
Sum-Product-Set Networks

Milan Papež1 Martin Rektoris1 Tomáš Pevný1 Václav Šmídl1

1Artifcial Intelligence Center, Czech Technical University, Prague, Czech Republic

Abstract

Daily internet communication relies heavily on
tree-structured graphs, embodied by popular data
formats such as XML and JSON. However, many
recent generative (probabilistic) models utilize neu-
ral networks to learn a probability distribution over
undirected cyclic graphs. This assumption of a
generic graph structure brings various computa-
tional challenges, and, more importantly, the pres-
ence of non-linearities in neural networks does
not permit tractable probabilistic inference. We
address these problems by proposing sum-product-
set networks, an extension of probabilistic circuits
from unstructured tensor data to tree-structured
graph data. To this end, we use random finite sets
to reflect a variable number of nodes and edges
in the graph and to allow for exact and efficient
inference. We demonstrate that our tractable model
performs comparably to various intractable models
based on neural networks.

1 INTRODUCTION

One of the essential paradigm shifts in artificial intelligence
and machine learning over the last years has been the tran-
sition from probabilistic models over fixed-size unstruc-
tured data (tensors) to probabilistic models over variable-
size structured data (graphs) [Bronstein et al., 2017, Wu
et al., 2021]. Tree-structured data are a specific type of
generic graph-structured data which describe real or abstract
objects (vertices) and their hierarchical relations (edges).
These data structures appear in many scientific domains,
including cheminformatics [Bianucci et al., 2000], physics
[Kahn et al., 2022], and natural language processing [Ma
et al., 2018]. They are used by humans in data-collecting
mechanisms to organize knowledge into various machine-
generated formats, such as JSON [Pezoa et al., 2016], XML

[Tekli et al., 2016] and YAML [Ben-Kiki et al., 2009] to
mention a few.

The development of models for tree-structured data has
been thoroughly, but almost exclusively, pursued in the
NLP domain [Tai et al., 2015, Zhou et al., 2016, Cheng
et al., 2018, Ma et al., 2018]. However, these models rely
solely on variants of neural networks (NNs) and are non-
generative, lacking clear probabilistic interpretation. Despite
a growing interest in designing generative models for gen-
eral graph-structured data [Simonovsky and Komodakis,
2018, De Cao and Kipf, 2018, You et al., 2018, Jo et al.,
2022, Luo et al., 2021], there are no generative models
that take advantage of the parent-child ancestry inherent in
tree-structured graphs. Therefore, directly applying these
generic models to the trees would incur unnecessary com-
putational costs. Moreover, these models assume the input
features with homogeneous dimensions. More importantly,
they preclude tractable probabilistic inference, necessitating
approximate techniques to answer even basic queries.

In sensitive applications (e.g., healthcare, finance, and cy-
bersecurity), there is an increasing legal concern about pro-
viding non-approximate and fast decision-making. Proba-
bilistic circuits (PCs) [Vergari et al., 2020] are tractable
probabilistic (generative) models that guarantee to answer a
large family of complex probabilistic queries [Vergari et al.,
2021] exactly and efficiently.

To the best of our knowledge, no PC is designed to represent
a probability distribution over a tree-structured graph. Here,
it is essential to note that a PC is also a graph. To distinguish
between the two graphs, we refer to the former as the data
graph and to the latter as the computational graph. Similarly,
to distinguish between the vertices of these two graphs, we
refer to vertices of the data graph and computational graph
as data nodes and computational units, respectively. We
propose a new PC by seeing the data graph as a recursive
hierarchy of sets, where each parent data node is a set of its
child data nodes. We use the theory of random finite sets
[Nguyen, 2006] to induce a probability distribution over

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

mailto:<papezmil@fel.cvut.cz>?Subject=Sum-Product-Set Networks
mailto:<rektomar@fel.cvut.cz>?Subject=Sum-Product-Set Networks
mailto:<pevnytom@fel.cvut.cz>?Subject=Sum-Product-Set Networks
mailto:<smidlva1@fel.cvut.cz>?Subject=Sum-Product-Set Networks

repeating data subgraphs, i.e., sets with identical proper-
ties. This allows us to extend the computational graph with
an original computational unit, a set unit. Our model pro-
vides an efficient sampling of new data graphs and exact
marginalization of selected data nodes. It also permits the
data nodes to have heterogeneous features, where each node
can represent data of different modalities.

In summary, this paper offers the following contributions:

• We propose sum-product-set networks (SPSNs), a
novel type of PCs that enables tractable and efficient
inference for complex tree-structured data.

