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Abstract

Particle Image Velocimetry (PIV) aims to infer underlying velocity fields from
time-separated particle images, forming a PDE-constrained inverse problem gov-
erned by advection dynamics. Traditional cross-correlation methods and deep
learning-based feature matching approaches often struggle with ambiguity, lim-
ited resolution, and generalization to real-world conditions. To address these
challenges, we propose a PIV Neural Operator (PIVNO) framework that directly
approximates the inverse mapping from paired particle images to flow fields within
a function space. Leveraging a position informed Galerkin-style attention operator,
PIVNO captures global flow structures while supporting resolution-adaptive infer-
ence across arbitrary subdomains. Moreover, to enhance real-world adaptability,
we introduce a self-supervised fine-tuning scheme based on physical divergence
constraints, enabling the model to generalize from synthetic to real experiments
without requiring labeled data. Extensive evaluations demonstrate the accuracy,
flexibility, and robustness of our approach across both simulated and experimental
PIV datasets. Our code is at https://github.com/ZXS-Labs/PIVNO.

1 Introduction

Particle Image Velocimetry (PIV) is a computer vision-based metrology widely used in various
scientific and engineering fields, e.g., physics [[1H3], materials [4-6], life sciences [7H9], engine
designs [10L11], and locomotion inspection in tissue engineering [12]. By dispersing tracer particles
into the fluid under measurement, PIV employs high-frame-rate cameras (typically 10° to 10° fps)
and high-repetition-rate laser sources (up to 10* Hz) to capture particle image sequences and calculate
the particle displacements, providing a discrete observation of the underlying motion field for further
flow dynamic analysis. The motion of these tracer particles in an incompressible fluid can be modeled
by the advection—diffusion equation [[13H16]
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where I(Z, t) represents the observed scalar field (e.g., particle intensity), u is the underlying velocity
field, and D is the diffusion coefficient. Under the assumption of no source terms, negligible diffusion
(D = 0), and divergence-free flow, (T)) simplifies to the pure advection equation in the operator form
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In the context of PIV, One is given I(Z,t;) and I(Z, t3)—two noisy, discretely sampled particle
images at successive time steps—and intends to infer the latent velocity field u that satisfies this
the partial differential equation (PDE). This makes PIV fundamentally a PDE-constrained inverse
problem, where the forward evolution is governed by physical transport dynamics, but the goal is to
invert that process and recover the control variable u from its outcomes. Traditional PIV methods [17-
21]] generally rely on local cross-correlation matching techniques, but suffer from several limitations.
First, the information within a single matching window is often insufficient to distinguish completely
textureless particle clusters, and this issue worsens when the particle distribution is relatively uniform
in the flow. Second, the size of the matching window directly affects both the spatial resolution and
the accuracy of the estimated velocity field, leading to an inherent trade-off that is difficult to balance.
In recent years, deep learning-based methods [22-27}[131|28] have been proposed to represent particle
image features effectively in high-dimensional latent spaces, thus reducing matching ambiguities.
Moreover, the consecutive layers in deep neural networks offer larger receptive fields capable of
capturing broader spatial context while preserving spatial resolution and matching accuracy. However,
the inverse problem remains fundamentally ill-posed: the observed particle images are discrete, noisy,
and of limited resolution, hence the numerical solution to the governing PDE is neither unique nor
stable. In other words, the inverse operator of B in Eq.(2) may not exist.

Algorithmically, existing PIV approaches [26}125] 27, [29} 130] solve the PDE in (2) via the construction
of a cost-volume (CV) based on which the displacement array can be inferred. Nevertheless, the
resolution of the CV is up to the affordable computational resources and once trained the PIV models’
scalability to different measurement requirements is very limited. Inspired by the discretization
invariant neural operator (NO) method, recently developed in the field of computational physics [31-
35| as efficient PDE solvers,we inspect the PIV inverse problem through the lens of operator learning.
Specifically, we introduce a PIV neural operator(PIVNO) framework that directly approximates the
inverse map G : (I3, It,) — u, bypassing the necessity of CVs.Particularly, we devise a position
informed Galerkin-type attention operator, whose approximation properties correspond to the classical
Petrov—Galerkin projections[36]]. This design enables our model to perceive global motion patterns
while remaining numerically efficient and resolution-agnostic.

