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Abstract

Recent advancements in novel view synthesis for indoor scenes using diffusion
models have gained significant attention, particularly for generating target poses
from a single source image. While existing methods produce plausible nearby
views, they struggle to extrapolate perspectives far beyond the input. Moreover,
achieving multi-view consistency typically requires computationally expensive
3D priors, limiting scalability for long-range generation. In this paper, we pro-
pose a transformer-based latent diffusion model that integrates view geometry
constraints to enable long-range, consistent novel view synthesis. Our approach
explicitly warps input-view feature maps as the denoised target view and incor-
porates a conditioning combination of epipolar-weighted source image features,
Plücker raymaps, and camera poses. This design allows for semantically and ge-
ometrically coherent extrapolation of novel views in a single-shot manner. We
evaluate our model on the ScanNet and RealEstate10K datasets using diverse
metrics for view quality and consistency. Experimental results demonstrate its
superiority over existing methods, highlighting its potential for scalable, high-
fidelity novel view synthesis in video generation.

1 Introduction

Existing novel view synthesis (NVS) methods, such as NeRF (Mildenhall et al., 2020), approach view
synthesis as an interpolation problem between input views. This approach restricts the synthesis
to observed regions and necessitates multiple input views to learn an implicit scene representa-
tion. Despite existing NVS methods from single input images have demonstrated promising results
in near view to the reference image, nonetheless, they struggle to extrapolate consistent views in
long range and usually require a 3D geometry prior as guidance, including depth, NeRF prior or fu-
sion of multiview feature embeddings. For example, SE3DS (Koh et al., 2023) generates new views
by using a reprojected point cloud as guidance. Invisible Stitch (Engstler et al., 2024) iteratively
stitches and fuses newly generated views through an on-the-fly depth completion model. For the
work using NeRF as 3D prior, Gaudi (Bautista et al., 2022) optimizes a latent representation by
decoupling the scene radiance field and camera poses to render consistent views along a speci-
fied trajectory. ZeroNVS (Sargent et al., 2024) leverages the NeRF to guide the diffusion process
through score distillation sampling with anchoring views. For diffusion models conditioned by
multiview embeddings, MVDiffusion (Tang et al., 2023) enhances multiview interactions by inte-
grating correspondence-aware attention layers, generating all views simultaneously. CAT3D (Gao
et al., 2024) learns 3D representations conditioned on multiview images and target viewpoints.

• We introduce a novel diffusion transformer constrained by view-to-view geometry via
interleaving of self-attention and cross-attention, showing consistent generation in long-
range indoor views.

• We propose a novel adaptive fusion noise score (FNS) to dynamically adjust the condi-
tioning effects according to the ratio of warped regions over the feature map.

∗†These authors contributed equally to this work. Xueyang is also with PSI division of the Department of
Electrical Engineering (ESAT) of KU Leuven as a joint PhD student, 3000 Leuven, Belgium.
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• To the best of our knowledge, we are the first to apply view-geometry constraints in the
latent space of the diffusion model. This accelerates training and improves NVS robustness
as compared to the methods that directly leverage geometry constraints in pixel space.

2 Related Work

Diffusion for ImageGeneration. The diffusion model, particularly the denoising diffusion model
(Ho et al., 2020), has revolutionized image generation in computer vision (Gu et al., 2022; Wang
et al., 2022; Chefer et al., 2023; Liu et al., 2023), expanding to domains including image inpainting,
while offering superior training stability compared to generative adversarial networks (GANs). The
introduction of classifier-free guidance (Ho & Salimans, 2021) benefits conditional diffusion models.
The latest CAT3D (Gao et al., 2024) presents a promising approach to novel view synthesis and 3D
scene reconstruction using a multiview diffusion model, it primarily focuses on scenarios where
multiple input views are available and leverages these to create consistent 3D representations.
Novel View Synthesis from a Single Image. Conditioning diffusion models on a single view
of a complex scene presents challenges that go beyond object-centric view synthesis, such as han-
dling out-of-distribution camera poses, and large-scale scenes with occlusions. Despite these chal-
lenges, diffusion models have been applied to 3D scene generation (Rockwell et al., 2021; Bahmani
et al., 2023; Kim et al., 2023; Höllein et al., 2023; Huang et al., 2023; Koh et al., 2023; Tang et al.,
2024). GeoGPT (Rombach et al., 2021), the first transformer-based model for synthesizing image
sequences along a trajectory, explored explicit, implicit, and hybrid geometric priors derived from
depth. Look Outside the Room (Ren & Wang, 2022) introduced a local constraint on input cameras
to progressively generate views along a trajectory, using a concurrent diffusion model for stochas-
tic conditioning in an autoregressive manner. However, these autoregressive models (Rombach
et al., 2021; Ren & Wang, 2022) are susceptible to blurring and drift errors. The latest long-term
Photometric-consistent NVS (Yu et al., 2023) employs a diffusion model for view-to-view trans-
lation, facilitating single-shot view generation through cross-attention between the source and
target view streams, respectively. MultiDiff (Müller et al., 2024) integrates monocular depth priors
to warp source views as references and video diffusion prior (Chen et al., 2024) to produce mul-
tiview consistency results for long-term scene generation with large camera movements. Despite
these advancements, handling out-of-distribution camera poses, occlusions, and large-scale scenes
remains challenging.