• We show that SPSNs provide similar (or better) perfor-
mance to (than) models relying on NNs.

2 TREE-STRUCTURED DATA

A single instance of tree-structured, heterogeneous data is
given by an attributed data graph, T . In contrast to a fixed-
size, unstructured, random variable, x = (x1, . . . , xd) ∈
X ⊂ Rd, this graph forms a hierarchy of random-size sets.

Definition 1. (Data graph). T = (V,E,X) is an attributed,
tree-structured graph, where V is a set of vertices, E is a
set of edges, and X is a set of attributes (features). V :=
(L,H,O) splits into three subsets of data nodes: leaf nodes,
L, heterogenenous nodes, H , and homogeneous nodes, O.
Let ch(v) and pa(v) denote the set of child and parent
nodes of v ∈ V , respectively. All elements of ch(v) are of
an identical type if v ∈ O, and some or all elements of ch(v)
are of a different type if v ∈ H . We assume that only the
leaf nodes are attributed by xv ∈ Xv ⊆ Rdv , with possibly
different space and its dimension for each v ∈ L.

Definition 2. (Schema). Let T be an instance of tree-
structured, heterogeneous data. Then, a subtree, S, which
results from T by following all children of each u ∈ H and
only one child of each u ∈ O—such that it allows us to
reach the deepest level of T—is referred to as the schema.

Definition 1 implies that T is defined recursively by a sub-
tree, Tv := {Tu1

. . . , Tum
}, rooted at v ∈ V . For heteroge-

neous nodes, v ∈ H , each child subtree, Tu, has a different
schema for all u ∈ ch(v). For homogeneous nodes, v ∈ O,
each child, Tu, has the same schema for all u ∈ ch(v). The
leaf nodes, v ∈ L, are terminal nodes (with no children),
containing a feature vector, Tv := xv. The cardinality of
all homogeneous nodes, v ∈ O, is random and differs for
each instance of T . This also randomizes the cardinality
of heterogeneous nodes, v ∈ H , if ch(v) contains at least
one homogeneous node, u ∈ O. We show an example of a
single instance of tree-structured data in Figure 1(a).

Problem definition. Our objective is to learn a probability
density over tree-structured graphs (Definition 1), p(T),

given a collection of observed graphs {T1, . . . , Tn}, where
each Ti contains a different number of vertices and edges.

3 SUM-PRODUCT-SET NETWORKS

A sum-product-set network (SPSN) is a probability density
over tree-structured, heterogeneous data, p(T). This dif-
fers from the conventional sum-product network [Poon and
Domingos, 2011], which is a probability density over the
unstructured data, p(x)1. We define an SPSN by a parame-
terized computational graph, G, and a scope function, ψ.

Definition 3. (Computational graph). G := (V, E , θ) is a
parameterized, directed, acyclic graph, where V is a set
of vertices, E is set of edges, and θ ∈ Θ are parameters.
V := (S,P,B, L) contains four subsets computational units:
sum units, S, product units, P, set units, B, and leaf units,
L. The sum units and product units have multiple children;
however, as detailed later, the set unit has only two children,
ch(n) := {u, v}, n ∈ B. θ contains parameters of sum units,
i.e., non-negative and normalized weights, {wn,c}c∈ch(n),
wn,c ≥ 0,

∑
c∈ch(n) wn,c = 1, n ∈ S, and parameters of

leaf units which are specific to possibly different densities.

Definition 4. (Scope function). The mapping ψ : V → 2T —
from the set of units to the power set of T—outputs a subset
of T for each n ∈ V and is referred to as the scope function.
If n is the root unit, then ψ(n) = T . If n is a sum unit,
product unit, or set unit, then ψ(n) =

⋃
c∈ch(n) ψ(c).

Each unit of the computational graph (Definition 3), n ∈ V ,
induces a probability density over a given node of the data
graph (Definition 1), v ∈ V . The functionality of this den-
sity, pn(Tv), depends on the type of the computational unit.

The sum unit computes the mixture density, pn(Tv) =∑
c∈ch(n) wn,cpc(Tv), n ∈ S, v ∈ {L,H}, where wn,c

is the weight connecting the sum unit with a child unit.
The product unit computes the factored density, pn(Tv) =∏

c∈ch(n) pc(ψ(c)), n ∈ P, v ∈ {L,H}. It introduces con-
ditional independence among the scopes of its children,
ψ(c), establishing unweighted connections between this unit
and its child units. The leaf unit computes a user-defined
probability density, pn(xv), n ∈ L, v ∈ L. It is defined over
a subset xv of Tv := xv given by the scope, ψ(n), which
can be univariate or multivariate [Peharz et al., 2015].

