail.

Reach and Stride Length The elongated limbs in our design significantly enhance the robot’s
reach, allowing it to span wider gaps with each step. The increased stride length means the robot
can cover more ground with fewer steps, which is a critical advantage in a task where efficiency and
speed are paramount. The extended reach also reduces the number of transitions the robot needs to
make, minimizing the risk of falling.

The Transform2Act design, with its shorter limbs, has a limited stride length. This limitation forces
the robot to take more steps to cross the same distance, increasing the number of times it must
navigate the gap edges. The shorter reach means that the robot has to exert more effort to span the
gaps, which can slow down its progress and increase the likelihood of falling.

Joint Flexibility and Movement Efficiency Our design incorporates strategically placed joints
that enhance flexibility and movement efficiency. The joints are positioned to allow smooth, natural
movements that mimic a walking gait, which is highly efficient for crossing gaps. This flexibility
helps the robot adjust its stride dynamically based on the size and distance of the gaps, providing
adaptability that is crucial for success in this task.

The Transform2Act design’s joint configuration does not optimize movement efficiency to the same
extent. The joint angles and placements may restrict fluid motion, making it harder for the robot to
adjust its stride effectively. This rigidity can lead to jerky movements and less efficient navigation,
reducing the overall performance in the Gap Crosser task.

Energy Efficiency The bipedal form of our design promotes energy-efficient movement. The
upright posture and long limbs mean the robot can use momentum effectively, reducing the energy
required for each step. This efficiency allows the robot to maintain higher speeds and cover more
distance without exhausting its energy reserves quickly.

In contrast, the Transform2Act design’s lower, more compact form likely requires more energy to lift
and move each limb, especially when navigating gaps. The increased energy expenditure can slow
down the robot over time, making it less effective in completing the task within a given time frame.

Adaptability to Terrain Our design’s adaptability to different terrain conditions is another critical
advantage. The bipedal structure can easily adjust to varying gap sizes and irregularities in the
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(a) Ours (b) Transform2Act

Figure 11: Best Design Found in 2D Locomotion Task.

terrain, providing robust performance across different scenarios. This adaptability ensures consistent
performance regardless of changes in the environment.

The Transform2Act design may struggle with adaptability due to its less versatile morphology. The
limited reach and less flexible joints make it harder for the robot to adjust to unexpected changes in
gap size or terrain irregularities, reducing its overall effectiveness in dynamic environments.

In general, our bipedal design offers superior stability, reach, movement efficiency, energy efficiency,
and adaptability compared to the design found by Transform2Act. These advantages make our design
more suitable for the Gap Crosser task, as it can navigate the gaps more effectively, maintain higher
speeds, and adapt to varying terrain conditions. The strategic placement of joints and the elongated
limbs contribute significantly to these improvements, showcasing the efficacy of our multi-step MDP
approach in optimizing robotic morphology for specific tasks.

E.2 2D LOCOMOTION

In the 2D Locomotion Task, our design (Figure 11a) outperforms the design discovered by Trans-
form2Act (Figure 11b) due to several key factors. Our design features a more streamlined morphology
with one fewer joint on the tail foot and an additional joint on the forelimb, resulting in a more
efficient structure for the given task.

Firstly, reducing the number of joints on the tail foot from two to one eliminates unnecessary weight
and complexity. This simplification allows the robot to achieve a more stable and balanced gait,
crucial for efficient locomotion. The tail foot in our design acts more like a stabilizer, providing
necessary support without contributing excess weight that could hinder movement. This contrasts
with the design by Transform2Act, which includes an extra hind limb that adds weight and complexity
without significant benefits to the locomotion task.

Secondly, the addition of a joint to the forelimb in our design, increasing it from two to three joints,
enhances the robot’s ability to maneuver and adapt to various terrains. This increased flexibility in
the forelimb joints allows for more refined control of movement, improving the robot’s ability to
propel itself forward efficiently. The added joint provides greater range of motion and better shock
absorption, which is particularly beneficial in maintaining high-speed locomotion while minimizing
energy expenditure.

Additionally, the overall morphology of our design promotes a more effective distribution of force
and balance during movement. The simplified tail structure reduces drag and the potential for
destabilizing forces, while the enhanced forelimbs improve traction and propulsion. This combination
ensures that the robot can maintain a steady and efficient forward motion, optimizing its velocity and
stability. In comparison, the design by Transform2Act suffers from having an additional hind limb
that does not significantly contribute to forward propulsion. This extra limb increases the complexity
of movement and can lead to inefficient energy usage. Furthermore, the lack of an additional joint in
the forelimb limits the range of motion and adaptability of the robot, making it less suited to handle
diverse locomotion challenges. In general, our design excels in the 2D Locomotion Task due to its
streamlined structure, enhanced forelimb flexibility, and overall balanced morphology. These features
collectively contribute to a more efficient and stable movement, allowing the robot to perform the
task more effectively than the design discovered by Transform2Act.
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(a) Block1 (b) Block2 (c) Block3 (d) Block4

Figure 12: Best Design Found in Tetris by Our method.

