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Abstract—In this paper, an event-triggered optimal tracking
control problem is studied for uncertain nonlinear systems based
on reinforcement learning (RL). Firstly, a class of nonlinear
dynamic systems with general uncertainty is considered and
the augmented system comprising tracking error and reference
signal is constructed. Secondly, an improved adaptive dynamic
programming (ADP) technique, involving actor-critic algorithm
and fuzzy logic systems, is developed to solve the Hamil-
ton–Jacobi–Bellman (HJB) equation with respect to nominal aug-
mented system. Thirdly, in order to reduce the mechanical wear
of actuator and energy consumption, event-triggered mechanism
is performed in controller updating. Finally, stability analysis
proofs that all signals are uniformly ultimately bounded (UUB)
in the closed-loop system via Lyapunov theory. Simulation results
verify feasibility of proposed scheme.

Index Terms—ADP, event-triggered, reinforcement learning,
nonlinear, fuzzy logic systems, tracking control.

I. INTRODUCTION

Reinforcement Learning (RL) as an effective technique
has competent in facilitating adaptive optimization strategy
[1], [2]. Generally, optimization is implemented via seeking
minimized or maximized cost function to solve the Hamil-
ton–Jacobi–Bellman (HJB) equation [3]. However, there exists
a challenge about acquiring analytic solution of HJB equation
directly for nonlinear dynamic systems [4]. Therefore many
researchers proposed numerical solution of HJB equation
[5]. Adaptive dynamic programming (ADP) as an advanced
numerical solving method, has been widely applied to achieve
the optimal tracking control of nonlinear systems.

In contrast to traditional dynamic programming, ADP can
be utilized to design optimal controller forward in time,
which effectively avoids “curse of dimensionality” [6], [7].
In addition, an improved ADP framework consists of actor-
critic algorithm and fuzzy logic systems is constructed. So far,
there have been many scholars devoting to developing ADP
techniques [8]–[10]. In [11], ADP method was implemented
to solve a new neuro-optimal control problem of nonlinear
dynamic systems by employing one critic and two actor
networks. In [12], a neural-network-based ADP method was
developed to solve the optimal tracking control problem of

a class of nonlinear systems with unmatched uncertainties.
In [13], linear singularly perturbed system was studied via
employing ADP framework to achieve optimal control. These
literatures concentrated on application and development of
ADP and RL, but they did not consider the condition with
mechanical wear of actuator and energy consumption. As a
result, it is of necessity to perform event-triggered mechanism
in control design for reducing mechanical wear and saving
energy in actual engineering practice [14].

The key of event-triggered control algorithm is triggering
threshold [14]. When signal exceeds triggering threshold,
control policy will be updated [15], [16]. In this paper, an
event-triggered optimal tracking control scheme for uncertain
nonlinear systems based on RL is developed. There are two
main contributions:

(1) An improved ADP and RL algorithm involving actor-
critic and fuzzy logic systems is developed, which develops the
optimal control strategy and effectively balances the tracking
control performance and control costs.

(2) Event-triggered mechanism is performed in controller
design, the unnecessary control input is avoided, achieving
the reduction of mechanical wear and the energy saving in
engineering practice.

The organization of this paper is shown as follows. System
dynamic description and fuzzy logic systems are stated in
Section II. Optimal controller and event-triggered controller
are designed in Sections III and IV, respectively. Stability
analysis, simulation and conclusion are shown in Sections V,
VI and VII, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System dynamic description

Consider a class of continuous-time nonlinear dynamic
systems which can be described by

ẋ (t) = f (x (t)) + g (x (t))u (t) +D(x(t)) (1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the
control input, f(x(t)) ∈ Rn and g(x(t)) ∈ Rn×m are
the unknown smooth function and unknown smooth function



matrix respectively, D(x(t)) is the unknown disturbance with
∥D(x(t))∥ ≤ λD and λD is a positive parameter.