The sim2real transferring is another challenge confronting PIV models, let alone obtaining sufficient
labeled data for supervision itself is expensive and often impractical in real experiments. Existing
methods (37, 22H24]] are primarily trained on synthetic datasets, which, despite offering perfect
ground-truth flow, fail to cover all variability of real flow conditions as well as particle image qualities.
Consequently, when applied to unseen flow regimes or lighting conditions, these models suffer from
poor generalization. To address this, we incorporate self-supervised fine-tuning constrained by the
physical incompressibility of the flow, enforcing the divergence-free conditions, to adapt the model
to unlabeled real data. This strategy bridges the domain gap between synthetic and real experiments.

Finally, practical fluid experiments often demand localized flow analysis at varying resolutions
[38-41]. However, the region of interest is rarely known a priori, and existing PIV networks are
designed for uniform global inference. This limitation prevents adaptive refinement in high-shear
or boundary-layer regions, restricting their utility for fine-scale investigations. In this work, we
overcome this challenge by designing our operator-based architecture to support resolution-adaptive
inference over arbitrary subdomains, enabling detailed flow field predictions.

In summary, our contributions can be summarized as follows:
* We propose the PIV Neural Operator, a neural operator framework that directly maps particle

image pairs to flow fields, offering a function space-level approximation of fluid dynamics and
improving estimation accuracy.

* We incorporate a self-supervised fine-tuning mechanism based on physical divergence constraints,
enabling domain adaptation from synthetic training to real-world testing without labeled data.

* PIVNO enables resolution-adaptive flow inference over arbitrary subdomains, allowing fine-grained
analysis in critical regions, which is essential for practical experimental fluid mechanics [42-44].

2 Related Work

Cost-Volume-Based PIV. Deep learning-based PIV has attracted significant attention recently. Early
studies [37), 122124 were primarily based on convolutional neural networks (CNNs) for supervised
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Figure 1: (a) The PIVNO framework, where each module works collaboratively to enable efficient
inference from the (possible low-resolution) inputs to desired high-resolution flow fields. First, the
Feature Encoder (b) extracts image features from the input pair. Next, the RoPE Galerkin Attention
module (c) maps image feature functions to flow field functions via a Galerkin-style projection into
the following Conv-GRU modules, where the coarse flow field features undergo iterative refinement.
Finally, the SR Module (d) generates high-resolution flow field predictions through Continuous-Scale
Flow Velocimetry, detailed in section @

training to estimate flow fields from images but achieved limited accuracy in flow field estimation
due to their inefficiency in global motion awareness. Later work [26 25| 27} [29} 130] proposed
a cost-volume-based similarity computation to explicitly model matching relationships between
image pairs, effectively improving displacement estimation accuracy. However, the construction of
a four-dimensional cost volume incurs a huge computational burden and memory footprint on one
hand, and more importantly freezes the possible matching accuracy and resolution determined by
the grid size and dimensions of the cost volume. Therefore, cost-volume-based CNNss once trained
cannot afford to solve different flow measurement problems with various accuracy requirements.

Generalization Challenges in PIV. Supervised learning methods depend on large labeled datasets.
Due to the variability in flow conditions and particle image quality, these methods often generalize
poorly to unseen flows or lighting setups. To address this, recent studies [[13} 28] 45-48]] have
explored unsupervised optical flow algorithms for fluid flow estimation. These approaches optimize a
cost function with physical constraints to estimate motion fields, offering better adaptability across
diverse scenarios. However, they are highly sensitive to image quality; noise or lighting variations
can significantly degrade robustness and accuracy.

3 Prticle Image Velocimetry Neural Operator

3.1 Framework of PIVNO

The goal of the proposed PIVNO is to mathematically establish a mapping G : A — U, where A
and U represent the Hilbert spaces of particle image function pairs and flow fields, respectively.
Specifically, we define: A = {a = [I1, 5] € R?|I1, Iy : X — R, I1(z) = Iz(x — u(z))} to stress
that the flow function u () relates the input particle grayscale image pair, and U £ u : X — R?}
represents the function space of output flow fields. X C R? is the domain of the images. To
approximate the mapping operator G, we parameterize it with a neural network Gy and optimize the



parameters ¢ using supervised training. Given n observations {a;, u; };‘zl, where a; are sampled
from a distribution y over A and u; = G(a;), the training process minimizes the empirical risk:
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where || - ||i7 represents the norm in the space U.