(a) Block1 (b) Block2 (c) Block3 (d) Block4

Figure 13: Best Design Found in Tetris by Transform2Act (Yuan et al., 2022).

E.3 TETRIS

In the Tetris environment, the agent is tasked with manipulating falling blocks to complete horizontal
lines without gaps. The primary goal is to maximize the number of completed lines while avoiding
the stack reaching the top of the playing field, which would end the game. The design stage involves
creating four distinct blocks, each intended to optimize the agent’s performance in achieving this
goal.

In the comparison between the optimal designs found by our method (Figure 12) and those found by
Transform2Act (Figure 13), several key differences highlight why our designs are superior for the
Tetris task.

Uniformity and Symmetry Our method produced four identical blocks, each with a symmetrical
triangular convex shape. This uniformity is a significant advantage because it simplifies the control
strategy for the agent. With identical blocks, the agent can develop a single, effective placement
strategy, reducing the complexity of decision-making. In contrast, the designs generated by Trans-
form2Act vary significantly in shape and configuration. This diversity necessitates a more complex
control policy, as the agent must account for different shapes and their corresponding placements.

Efficient Line Completion The symmetrical triangular convex shape of our blocks allows for
seamless interlocking, facilitating the easy formation of complete horizontal lines. This shape
minimizes gaps between blocks, which is crucial for preventing the stack from reaching the top of the
playing field and terminating the game. The shapes designed by Transform2Act, on the other hand,
are less conducive to forming complete lines. The varied and less symmetrical shapes are more likely
to create gaps, making it harder to consistently clear lines and maintain continuous gameplay.

Flexibility and Adaptability Our uniform blocks provide greater flexibility in placement, ac-
commodating various configurations on the playing field. The symmetrical nature means they can
be rotated and placed in multiple orientations, enhancing their utility in maintaining an optimal
configuration on the board. This flexibility ensures that the agent can adapt to different scenarios,
maintaining continuous gameplay even as the stack of blocks grows. Transform2Act’s designs, with
their irregular shapes, offer less flexibility and adaptability, making it harder for the agent to handle
diverse gameplay situations effectively.
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Continuous Gameplay The combination of uniformity, efficient line completion, and flexibility
means that our blocks enable the agent to play indefinitely, achieving a perfect score. The optimal
control strategy derived from these designs allows the agent to exploit the advantages of the block
shapes fully, leading to consistent high performance and maximized rewards. In contrast, the varied
shapes from Transform2Act do not support continuous gameplay as effectively. The likelihood of
creating gaps and the need for a more complex control strategy reduce the agent’s ability to maintain
an optimal configuration on the board, leading to more frequent game terminations.

Simplification of Control Policy By using identical blocks, our method reduces the control policy’s
complexity, as the agent does not need to switch strategies for different shapes. This simplification
allows the agent to focus on optimizing the placement of the blocks to maximize line completions,
further enhancing performance. Transform2Act’s varied block designs require the agent to constantly
adapt its control strategy, increasing the likelihood of suboptimal placements and game terminations.

In general, the optimal designs found by our method are superior to those generated by Transform2Act
due to their uniformity, symmetry, efficiency in line completion, flexibility, and simplification of the
control policy. These attributes collectively enable the agent to maintain continuous gameplay and
achieve the highest possible scores in the Tetris task.
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F DETAILED IMPLEMENTATION OF ADAPTIVE CONTROL MECHANISM

A fixed probability p can help agents balance the trade-off between exploration and exploitation.
However, it does not allow the agent to adaptively select the most appropriate design method according
to different learning stages. For instance, during the early stages of training, agents should actively
explore the entire design space by selecting a large exploration rate p, rather than spending time
exploiting suboptimal designs. Conversely, in the latter stages of training, when sufficient good
designs have been discovered and the design space has been thoroughly explored, agents should focus
on exploiting these good designs by using a smaller exploration rate p.

To address this limitation, we propose a meta-controller that dynamically adjusts the design explo-
ration rate p, balancing exploration and exploitation throughout the design optimization process.
Specifically, we employ a multi-armed bandit (MAB) approach to help the agent decide whether to
design from scratch or use good examples. Each bandit has two arms: arm 0 represents designing
from scratch, and arm 1 represents designing from good examples.

In this section, we introduce the adaptive exploration mechanism used in our method, leveraging
MAB to dynamically adjust the exploration-exploitation trade-off during the design optimization
process.