To achieve tracking control, a reference signal is given by

ṙ(t) = δ(r(t)) (2)

where r(t) ∈ Rn is a bounded desired trajectory and δ(r(t))
is a Lipschitz continuous function. Let the tracking error be

e (t) = x (t)− r(t) (3)

Combining equations (1), (2) and (3), one can yield the
following dynamic of tracking error

ė (t) = f (x (t)) + g (x (t))u (t) +D(x(t))− δ(r(t)) (4)

Note that x (t) = e (t)+ r (t), equation (4) can be rewritten
as

ė (t) =f (e (t) + r (t))− δ(r(t)) + g (e (t) + r (t))u (t)

+D(e (t) + r (t))
(5)

For the sake of facilitating description, define ξ (t) =
[eT(t), rT(t)]T ∈ R2n, and then dynamic systems (2) and (5)
can be augmented as a concise form

ξ̇ (t) = F (ξ (t)) +G (ξ (t))u (t) + ∆D(ξ(t)) (6)

where F (ξ (t)) and G (ξ (t)) are new matrices and ∆D(ξ(t))
can be still regarded as a new uncertain term. In par-

ticular, F (ξ (t)) =

[
f (e (t) + r (t))− δ(t)

δ(t)

]
, G (ξ (t)) =[

g (e (t) + r (t))
0n×m

]
and ∆D(ξ(t)) =

[
D(e (t) + r (t))

0n×1

]
.

Undoubtedly, the new uncertain term ∆D(ξ(t)) is still upper
bounded since

∥∆D(ξ(t))∥ = ∥D(e (t) + r (t))∥ = ∥D(x (t))∥ ≤ λD (7)

To accomplish tracking control of dynamic system (1)
to reference signal (2), the feedback controller u(ξ) will
be constructed. One can yield that the closed-loop system
is asymptotically stable under the controller u(ξ) for the
uncertain and bounded term ∆D(ξ(t)). Therefore, the optimal
control policy can be applied by considering appropriate cost
function of the subsequent nominal system the same as that
in [5].

B. Fuzzy logic systems

Define a nonlinear continuous function P (x) over a com-
pact set U, for any constant ε > 0, there exists fuzzy logic
systems ωTφ (x) such that [17]

sup
x∈U

∣∣P (x)− ωTφ (x)
∣∣ ≤ ε (8)

where x = [x1, . . . , xj ]
T is the input vector of fuzzy

logic systems, ω = [ω1, ω2, . . . , ωL]
T ∈ RL is the de-

gree of membership and L > 1 is the number of fuzzy
rules, ε is the fuzzy minimum approximation error. φ (x) =

[φ1 (x) , φ2 (x) , . . . , φL (x)]
T is fuzzy basic function vector

and φi (x) is selected as follows:

φi (x) =

∏j
i=1 µF l

i
(xi)∑N

i=1 (
∏j

i=1 µF l
i
(xi))

, (i = 1, . . . , L) (9)

where F l
i (i = 1, . . . , j; l = 1, . . . , N) is the fuzzy set and

µF l
i
(xi) is the membership function.

III. OPTIMAL CONTROL DESIGN

In this section, ADP comprising actor-critic algorithm and
fuzzy logic systems will be employed to design the value
function L∗ (ξ) and control policy u∗(ξ), and design degree
of membership update laws.

In actor-critic framework, value function and control policy
are approximated by critic and actor fuzzy systems, respec-
tively. Optimal cost function (13) and feedback controller
(15) represent value function and control policy for optimal
tracking control problem, respectively.

Consider the nominal part of the augmented system (6), that
is

ξ̇ (t) = F (ξ (t)) +G(ξ (t))u(t) (10)

For the nominal system (10), this cost function is considered

L (ξ) =

∫ ∞

t

Q (τ) + u(τ)
T
Ru(τ)dτ (11)

where Q (ξ) = ξTQξ, R = RT. Q and R are positive defined
matrix.