The set unit computes a probability density of a finite ran-
dom set

pn(Tv) = p(m)Umm!p(Tu1 , . . . , Tum), (1)

n ∈ B, v ∈ O, where p(m) is the cardinality distribution
and p(Tu1

, . . . , Tum
) is the feature density (conditioned on

m). These are the two children of the set unit (Definition 3),
1For a short introduction to PCs and conventional SPNs, see

the supplementary material.

2

(a) Data graph

△

▽ △

△ △ ▽ △

▽ x ▽ x x x x x

x x x x

. . .

. . .

.

(b) Computational graph

+

×

{·} +

p + ×

× × {·} +

{·} p {·} p p + × ×

p + p + p p + p p p

p p p p p p

Figure 1: Sum-product-set networks. (a) The tree-structured, heterogeneous, data graph, T , (Definition 1), and the schema (dashed line), S,
(Definition 2). Here, △ is the heterogeneous node, ▽ is the homogeneous node, and x denotes the leaf node of T . (b) The computational
graph, G, of an SPSN (Definition 3) designed based on S, where +, ×, {·} and p are the sum unit, product unit, set unit and leaf unit of G,
respectively. The subtrees of T in (a) are modeled by the corresponding parts of G in (b), as displayed in green, orange, and blue.

spanning computational subgraphs on their own (Figure 1).
The random finite set, Tv := {Tu1 , . . . , Tum} ∈ 2Tv , is
a simple, finite point process [Van Lieshout, 2000, Daley
et al., 2003, Nguyen, 2006, Mahler, 2007], where 2Tv is
the power set of Tv. Tv is an unordered set of distinct fea-
tures or other sets, such that not only the individual el-
ements, Tu ∈ 2Tu , are random, but also the number of
these elements, m := |Tv| ∈ N0, is random. The propor-
tionality factor, m! =

∏m
i i, comes from the symmetry of

p(Tu1
, . . . , Tum

). It reflects the fact that p(Tu1
, . . . , Tum

)
is permutation invariant, i.e., it gives the same value to all
m! possible permutations of {Tu1

, . . . , Tum
}. U is the unit

of hyper-volume in Tu, which ensures that (1) is unit-less
by canceling out the units of p(Tu1 , . . . , Tum) with Um.

Assumption 1. (Requirements on the set unit). The re-
quirements for a probability density of the set unit to be
properly defined are as follows: (a) each element of Tv :=
{Tu1

, . . . , Tum
} resides in the same space, i.e., Tu ∈ 2Tu ,

for all u ∈ ch(v); (b) the elements {Tu1
, . . . , Tun

} are inde-
pendent and identically distributed; and (c) the realizations
{Tu1 , . . . , Tun} are distinct.

Given that Assumption 1 is satisfied, (1) contains the prod-
uct of m densities, p(Tu1

, . . . , Tum
) =

∏m
i=i p(Tui

) over
the identical scope (i.e., it does not have the disjoint scope
and, therefore, it is not the product unit). Note that the fea-
ture density treats {Tui}mi=i as instances, simply aggregating
them by the product of distributions. It is a single density
indexed by the same set of parameters for each {Tui

}mi=i.
For example, if we choose p(m) as the Poisson distribu-
tion, then (1) is the Poisson point process [Grimmett and
Stirzaker, 2001].

Building SPSNs. An SPSN is constructed from the schema
of the data graph (Definition 2), i.e., an SPSN is a (generally
non-isomorphic) mapping from the schema (graph) to the
computational graph. The heterogeneous nodes, v ∈ H , are
modeled by possibly many alternating layers of sum units,

n ∈ S, and product units, n ∈ P. We can use the product
unit in these alternations as long as Tv := {Tu1 , . . . , Tum}
is either factored into user-specified heterogeneous subsets
or completely reduced to unique singletons. Every time this
factorization yields a homogeneous subset, only the set unit,
n ∈ B, can be used to process it, as follows from Assump-
tion 1. The leaf nodes, v ∈ L, rely on the sum units and
product units to span computational subgraphs over plain,
fixed-size feature vectors, Tv = xv, as in the conventional
SPNs, i.e., they do not model random-size subgraphs but
fixed-size vectors. See Figure 1, for an example.

Hyper-parameters. The key hyper-parameter of SPSNs
is the depth of the computational subgraph modeling each
heterogeneous node of the data graph, nl. It says how many
times we alter the sum units with the product units at each
heterogeneous node. The other hyper-parameters are the
number of children of all sum units, ns, and product units,
np. We use these hyper-parameters uniformly in the whole
network (nl = 1, ns = 2, and np = 2 in Figure 1).