F.1 BANDIT-BASED EXPLORATION-EXPLOITATION ADJUSTMENT

Our method leverages a two-armed bandit to dynamically adjust the exploration-exploitation trade-off:

F.1.1 EXPLORATION-EXPLOITATION CHOICES

In our approach, we simplify the problem by having only two discrete choices for the exploration rate
p. This results in a two-armed bandit problem, where:

• Arm k = 0 corresponds to designing from scratch.
• Arm k = 1 corresponds to starting from a good design example sampled from the design

buffer.

F.1.2 SAMPLING AND UPDATING

We employ Thompson Sampling (Garivier & Moulines, 2011) for the MAB implementation. The set
of arms K = {0, 1} represents the two choices for the design process.

At each round, the actor samples the arm with the highest mean reward. Initially, each actor produces
a sample mean from its mean reward model for each arm, selecting the arm with the largest mean.
Upon observing the selected arm’s reward, the mean reward model is updated.

In general, at each time step t, the MAB method chooses an arm kt from the set of arms K = {0, 1}
according to a sampling distribution PK , conditioned on the sequence of previous decisions and
returns. The probability distribution for choosing an arm is given by:

PK =
eScorek∑
j e

Scorej
(33)

Here, the score for each arm is given by the Upper Confidence Bound (UCB) formula (Garivier &
Moulines, 2011):

Score k = Vk + c ·

√√√√ log
(
1 +

∑
j ̸=k Nj

)
1 +Nk

(34)

where Vk is the expected value of the returns, and Nk is the number of times arm k has been selected.
This ensures that the agent avoids repeatedly selecting the same arm, thus preventing premature
convergence to suboptimal solutions and handling non-stationarity.
Remark (Z-Score Normalization). In practice, Z-score normalization is used to normalize VT (x) :

Scorex =
VT (x)− E [VT (x)]

D [VT (x)]
+ c ·

√√√√ log
(
1 +

∑
j NT (j)

)
1 +NT (x)

(35)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Remark (Design Exploration Rate). It’s worth noting that the design exploration rate, denoted by p,
is derived from the probability distribution of selecting the Oth arm in our bandit-based approach.
This probability distribution is calculated as follows:

p = P(arm=0) = softmax (Scorearm =0) =
eScorek=0∑
j e

Scorej
(36)

F.1.3 DYNAMIC ADJUSTMENT

The agent dynamically chooses between exploration and exploitation by sampling an arm at each
decision point. This choice adjusts the design strategy based on the accumulated rewards and the
frequency of each arm’s selection. If the agent selects arm k = 0, it designs from scratch. If the agent
selects arm k = 1, it uses a good example from the design buffer.

F.2 POPULATION-BASED BANDIT

To address non-stationarity, we employ a population-based MAB approach. We initialize a population
{Bh1

, . . . , BhN
}, where each bandit is indexed by a hyper-parameter ci. The hyper-parameter ci is

uniformly sampled for each bandit.

F.2.1 POPULATION-BASED SAMPLE

During sampling, each bandit Bci samples D arms ki ∈ K with the top-D UCB scores. We then
summarize the selection frequency of each arm and choose the arm xj selected most frequently. This
ensures robust sampling from the most promising regions.

F.2.2 POPULATION-BASED UPDATE

Using xj,t, the agent decides whether to reuse a base design dgood sampled from the design buffer B
or to design from scratch. The agent then applies the design policy πD and the control policy πC to
obtain a trajectory τi and the undiscounted episodic return Gi =

∑T
t=0 rt. This return Gi is used to

update the reward model Vk corresponding to arm k.

Algorithm 2 Population-Based Multi-Arm Bandits (Actor-Wise)

1: for Each Actor j do
2: // Initialize Bandits Population
3: Initialize each bandit Bci in the population with different hyper-parameters c.
4: Incorporate each bandit together to form a population of bandits.
5: for each episode j do
6: for each Bci in bandit population do
7: Sample top-D UCB Score arms via equation equation 35.
8: end for
9: Summarize the selected arms and count the frequency of each arm.

10: Uniformly sample an arm xj among the most frequently selected arms.
11: Decide whether to design from scratch (xj = 1) or use a good example (xj = 0).
12: Execute the chosen design strategy and obtain the return Gj .
13: for each Bci in Bandit Population do
14: Update Bci .
15: end for
16: end for
17: end for
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G DETAILED IMPLEMENTATION OF THE DESIGN BUFFER

The Design Buffer is a crucial component of our framework, enhancing the efficiency and effectiveness
of the design optimization process. This section provides a detailed description of the Design Buffer
algorithm, along with its pseudocode.

G.1 DESIGN BUFFER IMPLEMENTATION

The Design Buffer is initialized with a predefined capacity N and begins as an empty set. As training
progresses, it is populated with high-performing designs. Each design di is evaluated based on its
performance score F (di). Designs that meet or exceed a quality threshold are stored in the buffer to
ensure only the most effective designs are retained.

