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Abstract—Modern neural networks are often trained in a
setting where the number of parameters vastly exceeds the
number of training samples. While statistical folklore might
suggest overfitting due to the huge capacity of these models,
they show remarkable performance in practice, even if no
regularization is applied at all. To explain this phenomenon, it
has been conjectured that the training algorithm itself is biased
towards models of low capacity by implicitly regularizing the
model. While such an explanation remains elusive for deep neural
networks, significant progress has been made for simpler models.

In order to understand the implicit regularization of gradient
flow, diagonal linear neural networks have been studied exten-
sively. It was observed that for a sufficiently small initialization,
gradient flow converges towards the model with almost smallest
ℓ1-norm among all models that perfectly interpolate the training
data.

In this work, we study positive diagonal linear neural networks
of depth D = 2 in a regression task (a.k.a. quadratically repa-
rameterized linear regression). We analyze the approximation
error between the limit of the gradient flow and the solution
of the ℓ1-minimization problem. We derive precise upper and
lower bounds on the approximation error in dependence of the
scale of initialization α: the error decays with rate α1−ϱ, where
ϱ < 1. Furthermore, ϱ can be explicitly characterized and is
closely related to quantities prominent in the field of compressive
sensing. Our upper bounds improve on previous work in the
literature, and, to the best of our knowledge, no lower bounds
were available before.

I. INTRODUCTION

Neural networks are trained in an overparameterized setting,
where the number of parameters is much larger than the
number of data points in the training dataset. However, it is
not fully understood why these networks generalize so well
[1]. Namely, by the abundance of degrees of freedom, there
exist an infinitude of models that perfectly fit the training data,
some of which generalize poorly. Yet, it has been observed that
gradient descent finds a model that also generalizes well, even
when the loss is not explicitly regularized. This has led to the
conjecture that the optimization algorithm itself induces this
regularization and thus favors models of low complexity. This
hypothesis is commonly referred to as implicit regularization.

While the implicit regularization phenomenon has not
yet been understood for general neural networks, significant
progress has been made in several simpler models, such
as diagonal linear neural networks [2] and low-rank matrix
sensing [3] [4] [5]. In the case of linear neural networks, it
was shown that gradient flow starting at a sufficiently small
initialization is implicitly biased towards a minimizer of the
training loss that has minimal ℓ1-norm [6].

In this work, we investigate positive diagonal linear neural
networks of depth 2 in the regression setting. We consider the
linear regression problem

L(x) =
N∑
i=1

(
⟨ai, x⟩ − yi

)2
= ∥Ax− y∥2ℓ2 ,

where A ∈ RN×d is a given design matrix with rows (ai)
N
i=1

and y ∈ RN is a target vector. The model parameter x is then
reparameterized as x(u) := u⊙2, where we denote by ⊙ the
Hadamard product (v ⊙w)i := viwi. By design, the effective
linear model x(u) is non-negative. We notice that while the
model is linear in the input a, the reparameterized loss

L̃(u) := L(u⊙2) =
∥∥Au⊙2 − y

∥∥2
ℓ2

is non-linear and non-convex in the model parameter u.
In the case of linear regression, it is well-known that

gradient flow of L initialized at 0 converges to a solution of
Ax = y with minimal ℓ2-norm. In contrast, for diagonal linear
neural networks of depth at least two, it was shown that for
sufficiently small initialization, gradient flow is biased towards
a solution with minimal ℓ1-norm: when training x̂(u(t)) using
gradient flow for the reparameterized loss function L̃, the
effective linear model x̂(u(t)) is biased towards

x∗ ∈ argmin
x≥0:Ax=y

∥x∥ℓ1 .

This implicit bias can be made rigorous using the notion of
Bregman divergence. For a strictly convex function Φ: Rd →
R, the Bregman divergence is defined as

BΦ(x, x0) := Φ(x)− Φ(x0)− ⟨∇Φ(x0), x− x0⟩.



A point x̃ is said to be the Bregman projection of x0 onto a
set Ω if x̃ ∈ argminx∈Ω BΦ(x, x0).

The implicit bias can now be derived in two steps. Firstly,
it is shown that for every fixed initialization, the gradient flow
converges to the Bregman projection of the initialization onto
the set of solutions [7]. Secondly, it is shown that as the
initialization vanishes, the Bregman projection converges to
the ℓ1 minimizer x∗.