Structural constraints. The SPSNs are amenable to the
standard structural constraints used in PCs [Shen et al.,
2016]. We use the following two constraints on G to en-
sure algebraic tractability. Smoothness: children of any
sum unit have the same scope, i.e., each n ∈ S satisfies
∀u, v ∈ ch(n) : ψ(u) = ψ(v). Decomposability: children
of any product unit have a disjoint scope, i.e., each n ∈ P
satisfies ∀u, v ∈ ch(n) : ψ(u) ∩ ψ(v) = ∅. The set unit
does not violate these constraints. The cardinality distribu-
tion and the feature density are computational subgraphs
given by the SPSN units (Definition 3), and the integration
propagates through them in the usual way.

4 EXPERIMENTS

We illustrate the performance and properties of the alge-
braically tractable SPSN models compared to various in-

3

Table 1: Graph classification. The test accuracy (higher is better)
for the MLP, GRU, LSTM, HMIL, and SPSN networks. It is dis-
played for the best model in the grid search, which was selected
based on the validation accuracy. The results are averaged over
5 runs with different initial conditions. The accuracy is shown
with its standard deviation. The average rank is computed as the
standard competition (“1224”) ranking [Demšar, 2006] on each
dataset (lower is better).

dataset MLP GRU LSTM HMIL SPSN
chess 0.41±0.03 0.41±0.05 0.34±0.04 0.39±0.02 0.39±0.03

citeseer 0.69±0.02 0.74±0.01 0.74±0.02 0.75±0.01 0.75±0.01
cora 0.75±0.03 0.86±0.01 0.84±0.01 0.85±0.00 0.86±0.01

craftbeer 0.25±0.03 0.25±0.03 0.25±0.03 0.29±0.02 0.07±0.01
genes 0.99±0.01 1.00±0.01 0.98±0.01 1.00±0.01 0.95±0.01

hepatitis 0.86±0.02 0.88±0.01 0.87±0.03 0.88±0.02 0.88±0.02
mutagenesis 0.84±0.02 0.83±0.02 0.82±0.04 0.83±0.00 0.84±0.02

uwcse 0.84±0.02 0.87±0.03 0.85±0.02 0.86±0.03 0.84±0.02
webkp 0.77±0.02 0.82±0.01 0.81±0.02 0.82±0.01 0.81±0.02
world 0.68±0.05 0.51±0.16 0.57±0.08 0.72±0.05 0.94±0.03

rank 3.40 1.90 3.70 1.80 2.50

tractable, NN-based models. In this context, we would
like to investigate their performance in the discrimina-
tive learning regime and their robustness to missing val-
ues. We provide the implementation of SPSNs at https:
//github.com/aicenter/SumProductSet.jl.

Models. To establish the baseline with the intractable mod-
els, we choose variants of recurrent NNs (RNNs) for tree-
structured data. Though these models are typically used
in the NLP domain (Section 1), they are, too, directly ap-
plicable to the tree-structured data in Definition 1. These
tree-RNNs differ in the type of cell. We consider the sim-
ple multi-layer perceptron (MLP) cell, the gated recurrent
unit (GRU) cell [Zhou et al., 2016], and the long-short term
memory (LSTM) cell [Tai et al., 2015]. The key assumption
of these models is that they consider each leaf data node to
have the same dimension. This requirement does not hold
in Definition 1. Therefore, for all these NN-based models,
we add a single dense layer with the linear activation func-
tion in front of each leaf node, v ∈ L, to make the input
dimension the same. As another competitor, we use the hier-
archical multiple-instance learning (HMIL) network [Pevný
and Somol, 2016], which is also specifically tailored for the
tree-structured data.

Settings. We convert ten publicly available datasets from the
CTU relational repository [Motl and Schulte, 2015] into the
JSON format [Pezoa et al., 2016]. The dictionary nodes, list
nodes, and atomic nodes of the JSON format directly cor-
respond to the heterogeneous nodes, homogeneous nodes,
and leaf nodes of the tree-structured data, respectively (Def-
inition 1, Figure 1). We present the rest of the experimental
settings in the supplementary material, including specific
examples of the JSON data. All models and experiments
are implemented in Julia, using JSONGrinder.jl and
Mill.jl [Mandlík et al., 2022].