During the design stage, the agent decides whether to generate a new design dnew from scratch or to
sample an existing design dsampled from the buffer. This decision is governed by the meta-controller,
which dynamically adjusts the exploration probability p. The buffer is continuously updated: when
a new high-quality design is identified, it is added to the buffer. If the buffer is at full capacity, the
design with the lowest performance score is replaced by the new design, provided F (dnew) > F (dmin),
where dmin is the design with the lowest score in the buffer.

The designs stored in the buffer are periodically refined and re-evaluated, allowing the agent to
iteratively improve upon successful designs.

G.2 PSEUDOCODE FOR DESIGN BUFFER ALGORITHM

The following pseudocode outlines the operations of the Design Buffer within our framework:

Algorithm 3 Design Buffer Algorithm

Initialize: Design Buffer B with capacity N
B ← ∅
for each training iteration i do

if random() < p then
dnew ← generate_design_from_scratch()

else
dsampled ← sample_from_buffer(B)

end if
F (di)← evaluate_design(di)
if |B| < N then
B ← B ∪ {(di, F (di))}

else
(dmin, F (dmin))← argmin(dj ,F (dj))∈B F (dj)
if F (di) > F (dmin) then
B ← (B \ {(dmin, F (dmin))}) ∪ {(di, F (di))}

end if
end if
p← update_exploration_rate(meta_controller)

end for

Below are the detailed descriptions of the functions used in the pseudocode:

• generate_design_from_scratch(): This function generates a new design from scratch,
represented as dnew.

• sample_from_buffer(B): This function samples a design dsampled from the Design Buffer B
using a softmax probability based on their performance scores.

• evaluate_design(di): This function evaluates a design di and returns its performance score
F (di).

• update_exploration_rate(meta_controller): This function updates the exploration rate p
using the meta-controller to balance exploration and exploitation.
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Initially, the Design Buffer is empty. The agent either generates a new design dnew or samples an
existing design dsampled from the buffer based on the exploration probability p. Each design di is
evaluated, and its performance score F (di) is obtained. If the buffer has not reached its capacity,
the new design is added. If the buffer is full, the design with the lowest score F (dmin) is replaced
by the new design if F (di) > F (dmin). The exploration rate p is dynamically adjusted using the
meta-controller to maintain an effective balance between exploration and exploitation.

This detailed implementation ensures efficient reuse of successful designs while continuing to explore
new design possibilities, significantly enhancing the design optimization process.
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H REPRODUCIBILITY

In this section we conclude the main algorithm Pseudocode of our method in 4 and the code release
details for our Reproducibility. In fact our method directly build on Transform2Act (Yuan et al.,
2022) with an adaptive design-reuse mechanism.

Algorithm 4 EDiSon

Require: number of training iterations N , simple initial design dnull, initial design d0, design buffer
B, bandit MAB, design policy πD, control policy πC , length of design stage T

1: Initialize design policy πD and control policy πC

2: Initialize design buffer B ← (design = dnull, value = 0)
3: Initialize training data replay bufferM← ∅
4: for iteration i = 1 to N do
5: while not reaching batch size do
6: for jth trajectory τj do
7: // Design Stage
8: Sample arm kj from the bandit MAB;
9: if kj = 0 then

10: d0 ← dnull ▷ Design from scratch;
11: else
12: d0 ← Sample from Buffer(B) ▷ Design Reuse
13: end if
14: for iteration t = 1 to T do
15: Sample design actions adt using πD

16: Update design dt with sampled actions adt
17: end for
18: // Control Stage
19: Use πC to rollout control trajectory with design dT , obtain trajectory return Gj

20: Store trajectory j in data replay bufferM← τj
21: Update design buffer B ← (design = dT , value = Gj)
22: Update bandit with (kj , Gj)
23: end for
24: end while
25: Update πC and πD using PPO with samples fromM
26: end for
27: return Optimal design d∗, control policy πC , design policy πD

H.1 CODE RELEASE

Our implementation is built upon the Transform2Act source code (Yuan et al., 2022), which is
available at Transform2Act GitHub. We implement our method on this base code by integrating our
multi-armed bandit, design buffer and design re-use ideas. The detailed implementation, including
the corresponding hyperparameter settings, is provided in the algorithm section of our paper. Notably,
due to the presence of the bandit, extensive hyperparameter tuning is unnecessary. Consequently,
reproducing our method using the open-source Transform2Act code is straightforward. We will also
publish the relevant code and data upon the paper’s officially published.
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I EXPERIMENTAL DETAILS

I.1 IMPLEMENTATION DETAILS

We employ the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) to learn both
the design policy πD and the control policy πC. For the robotic morphology design tasks, we use
the same network architecture as Transform2Act (Yuan et al., 2022) to ensure a fair comparison.
Specifically, we utilize the same Graph Neural Networks (GNNs) to represent both policies, which
facilitates generalization across different designs. In the Tetris-related tasks, we adopt a 3-layer
Multilayer Perceptron (MLP) to represent all policies and critics.