As shown in fig. [[(a), PIVNO depicts a structured workflow to transform particle image pairs into
accurate flow field estimates. It begins with a feature encoder that extracts localized image features
as the foundational representation. The RoPE-GA module implements a Petrov—Galerkin-style
projection that maps image feature functions to flow field representations. Subsequently, the Conv-
GRU module iteratively optimizes the flow field features using the contextual features. Finally, the
SR module reconstructs the refined features as a continuous-scale flow field representation, allowing
for accurate arbitrarily scaled flow velocity estimates.

3.1.1 Feature Encoder

The core of flow field estimation lies in accurately matching local features; thus, extracting discrimina-
tive features is critical for matching precision. As illustrated in fig.[T(b), we design a feature encoder
to extract local features from the input image pair (1, I3) and project them into a high-dimensional
latent space. To enhance the encoder’s representation capability, we integrate six residual units, each
implementing a residual convolution operation defined as:

P(71)(2) = /N eI dy 1), 4

where k(z — y) denotes the 3 x 3 convolution kernel defined over the local neighborhood N (z) of
position z, and I(x) is the residual connection term. After the encoder extracts the spatial features
from the image pair I; and I, the joint feature zo(x) is obtained through concatenation:

zo(x) = Concat(P(I1),P(I3)), Q)

where Concat merges the two feature maps along the channel dimension; consequently, zo(x) now
contains the temporal evolution of the spatial features.

3.1.2 RoPE Galerkin Attention

To construct a operator mapping from the image feature space to the flow field space, we propose
the RoPE Galerkin Attention (RoPE-GA) module illustrated in fig. [T[c). [36] presents a general
discussion on the parallelism between the finite element methods and its proposed GA module, but
lacks of the positional embedding treatment for practical problems. Since the absolute positions are
utmost important for particle tracking, we modify the positional encoding scheme of [49] to adapt to
the Galerkin attention mechanism, leading to the enhanced GA matrix with Positional Encoding (PE)
and frequency modulations:
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where p? and p¥ denote the spatial coordinates of position n along the x- and y-axes, k;, and v;,
are the components of the key and value along channel dimensions j; and jo, and 0% and 6Y are
learnable frequency parameters. See Supplementary Material Section A for detailed derivations and
discussions.

The operator form of GA reads:

(Alz])(z) = Z (zk:’Cj[z](ylc)vj[Z](yk)Qj[ZKl'j)), (7
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where K;[z](yx) represents the evaluation of the input function z(z) after the linear operator K at
coordinate yy; the index j means the j-th dimention of K(z). The same applies to V and Q , and
A denotes the integral kernel operator that refines z(x) through the so-call basis update in [50].
However, this process is solely linear, lack of nonlinear expression capability.



In contrast, our ROPE-GA in Eq.(6) introduces frequency modulation to each channel j with different
learnable frequency parameter ¢;. This treatment is equivalent to applying the sinusoidal activation
[51] to the correlated features K and V after PE.

RoPE-GA in Eq.(0) attends to the correlation among the evaluated basis functions, i.e., along the
channel dimension. In order to enhance the spatial aggregation capability, we implant a 3 x 3
depthwise convolution between the first fully connected layer and the GELU activation function in
the feed-forward network. Previous studies have shown that this operation helps capture finer spatial
positional information [52H53].

3.1.3 GRU-based flow refinement

ROPE-GA produces coarse flow features z;(x) by mapping along the channel dimension (see Sup-
plementary Materials Figure 1), but it does not explicitly organize spatial information; this often
leads to locally inconsistent estimates. Because spatial continuity is critical for accurate motion
estimation, merely stacking additional ROPE-GA layers is insufficient. We therefore introduce an
iterative refinement mechanism in the spatial domain.