Graph classification. Table 1 shows the test accuracy of
classifying the tree-structured graphs. The HMIL and GRU

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

cora

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of missing values (-)

ac
cu

ra
cy

(-
)

genes

MLP
GRU
LSTM
HMIL
SPSN

Figure 2: Missing values. The test accuracy (higher is better) versus
the fraction of missing values for the MLP, GRU, LSTM, HMIL,
and SPSN networks. It is displayed for the best model in the grid
search, which was selected based on the validation accuracy. The
results are averaged over five runs with different initial conditions.

networks deliver the best performance, with the SPSN net-
work falling slightly behind. If we look closely at the in-
dividual lines, we can see that the SPSN network is often
very similar to (or the same as) the HMIL and GRU net-
works, e.g., it is substantially better on the world dataset.
We consider these results unexpectedly good, given that the
(NN-based) MLP, GRU, LSTM, and HMIL architectures
are denser than the sparse SPSN architecture.

Missing values. We consider an experiment where we select
the best model in the grid search based on the validation
data (as in Table 1) and evaluate its accuracy on the test data
containing a fraction of randomly-placed missing values.
Figure 2 demonstrates that the SPSN either outperforms or
is similar to the NNs. We show the results only for the cora
and genes datasets, but similar observations hold for the
remaining datasets (see the supplementary material).

5 CONCLUSION

We have utilized the theory of finite random sets to synthe-
size a new class of deep learning models—sum-product-set
networks (SPSNs)— representing a probability density over
tree-structured graphs. Algebraic tractability is the essential
benefit of SPSNs, yet it is redeemed by making them sparser
than the algebraically intractable NNs. Notwithstanding this,
SPSNs deliver a very competitive performance to the NNs in
the graph classification task. We have demonstrated that the
tractable and simple inference of SPSNs has also allowed
us to achieve comparable results to the NNs regarding the
robustness to missing values.

Acknowledgements

The authors acknowledge the support of the GAČR grant
no. GA22-32620S and the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for
Informatics”.

4

https://github.com/aicenter/SumProductSet.jl
https://github.com/aicenter/SumProductSet.jl

References

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML
ain’t markup language (YAML™) version 1.1. Working
Draft 2008, 5:11, 2009.

Anna Maria Bianucci, Alessio Micheli, Alessandro Sperduti,
and Antonina Starita. Application of cascade correlation
networks for structures to chemistry. Applied Intelligence,
12:117–147, 2000.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric deep learn-
ing: Going beyond Euclidean data. IEEE Signal Process-
ing Magazine, 34(4):18–42, 2017.

Zhou Cheng, Chun Yuan, Jiancheng Li, and Haiqin Yang.
TreeNet: Learning sentence representations with uncon-
strained tree structure. In IJCAI, pages 4005–4011, 2018.

Daryl J Daley, David Vere-Jones, et al. An introduction
to the theory of point processes: volume I: elementary
theory and methods. Springer, 2003.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit
generative model for small molecular graphs. arXiv
preprint arXiv:1805.11973, 2018.

Janez Demšar. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine Learning
Research, 7:1–30, 2006.

Geoffrey Grimmett and David Stirzaker. Probability and
random processes. Oxford university press, 2001.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based
generative modeling of graphs via the system of stochas-
tic differential equations. In International Conference on
Machine Learning, pages 10362–10383. PMLR, 2022.

James Kahn, Ilias Tsaklidis, Oskar Taubert, Lea Reuter,
Giulio Dujany, Tobias Boeckh, Arthur Thaller, Pablo
Goldenzweig, Florian Bernlochner, Achim Streit, et al.
Learning tree structures from leaves for particle decay
reconstruction. Machine Learning: Science and Technol-
ogy, 3(3):035012, 2022.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A
discrete flow model for molecular graph generation. In
International Conference on Machine Learning, pages
7192–7203. PMLR, 2021.

Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection
on twitter with tree-structured recursive neural networks.
In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1980–1989, 2018.

Ronald PS Mahler. Statistical multisource-multitarget in-
formation fusion, volume 685. Artech House Norwood,
MA, USA, 2007.

Šimon Mandlík, Matěj Račinský, Viliam Lisý, and Tomáš
Pevný. Jsongrinder.jl: automated differentiable neural
architecture for embedding arbitrary JSON data. Journal
of Machine Learning Research, 23(298):1–5, 2022.

Jan Motl and Oliver Schulte. The CTU Prague relational
learning repository. arXiv preprint arXiv:1511.03086,
2015.

Hung T Nguyen. An introduction to random sets. Chapman
and Hall/CRC, 2006.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro Domingos. On theoretical properties of sum-
product networks. In 18th International Conference
on Artificial Intelligence and Statistics, pages 744–752.
PMLR, 2015.