Our algorithm’s code and its detailed pseudocode are provided in App. H. The multi-armed bandit
implementation is elaborated in App. F, and the design buffer details are covered in App. G.
Comprehensive hyperparameters used in our experiments can be found in App. J.

I.2 EXPERIMENTAL SETUP

In the robotic morphology design tasks, we follow a setup similar to Transform2Act (Yuan et al.,
2022). We capture the undiscounted episode returns averaged over 5 seeds, using a windowed mean
across 50,000 environment steps. This setup, along with the default parameters, ensures consistency
and comparability of results.

I.3 RESOURCES USED

All experiments were conducted on a system with one worker equipped with an 8-core CPU and, an
NVIDIA V100 GPU, and memory of 32 GB. This setup provided sufficient computational power to
train and evaluate our models efficiently. We train our models for three days for the robot morphology
design tasks and 4 hours for Tetris-Related Tasks.
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J HYPERPARAMETERS

In this section, we outline the hyperparameters we used for Efficient Design and Stable Control
(EDiSon) and the baseline model, Transform2Act (Yuan et al., 2022). Similar to Transform2Act, our
implementation is based on PyTorch and utilizes the PyTorch Geometric package for handling Graph
Neural Networks (GNNs). Specifically, we also employ GraphConv layers. To train our policies, we
use PPO with Generalized Advantage Estimation (GAE) (Schulman et al., 2017).

J.1 HYPERPARAMETERS FOR OUR METHOD

For Efficient Design and Stable Control (EDiSon), we conducted a thorough hyperparameter search
to ensure optimal performance. We trained our policy using a batch size of 50,000 over 1,000 epochs,
resulting in a total of 50 million simulation steps. The detailed hyperparameters are summarized in
Table 1.

To ensure a fair comparison, we adopt the same GNN architecture and hyperparameters as Trans-
form2Act, which has been detailed in Table. 2. So we won’t go into details about this part of
hyperparamters, which has been detailed in Transform2Act (Yuan et al., 2022). We adhered to the
same total number of simulation steps. Transform2Act was trained with a population of 20 agents,
each using a batch size of 20,000 for 125 generations, also amounting to 50 million simulation steps.

Our rigorous approach to hyperparameter selection and training ensures a level playing field in evalu-
ating the performance of Efficient Design and Stable Control (EDiSon) against Transform2Act. By
maintaining consistent training parameters, we provide a robust and reliable comparison, highlighting
the strengths and capabilities of our method in various design optimization tasks.

Table 1: Hyper-Parameters for Robotic Morphology Design Experiments.

Parameter Value
GAE λ 0.95
Discount factor γ 0.995
Num. of PPO Iterations Per Batch 10
Total Training Epochs 1000
Design Buffer Size 500
Num. of Bandit 7
PPO clip ϵ 0.2
PPO batch size 50000
PPO minibatch size 2048
Num. Bandit 7
Buffer Size 500
c of Bandits Uniform(0,2.0)

J.2 HYPERPARAMETERS FOR BASELINE

In this section concluded the hyperparameters used for baseline (Transform2Act) in Table. 2 (Yuan
et al., 2022).
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Table 2: Hyperparameters used by the baseline method Transform2Act. For Gap Crosser, we also use
0.999 for the discount factor γ.

Hyperparameter Selected

Num. of Skeleton Transforms Ns 5
Num. of Attribute Transforms Nz 5
Policy GNN Layer Type GraphConv
JSMLP Activation Function Tanh
GNN Size (Skeleton Transform) (64, 64, 64)
JSMLP Size (Skeleton Transform) (128, 128),
GNN Size (Attribute Transform) (64, 64, 64)
JSMLP Size (Attribute Transform) (128, 128)
GNN Size (Execution) (32, 32, 32), (64, 64, 64)
JSMLP Size (Execution) (128, 128)
Diagonal Values of Σz 0.01
Diagonal Values of Σe 1.0
Policy Learning Rate 5e-5
Value GNN Layer Type GraphConv
Value Activation Function Tanh
Value GNN Size (64, 64, 64)
Value MLP Size (128, 128)
Value Learning Rate 3e-4
PPO clip ϵ 0.2
PPO Batch Size 50000
PPO Minibatch Size 512, 2048
Num. of PPO Iterations Per Batch 10
Num. of Training Epochs 1000
Discount factor γ 0.995
GAE λ 0.95
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(c) 2D Locomotion
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(d) Gap Crosser

Figure 14: Baseline Comparison (Top-1 Score). For each robot tasks, we plot the mean and standard
deviation of total rewards against the number of simulation steps for all methods. Each curve is
smoothed with a moving average over 5 points.