Subsequently, one can define the Hamiltonian of the optimal
problem

H (ξ, u(ξ)) =Q (ξ) + u(ξ)
T
Ru(ξ)

+∇TL (ξ) [F (ξ) +G(ξ)u (ξ)]
(12)

where ∇L (ξ) represents the partial derivative of L (ξ).
Generally, as long as finding the optimal cost function can

we derive the optimal controller. The infinitesimal version of
cost function is regarded as the optimal cost function, one has

L∗ (ξ) = min

∫ ∞

t

Q (τ) + u(τ)
T
Ru(τ)dτ (13)

The optimal cost function is the solution of the HJB
equation which satisfies

H (ξ, u∗(ξ), L∗ (ξ)) =Q (ξ) + u∗(ξ)
T
Ru∗(ξ)

+∇TL (ξ) [F (ξ) +G(ξ)u∗(ξ)] = 0
(14)

Consequently, the optimal feedback controller is yielded

u∗ (ξ) = −1

2
R−1GT(ξ)∇L∗ (ξ) (15)

One need to solve the HJB equation (14) and obtain the
optimal controller (15) for nominal system (10). However,
the solution of HJB equation (14) is difficult to be obtained
directly. Therefore, fuzzy logic systems and adaptive actor-
critic will be utilized to find its estimated solution.



Fuzzy logic systems are employed to reconstruct the value
function L∗ (ξ)

L∗ (ξ) = ωTφ (ξ) + ε (ξ) (16)

where ω is the degree of membership of fuzzy logic systems,
φ (ξ) is the fuzzy basis function and ε (ξ) is the unknown
fuzzy approximate error.

Considering (15) and (16) yields the optimal controller
described by fuzzy logic systems as

u∗ (ξ) = −1

2
R−1GT (ξ)

[
∇Tφ (ξ)ω +∇ε (ξ)

]
(17)

In order to clearly analyze, define a non-negative matrix

A (ξ) = ∇φ (ξ)G (ξ)R
−1
G (ξ)∇Tφ (ξ) (18)

One can derive the HJB equation reconstructed by fuzzy
logic systems, combining with (16), (17) and (18), one has

H (ξ, u∗(ξ), L∗ (ξ)) =Q (ξ) + ωT∇φ (ξ)F (ξ)

− 1

4
ωTA (ξ)ω + εHJB = 0

(19)

and the residual error εHJB is expressed as

εHJB =∇Tε (ξ) (F (ξ) +G (ξ)u∗(ξ))

+
1

4
∇Tε (ξ)G(ξ)R

−1
GT (ξ)∇ε (ξ)

+
1

2
∇Tε (ξ)G (ξ)R

−1
GT (ξ)∇Tφ (ξ)ω

(20)

The estimation of value function L∗ (ξ) and control policy
u∗(ξ) can be constructed by critic and actor fuzzy, respectively.

L̂∗ (ξ) = ω̂T
c φ (ξ) (21)

û∗ (ξ) = −1

2
R−1GT (ξ)∇Tφ (ξ) ω̂a (22)

where ω̂a is the actor estimated degree of membership and ω̂c

is the critic estimated degree of membership.
Noticing (21) and (22), one can derive the following esti-

mated Hamiltonian

Ĥ
(
ξ, û∗(ξ), L̂∗ (ξ)

)
=Q (ξ) +

1

4
ω̂T
aA (ξ) ω̂a

+ ω̂T
c ∇φ (ξ)F (ξ)− 1

2
ω̂T
c A (ξ) ω̂a

(23)

To obtain the degree of membership update laws of fuzzy
logic systems, defining the objective function as Ec =

1
2ec

Tec

, where ec = Ĥ
(
ξ, û∗(ξ), L̂∗ (ξ)

)
−H(ξ, u∗(ξ), L∗ (ξ)) is the

Bellman error. In order to conquer the difficulties of searching
controller and adaptive laws, the following assumption is made
and the additional term can be constructed to improve the
learning process.