3 Method

The single-shot novel view synthesis (NVS) problem using a diffusion model can be formulated as
sampling a view image from the conditional distribution pθ .

pθ(xj |xi,Rj
i , t

j
i ,K), (1)

where xi ∈ RH×W×C is the source input image, K represents the camera intrinsic parameters,
and (Rj

i , t
j
i ) denotes the relative transformation from the source view to the target view. Here, C

stands for the number of channels, while H and W represent the height and width, respectively.
Sampling from this conditional distribution introduces ambiguities due to multiple possible real-
izations. When the target view xj is significantly distant from the source view xi, the overlap may
be minimal, limiting its contribution to the sampling process and complicating the sampling dis-
tribution task. Our model, as illustrated in Fig. 1, leverages relative view geometry as guidance to
address these challenges. It is designed to manage view ambiguity when there is minimal overlap
between the source and target views. The model seamlessly integrates the conditioning semantic
features of the source image xi with the warped feature map of xknown

j , derived from the source
image using depth and relative camera transformation. For efficient diffusion training, all images
are mapped into latent features z using a pre-trained variational autoencoder (VAE) (Kingma &
Welling, 2013), preserving the spatial structure of the images. All subsequent geometric transfor-
mations are applied to z before converting the feature map into tokens.
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Figure 1: Our single-shot diffusion model synthesizes the target image xj by taking the warped
image xknown

j , derived from depth-based mapping π(·) of the source image xi, as input, with xi
serving as the condition. The model incorporates interleaving self-attention (orange) and cross-
attention (blue) layers to effectively generate warping signals and conditional features. Only the
latent diffusion layers (gray box) are trained, utilizing a pre-trained VAE encoder ϕ(·) and decoder
g(·). Relative camera transformations (Rj

i , t
j
i ) and intrinsics K are employed for (1) computing

the epipolar attention weight mask ωi, and the target view is scaled by the binary mask mi of
warped pixels for epipolar attention calculation, (2) embedding camera parameters, and (3) depth
map-based warping. The Plücker raymap embedding (sj or si) is concatenated with each view
image. The epipolar weight mask ωk

i is initialized from pixel pn using the fundamental matrix and
is mapped to the corresponding epipolar line l′ for illustration on pixels (virtually on the latent
feature map zi and zj ).

3.1 Preliminaries

We use denoising diffusion probabilistic models (DDPMs) schedules for diffusion. To leverage the
learning efficiency of feature map dimension reduction, we implement all the following work in
the latent space. The diffusion model starts with the forward process of adding Gaussian noise
iteratively at discretized timesteps t ∈ {1, . . . , T},

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (2)

where zt is the noising feature map of the generated target view image, and I is an identity matrix.
βt is a gain dependent on the forward process. Correspondingly, the reverse denoising parameter-
ized by θ has a standard Gaussian form:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (3)
where µθ(zt, t) and Σθ(zt, t) are mean and variance respectively. zt−1 is derived from the equation
below:

zt−1 =
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t)

