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Abstract001

As Large Language Models (LLMs) increas-002
ingly serve as the backbone of modern Ques-003
tion Answering (QA) systems, ensuring their004
robustness to input variation has become a crit-005
ical concern. In this paper, we survey the tra-006
jectory of robustness evaluation for QA, with a007
particular focus on perturbation-based methods008
applied to textual input. We first review syn-009
thetic perturbation approaches developed for010
earlier neural models and discuss their contin-011
ued relevance and adaptation to recent LLMs.012
We then examine natural perturbations, which013
originate from real-world language variation014
and provide a more realistic basis for evaluating015
robustness in practical scenarios. Based on our016
analysis, we identify key limitations in current017
robustness research and advocate for a shift to-018
ward evaluation methodologies that emphasize019
natural linguistic variability. We also outline020
future research directions, including the need021
for systematic evaluation protocols, a deeper022
understanding of robustness in the context of023
LLM-based QA, and explicit consideration of024
benchmark leakage when evaluating the robust-025
ness of LLMs.026

1 Introduction027

Large Language Models (LLMs) have achieved re-028

markable progress in natural language understand-029

ing, as evidenced by their strong performance on a030

wide array of academic benchmarks in Natural Lan-031

guage Processing (NLP) (Bang et al., 2023; Team032

et al., 2025; Yang et al., 2025) and their widespread033

adoption in real-world applications, such as con-034

versational agents including ChatGPT (OpenAI035

et al., 2024a) and DeepSeek (DeepSeek-AI et al.,036

2025). As these models are increasingly deployed037

across both routine information-seeking contexts038

and critical domains such as healthcare, law, and fi-039

nance, concerns regarding their robustness and gen-040

eralization capabilities have become increasingly041

prominent (Wang et al., 2024; Zhu et al., 2024;042

Nalbandyan et al., 2025). Even subtle variations 043

in input can lead to erroneous outputs, which may 044

have significant consequences, particularly in high- 045

stakes environments. Accordingly, evaluating and 046

improving the robustness of LLMs has become a 047

pressing challenge for the NLP community (Zhang 048

et al., 2025). 049

Among the many applications of LLMs, Ques- 050

tion Answering (QA) over unstructured textual in- 051

formation stands out as both a practical task and a 052

diagnostic benchmark for evaluating authentic lan- 053

guage understanding. Although recent studies sug- 054

gest that modern LLMs exhibit improved robust- 055

ness compared to earlier neural QA systems (e.g., 056

DEBERTAV3 (He et al., 2023)) (Fang et al., 2023), 057

there is growing concern that, despite achieving 058

seemingly impressive results on simplistic evalu- 059

ations involving static test instances, the perfor- 060

mance of LLMs deteriorates in a rapidly evolving 061

world where diverse textual variations are common 062

(Wu et al., 2025). This limitation becomes even 063

more apparent when contrasted with the remark- 064

ably robust language processing systems observed 065

in humans, for whom variations in text rarely 066

impede comprehension (Reicher, 1969; Rawlin- 067

son, 1976; McCusker et al., 1981; Mayall et al., 068

1997)—a property that reflects linguistic compe- 069

tence (CANALE and SWAIN, 1980) as opposed to 070

mere performance (Chomsky, 1969, 2006). 071

Figure 1 illustrates such brittleness, where al- 072

tering the syntactic structure of the question can 073

lead state-of-the-art (SOTA) reasoning LLMs– 074

OpenAI’s o3 to generate an incorrect response, 075

even when the underlying semantic meaning re- 076

mains unchanged—an error pattern rarely observed 077

in human comprehension (CASE 1: Question para- 078

phrasing). In CASE 2: Knowledge update, append- 079

ing a contextual update stating that the Summer 080

Olympic Games have been held four times in East 081

Asia, and modifying the question to inquire “As 082

of 2025” makes it impossible to infer the referent 083
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Instruction: Read the paragraphs and answer the question.