Assumption 1: [5] Define Ls (ξ) is a continuous differen-
tiable Lyapunov function candidate satisfying

L̇s (ξ) = ∇TLs (ξ) (F (ξ) + u∗(ξ)) < 0 (24)

and then, there exists a positive matrix K ∈ R2n×2n ensuring
that

∇TLs (ξ) (F (ξ) + u∗ (ξ)) =−∇TLs (ξ)K∇Ls (ξ)

≤ −λmin(K)∇∥Ls (ξ)∥2
(25)

Based on the gradient decent, degree of membership up-
date laws of fuzzy logic systems are designed, by consid-
ering these two Hamilton functions H (ξ, u∗(ξ), L∗ (ξ)) and
Ĥ

(
ξ, û∗(ξ), L̂∗ (ξ)

)
, one has

˙̂ωa =− αa

(
1

2
A (ξ) ω̂a −

1

2
A (ξ) ω̂c

)
×
(
Q (ξ) +

1

4
ω̂T
aA (ξ) ω̂a + ω̂T

c ∇φ (ξ)F (ξ)

− 1

2
ω̂T
c A (ξ) ω̂a

)
+

1

2
αs∇φ (ξ)GR−1GT∇ Ls (ξ)

(26)

˙̂ωc =− αc

(
∇φ (ξ)F (ξ)− 1

2
A (ξ) ω̂a

)
×
(
Q (ξ) +

1

4
ω̂T
aA (ξ) ω̂a + ω̂T

c ∇φ (ξ)F (ξ)

− 1

2
ω̂T
c A (ξ) ω̂a

)
+

1

2
αs∇φ (ξ)GR−1GT∇ Ls (ξ)

(27)

where αa and αc are the basis learning parameters of actor and
critic systems, respectively, and αs is the adjustable parameter
for the additional term.

IV. EVENT-TRIGGERED CONTROL IMPLEMENTATION

The event triggering mechanism is defined as

u∗e(ξ(t)) = u∗(ξ(td)),∀t ∈ [td, td+1) (28)

td+1 = inf {t ∈ R| |Γ(t)| ≥ ∆ |u∗e(ξ(t))|+M} , t1 = 0 (29)

where the event-triggered error Γ(t) = u∗(ξ(td)) − u∗e(ξ(t)),
the controller update time is td, d ∈ Z+. Define the proper
parameters 0 < ∆ < 1 and M > 0.

When event is not triggered, the control policy will be
chosen as u∗(ξ(td)). Otherwise, control policy will be updated
and marked as u∗e(ξ(td+1)). Assume two continuous and
time-varying parameters ρ1(t) and ρ2(t), which results in
u∗(ξ(t)) = (1+ρ1(t)∆)u∗e(ξ(t))+ρ2(t)M where |ρ1(t)| ≤ 1
and |ρ2(t)| ≤ 1. And then, the event-triggered controller can
be rewritten as

u∗e(ξ(t)) =
u∗(ξ(t))− ρ2(t)M

1 + ρ1(t)∆
(30)

Using (17) and (30) can yield that

u∗e(ξ(t)) = − 1

2ρ
R−1

[
GT (ξ (t))∇Tφ (ξ (t))ω + εe (ξ (t))

]
(31)

where ρ = 1 + ρ1(t)∆, εe (ξ (t)) = ∇ε (ξ (t)) + 2ρ2 (t)RM .



Similarly, based on critic fuzzy logic systems, the estimated
event-triggered controller can be obtained, one has

û∗e(ξ(t)) = − 1

2ρ
R−1GT (ξ (t))∇Tφ (ξ (t)) ω̂a (32)

Considering the HJB equation (14), value function (21) and
event-triggered controller (32), one can yield the following
Hamilton function as

Ĥe

(
ξ (t) , û∗e (ξ (t)) , L̂

∗ (ξ (t))
)

= Q (ξ (t)) +
1

4ρ2
ω̂T
aA (ξ (t)) ω̂a + ω̂T

c ∇φ (ξ (t))F (ξ (t))

− 1

2ρ
ω̂T
c A (ξ (t)) ω̂a

(33)

Subsequently, degree of membership update laws with re-
spect to event-triggered mechanism can be constructed, one
has