)
+ σtut, (4)

where αt = 1 − βt, ᾱt =
∏t

k=1 αk , and ut ∼ N (0, I). ϵθ(xt, t) states the score function for
estimation of noise to denoise feature map zt into zt−1. The equation depicts the iterative update
rule for the latent variable zt in a diffusion model. The diffusion score function ϵθ(zt, t) represents
the estimation of the noise that needs to be removed from the current latent variable zt to denoise it
and recover the corresponding clean feature map. Specifically, the diffusion score function ϵθ(zt, t)
is predicted by a neural network that takes the current latent variable zt and the timestamp t as
input and outputs an estimate of the noise distribution at that timestamp t−1. This noise estimate
is then used to update the latent variable zt to obtain the next latent variable zt−1 in the diffusion
process. The term 1−αt√

1−ᾱt
is the scaling factor applied to the denoised predicting output of the score

function ϵθ(zt, t). The scaling factor applied to the denoised output of the score function decreases
proportionally as the time step increases.
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3.2 DiT Block

Our model is primarily composed of Diffusion Transformer (DiT) blocks, with each block con-
sisting of three key cascaded modules. The DiT block processes tokenized inputs of feature maps
through a sequence of layers, beginning with Layer Normalization, followed by Multi-Head Self-
Attention, Multi-Head Cross-Attention, and a Pointwise Feedforward Network. The self-attention
mechanism within the DiT block captures intra-sequence dependencies, while the cross-attention
module integrates conditional context, making the model conditioned by additional context inputs.
Outputs from each layer are modulated by a conditioning mechanism via a Multi-Layer Perceptron
(MLP), which adjusts the scale and shift parameters of feature distribution, allowing the model to
learn view-to-view transformation effectively. This modular design, with attention and condition-
ing integrated at every step, enables the DiT block to progressively refine and inpaint the input
data.

3.3 Epipolar Attention

To ensure view geometry consistency, we implement an epipolar attention weight mask inspired by
(He et al., 2020; Tseng et al., 2023). The weight mask multiplicatively scales the source image feature
map based on the point-to-epipolar-line distance weights. A binary mask, initialized from the valid
warped pixels of the source view, further refines the epipolar mask (represented as mi in Fig. 1).
This ensures that the corresponding epipolar weights are computed only within visible regions of
the warped reference view, excluding missing or occluded areas in the target view. For brevity, in
the following clarification, we omit the subscript index, temporal step t for feature map z, and the
subscript is thus only used for the view index i/j. The cross attention is defined as the Hadamard
product (elementwise product) zi · zj of source and target feature maps zi, zj ∈ RH′×W ′×C′ .

3.4 Feature Map Warp

The warp operation π(·) is performed on the downscaled latent feature map resolution of the source
image. Feature map warping can be described as mapping pixel locations (m ∈ 1, . . . ,W ′, n ∈
1, . . . ,H ′) in the source feature map (zi ∈ RH′×W ′×3) to locations (m′, n′) in the target feature
map using the corresponding depth value d̃i(m,n), which is scaled proportionally to match with
the feature map dimension of H ′ ×W ′. The homogeneous coordinate relationship for warping
can be formulated as: (

m′

n′

1

)
≃ K

(
Rj

iK
−1d̃i(m,n)

(
m
n
1

)
+ tji

)
. (5)

This warping maps the feature pixels from the source view to the target view, allowing some pixels
to be re-observed in the target view while others may be out of view. As the depth used here
is either measured by an RGB-D sensor, as in ScanNet (Dai et al., 2017), or predicted through a
monocular depth model (Bhat et al., 2023), it contains some uncertainties. Therefore, we use an
approximate relationship in Eq. (5).

3.5 Condition & Feature Embedding

The source image xi concatenated with Plücker raymap embedding si of the corresponding camera
view is encoded via the shared weights of VAE ϕ(·) into a feature map zi, which is subsequently
concatenated (concat) with the linear embedding of relative camera parameter ρ(Rj

i , t
j
i ):

ψ(·) = concat(ϕ(concat(ωi ⊙ xi, si)), ρ(Rj
i , t

j
i ))). (6)

3.6 Inpainting Sampling and Adaptive Fusion Noise Score

The denoising of the target view feature map is modeled as an inpainting process (Lugmayr et al.,
2022), where we incorporate the warped pixels from the source feature map in the reverse diffusion
process. This forms a binary mask m representing known regions, while the inverse mask (1−m)
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indicates the unknown regions. For brevity, in the following part, we omit the subscript index of
view id i/j for feature map z, and the subscript is used for the time step t index instead.