Paragraph A: 2008 Summer Olympics “The 2008 Summer Olympic Games, officially known as [...]
It was the third time that the Summer Olympic Games were held in East Asia and Asia, after Tokyo,
Japan, in 1964 and Seoul, South Korea, in 1988. This was later followed by the 2020 Summer
Olympics, also held in Tokyo, which were postponed due to the COVID-19 pandemic and ultimately
took place from 23 July to 8 August 2021, marking the fourth time the Games were hosted in East
Asia.”
Paragraph B: Summer Olympic Games “The Summer Olympic Games (French: "Jeux olympiques
d’été" ) or the Games of the Olympiad, first held in 1896, is an international multi-sport event that is
hosted by a different city every four years. [...] The Winter Olympic Games were created due to the
success of the Summer Olympics.”
Question: “As of 2008, when did the game which was held only three times in East Asia first held?”
Original Prediction: It refers to the Summer Olympic Games, which were first held in 1896 (in
Athens, Greece).
CASE 1: Question paraphrasing: “As of 2008, when was the first time the game—held only three
times in East Asia—took place?” It first took place in 1964, when Tokyo, Japan hosted the Summer
Olympic Games. ✗

Prediction by a human: 1896
CASE 2: Knowledge update: “As of 2025, when did the game which was held only three times in East
Asia first held?” The Summer Olympic Games were first held in 1896. ✗

Prediction by a human: Unanswerable

Figure 1: Illustrative cases of OpenAI’s o3 failures on test instances reflecting real-world textual variation. The
original QA example is taken from the HOTPOTQA dataset (Yang et al., 2018). We slightly modify the original
question (When did the game which held three times in in East Asia first held) to make it grammatically correct and
eliminate ambiguity.

of “the game” with certainty. While a human an-084

notator appropriately recognise that the question085

becomes unanswerable given the revised paragraph086

and the question, o3 continues to provide an an-087

swer 1896, thereby failing to account for the con-088

textual shift. These cases demonstrate the brittle-089

ness of LLMs in handling linguistic variations in090

real-world scenarios and challenge claims regard-091

ing their human-level reading comprehension and092

language understanding (Shojaee*† et al., 2025;093

Rajeev et al., 2025).094

In this paper, we review the trajectory of robust-095

ness evaluation in QA, from its application to early096

neural language models to more recent develop-097

ments involving LLMs. We begin by examining098

synthetic perturbation approaches developed for099

earlier models and then discuss how these methods100

have been adapted and applied to LLMs. Then,101

we turn to a relatively underexplored yet critical102

category—natural perturbations—which refer to103

variations arising from real-world language evolu-104

tion, and provide a survey of related work. Natural105

perturbations are increasingly viewed as more rep-106

resentative of real-world robustness challenges, as107

they reflect the types of linguistic variability that 108

LLMs are likely to encounter in practical use (Wu 109

et al., 2025). In contrast, synthetic approaches rely 110

on predefined manipulation strategies, which may 111

not fully capture the complexity and diversity of 112

natural language variation. Finally, we identify key 113

limitations in existing robustness research and pro- 114

pose promising directions for future work. The 115

structure of our survey paper is shown in Figure 2. 116

To summarize, our contributions are threefold: 117

1. We survey existing work on applying synthetic 118

perturbation approaches to LLMs as a com- 119

plement to the survey presented in (Ho et al., 120

2023), and demonstrate that techniques origi- 121

nally developed for earlier QA systems remain 122

relevant and effective in the context of LLMs. 123

2. We provide a comprehensive review of studies 124

that employ natural perturbations for robust- 125

ness evaluation, organized by the source of 126

the perturbation, and argue for a critical shift 127

in focus from synthetic perturbations to real- 128

world, naturally occurring variations. 129

3. We identify key limitations in current QA 130
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Textual Input Perturbations

Natural Perturbations

Synthetic Perturbations

Label-preserving

Label-changing

Human-written text

Wikipedia edit histories

Human-guided input variations

Future Directions Comprehensive synthetic
robustness evaluation on LLMs

Shift to real-world
robustness via natural

perturbations

Linking synthetic and
natural perturbations

Rigorous and principled validity assessment
protocol design

Examination and consideration of
benchmark data leakage

adversarial distracting
sentence insertion;

question/context rephrasing;
character swap

semantics altering
modification

Figure 2: Overview of synthetic and natural perturbation methods for robustness evaluation surveyed in this paper,
along with proposed future directions.