˙̂ωae =− αa

(
1

2ρ2
A (ξ (t)) ω̂a −

1

2ρ
A (ξ (t)) ω̂c

)
×
(
Q (ξ (t)) +

1

4ρ2
ω̂T
aA (ξ (t)) ω̂a

+ ω̂T
c ∇φ (ξ (t))F (ξ (t))− 1

2ρ
ω̂T
c A (ξ) ω̂a

)
+

1

2
αs∇φ (ξ (t))GR−1GT∇ Ls (ξ (t))

(34)

˙̂ωce =− αc

(
∇φ (ξ (t))F (ξ (t))− 1

2ρ
A (ξ (t)) ω̂a

)
×
(
Q (ξ (t)) +

1

4ρ2
ω̂T
aA (ξ (t)) ω̂a

+ ω̂T
c ∇φ (ξ (t))F (ξ (t))− 1

2ρ
ω̂T
c A (ξ (t)) ω̂a

)
+

1

2
αs∇φ (ξ (t))GR−1GT∇ Ls (ξ (t))

(35)

Theorem 1: Considering the dynamic system (1), the op-
timal feedback controller (22), event-triggered controller (32)
and the degree of membership update laws (26), (27), (34)
and (35) are developed. Based on Lyapunov theory, all signals
are uniformly ultimately bounded (UUB) in the closed-loop
system.

For the sake of investigating the stability of error dynamics
and close-loop states, the following assumption is given by

Assumption 2: On a compact set Ω, G (ξ), ∇φ (ξ), ∇ε(ξ),
ξ∗ and εHJB are bounded. ∥G (ξ)∥ ≤ λg , ∥∇φ(η)∥ ≤ λφ,
∥∇ε (η)∥ ≤ λε, ∥ξ∗∥ ≤ λξ and ∥εHJB∥ ≤ λHJB , where λg ,
λφ, λε, λξ and λHJB are positive constants.

V. STABILITY ANALYSIS

In this section, Lyapunov theory will be employed to
demonstrate Theorem 1.

Case1 : Event are not triggered. Consider the feedback
controller (22) and the related degree of membership update
laws (26) and (27).

According to HJB equation (19), it can be transformed as

Q (ξ) = −ωT∇φ (ξ)F (η) +
1

4
ωTA (ξ)ω − εHJB (36)

Considering the degree of membership update laws (26) and
(27), combining with ˙̃ωa = − ˙̂ωa and ˙̃ωc = − ˙̂ωc, one has

˙̃ωa =− αa

(
−1

2
A (ξ) ω̂a +

1

2
A (ξ) ω̂c

)
×

(
Q (ξ) +

1

4
ω̂T
aA (ξ) ω̂a + ω̂T

c ∇φ (ξ)F (ξ)

− 1

2
ω̂T
c A (ξ) ω̂a

)
− 1

2
αs∇φ (ξ)GR−1GT∇ Ls (ξ)

(37)

˙̃ωc =− αc

(
−∇φ (ξ)F (η) +

1

2
A (ξ) ω̂a

)
×

(
Q (ξ) +

1

4
ω̂T
aA (ξ) ω̂a + ω̂T

c ∇φ (ξ)F (ξ)

− 1

2
ω̂T
c A (ξ) ω̂a

)
− 1

2
αs∇φ (ξ)GR−1GT∇ Ls (ξ)

(38)

Then the following Lyapunov function can be chosen as

S (t) =
1

2αa
ω̃T
a ω̃a +

1

2αc
ω̃T
c ω̃c +

αs

αa
Ls (ξ) +

αs

αc
Ls (ξ)

(39)

its derivative is

Ṡ (t) =
1

αa
ω̃T
a
˙̃ωa +

1

αc
ω̃T
c
˙̃ωc +

αs

αa
∇TLs (ξ) ξ̇ +

αs

αc
∇TLs (ξ) ξ̇

=

(
ω̃T
c ∇φ (ξ)F (ξ)− 1

4
ωTA (ξ)ω − 1

4
ω̂T
aA (ξ) ω̂a

+ εHJB +
1

2
ω̂T
c A (ξ) ω̂a

)
×
(
− ω̃T

c ∇φ (ξ)F (ξ)