We adopt a convolutional GRU (Conv-GRU) for this purpose. Unlike RAFT [56], which uses image
features as the context provider, our method performs recurrent refinement directly on the flow
features, as illustrated in fig. a). Specifically, the ROPE-GA features z;(x) serve two roles: they
initialize the hidden state h( and, at every iteration, they are provided as the input feature c¢; to supply
local neighborhood information. The Conv-GRU then updates hidden states by convolving over spatial
neighborhoods, enabling iterative propagation and correction of local flow evidence. Mechanistically,
the update and reset gates regulate information exchange between the current input and the previous
hidden state, allowing differential nonlinear mappings across multiple local subspaces. At each
iteration, the module fuses the current features with the previous estimate and adjusts both the
direction and magnitude of the predicted motion through locally sensitive convolutions and gating.
In this way, the Conv-GRU functions not as a temporal recurrence for sequences but as a memory-
equipped, differentiable spatial transformation that progressively approximates the true flow field
within local regions. In practice, we find that a small number of refinement steps suffices: five
iterations achieve near-optimal performance (see Supplementary Material Section B). The operations
of the Conv-GRU module can be expressed as:

yr = o(Convsys([hi—1, i), W2)), (8)
ry = o(Convsys([hi—1,ce], Wp)), 9)
hy = tanh(Convsys([re ® he—1, ct], Wh)), (10)
he=(1—w) ®hi_1+ 4 © by (11)

where o and tanh denote the sigmoid and hyperbolic tangent activation functions, respectively;
Convs, 3 denotes a 3 x 3 convolution; W,, W,., and W}, are the learnable convolutional weights; and
©® represents element-wise multiplication.

3.2 Continuous-Scale Flow Velocimetry

To achieve accurate super-resolution reconstruction of the flow field, the SR module (fig. Ekd)) is
designed by combining random sampling, continuous interpolation, and graph convolution. The first
step is adapted from SRNO [50]], which enhances the scale generalizability of our model:

h(z;) = Concat(s; - hy)}f, (12)

where x; represents the target coordinate, and [ € {00,01,10, 11} denotes the coordinates of the
four neighboring points of x; . s; is the diagonal area of the neighboring grid point’s coordinates,
and h; is the feature vector of the neighboring points. The final feature vector fz(a:z) is obtained by
concatenating the weighted feature vectors s; - h;.

The resulting feature h(z;) is then input into the subsequent graph convolution layers. Since the
features of sampled points already incorporate positional information through the ROPE-GA module,
the graph convolution [S7H59] can effectively capture the spatial correlations between the randomly
sampled points. By supervising on the randomly sampled points,whose results come from the graph
convolution performing local information fusion, we are actually enforce PIVNO to attend to the



local correlation in fluids, enhancing the completeness and robustness of the feature representation.
Finally, the graph convolution projects the high-dimensional features back into the PIV flow field
solution space u(x) via a 3 X 3 convolution:

u(h)(z) = /R L r k) dy (13)

where x(x — y) represents the 3 x 3 graph convolution kernel defined over the set of randomly
sampled points R(x).

3.3 Self-Supervised Fine-Tuning

We further propose a self-supervised fine-tuning scheme to adapt the simulation-based pre-trained
models to real experimental data. The fine-tuning strategy employs a variational optical flow method
consisting of three components: a data term, a smoothing term, and a divergence regularization term.
The self-supervised loss function is defined as:

Lp(u) = Lg(u) + AsLs(u) + Mg Laiy (), (14)

where L, represents the data term, modeling the similarity of the image pairs, L and Lg;, are the
spatial smoothing and divergence regularization terms respectively, and A\ and A\ are their respective
weights.

Data Term: )

(z) = -
Vvent @2 /S yen 1@
Ly(I1,I5) = o (1 — E,(corr)) (16)
where I1 () = Ir(z — u(z)) is the warped image compared against I1, and u(z) represents the flow
field prediction at the spatial location 2. N (z) denotes the set of all pixel points within the sliding
window. (I1(z), I (z)) is the dot product of the real image and the predicted image, and ||1;(z)]]

and ||I; (x)|| represent the magnitudes of the real image and the predicted image within the window,
respectively. The function o(z) = (22 + €2)7 is the Charbonnier penalty function, used to smooth
the error term z, where ~y controls the degree of smoothing, and E,, denotes the expectation over all
the positions in the images.

corr 15)

Smoothing Term:
Li(u) = o (VZu(z)) (17)

where V2u(z) is the second derivative of u(x) (the Laplacian operator), which measures the local
variation of the underlying flow field.

Divergence Term:

Lgiy(u) = o (V- u(x)) (18)
where V - u(x) is the divergence of u(x), which enforces the incompressibility constraint for fluid
flow, constraint the divergence of the flow.