To make things rigorous, for a scale of initialization α >
0, denote by (ut(α))t≥0 the gradient flow of L̃ starting at
u0(α) := α1. Here 1 is the vector where every entry is equal
to one. Furthermore, let xt(α) := ut(α)

⊙2 denote the effective
linear model and let x∞(α) := limt→∞ xt(α).

Regarding the first step, it was shown in [7] [8, Theorem
2.2] that

x∞(α) = argmin
x≥0:Ax=y

BE(x,1α),

where the Bregman potential is the entropy functional

E(x) :=

d∑
i=1

xi log(xi)− xi,

with 0 log(0) := 0.
For the second step, it was shown that

∥x∞(α)∥ℓ1 − ∥x∗∥ℓ1 (I.1)

or
∥x∗ − x∞(α)∥ℓ1 (I.2)

converge to 0 as α → 0. To achieve this, suitable upper bounds
on these two quantities were derived. In [6] [8], it was shown
that (I.1) converges to 0 with rate O

(
log(1/α)

)
. This has been

improved in [9], who show that (I.2) converges to 0 with a
rate O

(
αp

)
, where p ∈ (0, 1) is an undetermined constant.

In this paper, we derive upper and lower bounds for (I.2).
These results show that the quantity (I.2) converges to 0 with
rate α1−ϱ, where ϱ ∈ (0, 1) is an explicitly specified constant,
which is closely related to null-space constants in the theory
of compressive sensing [10]. Our upper bound improves on
existing results. To the best of our knowledge, no lower bounds
were known so far.

In a forthcoming work, [11], we generalize these upper and
lower bounds to the reparameterization x(u, v) := u⊙D−v⊙D

for any D ≥ 2. Moreover, we construct explicit examples
that show that the upper and lower bounds are asymptotically
sharp.

II. MAIN RESULTS

To state our main results, we make the following assump-
tions. For x ∈ Rd, we write x ≥ 0 if xi ≥ 0 for all i ∈ [d].

Assumption II.1. Let A ∈ RN×d and y ∈ RN . We assume
that
(a) y ̸= 0,
(b) there exist x, x′ ≥ 0 with x ̸= x′ and Ax = Ax′ = y,
(c) and there is a unique minimizer x∗ of the minimization

problem min
x≥0:Ax=y

∥x∥ℓ1 .

Notice that if assumption (b) does not hold, then L only
has one positive global minimizer. In that case, the question
of implicit bias is meaningless. We note that regarding as-
sumption (c), that our theory can be generalized to the case
of a non-unique minimizer. However, the theoretical result
becomes more technical. For a full discussion, we refer to
our forthcoming paper [11].

In order to state our main results, we need to quantify some
properties of x∗ and ker(A). Let S := {i ∈ [d] : x∗

i ̸= 0}
denote the support of x∗ and let Sc := [d] \ S. Furthermore,
let

κ∗ :=
maxi∈S x∗

i

mini∈S x∗
i

.

Moreover, for n ∈ Rd and T ⊂ [d], write nT := (ni)i∈T and
define

N :=
{
n ∈ ker(A) : nSc ≥ 0}

and let

ϱ := sup
0̸=n∈N

−
∑

i∈S ni

∥nSc∥ℓ1
(II.1)

and

ϱ̃ := sup
0̸=n∈N

∥nS∥ℓ1
∥nSc∥ℓ1

, ϱ− := sup
0̸=n∈N

∑
i∈S:ni<0 |ni|
∥nSc∥ℓ1

,

(II.2)
whenever they exist. Lemma III.1 below ensures that the
quantities introduced above make sense and that ϱ < 1.

With these definitions in place, we can state our main result.

Theorem II.2. Let A, y and x∗ as in Assumption II.1. Let
α > 0 and let

x∞(α) ∈ argmin
x≥0:Ax=y

BE(x, α1).

(a) Upper bound. If

0 < α < min
i∈S

|x∗
i | ,

then
∥x∞(α)− x∗∥ℓ1

α1−ϱ
≤ (1 + ϱ̃) |Sc|κϱ−

∗ (min
i∈S

x∗
i )

ϱ. (II.3)

(b) Lower bound. If( α

mini∈S x∗
i

)1−ϱ

≤ 1

2(1 + ϱ̃) |Sc|κϱ−
∗

,

then

∥x∗∥ϱℓ∞
κϱ−
∗

· (1− C · ε1−ϱ) ≤
∥x∞(α)Sc − x∗

Sc∥ℓ∞
α1−ϱ

, (II.4)

where ε := α
mini∈S x∗

i
and C := 2(1 + ϱ̃) |Sc|κϱ−

∗ .