+
1

2
ω̃T
aA (ξ) ω̂c +

1

2
ω̃T
c A (ξ) ω̂a −

1

2
ω̃T
aA (ξ) ω̂a

)
− αs

2αa
ω̃T
a ∇φ (ξ)GR−1GT ∇ Ls (ξ)

− αs

2αc
ω̃T
c ∇φ (ξ)GR−1GT ∇ Ls (ξ)

+
αs

αa
∇TLs (ξ) ξ̇ +

αs

αc
∇TLs (ξ) ξ̇

(40)

Substituting (22) into (10) and observing the dynamic
system ξ̇∗ = F (ξ)+G(ξ)u∗ (ξ) with optimal controller u∗ (ξ),
one can acquire

∇φ (ξ)F (ξ) = ∇φ (ξ) ξ̇ +
1

2
∇φ (ξ)R−1∇Tφ (ξ) ω̂a (41)

ξ̇ = ξ̇∗ +
1

2
GR−1GT

(
∇Tφ (ξ) ω̃a +∇ε (ξ)

)
(42)



Considering above formulations, one can further derive that

Ṡ (t) =

(
ω̃T
c ∇φ (ξ) ξ̇∗ +

1

2
ω̃T
c ∇φ (ξ)GR−1GT∇ε (ξ)

+
1

2
ω̃T
c A (ξ) ω̃a −

1

2
ω̃T
aA (ξ)ω +

1

4
ω̃T
aA (ξ) ω̃a + εHJB

)
×
(
− ω̃T

c ∇φ (ξ) ξ̇∗ − 1

2
ω̃T
c ∇φ (ξ)GR−1GT∇ε (ξ)

− ω̃T
c A (ξ) ω̃a −

1

2
ω̃T
aA (ξ) ω̃a

)
− αs

2αa
ω̃T
a ∇φ (ξ)GR−1GT∇ Ls (ξ)

− αs

2αc
ω̃T
c ∇φ (ξ)GR−1GT∇ Ls (ξ)

+
αs

αa
∇TLs (ξ) ξ̇ +

αs

αc
∇TLs (ξ) ξ̇

(43)

Next, equation (43) can be expended to conduct mathemat-
ical operations based on Assumption 2 and yields that

Ṡ (t) ≤− λ1(∥ω̃a∥)4 − λ2(∥ω̃c∥)2 + λ3

+
αs

2αa
∇TLs (ξ) GR

−1GT∇ε (ξ)

+
αs

αa
∇TLs (ξ) (F (ξ) +Gu∗ (ξ))

+
αs

2αc
∇TLs (ξ)GR

−1GT∇ε (ξ)

+
αs

αc
∇TLs (ξ) (F (ξ) +Gu∗ (ξ))

(44)

where λ1, λ2 and λ3 are positive constants.
Considering Assumption 1 and equation (44), one can

further derive that

Ṡ (t) ≤− λ1(∥ω̃a∥)4 − λ2(∥ω̃c∥)2 + λ∂

− λmin(K)αs(
1

αa
+

1

αc
)(∥∇ Ls (ξ)∥

−
λg

2λε
2(
∥∥R−1

∥∥)2
4λmin(K)

)2

(45)

where λ∂ = λ3 +
λg

4λε
4(∥R−1∥)4

16λmin(K) .

As a result, if ∥ω̃a∥ ≥ 4

√
λ∂

λ1
or ∥ω̃c∥ ≥

√
λ∂

λ2
or

∥∇ Ls (ξ)∥ ≥
√

λ∂

λmin(K)αs(
1

αa
+ 1

αc
)
+

λg
2λε

2(∥R−1∥)2
4λmin(K) hold,

Ṡ (t) ≤ 0 will be satisfied. Finally, one can conclude that all
signals are UUB.

Case2 : Events are triggered. Consider the event-triggered
controller (32) and the degree of membership update law (34)
and (35).

Choosing the following Lyapunov function

Se (t) =
1

2αa
ω̃T
aeω̃ae +

1

2αc
ω̃T
ceω̃ce +

αs

αa
Ls (ξ) +

αs

αc
Ls (ξ)

(46)

same proof as that in Case1 , we can demonstrate all signals
are UUB.