Tomáš Pevný and Petr Somol. Discriminative models for
multi-instance problems with tree structure. In Proceed-
ings of the 2016 ACM Workshop on Artificial Intelligence
and Security, pages 83–91, 2016.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín
Ugarte, and Domagoj Vrgoč. Foundations of JSON
schema. In Proceedings of the 25th international confer-
ence on World Wide Web, pages 263–273, 2016.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690. IEEE, 2011.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable
operations for arithmetic circuits of probabilistic models.
Advances in Neural Information Processing Systems, 29,
2016.

Martin Simonovsky and Nikos Komodakis. GraphVAE:
Towards generation of small graphs using variational
autoencoders. In Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Conference
on Artificial Neural Networks, Rhodes, Greece, October 4-
7, 2018, Proceedings, Part I 27, pages 412–422. Springer,
2018.

Kai Sheng Tai, Richard Socher, and Christopher D Manning.
Improved semantic representations from tree-structured
long short-term memory networks. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1556–1566, 2015.

Joe Tekli, Nathalie Charbel, and Richard Chbeir. Building
semantic trees from XML documents. Journal of Web
Semantics, 37:1–24, 2016.

5

MNM Van Lieshout. Markov point processes and their
applications. World Scientific, 2000.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy
Van den Broeck. Probabilistic circuits: Representations,
inference, learning and applications. In Tutorial at the The
34th AAAI Conference on Artificial Intelligence, 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso,
and Guy Van den Broeck. A compositional atlas of
tractable circuit operations: From simple transformations
to complex information-theoretic queries. arXiv preprint
arXiv:2102.06137, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2021.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and
Jure Leskovec. GraphRNN: Generating realistic graphs
with deep auto-regressive models. In International con-
ference on machine learning, pages 5708–5717. PMLR,
2018.

Yao Zhou, Cong Liu, and Yan Pan. Modelling sentence
pairs with tree-structured attentive encoder. In Proceed-
ings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pages
2912–2922, 2016.

6

Sum-Product-Set Networks
(Supplementary Material)

Milan Papež1 Martin Rektoris1 Tomáš Pevný1 Václav Šmídl1

1Artifcial Intelligence Center, Czech Technical University, Prague, Czech Republic

A PROBABILISTIC CIRCUITS

A probabilistic circuit (PC) is a deep learning model representing a joint probability density, p(x), over a fixed-size,
unstructured, random variable, x = (x1, . . . , xd) ∈ X ⊂ Rd. The key feature of a PC is that—under certain regularity
assumptions—it permits exact and efficient inference scenarios. We define a PC by a parameterized computational graph, G,
and a scope function, ψ.

Definition 5. (Computational graph). G := (V, E , θ) is a parameterized, directed, acyclic graph, where V is a set of vertices,
E is set of edges, and θ ∈ Θ are parameters. V := (S,P, L) contains three different subsets of computational units: sum units,
S, product units, P, and leaf units, L. Let ch(n) and pa(n) denote the set of child and parent units of n ∈ V , respectively. If
pa(n) = ∅, then n is the root unit. If ch(n) = ∅, then n is a leaf unit. We consider that V contains only a single root unit,
and each product unit has only a single parent. The parameters θ := {θs, θl} are divided into (i) parameters of all sum
units, θn = {wn,c}c∈ch(n), which contain non-negative and locally normalized weights [Peharz et al., 2015], wn,c ≥ 0,∑

c∈ch(n) wn,c = 1; and (ii) parameters of all leaf units, θl, which are specific to a given family of densities, with possibly a
different density for each n ∈ L.

Definition 6. (Scope function). The mapping ψ : V → 2x—from the set of units to the power set of x—outputs a subset of
x ∈ X for each n ∈ V and is referred to as the scope function. If n is the root unit, then ψ(n) = x. If n is a sum unit or a
product unit, then ψ(n) =

⋃
c∈ch(n) ψ(c).

PCs are an instance of neural networks [Vergari et al., 2019, Peharz et al., 2020], where each computational unit is a
probability density characterized by certain functionality. Leaf units are the input of a PC. For each n ∈ L, they compute
a (user-specified) probability density, pn(·), over a subset of x given by the scope, ψ(n), which can be univariate or
multivariate [Peharz et al., 2015]. Sum units are mixture densities that compute the weighted sum over its children,
pn(·) =

∑
c∈ch(n) wn,cpc(·), where wn,c (Definition 5) weights the connection between the sum unit and a child unit.

Product units are factored densities that compute the product of its children, pn(ψ(n)) =
∏

c∈ch(n) pc(ψ(c)), establishing
an unweighted connection between n and c and introducing the conditional independence among the scopes of its children,
ψ(c). It is commonly the case that (layers of) sum units interleave (layers of) product units. The computations then proceed
recursively through G until reaching the root unit—the output of a PC.