Before we proceed to the proof, let us make some remarks.

Remark. Note that by the equivalence of the ℓ1-norm and the
ℓ∞-norm, our result Theorem II.2 implies that if A and y are
fixed, then we have

c ≤
∥x∞(α)− g∗∥ℓ1

α1−ϱ
≤ C as α ↓ 0



for some constants

c :=
∥x∗∥ϱℓ∞
κϱ−
∗

and C := (1 + ϱ̃) |Sc|κϱ−

∗ (min
i∈S

x∗
i )

ϱ

that only depend on A and y. In particular, the convergence
rate is proportional to α1−ϱ and is completely determined
by the null-space parameter ϱ. Moreover, we expect that the
constants c and C are optimal in an asymptotic sense. For
a more detailed discussion of this topic, we refer to our
forthcoming work [11].

Remark. In practical applications, the dimension d is often
rather high. For example, in sparse MRI, the dimension d may
be around 105, whereas the sparsity s may be around 103,
see, e.g., [12]. We refer to [10] for some more references to
applications.

Remark. In our upcoming work [11], we conducted numerical
experiments with synthetic data, where A is a random Gaus-
sian matrix. For highly sparse signals x∗ and measurements
without noise, ϱ is often substantially smaller than 1. In fact,

one can show that ϱ ≲
√

s log(N/s)
N , see, e.g., [10]. In the

presence of noise, however, we observed in the experiments
that ϱ is close to 1. In summary, our experiments show that in
the noiseless scenario, as the scale of initialization converges
to 0, the convergence of x∞(α) towards the ℓ1-minimizer is
much faster than in the noisy scenario.

III. PROOFS

A. Technical preliminaries

The following Lemma III.1 is proved in Section III-C.

Lemma III.1. Assume that A, y fulfill Assumption II.1.
(i) We have S ̸= ∅, Sc ̸= ∅, and N ̸= {0}. Furthermore, for

every ñ ∈ N \ {0} we have ñSc ̸= 0. In particular, the
null-space constants in (II.1) and (II.2) are well-defined.

(ii) We have −∞ < ϱ < 1 and 0 ≤ ϱ̃, ϱ− < ∞.
Furthermore, the suprema in (II.1) and (II.2) are attained.

The Bregman minimizer x∞ has maximal support in the
sense of the following Lemma III.2. This is proved in [9].

Lemma III.2. For all α > 0, all ñ ∈ N and all i ∈ [d] we
have: if ñi ̸= 0, then x∞

i (α) ̸= 0.

B. Proof of the main theorem

Let n(α) := x∞(α) − x∗. In the following, we will
conceal the dependency on α and simply write x∞ and n.
The proofs of the upper bound for ∥n∥ℓ1 and the lower
bound for ∥n∥ℓ∞ in Theorem II.2 are both based on the
first order optimality condition for the Bregman divergence.
The following Lemma III.3 distills this condition down to the
relevant equality.

Lemma III.3. (i) We have n ∈ N and nSc ̸= 0.
(ii) For all ñ ∈ N , we have

−
∑
i∈S

ñi log
(x∗

i + ni

α

)
=

∑
i∈Sc

ñi log
(ni

α

)
.

Proof. (i) By Lemma III.1(i) there exists ñ ∈ N \ {0}, and,
in addition, we have ñSc ̸= 0. It follows from Lemma III.2
that x∞

Sc ̸= 0 and so nSc = (x∞ − x∗)Sc = x∞
Sc ̸= 0.

(ii) Let L+ := {x ≥ 0 : Ax = y}. By Lemma III.2 we
have x∞

i > 0 for all i such that ñi ̸= 0. Therefore, the map
t 7→ DE(x

∞+ tñ, α1) is differentiable at t = 0. Furthermore,
x∞ + tñ ∈ L+ for all t ∈ R with |t| sufficiently small. The
optimality of x∞ implies that

0 =
d

dt

∣∣∣∣
t=0

BE(x
∞ + tñ, α1)

= ⟨∇x

∣∣
x=x∞BE(x, α1), ñ⟩

= ⟨∇E(x∞)−∇E(α1), ñ⟩

=

d∑
i=1

ñi log
(x∞

i

α

)
,

where we use the convention 0 · log(0) = 0. Splitting up the
indices into S and Sc, inserting x∞ = x∗ + n, and using
x∗
Sc = 0, we deduce the claim.