zknown
t−1 ∼ N

(√
ᾱtz0, (1− ᾱt)I

)
, (7a)

zunknown
t−1 ∼ N (µθ(zt, t),Σθ(zt, t)) , (7b)
zt−1 = m⊙ zknown

t−1 + (1−m)⊙ zunknown
t−1 , (7c)

zknown
t−1 is sampled via the known pixels in the warped feature mapm⊙z0, while zunknown

t−1 is sampled
from the diffusion model given the intermediate feature map zt at time t. These unknown and
known regions are then combined into the feature map zt−1. Lastly,⊙ denotes Hadamard product
operation. Since the original inpainting (Lugmayr et al., 2022) struggles with harmonizing the
generated unknown regions with the known regions, we incorporate an adaptive fusion noise
score (FNS) to dynamically balance the effects of the input warping and conditioning:

∇zt log pθ(zt) + γ (∇zt log pθ(zt|ψ(·))−∇zt log pθ(zt)) . (8)

Where∇zt log pθ(zt) is the unconditional diffusion gradient,∇zt log pθ(zt|ψ(·) is the conditional
diffusion gradient and γ is the FNS scale. The corresponding unconditional diffusion model is
implemented by removing all conditioning elements, including the source feature, Plücker embed-
ding, and camera poses. To fuse the dynamic warping with FNS, we set γ to the ratio of unknown
feature pixels count over the whole feature map size count(1−m)

count(zt)
. For views with larger warped

regions (closer views), a lower FNS scale allows the model to focus on the inpainting sampling from
the warped input. Conversely, for views with less warping (farther views), a higher FNS scale is
used to strengthen the conditioning effects for consistent view generation.

Algorithm 1 Diffusion-based View Synthesis with Adaptive Fusion Noise Score (FNS)
1: Input: Source image xi, depth-based warping π(·), epipolar attention weight ωi, FNS scale γ
2: Output: Synthesized target image xj
3: Initialize latent variable zT ∼ N (0, I)
4: for t = T downto 1 do
5: if t > 1 then
6: Sample noise ϵ ∼ N (0, I);
7: else
8: ϵ = 0;
9: end if

10: ψ(·) = cat(ϕ(cat(ωi ⊙ xi, si)), ρ(Rj
i , t

j
i )));

11: zknown
t−1 , zunknown

t−1 = Φ(π(xi));
12: Compute adaptive fusion noise score:
13: ∇zt log pθ(zt) + γ (∇ log pθ(zt|ψ(·))−∇ log pθ(zt));
14:
15: γ ← count(1−m)

count(zt) ; // Update FNS scale based on the ratio of unknown regions to total regions
16: zunknown

t−1 ← ϵθ(zt, t) + ω, where ω ∼ N (0, I)

17: zt−1 ← m⊙ zknown
t−1 + (1−m)⊙ zunknown

t−1
18: if t > 1 then;
19: zt ← 1√

αt
zt−1 +

1−αl√
1−αt

ϵθ(zt−1, t− 1);
20: end if
21: end for
22: Return x0 = g(z0);

Algorithm 1 depicts the diffusion process for the novel view synthesis via adaptive fusion noise
scores (FNS) to dynamically balance warping signals and conditional features, to synthesize a target
view image xj harmoniously. Starting with a latent variable zT ∼ N (0, I), the algorithm itera-
tively denoises zt by conditioning known regions derived from depth-based warping π(·), epipolar
attention weights ωi, and a binary mask mj derived from valid warped pixels.
The FNS function adjusts the conditional gradient∇zt log pθ(zt|ψ(·)) relative to the unconditional
gradient ∇zt log pθ(zt), scaled by γ, which is updated adaptively based on the ratio of unknown
to total regions. Unknown regions are synthesized using the noise model ϵθ , while known regions
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are directly propagated. The combined latent representation zt−1 is progressively refined, and the
final target image xj is decoded using g(·). This approach ensures harmonization between known
and unknown regions for high-quality synthesis from near to far view.