PCs are generally intractable. They instantiate themselves into specific circuits—and thus permit tractability of specific
inference scenarios—by imposing various constraints on G, examples include smoothness, decomposability, structured
decomposability, determinism, consistency [Chan and Darwiche, 2006, Poon and Domingos, 2011, Shen et al., 2016]. In
this work, we use only the first two of these constraints.

Definition 7. (Structural constraints). We restrict ourselves to PCs that respect the following constraints on G. Smoothness:
children of any sum unit have the same scope, i.e., each n ∈ S satisfies ∀u, v ∈ ch(n) : ψ(u) = ψ(v). Decomposability:
children of any product unit have a disjoint scope, i.e., each n ∈ P satisfies ∀u, v ∈ ch(n) : ψ(u) ∩ ψ(v) = ∅.

A PC satisfying Definition 7 can be seen as a polynomial composed of leaf units [Darwiche, 2003]. This construction
guarantees that any single-dimensional integral interchanges with a sum unit and impacts only a single child of a product

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

mailto:<papezmil@fel.cvut.cz>?Subject=Sum-Product-Set Networks
mailto:<rektomar@fel.cvut.cz>?Subject=Sum-Product-Set Networks
mailto:<pevnytom@fel.cvut.cz>?Subject=Sum-Product-Set Networks
mailto:<smidlva1@fel.cvut.cz>?Subject=Sum-Product-Set Networks

unit [Peharz et al., 2015]. The integration is then propagated down to the leaf units, where it can be computed under a
closed-form solution (for a tractable form of n ∈ L). The key practical consequence lies in that various inference tasks—such
as integrals of p(x) over {xa, . . . , xb} ⊂ x—are tractable and can be computed in time which is linear in the circuit size
(i.e., the cardinality of V). p(x) is guaranteed to be normalized if Definition 7 holds and leaf units are from the exponential
family [Barndorff-Nielsen, 1978]. PCs that fulfill Definition 7 are commonly referred to as sum-product networks.

B RELATED WORK

Non-probabilistic models (NPMs). Graph neural networks (GNNs) have become a flexible and powerful approach for
(non-probabilistic) representation learning on graph-structured data. Variants of GNNs range from the original formulation
[Gori et al., 2005, Scarselli et al., 2008] to GCN [Kipf and Welling, 2017], MPNN [Gilmer et al., 2017], GAT [Veličković
et al., 2018] and GraphSAGE [Hamilton et al., 2017], among others. They assume input data as an undirected cyclic graph,
which they encode into a low-dimensional representation by aggregating and sharing features from neighboring nodes.
However, without necessary adaptations, their structure-agnostic character incurs unnecessary computational costs when
applied to graphs with structural constraints. This fact has led to the design of GNNs that respect the constraints in the
form of directed acyclic graphs (DAGs) [Thost and Chen, 2021]. GNNs for trees (i.e., a specific case of DAGs) create the
encoding by traversing nodes of the graph bottom-up (or up-bottom) and updating the state representation of a given node
based only on its children. Examples of this approach include RNN [Socher et al., 2011, Shuai et al., 2016], Tree-LSTM
[Tai et al., 2015] and TreeNet [Cheng et al., 2018].

Intractable probabilistic models (IPMs). Extending deep generative models from unstructured to graph-structured
domains has recently gained significant attention. Variational autoencoders learn a probability distribution over graphs,
p(G), by training an encoder and a decoder to map between space of graphs and continuous latent space, minimizing the
evidence lower bound on the marginal log-likelihood in the process [Kipf and Welling, 2016, Simonovsky and Komodakis,
2018, Grover et al., 2019]. Generative adversarial networks learn p(G) by training (i) a generator to map from latent space
to space of graphs and (ii) a discriminator to distinguish whether the graphs are synthetic or real, relying on the two-player,
minimax objective [De Cao and Kipf, 2018, Bojchevski et al., 2018]. Flow models use the change of variables formula to
transform a base distribution on latent space to a distribution on space of graphs, p(G), via an invertible mapping, using
direct optimization of the marginal log-likelihood [Liu et al., 2019, Luo et al., 2021]. Autoregressive models learn p(G) by
relying on the chain rule of probability to decompose a graph, G, into a sequence of subgraphs and constructing G node
by node [You et al., 2018, Liao et al., 2019]. Diffusion models learn p(G) by noising and denoising trajectories of graphs
based on forward and backward diffusion processes, respectively, optimizing the score matching objective or evidence lower
bound on marginal log-likelihood [Jo et al., 2022, Huang et al., 2022, Vignac et al., 2022]. GNNs mentioned in the previous
paragraph (NMPs) have been used as the building blocks of all these generative models, which is the main reason their
marginal probability density is intractable.