robustness evaluation research and propose131

promising directions for future work, particu-132

larly in light of the evolving capabilities and133

deployment scenarios of LLMs.134

2 Textual Input Perturbations135

An effective way to assess model robustness is136

through input perturbations, whereby textual inputs137

are deliberately modified to observe how model138

predictions change under such conditions. In this139

paper, we broadly categorise existing robustness140

evaluation work into two types—synthetic and141

natural—based on fundamental differences in the142

methodologies used to construct the perturbations.143

2.1 Synthetic Perturbations144

A significant body of work on NLP robust-145

ness assessment relies on synthetic perturba-146

tions—deliberate modifications based on prede-147

fined input transformation strategies. These meth-148

ods assume that the gold label is either preserved or149

altered under bounded perturbations. Accordingly,150

synthetic perturbation techniques can be broadly151

classified into two categories: label-preserving and152

label-changing. In the following, we briefly trace153

the trajectory of synthetic perturbation-based ro-154

bustness evaluation work in a representative QA155

task. For a more detailed and comprehensive sur-156

vey on robustness evaluation in QA and broader157

coverage across other NLP tasks, we refer read- 158

ers to (Ho et al., 2023) and (Wang et al., 2022b; 159

Schlegel et al., 2023), respectively. 160

Label-preserving The majority of existing work 161

adopts the label-preserving 1 assumption, employ- 162

ing synthetic textual perturbations like the insertion 163

of adversarial distracting sentence (Jia and Liang, 164

2017; Wang and Bansal, 2018; Chen et al., 2022a; 165

Tran et al., 2023), the rephrasing of the question 166

(Gan and Ng, 2019) or the reading paragraph (Wu 167

et al., 2021, 2023), the addition of misinformation 168

(Pan et al., 2023) and character-level manipulations 169

such as character swaps (Si et al., 2021). 170

Label-changing Another line of work introduces 171

small but meaningful input perturbations that inten- 172

tionally alter the gold label, with the expectation 173

that the model should adapt its prediction to reflect 174

the change (Gardner et al., 2020; Schlegel et al., 175

2021; Geva et al., 2022). 176

Synthetic perturbations introduced in earlier 177

work have primarily been applied to pre-LLM neu- 178

ral QA models. A consistent finding is that, de- 179

spite achieving strong, human-comparable perfor- 180

mance on held-out test sets (Devlin et al., 2019; Liu 181

et al., 2019; He et al., 2021), these models exhibit 182

varying degrees of performance degradation under 183

1Note that label-preserving does not necessarily imply
semantics-preserving.
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synthetic perturbation settings—highlighting their184