4 Experiments

Baselines. We evaluate our approach on two indoor datasets: RealEstate10K (Zhou et al., 2018)
and ScanNet (Dai et al., 2017). For evaluation on RealEstate10K (Zhou et al., 2018), we use various
baseline models, including Stable Diffusion 2.0 (Rombach et al., 2022a) (SD-Inpainting), Look Out-
side the Room (Ren & Wang, 2022) (Look Out), an auto-regressive view diffusion model, Simple
and Effective Synthesis Model (SE3DS) (Koh et al., 2023), and Long-term Photometric Consistent
Novel View Synthesis Model (PhotoNVS) (Yu et al., 2023).
Evaluation Metrics. We employed several common metrics to evaluate the quality and consis-
tency of the generated images, including the Fréchet Inception Distance (FID) (Heusel et al., 2017)
, Peak Signal-to-Noise Ratio (PSNR) and the Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018). Pixel-wise similarity metric SSIM (Wang et al., 2004) was also employed. How-
ever, since these metrics are not sensitive to view geometry consistency, we further incorporated
the Thresholded Symmetric Epipolar Distance (TSED) proposed by (Yu et al., 2023) to measure the
view geometry consistency between source and target views.
Implementation Details. Our diffusion model is based on the Diffusion Transformer (DiT) archi-
tecture (Peebles & Xie, 2023), featuring interleaved self-attention and cross-attention mechanisms.
We opted for the XL model configuration, which consists of 24 DiT blocks. Each block includes
self-attention layers, cross-attention layers, and a final linear feedforward layer. The patch size is
set to 2. Regarding the feature map side for diffusion, H ′×W ′×C ′ is configured as (32× 32× 4),
with input images sized at 256×256×3, cropped from the center of the raw images. The epipolar
attention weight mask thresholds C1 and C2 are set to 0.8 and 2.5, respectively.

4.1 Quantitative Comparisons
Table 1 provide the quantitative evaluation results and comparisons with baselines on ScanNet
(Dai et al., 2017) (upper part) and RealEstate10K (Zhou et al., 2018) (lower part). The performance
of our model dominates across all the metrics consistently in short and long-range view synthesis.
The metric results in Table 1 only evaluate the generated individual image quality against ground
truth image, while not reflecting the view geometry consistency. Therefore, we further use the
TSED metric to evaluate view consistency. When both the median epipolar line distance error and
and SIFT feature match meet the threshold, a pairwise image frame match is recorded. The match
percentage is reported in Fig. 2. We chose two sequences with the most common trajectory existing
in the datasets, namely forward-backward motion and orbital motion involving large rotation.

Table 1: Comparison results on ScanNet (Dai et al., 2017) (upper part) and RealEstate10K (Zhou
et al., 2018) (lower part). Orange indicates the best and pink represents the second best.

Model Short Range Long Range
FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

Look Out (Ren & Wang, 2022) 46.30 1.95 9.26 0.16 61.20 2.16 6.72 0.12
SE3DS (Koh et al., 2023) 29.27 0.62 10.73 0.27 65.36 2.92 5.74 0.07

SD-Inpainting (Rombach et al., 2022b) 30.93 0.58 11.24 0.25 54.75 1.78 9.16 0.28
VistaDream (Wang et al., 2024) 20.74 0.35 13.49 0.51 50.63 1.59 8.14 0.16

Ours 13.93 0.25 15.86 0.62 22.15 0.57 10.50 0.50

Look Out (Ren & Wang, 2022) 16.44 0.46 16.13 0.61 19.38 0.62 11.38 0.48
SE3DS (Koh et al., 2023) 28.35 0.86 9.73 0.32 35.25 1.19 8.50 0.18

SD-Inpainting (Rombach et al., 2022b) 32.85 1.34 10.15 0.28 56.13 2.21 6.37 0.12
PhotoNVS (Yu et al., 2023) 15.56 0.43 16.51 0.61 18.91 0.56 11.96 0.58

VistaDream (Wang et al., 2024) 14.76 0.57 11.06 0.40 26.37 0.75 9.32 0.38
Ours 9.30 0.11 21.16 0.73 11.42 0.21 17.16 0.64
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Figure 2: TSED evaluation on RealEstate10K for two dominant motion patterns, forward-backward
and orbital trajectory. The TSED plot is the percent of consistent image pairs as a function ofTerror

with Tmatch set to constant 15.