With this Lemma III.3 in place, we can prove the main
result. We first show the upper bound.

Proof of Theorem II.2(a). Since n ∈ N \ {0} we have by
definition of ϱ̃ that

∥x∞ − x∗∥ℓ1 = ∥n∥ℓ1 = ∥nSc∥ℓ1 + ∥nS∥ℓ1
≤ (1 + ϱ̃) · ∥nSc∥ℓ1 .

(III.1)

In the remainder of the proof, we will derive a suitable upper
bound for ∥nSc∥ℓ1 .

Invoking Lemma III.3, with ñ := n, we obtain∑
i∈Sc

ni log
(ni

α

)
=

∑
i∈S

(−ni) log
(x∗

i + ni

α

)
. (III.2)

In the following, we will bound the left-hand side and the
right-hand side of (III.2) individually.

For the right-hand side of (III.2), we use the monotonicity
of t 7→ log

(
x∗
i +t
α

)
to obtain

∑
i∈S

(−ni) log
(x∗

i + ni

α

)
≤

∑
i∈S

(−ni) log
(x∗

i

α

)
.

Now let λ := mini∈S x∗
i . Using log(

x∗
i

λ ) ≥ 0 at (i), and the
definitions of the null-space constants at (ii), we infer that∑

i∈S
(−ni) log

(x∗
i

α

)
=

∑
i∈S

(−ni) log
(λ
α

)
+

∑
i∈S

(−ni) log
(x∗

i

λ

)
(i)

≤ log
(λ
α

)(
−
∑
i∈S

ni

)
+

∑
i∈S:ni<0

|ni| log
(x∗

i

λ

)
(ii)

≤ ∥nSc∥ℓ1
[
log

(λ
α

)
· ϱ+ log

( supi∈S x∗
i

λ

)
· ϱ−

]
.

(III.3)



For the term on the right-hand side of (III.2), we invoke the
log sum inequality, see [13, Theorem 2.7.1], to deduce that∑
i∈Sc

ni log
(ni

α

)
≥

( ∑
i∈Sc

ni

)
· log

( 1

α |Sc|
∑
i∈Sc

ni

)
= ∥nSc∥ℓ1 · log

(∥nSc∥ℓ1
α |Sc|

)
.

(III.4)

Inserting (III.3) and (III.4) into (III.2), and dividing both
sides by ∥nSc∥ℓ1 , which by Lemma III.3 is non-zero, we
obtain

log
(∥nSc∥ℓ1

α |Sc|

)
≤ ϱ log

(λ
α

)
+ ϱ− log

( supi∈S x∗
i

λ

)
.

Applying the exponential function, we deduce that

∥nSc∥ℓ1 ≤ α |Sc| ·
(λ
α

)ϱ

·
( supi∈S x∗

i

λ

)ϱ−

.

Since λ = mini∈S x∗
i , it follows that

∥nSc∥ℓ1 ≤ α1−ϱ |Sc| ·
(
min
i∈S

x∗
i

)ϱ · κϱ−

∗ . (III.5)

Combining (III.1) and (III.5), we deduce (II.3).

Next, we prove the lower bound.

Proof of Theorem II.2(b). By Lemma III.1(ii), there exists
m ∈ ker(A) with mSc ≥ 0, mSc ̸= 0, and

−
∑
i∈S

mi = ϱ ∥mSc∥ℓ1 . (III.6)

By Lemma III.3 with ñ := m, we have

−
∑
i∈S

mi log
(x∗

i + ni

α

)
=

∑
i∈Sc

mi log
(ni

α

)
. (III.7)

We will first look at the right-hand side of (III.7). We have
mi ≥ 0 for all i ∈ Sc. Hence

∑
i∈Sc mi = ∥mSc∥ℓ1 . Using

the concavity of the log function at (i) and its monotonicity
at (ii), we infer that∑

i∈Sc

log
(ni

α

)
mi

(i)

≤ ∥mSc∥ℓ1 log
( ∑

i∈Sc

mi

∥mSc∥ℓ1
ni

α

)
(ii)

≤ ∥mSc∥ℓ1 log
(∥nSc∥ℓ∞

α

)
.