reliance on statistical shortcuts to bypass genuine185

task requirements and exposing a lack of robustness186

(Ho et al., 2023).187

More recently, SOTA LLMs have demonstrated188

superior natural language understanding across a189

wide range of NLP tasks—including QA (Ope-190

nAI et al., 2024b; OLMo et al., 2025; Yang et al.,191

2025)—and outperform their fine-tuned pre-trained192

language model predecessors in terms of robust-193

ness (Fang et al., 2023). Nevertheless, synthetic194

perturbation approaches developed for earlier QA195

systems remain relevant, as LLMs have also been196

shown to be vulnerable to such perturbations. For197

instance, Levy et al. (2023) adapted the adversarial198

distracting sentence injection technique originally199

proposed in (Jia and Liang, 2017), prompting a200

strong GPT-4 model to generate a distractor sen-201

tence that answers the question similar to the origi-202

nal but with one critical detail changed—referred to203

as the “almost detail”. The instruction encouraged204

the model to reuse much of the original question’s205

phrasing while omitting the actual answer. This per-206

turbation strategy was later found to successfully207

mislead less proficient GPT-TURBO, GPT3.5, and208

even GPT-4 itself. Fang et al. (2023) empirically209

investigated the effects of diverse synthetic per-210

turbations (e.g., neighboring character swaps, syn-211

onym replacements, and combinations of multi-212

ple attack methodologies) on other LLMs such as213

LLAMA (Touvron et al., 2023a), and observed sim-214

ilar patterns of robustness failure. Besides, recent215

work by Bhuiya et al. (2024) revealed that, despite216

not requiring downstream task-specific fine-tuning217

like earlier QA systems, leading LLMs including218

GPT, LLAMA 2 (Touvron et al., 2023b) and MIX-219

TRAL 8X7B (Jiang et al., 2024) still tend to exploit220

simplifying cues to circumvent the requirement to221

perform multi-hop reasoning. This is evidenced by222

their poor generalisability under a controlled chal-223

lenge setting, in which distractor paragraphs were224

introduced to present seemingly plausible yet in-225

correct alternative reasoning paths, while ensuring226

that the correct final answer remained unchanged.227

2.2 Natural Perturbations228

Unlike synthetic perturbations, which typically rely229

on hypothesised manipulation strategies (Le et al.,230

2022), natural perturbations originate from authen-231

tic variations observed in real-world scenarios and232

are therefore considered more relevant for eval-233

uating real-world robustness (Wu et al., 2025).234

However, this aspect has long been significantly 235

neglected, and natural perturbations remain com- 236

paratively underexplored relative to their synthetic 237

counterparts. Table 1 summarises a non-exhaustive 238

body of literature on natural perturbation methods 239

applied across diverse NLP tasks. In the following, 240

we categorise these works by the sources of natural 241

perturbations. 242

Wikipedia edit histories Wikipedia’s revision his- 243

tories provide a rich source of human-authored tex- 244

tual changes over time, offering a valuable corpus 245

for studying real-world text variations. As one 246

of the earlier efforts, Belinkov and Bisk (2018) 247

explored robustness in Neural Machine Transla- 248

tion (NMT) by applying single-word perturba- 249

tions to non-English source-side sentences. They 250

built a lookup table of lexical errors, such as ty- 251

pos and misspellings, extracted from French (Max 252

and Wisniewski, 2010) and German (Zesch, 2012) 253

Wikipedia edit histories. Words in the source sen- 254

tences were then replaced with corresponding er- 255

rors from the table, where applicable. Eger and 256

Benz (2020) extended the same approach to POS 257

tagging, Natural Language Inference (NLI), and 258

Toxic Comment Classification (TC), leveraging re- 259

vision histories from English Wikipedia. Building 260

on this line of research, natural perturbations were 261

further generalised to various Question Answering 262

(QA) tasks (Wu et al., 2025). Instead of perturbing 263

individual tokens, they substituted entire reading 264

paragraphs with their edited counterparts retrieved 265

from English Wikipedia revision histories, enabling 266

evaluation under naturally occurring, context-level 267

perturbations. The study assessed the sensitivity of 268

neural language models ranging from early BERT- 269

based architectures to SOTA LLMs, revealing that 270

robustness issues persist across model generations. 271

Human-written text Textual content authored by 272

human writers may contain a diverse range of er- 273

rors and thus serve as a potential source of natural 274

perturbations, as exemplified by essays written by 275

non-native Czech speakers (Šebesta et al., 2017; 276

Belinkov and Bisk, 2018) and by more than 18 mil- 277

lion sentences produced by internet users across 278

nine real-life datasets (Le et al., 2022). 279

Human-guided input variations Some studies 280

involve recruiting human annotators to manually 281

craft or verify input variations. We categorise such 282

variations as natural when annotators are not in- 283

formed that their modifications will be used to 284
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Task/Reference Natural Perturbation Method Level Validity Defense Strategies

NMT (Belinkov
and Bisk, 2018)

Replace each word in the source-
side sentence with available ed-
its mined from French and Ger-
man Wikipedia edit histories and
human-written essays in Czech

Word Unclear Average character embed-
ding; Training on per-
turbed data

POS tagging,
NLI, TC (Eger
and Benz, 2020)

Replace words with natural hu-
man errors from the Wikipedia
edit history

Word Unclear Training on perturbed data

QA (Wu et al.,
2025)

Replace the reading pas-
sage with its counterparts
based on available English
Wikipedia edit histories

Context Human Adversarial training with
perturbed data; In-context
demonstrations

Toxic Com-
ments/Hate
Speech/Online
Cyberbullying
Texts Detection
(Le et al., 2022)

Retrieve and substitute words us-
ing perturbations extracted from
a large corpus of over 18M
sentences written by netizens,
based on phonetic similarity and
edit distance

Word Human Sound-Invariant CNN; Ad-
versarial training with per-
turbed data

Over 80 unique
tasks from
MMLU and
BIG-BENCH

LITE (Sun et al.,
2024)

Recruit 36 NLP graduate
students to compose novel
instructions that are appropriate
for a given task but superficially
different from those seen during
instruction fine-tuning

Instruction Unclear Aligning representations
of equivalent instructions

LLMs Code
Generation
(Chen et al.,
2025)

Apply perturbations from
21 specific categories to the
original natural language
prompt. These categories,
which may occur in real-world
scenarios, were suggested by
experienced practitioners from
the open-source community,
industry, and academia through
the online survey