4 Experiments

The experimental evaluation comprises three synthetic datasets and three real-world PIV challenge
tasks. Initially, supervised training and benchmark testing are conducted on Synthetic Datasets 1
and 2. Training samples are generated by uniformly sampling downsampling factors within the range
of 1x to 4%, allowing the model to generalize across varying output resolutions after a single training
phase. Subsequently, self-supervised fine-tuning is performed on Synthetic Dataset 3 and on the three
real-world PIV benchmarks to enhance cross-domain adaptability. Since ground-truth flow fields
are unavailable for real-world benchmarks, direct quantitative evaluation is inherently infeasible.
The selected real-world PIV tasks are chosen for their established and credible evaluation protocols,
enabling reliable qualitative comparison.

In addition, ablation experiments are conducted to analyze the contribution of key modules and loss
components. Table 3 specifically presents the ablation results of the self-supervised loss terms and



Table 1: This table presents the Average Endpoint Error (AEE) on synthetic dataset 1, where the
error unit is set to pixels per 100 pixels for easier comparison. All methods are evaluated using a
fixed input and output resolution of 2562, The last four rows show the performance of our method at
different input resolutions (e.g., 642 x 4 represents an input of 64 with 4x upsampling to achieve
the 2562 output). The Params column indicates the number of parameters in millions (M).

JHTDB DNS

Methods Backstep  Cylinder Channel  turbulence SQG  Params. (M)
Farneback 8.5 8.3 14.1 37.8 332 -
PIV-DCNN [22] 4.9 7.8 11.7 334 47.9 8.40
PIV-LiteFlowNet [23] 5.6 8.3 104 19.6 20.0 6.25
PIV-LiteFlowNet-en [23] 33 4.9 7.5 12.2 12.6 5.59
UnPwcNet-PIV 8.2 7.1 13.4 21.5 25.2 9.37
UnLiteFlowNet-PIV [13] 94 6.9 8.4 15.0 17.3 5.38
OFVNetS 15.0 1.6 25.0 8.3 22.3 -
OFVNetS-HS 13.7 4.7 32.7 7.0 18.9 -
PIV-RAFT 1.6 1.4 13.7 9.3 11.7 5.31
ARaft-FlowNet [29] 3.1 2.0 8.3 9.6 9.8 -
PIVNO(2562 x 1) 1.9 0.8 1.7 35 2.5
PIVNO(1282 x 2) 0.9 1.1 2.8 4.7 4.1 2.52
PIVNO(64% x 2) 1.0 1.4 2.9 5.0 42 ’
PIVNO(642 x 4) 2.7 3.1 11.3 18.0 18.0
2.0
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Figure 2: Visualization of three flow fields: DNS turbulence (first row), JHTDB channel flow (second
row), and SQG (third row).The rectangles indicate over-smoothing or even failure artifacts existing in
the outputs of comparative methods, while PIVNO faithfully recovers the flow.

simultaneously summarizes the overall performance of the self-supervised strategy on both synthetic
and real-world datasets. It is therefore presented separately to highlight its central role in validating the
effectiveness of the proposed self-supervised strategy. Section 4.3 further investigates the influence
of architectural components. Beyond the main results, we also conduct extended analyses, including
statistical robustness evaluation (maximum error and standard deviation), cross-domain fine-tuning
generalization experiments, and zero-shot resolution generalization studies. All of these additional
results are provided in the Supplementary Material for completeness. Comprehensive details of the
network architecture, dataset configurations, implementation methods, and hyperparameter settings
are also included therein.



Table 2: The AEE on synthetic dataset 2. Repre-  Table 3: Impact of loss term combinations. The
sentative baselines include the unsupervised Un-  table shows AEE and divergence results on SPID

LiteFlowNet and the self-supervised PIV-RAFT.  (sim) and solid body rotation (real).