K EXPERIMENT RESULTS OF ROBOT-RELATED TASK

K.1 TOP-1 SCORE

Apart from the average score, we also record the top-k designs scores across the training in Figure
14, where our method with a bandit can find far more better good designs than Transform2Act. For
example, In the 3D Locomotion task (Figure 3a), our Bandit method demonstrates a significant
advantage over both Transform2Act and our fixed probability p method. The top-1 score for the
Bandit approach quickly surpasses that of the other methods, indicating its superior ability to identify
and optimize the best designs. The same results show in 2D Locomotion, Gap Crosser and 3D
Locomotion in the Water (Swimmer).

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Simulation Step (K)

100

50

0

50

100

150

200

Av
er

ag
ed

 R
et

ur
n

Optimal
Transform2Act (p=1)
Our Method (Bandit)

(a) Tetris

0 2 4 6 8 10
Simulation Step (K)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
ed

 R
et

ur
n

Optimal
Transform2Act (p=1)
Our Method (Bandit)

(b) Microfabrication Deposition

Figure 15: Baseline Comparison (Average Return). For each robot tasks, we plot the mean and
standard deviation of total rewards against the number of simulation steps for all methods. Each curve
is smoothed with a moving average over 5 points. The pure exploration is a version of Transform2act
implementation in Tetris and Microfabrication Deposition Task, i.e., keep others the same as ours and
just keep the design exploration rate p ≜ 1, and thus will not reuse learned designs.

L EXPERIMENT RESULTS OF TETRIS-RELATED TASK

Our experimental results demonstrate the superior performance of our method compared to the
Transform2Act approach across the Tetris and Microfabrication Deposition tasks. These results are
illustrated in Figure 15, where the mean and standard deviation of total rewards are plotted against
the number of simulation steps for both tasks.

Tetris For the Tetris task (Figure 15a), the curve representing our method shows a rapid increase
in average return after approximately 70K simulation steps, eventually reaching a stable and high
performance close to the optimal score of 128. This indicates that our method is capable of identifying
blocks that enable the agent to play the Tetris game indefinitely, achieving scores that Transform2Act
fails to reach. In contrast, Transform2Act maintains a relatively flat curve with modest gains,
demonstrating its inability to adapt and optimize as effectively as our approach.

Microfabrication Deposition In the Microfabrication Deposition task (Figure 15b), our method
consistently outperforms Transform2Act, as evidenced by the higher average return throughout
the entire simulation process. The curve for our method shows a steady increase, approaching the
optimal matching rate of 1.0, while Transform2Act plateaus at a lower performance level. This
highlights the effectiveness of our bandit-based meta-controller in dynamically balancing exploration
and exploitation, which is crucial for achieving high matching accuracy.

The success of our method can be attributed to several key factors. Firstly, our adaptive exploration-
exploitation trade-off mechanism allows the agent to efficiently explore new designs and exploit
known good designs. This dynamic adjustment is particularly beneficial in complex design tasks,
where a static approach like Transform2Act falls short. Secondly, the design buffer in our method
facilitates design reuse, enabling the agent to leverage previously successful designs and build upon
them. This not only enhances performance but also accelerates the learning process.

Furthermore, our bandit-based meta-controller’s ability to adapt to different stages of learning is a
significant advantage. Early in the training, the meta-controller promotes exploration to discover a
diverse set of designs. As the training progresses and the agent identifies high-quality designs, the
meta-controller shifts towards exploitation, refining and optimizing these designs to achieve peak
performance.

In general, our experimental results on the Tetris and Microfabrication Deposition tasks showcase the
superiority of our method over Transform2Act. The dynamic and adaptive nature of our approach,
combined with the efficient design reuse facilitated by the design buffer, leads to significantly better
performance and faster learning. These findings underscore the necessity of an adaptive exploration-
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exploitation strategy in design optimization tasks and highlight the advantages of our bandit-based
meta-controller in achieving superior outcomes.
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Figure 16: Case Study (Design Exploration Rate Preference).

M CASE STUDY: DESIGN EXPLORATION RATE PREFERENCE

In this section, we present a detailed case study to explore the influence of the design exploration rate
on the performance of our proposed method across different tasks. The results, as illustrated in Figure
16, demonstrate that the optimal design exploration rate varies significantly depending on the specific
task. This finding underscores the necessity of dynamically adjusting the exploration-exploitation
balance to achieve optimal performance.

Gap Crosser For the Gap Crosser task (Figure 16a), the agent shows a clear preference for a
design exploration rate around 0.3 to 0.4. At these rates, the agent achieves the highest average
return, indicating that a moderate level of exploration allows the agent to discover effective designs
while also leveraging previously learned successful strategies. Extremely low or high exploration
rates result in suboptimal performance, highlighting the importance of balancing exploration and
exploitation. A low exploration rate (e.g., 0.0 to 0.2) limits the agent’s ability to discover new and
potentially better designs, while a high exploration rate (e.g., 0.8 to 1.0) prevents the agent from fully
exploiting known good designs.