(III.8)

Next we turn to the left-hand side of (III.7). Recall that
we defined ε = α

mini∈S x∗
i

and C = 2(1 + ϱ̃) |Sc|κϱ−
∗ . Using

Theorem II.2(a) at (i) and our assumption on α at (ii), we
obtain

∥n∥ℓ∞
mini∈S x∗

i

(i)

≤ C

2
· ε1−ϱ

(ii)

≤ 1

2
. (III.9)

In particular, we have

x∗
i + tni ≥ min

i∈S
x∗
i − ∥n∥ℓ∞ ≥ 1

2
min
i∈S

x∗
i (III.10)

for all t ∈ [0, 1] and all i ∈ S. Using the fundamental theorem
of calculus at (i), inequality (III.10) at (ii), and (III.9) at (iii),
we obtain∣∣∣∣∣∑

i∈S

(−mi) log
(x∗

i + ni

α

)
−
∑
i∈S

(−mi) log
(x∗

i

α

)∣∣∣∣∣

(i)
=

∣∣∣∣∣∑
i∈S

∫ 1

0

mini

x∗
i + tni

dt

∣∣∣∣∣ (ii)

≤ 2
∥mS∥ℓ1 ∥nS∥ℓ∞

mini∈S x∗
i

(iii)

≤ ∥mS∥ℓ1 · C · ε1−ϱ.

Let λ := ∥x∗∥ℓ∞ . Using (III.6), the definition of ϱ−, and κ∗,
we obtain∑

i∈S
(−mi) log

(x∗
i

α

)
=

∑
i∈S

(−mi) log
(λ
α

)
+
∑
i∈S

(−mi) log
(x∗

i

λ

)
≥

∑
i∈S

(−mi) log
(λ
α

)
+

∑
i∈S:mi<0

(−mi) log
(x∗

i

λ

)
≥ ϱ ∥mSc∥ℓ1 log

(λ
α

)
− ϱ− ∥mSc∥ℓ1 log(κ∗).

Combining the previous inequalities, we infer that

l.h.s.(III.7)
∥mSc∥ℓ1

≥ ϱ log
(∥x∗∥ℓ∞

α

)
− ϱ− log(κ∗)− Cε1−ϱ.

(III.11)

Finally, inserting (III.8) and (III.11) into (III.7), we deduce
that

ϱ log
(∥x∗∥ℓ∞

α

)
− ϱ− log(κ∗)− Cε1−ϱ ≤ log

(∥nSc∥ℓ∞
α

)
Applying the exponential function to both sides and using
exp(−t) ≥ 1− t, we deduce (II.4).

C. Proof of the null-space properties
Proof of Lemma III.1. (i) Since y ̸= 0 we have x∗ ̸= 0 and
so S ̸= ∅. By assumption, there exists x ≥ 0 with Ax = y
and x∗ ̸= x. It follows that x− x∗ ∈ N \ {0}.

Now let ñ ∈ N\{0}. Since x∗ is the unique ∥·∥ℓ1 -minimizer
and x∗ ≥ 0, we have

0 <
∥x∗ + εñ∥ℓ1 − ∥x∗∥ℓ1

ε
=

∑
i∈S

ñi +
∑
i∈Sc

|ñi| (III.12)

for all sufficiently small ε > 0. If Sc = ∅ or if ñSc = 0, then
(III.12) is also true for −ñ. We obtain

0 <
∑
i∈S

ñi, and 0 < −
∑
i∈S

ñi,

which is impossible. Hence Sc ̸= ∅ and ñSc ̸= 0.
(ii) For ñ ∈ N \ {0} let

ϱ(ñ) :=
−
∑

i∈S ñi

∥ñSc∥ℓ1
.

Then (III.12) implies that ϱ(ñ) < 1. Let N1 := N ∩ ∂B1(0).
Since N \{0} is a cone we also have N1 ̸= ∅. Since ϱ(tñ) =
ϱ(ñ) for all ñ ∈ N \ {0} and all t > 0, we have

ϱ = sup
ñ∈N1

ϱ(ñ).

The claim for ϱ now follows by compactness of N1 and
continuity of ϱ(·). The remaining claims are proved analo-
gously.
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