Methods Backstep  Cylinder él:TDB DNS SQG Lg Lg Laiv ‘ SPID \ Solid Body Rotation Flow
annel  turbulence

| AEE div. | AEE div.
UnLiteFlowNet-PIV [24 123 7.9 14.5 25 216
UnLiteFlowNet32-PIV [24 40.9 659 419 443 40.1 x x x 1.62 0.23 0.64 458
PIV-RAFT [25] 6.4 52 238 19.7 249 v % % 500 803629 | 024 2676
PIVNO(2562 x 1) 45 34 47 44 6.6 X v X 4.20 -12.46 5.43 88
PIVNO(128° x 2) 41 36 8.8 9.6 132 X x v 372 -0.09 5.45 7.08
PIVNO(64% x 2) 34 5.1 8.8 102 13.9 v v X 1.10 -6639.26 0.23 -2072.67
PIVNO(64" x 4) 47 6.3 19.6 21.7 27.9 v v v 0.60 -13.00 0.17 -1424.37

4.1 Evaluation on Synthetic Datasets

Synthetic Dataset 1: This PIV dataset [23] contains five classic flow field cases commonly used
for training and benchmarking PIV algorithms. As shown in table |1 the proposed PIVNO model
consistently outperforms state-of-the-art (SOTA) methods across all evaluation metrics at a resolution
of 2562, Its advantage is especially notable in complex flow regimes such as DNS turbulence, JHTDB
channel flow, and SQG sea surface flow. A key strength of PIVNO lies in its training strategy: the
model is trained once on samples uniformly downsampled by factors from 1 to 4x, enabling robust
generalization across multiple upsampling scales during inference. Notably, even with low-resolution
inputs (e.g., 64%), PIVNO produces high-resolution outputs with accuracy comparable to models
using full-resolution inputs. Furthermore, when the output resolution is twice that of the input, PIVNO
still achieves superior velocity field estimation, demonstrating strong robustness and adaptability in
low-resolution settings.

Additionally, fig. 2] presents visual comparisons. The first row displays DNS turbulence, featuring rich
small-scale vortical structures and multi-scale turbulence interactions, demonstrating high complexity
and dynamic characteristics. Comparatively, only PIVNO effectively captures both local features
and global relationships. The second row illustrates JHTDB channel flow, marked by shear effects,
stratified velocity gradients, boundary confinement, and turbulent transition behavior. Remarkably,
PIVNO accurately captures these boundary layer features. The third row shows SQG sea surface flow,
including nonlinear interactions between large-scale background fields and small-scale disturbances,
mainly exhibiting two-dimensional quasi-geostrophic characteristics. In summary, PIVNO handles
these complex dynamics with precision.

Synthetic Dataset 2: To evaluate the model’s performance under large displacement and high noise
conditions, we used a synthetic dataset from [25]], which simulates large particle displacements, low
particle density, and significant noise—providing a suitable testbed for assessing the robustness of PIV
algorithms. As shown in table[2] models like UnLiteFlowNet-PIV, which rely on photometric loss,
suffer in high-noise settings due to disrupted motion feature extraction. PIV-RAFT also struggles with
large displacements due to limitations in its local correlation-based approach. In contrast, PITVNO
maintains stable prediction performance even under such challenging conditions.

Synthetic Dataset 3: To evaluate the impact of the three loss terms (Lg, L, and Lg;,) on flow
field estimation, we conducted ablation experiments using the SPID dataset [62], which simulates
real-world conditions such as noise, particle distribution, and out-of-plane motion. We progressively
removed each loss term and evaluated the changes in AEE and divergence metrics. As shown
in table [3] we observed that using any single loss function in isolation resulted in a significant
performance degradation, with increased AEE and anomalous divergence values, indicating that a
single loss term cannot effectively constrain the model’s fine-tuning. In contrast, the combination of
all three loss terms yielded substantial performance gains, demonstrating their synergistic effect in
optimizing flow field estimation. The consistent performance deterioration when omitting any loss
function further validates the effectiveness of this fine-tuning strategy.

4.2 Generalizability on Real PIV Challenges

Solid Body Rotation Flow: To evaluate the generalization capability of the fine-tuning strategy in
real-world scenarios, we selected the solid body rotation flow [63]] as a classical benchmark due to its
theoretical clarity, uniform vorticity, and strict adherence to solid body rotation. table [3| quantifies the
impact of fine-tuning, showing that combining all three loss terms (L4, L, and Lg;,,) significantly
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reduces AEE and improves divergence, reinforcing the model’s robustness. fig. [3illustrates this
effect by comparing predictions with theoretical values, where the pre-trained model fails to capture
rotational characteristics, showing flow discontinuities near the rotation center. While using only
L4, mitigates some errors, it still yields boundary anomalies and lacks smoothness. In contrast, the
full fine-tuning strategy enables precise particle displacement prediction, closely aligning with the
theoretical solution and ensuring high-quality flow estimation across both boundary and rotation
center regions. These findings highlight the critical role of the three-loss synergy in enhancing model
generalization and robustness for flow prediction.