Swimmer In the Swimmer task (Figure 16b), the agent’s performance peaks at an exploration
rate of approximately 0.3 to 0.5. This suggests that, similar to the Gap Crosser task, a moderate
exploration rate is most effective. The agent needs to explore sufficiently to find hydrodynamically
efficient morphologies while also exploiting designs that have been previously validated as effective.
Lower exploration rates fail to provide the diversity of designs necessary for optimal swimming
performance, whereas higher rates again hinder the ability to refine and exploit known good designs.

Our findings from these case studies highlight a key advantage of our approach over the Trans-
form2Act method: the ability to dynamically adapt the design exploration rate based on the task at
hand. Transform2Act employs a fixed exploration strategy, which may not be optimal for all tasks.
The variability in optimal exploration rates across tasks, as evidenced by our experiments, showcases
the necessity for an adaptive strategy.

By employing a meta-controller to adjust the exploration rate, our method achieves superior per-
formance across varied tasks. This adaptive strategy allows the agent to explore extensively during
the initial phases of learning, ensuring a broad search of the design space, and to shift focus to
exploitation in later stages, maximizing the benefits of previously discovered good designs. This
balance is crucial in design optimization, where both the discovery of new designs and the refinement
of known good designs are necessary for achieving optimal performance.

The case study results clearly demonstrate the task-specific nature of optimal design exploration rates
and validate the effectiveness of our adaptive exploration strategy. By allowing the exploration rate
to be dynamically adjusted, our method significantly outperforms the fixed strategy employed by
Transform2Act (Yuan et al., 2022). This flexibility not only improves the agent’s performance in
specific tasks but also generalizes well across different types of design optimization problems. The
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success of our approach in these diverse tasks underscores the importance of adaptive strategies in
reinforcement learning for design optimization, paving the way for more intelligent and efficient
design automation in future research.
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Figure 17: Case Study (Adatively Exploration-Exploitation Trade-off with Bandit). For each
robot tasks, we plot the mean and standard deviation of design exploration rate against the number of
simulation steps for all methods.

N CASE STUDY: EXPLORATION-EXPLOITATION TRADE-OFF

In this section, we present a comprehensive case study to demonstrate that our method can adaptively
select the appropriate design exploration rate throughout the learning process. The design exploration
rate, denoted by p, is derived from the probability distribution of selecting the arm=0 in our bandit-
based approach. This probability distribution is calculated as follows:

p = P(arm=0) = softmax (Scorearm =0) =
eScorek=0∑
j e

Scorej
(37)

Our case study results, illustrated in Figure 17, demonstrate the effectiveness of our banditbased
meta-controller in dynamically balancing the exploration-exploitation trade-off in design optimization
problems. The plots show the mean and standard deviation of the design exploration rate across
different tasks over the number of simulation steps. This analysis provides insights into how our
method adapts to different stages of learning, significantly outperforming the existing Transform2Act
method (Yuan et al., 2022) .

2D Locomotion In the 2D Locomotion task (Figure 17a), our method initially emphasizes explo-
ration, with the design exploration rate peaking around 0.7 during the early stages of training. This
high exploration rate is crucial for discovering diverse and potentially high-performing designs. As
training progresses, the exploration rate gradually decreases, stabilizing around 0.2. This shift signi-
fies a transition towards exploitation, where the algorithm focuses on refining and utilizing the most
promising designs discovered during the exploration phase. The adaptive nature of our bandit-based
controller allows it to seamlessly navigate between exploration and exploitation, ensuring a balanced
approach that maximizes performance.

Swimmer Similarly, in the Swimmer task (Figure 17b), our method starts with a high exploration
rate of around 0.6. The exploration rate fluctuates initially, indicating the algorithm’s efforts to
balance between exploring new designs and exploiting known good designs. As training progresses,
the exploration rate stabilizes around 0.2, reflecting a shift towards exploitation. The ability of our
method to adjust the exploration rate dynamically is evident in these fluctuations, showcasing its
capability to adapt to the changing needs of the task as learning progresses.

Further Analysis The necessity of automatically finding the best design exploration rate for each
task is underscored by the variability in optimal exploration rates observed across different tasks.
Our bandit-based meta-controller excels in this regard, as it can dynamically adjust the exploration-
exploitation balance based on the specific requirements of each task. This adaptability is a significant
advantage over fixed-rate methods like Transform2Act, which cannot tailor the exploration rate to the
evolving demands of the task.
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Compared to Transform2Act, our method demonstrates superior performance in balancing exploration
and exploitation. Transform2Act employs a fixed exploration rate, which can lead to suboptimal
performance as it cannot adapt to the changing dynamics of the learning process. In contrast, our
method leverages a bandit-based meta-controller to dynamically adjust the exploration rate, ensuring
that the algorithm can explore extensively during the early stages and exploit effectively in the later
stages.