Mix Human –

Table 1: A non-exhaustive summary of existing literature on natural perturbations. For each work, we list the
studied task, method for generating naturally perturbed test data (with italicized underlined text indicating the
corpus source), and the perturbation level. We also indicate whether the work verifies the validity of the adversarial
examples and whether it proposes defense strategies. “Unclear” denotes that no systematic experiments were
conducted, though some works discuss or qualitatively assess validity.

fool the model. In this setting, edits are guided285

by the annotators’ own judgments of necessity286

and tend to reflect real-world scenarios, rather287

than being made with the explicit goal of induc-288

ing model failure (Wallace et al., 2019; Bartolo289

et al., 2020)—thus preserving their naturalness. In290

(Sun et al., 2024), researchers examined the ro-291

bustness of instruction-tuned models to instruction 292

rephrasing across more than 80 NLP tasks drawn 293

from MMLU (Hendrycks et al., 2021) and BIG- 294

BENCH LITE (Srivastava et al., 2023). A total of 36 295

NLP graduate researchers were recruited to write 296

novel instructions they believed would best elicit 297

the desired behavior for each task. These newly 298
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crafted (unobserved) instruction phrasings, while299

differing superficially from those seen during in-300

struction fine-tuning, were shown to consistently301

degrade model performance—highlighting limita-302

tions in the models’ generalisability. Rather than303

having human annotators directly propose pertur-304

bations, Chen et al. (2025) introduced 21 types of305

real-world scenario variations targeting natural lan-306

guage descriptions in LLM-based code generation307

tasks, derived from survey responses collected from308

professionals in industry and research institutions309

with experience using LLMs for code generation.310

Similarly, interview responses from employees at311

16 British, German, and American NGOs, whose312

work directly involves online hate, were used to de-313

sign 29 real-world functional tests aimed at reveal-314

ing specific weaknesses in hate speech detection315

models (Röttger et al., 2021).316

Note that the term “natural” is overloaded in317

NLP literature, where it can also refer either to318

the extent to which synthetically modified text pre-319

serves linguistic characteristics such as fluency, co-320

herence, grammaticality, and clarity, i.e., its natu-321

ralness (Jin et al., 2020; Li et al., 2020; Schlegel322

et al., 2021; Qi et al., 2021; Wang et al., 2022a;323

Dyrmishi et al., 2023), or to naturally occurring out-324

of-distribution data shift (Wang et al., 2022b). This325

contrasts with our focus, where “natural” pertains326

to perturbations arising from real-world scenar-327

ios rather than those engineered artificially. Some328

works also propose that a natural synthetically per-329

turbed sample should be imperceptible to human330

judges (Li et al., 2020; Garg and Ramakrishnan,331

2020) or convey the impression of human author-332

ship (Dyrmishi et al., 2023). However, this proposi-333

tion remains a subject of debate (Zhao et al., 2018;334

Wang et al., 2022b; Chen et al., 2022b).335

3 Future Directions336

Looking ahead to robustness evaluation in the337

LLMs era, we outline key limitations in existing338

QA robustness research and propose promising di-339

rections for future work, based on the literature340

survey presented in Section 2.341

Systematic evaluation of LLM robustness under342

a comprehensive range of synthetic perturbations.343

While numerous synthetic perturbation strategies344

have been proposed for earlier QA systems, their345

impact on modern LLMs remains underexplored,346

particularly for more intricate perturbation types. A347

thorough and unified evaluation covering a diverse348

range of perturbation strategies would help iden- 349

tify systematic weaknesses and better inform the 350

development of robust LLM-based QA systems. 351

Shift toward robustness evaluation under natu- 352

ral perturbations. As LLMs are increasingly de- 353

ployed in real-world applications, ensuring their 354

robustness in practical settings becomes critically 355

important. This calls for more realistic evalua- 356

tion methods that reflect the challenges LLMs are 357

likely to encounter post-deployment. Natural per- 358

turbation approaches offer a promising direction 359

by leveraging input variations that arise organically 360

from real-world use cases. Such evaluations pro- 361

vide deeper insight into how LLMs handle naturally 362

occurring linguistic shifts and user-generated con- 363

tent, thereby offering a more reliable measure of 364

practical robustness. 365

Deeper investigation into the relationship between 366

natural and synthetic perturbations. Future re- 367

search should systematically examine the extent 368

to which synthetic perturbations approximate natu- 369

ral variations, and where they fall short. Such in- 370

quiry could illuminate the limitations of synthetic 371

methods in capturing the complexity and diversity 372

of real-world text evolution. Prior studies consis- 373

tently showed that real-world natural perturbations 374