Strong Vortex: We use PIVNO to process the vortex flow field images recorded by the German
Aerospace Center in the DNW-LLF large wind tunnel [64]. The motion field contains complex
characteristics such as high velocity gradients, particle density loss, size variations and small particles,
making it ideal for testing the robustness of our method. Experimental results show that our approach
accurately reconstructs intricate velocity distributions even under low particle density and steep
velocity gradients, as illustrated in fig. f{(b). In the experimental images, particle sizes are less than
two pixels, causing grayscale distributions to suffer from pixelation effects, which hinder precise
subpixel-scale localization. During displacement measurement, this blurring effect biases measured
values toward integer pixel positions rather than forming a continuous distribution, leading to the
so-called peak-locking effect [65] and reducing accuracy. Our method effectively mitigates this issue.

Turbulent Jet: We evaluated the turbulent round jet dataset from Delft University of Technology
[66], focusing on high-gradient regions and flow continuity. As shown in fig.[5[a) and (b), significant
lighting changes between the two frames challenged flow field estimation. To obtain the velocity
field, the dataset provider uses a multi-grid PIV method (fig. EKC)). However, due to resolution
limits of the grid-based approach, it struggles to resolve fine-scale flow structures, causing visible
blurring artifacts. In the experiment, fluid is injected from middle-right toward middle-left, while the
upper and lower sections are expected to flow inward due to pressure differences. Nevertheless, the
multi-grid PIV method shows irregular and discontinuous flow in these regions, failing to preserve



Table 4: Ablation comparisons on Synthetic Dataset 1.
JHTDB  DNS

RoPE-Mixed DWConv. GA  GRU GCN |Uniform Backstep Cylinder Channel turbulence SQG
X 10.73 15.55 4.12 8.95 20.01  14.96

X 4.04 3.07 0.78 1.88 3.94 2.90

X X X 6.68 230 0.95 1.93 3.85 3.06

X X 3.31 2.43 1.08 1.73 3.57 2.61

X 4.03 2.03 0.84 1.84 3.67 2.73

X 3.40 2.56 0.87 1.71 3.50 2.57

3.26 1.91 0.79 1.68 3.47 2.54

expected motion coherence. In contrast, our method (fig.[5(d)) captures the central flow trend in both
upper and lower regions more effectively, yielding a more structured and continuous velocity field.

4.3 Ablation Studies

We conducted ablation studies on Synthetic Dataset 1 to assess the importance of each module in
PIVNO. As shown in Table 4] removing any single component degrades performance. Notably,
the GA and GRU modules have the most significant impact when being removed, indicating their
essential roles in the overall architecture. Other components such as RoPE-Mixed and DWConv also
contribute consistently. These results validate the necessity of the full model design. More ablation
experiments can be found in the supplementary material (Case B).

5 Conclusion

We propose PIVNO, a neural operator framework that formulates PIV as a PDE-constrained inverse
problem. By leveraging a Galerkin-style attention mechanism and a self-supervised fine-tuning
scheme grounded in physical constraints, PIVNO achieves accurate and resolution-adaptive flow esti-
mation across synthetic and real-world datasets. The framework demonstrates strong generalization
and robustness capabilities, highlighting its potential for high-precision PIV applications.

Limitations. 2D particle velocimetry cannot fully capture the true 3D nature of fluid dynamics.
Future work will focus on extending the framework to 3D flow field estimation. Additionally,
the current feature extraction module lacks multi-scale feature fusion, which should be taken into
consideration when processing high-resolution PIV data.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use publicly available models and datasets, and our work does not involve
the release of models or data that pose a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets and pretrained models, each of which is
properly cited in the paper. All assets are used in compliance with their respective licenses.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release the code and pretrained models upon paper acceptance. The
released assets will include documentation on training procedures, usage instructions, and
license information to ensure accessibility and reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects and therefore does
not include an IRB.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used as part of the research methodology. Any LLM use was
limited to minor writing and editing support and did not influence the scientific content or
originality of the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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