The success of our method can be attributed to its ability to maintain a dynamic balance between
exploration and exploitation. By using a meta-controller that adapts the exploration rate based on
the observed rewards, our method can efficiently navigate the design space, uncovering high-quality
designs and refining them over time. This dynamic adjustment is crucial for optimizing performance
across different tasks, as evidenced by the superior results shown in our case study.

Our bandit-based meta-controller effectively manages the exploration-exploitation trade-off, leading
to significant improvements in design optimization tasks. The ability to adapt the exploration rate
dynamically allows our method to outperform fixed-rate approaches like Transform2Act, highlighting
the importance of adaptive strategies in complex design optimization problems.
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Figure 18: Ablation Study Results (Average Return).

O ABALTION STUDIES

In this section, we will provide more details of our abaltion studies.

In our ablation studies, we investigate the importance of two critical components in our approach: the
adaptive exploration-exploitation trade-off and the design reuse facilitated by the design buffer. To
thoroughly evaluate the impact of these components, we designed several variants of our method:

• Ours w/o Bandit: This variant removes the adaptive exploration-exploitation mechanism.
The agent is forced to use a fixed exploration rate throughout the training process.

• Ours w/o Exploitation: This variant eliminates the design buffer, requiring the agent to
always design from scratch. Consequently, it cannot leverage previously successful designs.

• Ours w/o Exploration: This variant sets the exploration rate p to 0 throughout the training,
effectively disabling exploration and relying solely on exploitation.

• Our Main Method (with Bandit): This is our complete approach, incorporating both the
adaptive exploration-exploitation trade-off and the design buffer. The meta-controller
dynamically adjusts the exploration rate, balancing between creating designs from scratch
and reusing good designs.

The results of these ablation studies are presented in Figure 18. The findings clearly demonstrate
the importance of both design reuse and the adaptive exploration-exploitation trade-off. Specifically,
the design buffer significantly enhances performance by allowing the agent to leverage previously
successful designs, while the adaptive mechanism ensures an effective balance between exploring
new designs and exploiting known good ones. Below we will conduct a detailed analysis of the
results

Detailed Analysis The impact of removing the adaptive exploration-exploitation mechanism (Ours
w/o Bandit) was significant across all tasks. This variant showed a notable performance drop,
highlighting the necessity of dynamically adjusting the exploration rate. A fixed exploration rate
failed to adapt to different stages of learning, leading to suboptimal performance. For instance, in
the 2D Locomotion task, the average return was considerably lower compared to our main method,
which demonstrates the critical role of the adaptive strategy in efficiently navigating the design space.

Eliminating the design buffer (Ours w/o Exploitation) also resulted in decreased performance. This
variant required the agent to design from scratch continuously, preventing it from leveraging previ-
ously successful designs. The performance drop observed in tasks such as the Swimmer emphasizes
the value of design reuse. Without the ability to reuse effective designs, the agent struggled to
maintain high performance, showcasing the necessity of the design buffer in achieving efficient
design optimization.

Disabling exploration (Ours w/o Exploration) led to particularly poor performance, especially during
the early stages of training. This variant set the exploration rate p to 0, relying solely on exploitation.
The results were most evident in the Gap Crosser task, where the average return was significantly
lower. The lack of exploration prevented the agent from adequately exploring the design space,
limiting its ability to discover high-quality designs. This finding underscores the importance of a
balanced approach that includes both exploration and exploitation.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Our main method (with Bandit) consistently outperformed all ablation variants, demonstrating the
superiority of integrating both the adaptive exploration-exploitation trade-off and the design buffer.
The meta-controller effectively balanced exploration and exploitation, resulting in diverse and high-
quality designs across tasks. For example, in the 2D Locomotion task, our main method achieved the
highest average return, illustrating its ability to dynamically adjust the exploration rate according to
the learning stage. Similarly, in the Swimmer task, the performance was significantly enhanced by
the adaptive mechanism, which facilitated the discovery and reuse of optimal designs.

The results of our ablation studies underscore the critical role of adaptive strategies and design reuse
in design optimization tasks. The adaptive exploration-exploitation mechanism ensured an effective
balance between exploring new designs and exploiting known good ones, while the design buffer
allowed the agent to leverage previously successful designs. These components, when combined
in our main method, significantly enhanced performance and efficiency. This comprehensive anal-
ysis showcases the necessity of an adaptive, task-specific approach to design optimization, further
highlighting the superiority of our method over existing approaches such as Transform2Act.
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