Figure 3: Baseline comparisons on RealEstate10K (Zhou et al., 2018), where each column is the
sampled views of a specific model from near to far, and the source image (highlighted in red box
overlaid on the top right image) is close to the first Ground Truth viewpoint at top right.

4.2 Qualitative Comparisons

We also provide qualitative comparisons in RealEstate10K (Zhou et al., 2018) using Fig. 3. Our
model can preserve the view geometry consistency well while generating new information (as il-
lustrated in the table region of the bottom right GT image) consistent with the semantic context of
the reference view. VistaDream (Wang et al., 2024), Look Out (Ren & Wang, 2022) and PhotoNVS
(Yu et al., 2023) can predict good images at viewpoints close to input view, yet struggle to extrap-
olate consistent views far away. For example, in the second column, Look Out results degrade to
plain walls at far-way viewpoints.

4.3 Ablation Study

We report the overall metric results of the ablation study in Tab. 2. Here we use the same sequence
frames of RealEstate10K (Zhou et al., 2018) without the short and long-range splits. The ablation
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table results demonstrate that the best overall performance is achieved by the full model leveraging
inpainting, conditioning, and adaptive FNS (Row 4), which has the lowest FID (10.36), LPIPS (0.16),
and median TSED error (24.09) and achieves the highest PSNR (19.16) and SSIM (0.69). These

Figure 4: a) Comparison of median translation error (in pixels) between Vanilla Fusion Noise Score
(FNS) and Adaptive Fusion Noise Score across short-range and long-range test scenarios. b) Abla-
tion study to evaluate the effectiveness of various modules in pose alignment for generated views.

results show that the geometry-aware conditioning and constraints play a critical role in achieving
consistent tency, and smooth transitions between views, even though our method is based on an
image diffusion model rather than a video diffusion prior.

Table 2: An ablation study was conducted on our model design, using RealEstate10K (Zhou et al.,
2018) as the test dataset. The study involved comparing various input and condition combinations
and analyzing relative camera motion geometry constraints.

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ Tmedian
eror ↓

1. Inpainting only 15.64 0.27 15.67 0.59 48.44
2. Condition only 11.53 0.19 18.74 0.64 29.31
3. Inpainting + Condition 10.91 0.16 19.10 0.68 27.66
4. Inpainting + Condition + FNS 10.36 0.16 19.16 0.69 24.09
5. W/o Epipolar Attention 10.93 0.18 19.04 0.67 28.24
6. W/o Warped Mask for Epi-Atten 10.62 0.18 19.10 0.67 26.85
7. W/o Rj

i, t
j
i Embedding 13.59 0.22 16.66 0.62 26.19

8. W/o Plücker Raymap 13.72 0.21 16.73 0.64 25.88

The proposed adaptive FNS weight γ is a multiplication of scalar gain and the ratio of unknown
pixel number in warped feature map size over the whole feature map size. Regarding the scalar
gain impact on our adaptive fusion noise score, along with a comparison of using vanilla FNS and
our adaptive FNS, we provide a plot in Subfig. a of Fig. 4.

(a) Reference (b) Warped Refer-
ence

(c) Inpainting (d) Condition (e) Cond+Inpaint.

Figure 5: The far-away synthesis view of our model with various structure combinations of in-
painting and condition guidance. Reference input view and warped reference view by monocular
depth and camera parameters are provided in the first row.

Table 3 highlights minor metric differences between these two sources: GT depth performs better in
near views, while ZoeDepth excels in far views. This demonstrates that a reliable monocular depth
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prior ensures consistent warping masks for generating coherent views. For the final implementa-
tion, we use GT depth for ScanNet, as the evaluation metric differences between ZoeDepth (Bhat
et al., 2023) and GT depth are negligible.

Table 3: Comparison results on RealEstate10K (Zhou et al., 2018) for various depth sources.

Depth Short Range Long Range
FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

GT Depth 4.98 0.33 17.22 0.69 6.61 0.32 17.18 0.73
Truncated Depth 5.50 0.35 17.06 0.68 10.16 0.38 16.02 0.61

ZoeDepth (Bhat et al., 2023) 4.99 0.33 17.21 0.69 6.57 0.32 17.19 0.73
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