Motivated by [14], the derivative of event-triggered function
can be written as
d

dt
|Γ(t)| = d

dt
(Γ(t)× Γ(t))

1
2 = sgn(Γ(t))Γ̇(t) ≤ |u̇∗(ξ(t))|

(47)

Because all signals are UUB, absolutely existing a positive
parameter κ satisfies

|u̇∗(ξ(t))| ≤ κ (48)

According to the event-triggered mechanism (28) and (29),
one can derive that Γ (td) = 0 and limt→td+1

Γ (td+1) =
∆ |u∗e(ξ(t))|+M . Combining equation (47), (48) and perform-
ing some mathematical operations, the minimal inter-execution
t∗ = td+1 − td satisfies t∗ > |u∗

e(ξ(t))|+M
κ , ∀t ∈ [td, td+1).

Consequently, it is guaranteed that the Zeno behavior is non-
occurring.

VI. SIMULATION

In this section, YUKUN of Dalian Maritime University is
utilized to verify the validity and flexibility of the optimal
control strategy considering event-triggered mechanism. The
parameters of YUKUN are as follows: length between per-
pendiculars is 105 m, beam is 18 m, rudder area is 11.46
m2, loaded speed is 16.7 kn, full amidships draft is 5.2 m,
full loaded displacement is 5735.5 m3, block coefficient is
0.5595. Maritime environment can be set that: wind direction
ψwind = 30◦, wind scale S = 6, current direction ψcurrent =
30◦, current velocity vcurrent = 5kn.

Therefore, a continuous-time ship dynamic system can be
considered

ẋ1 = x2

ẋ2 = − 1
T

(
αsx2 + βsx2

3
)
+ K

T (u+ δw)

y = x1

(49)

where x1 and x2 ∈ R are state variables, u ∈ R
is the control input variable; reference signal x1d =
sin (πt/25); the rudder gain K = 0.314 and time con-
stant T = 62.387; designed parameters αs = 100 and
βs = 50. Design parameters αa = 0.001, αc = 1,
αs = 100000, R = 0.067, ∆ = 0.39, M = 0.001. The
initial state can be set that x0 = [−0.3, 2.1, 0.1, 0.03]

T,
the initial degree of membership can be set that ωa0 =
[−3.4,−4,−3.5,−1.8,−2, 0,−1.4,−0.8,−1.8,−2]

T, ωc0 =
[1, 1.3, 1.5, 1.3, 0, 0, 1.5, 3, 3.3, 3]

T.
Simulation results are illustrated in Fig. 1-4. The tracking

trajectory and error are shown in Fig. 1, where the ship
course can rapidly track the reference course in 10 seconds
and tracking error can converge to a bounded compact set of
zero based on the designed event-triggered adaptive optimal
controller. Fig. 2 describes the general control input and
the event-triggered control input. Its result illustrates event-
triggered controller is superior to common controllers under
the same conditions. The numerical values of event-triggered
controller are smaller than that of the general controller, which
effectively verifies the competent in reducing mechanical wear
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and saving energy of the event-triggered mechanism. Fig. 3
describes the corresponding triggered time that highlights the
advantages of cost saving for event-triggered controller. In the
end, Fig. 4 gives the value function and policy function degree
of memberships convergence exhibitions which demonstrate
degree of membership signals can rapidly coverage to a
bounded range.

VII. CONCLUSION

In this article, an event-triggered optimal tracking control
scheme has been proposed for uncertain nonlinear systems
based on RL. An improved ADP technique combining actor-
critic algorithm and fuzzy logic systems have been imple-
mented in solving HJB equation of nominal system. To reduce
mechanical wear of actuator and save energy, event-triggered
mechanism has been performed to update controller. All
signals are UUB by Lyapunov demonstration and simulations
verify the feasibility of proposed scheme. In the future, we
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and value function degree of memberships ω̂c.

will study the tracking control problem based on deep re-
inforcement learning and the multi-agent systems also is an
interesting direction.
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