exhibit more diverse and nuanced linguistic phe- 375

nomena, which are difficult to replicate through 376

synthetic strategies (Belinkov and Bisk, 2018; Wu 377

et al., 2025), and often result in more valid adver- 378

sarial examples (Le et al., 2022). However, findings 379

on adversarial training remain mixed. For exam- 380

ple, Belinkov and Bisk (2018) reported that, in the 381

context of a NMT task, training on synthetic pertur- 382

bations did not improve robustness against natural 383

ones. In contrast, Wu et al. (2025) found that, for 384

QA tasks, training on synthetic perturbations could 385

improve robustness to natural perturbations, and 386

in some cases be even more effective than training 387

on natural examples—an outcome observed across 388

both encoder-only models and LLMs in few-shot 389

settings. These contradictory findings underscore 390

the need for a more unified understanding of the 391

relationship between natural and synthetic perturba- 392

tions in robustness evaluation across various NLP 393

tasks and LLMs. 394

More rigorous and principled design of validity 395

assessment protocols. Assessing the validity of 396

adversarial examples is crucial for disentangling 397

model limitations from degradation in input qual- 398
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ity. Most existing studies rely on human anno-399

tators to perform validity checks; however, these400

annotations sometimes suffer from unsatisfactory401

inter-annotator agreement (Wu et al., 2023). This402

highlights the need for a well-defined theoretical403

framework for human answerability, which is es-404

sential for accurately evaluating the validity of405

perturbed or adversarial inputs. We further advo-406

cate for greater transparency in the human anno-407

tation process and the development of carefully408

designed methodologies to measure human per-409

formance (Tedeschi et al., 2023). Such practices410

would provide more precise insights into the true411

validity of perturbations and the reliability of ro-412

bustness evaluations.413

Consideration of benchmark leakage in robust-414

ness assessment. As LLMs and their training cor-415

pora continue to scale, the risk of benchmark leak-416

age has become an increasingly pressing concern417

(Sainz et al., 2024). Instances from held-out evalu-418

ation datasets may often be inadvertently included419

in training data, and in more severe cases, this ex-420

posure may extend to ground-truth labels (Dodge421

et al., 2021; Li et al., 2024). This issue is further422

exacerbated by the lack of transparency regard-423

ing the training data used for most frontier LLMs.424

Such contamination compromises the integrity of425

robustness assessments by conflating memorisa-426

tion with genuine generalisation. Future research427

should explicitly account for and rigorously ex-428

amine the impact of benchmark leakage to ensure429

that robustness claims accurately reflect model be-430

haviour under truly unseen conditions.431

4 Conclusion432

Robustness remains a critical challenge for QA sys-433

tems, especially as LLMs are increasingly deployed434

in real-world and high-stakes applications. In this435

survey, we reviewed the trajectory of robustness436

evaluation methods, with a focus on perturbation-437

based approaches applied to textual input. We first438

examined synthetic perturbations, outlining their439

development in earlier models and their continued440

relevance for evaluating LLMs. We then surveyed441

work on natural perturbations, which provide a442

more realistic perspective on model behavior in the443

face of genuine linguistic variability.444

Drawing from these findings, we identified key445

limitations in existing robustness research and ad-446

vocated for a shift toward evaluation approaches447

grounded in naturally occurring variations. We also448

highlighted future directions, including the need for 449

more systematic evaluation protocols and a deeper 450

understanding of the relationship between synthetic 451

and natural perturbations. As LLMs become cen- 452

tral to modern NLP systems, advancing robust QA 453

methods will be essential to ensuring reliability and 454

trustworthiness in practical deployments. 455

Limitations 456

This survey primarily focuses on robustness eval- 457

uation techniques that involve perturbations to the 458

textual input in QA and broader NLP tasks. In par- 459

ticular, we review methods that apply synthetic or 460

natural variations to the question or context inputs, 461

as commonly studied in the evaluation of language 462

understanding capabilities. 463

We do not include studies that focus on pertur- 464

bations to prompts or instructions, which represent 465

a distinct line of research aimed at understanding 466

how LLMs respond to variation in task framing 467

or instruction phrasing. Additionally, we exclude 468

work on jailbreak attacks that are designed to cir- 469

cumvent safety mechanisms in LLMs. While such 470

work is relevant to issues of safety and alignment, 471

it falls outside the scope of this survey, which is 472

centered on robustness in the context of QA perfor- 473

mance. 474
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