Tractable probabilistic models (TPMs). There has not been a substantial interest in probabilistic models facilitating
tractable inference for graph-structured data. Graph-structured SPNs [Zheng et al., 2018] heuristically decompose generic
cyclic graphs into components that are isomorphic to a pre-specified set of sub-graph templates (of an arbitrary acyclic
structure) and then design the conventional SPNs for each of the templates. The roots of these SPNs are aggregated by the
sum unit and a layer of the product units. Graph-induced SPNs [Errica and Niepert, 2023] are similar to this approach. They
also decompose generic cyclic graphs, but in a more principled manner, building a set of trees based on a user-specified
neighborhood. The SPNs are not designed for the whole trees (templates) but for their nodes, only to model the feature
vectors. The aggregation is performed by using the posterior probabilities of the root sum units at lower depths of the tree to
condition the sum units at upper depths. Relational SPNs (RSPNs) [Nath and Domingos, 2015] are tractable probabilistic
models for relational data (a particular form of graph-structured data). The semantics of the relational data differs from our
graph-structured data. However, the set unit of the SPSNs is similar to the exchangeable distribution template of the RSPNs.
The main difference to the RSPNs lies in that SPSNs model cardinality. The mixture of probability densities over finite
random sets is perhaps the most related approach to SPSNs [Phung and Vo, 2014, Tran et al., 2016, Vo et al., 2018]. In our
context, it can be seen as the sum unit with its children given by the set units. However, these shallow probabilistic models
are designed for plain point pattern data. SPSNs generalize them to deep probabilistic models for graph-structured data,
achieving far higher expressivity by stacking the sum units with the product units and reflecting the variable size nature of
the graph by incorporating a hierarchy of the set units. Another approach relies on SPNs to introduce correlations into graph
variational autoencoder [Xia et al., 2023], which does not allow for tractable probabilistic inference.

8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

chess

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)
ac

cu
ra

cy
(-

)

citeseer

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

cora

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

craft beer

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

genes

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

hepatitis

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

mutagenesis

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)
ac

cu
ra

cy
(-

)

uw cse

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

webkp

MLP
GRU
LSTM
HMIL
SPSN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

proportion of missing values (-)

ac
cu

ra
cy

(-
)

world

MLP
GRU
LSTM
HMIL
SPSN

Figure 3: Missing values. The test accuracy (higher is better) versus the fraction of missing values for the MLP, GRU, LSTM, HMIL, and
SPSN networks. It is displayed for the best model in the grid search, which was selected based on the validation accuracy. The results are
averaged over five runs with different initial conditions.

C EXPERIMENTAL SETTINGS

The leaf nodes, v ∈ L, contain different data types, including reals, integers, and strings. We use the default feature extractor
from JSONGrinder.jl (v2.3.2) to pre-process these data. We perform the grid search over the hyper-parameters of the
models mentioned in Section 4. For the MLP, GRU, and LSTM networks, we set the dimension of the hidden state(s) and
the output in {10, 20, 30, 40}. For the HMIL network, we use the default settings of the model builder from Mill.jl
(v2.8.1), only changing the number of hidden units of all the inner layers in {10, 20, 30, 40}. We add a single dense layer
with the linear activation function to adapt the outputs of these networks to the number of classes in the datasets. For the
SPSN networks, we choose the Poisson distribution as the cardinality distribution and the following hyper-parameters:
nl ∈ {1, 2, 3}, ns ∈ {2, 3, . . . , 10}, and np := 2. We use the ADAM optimizer [Kingma and Ba, 2014] with fixing 10
samples in the minibatch and varying the step-size in {0.1, 0.01, 0.001}. The datasets are randomly split into 64%, 16%,
and 20% for training, validation, and testing, respectively.

D ADDITIONAL RESULTS

Figure 3 complements Figure 2 of the main paper. It contains the remaining experiments with the missing values, as
mentioned in Section 4. We can observe that the SPSNs provide slightly better or very similar results to the NNs, except for
the craftbeer and world datasets.

E DATASETS

Table 2 shows the two main attributes of the datasets under study [Motl and Schulte, 2015]: the number of instances (i.e., the
number of tree-structured graphs) and the number of different classes of these instances. A detailed description of these
datasets, additional attributes, and accompanying references are accessible at https://relational.fit.cvut.cz/.

Figure 4 shows a single instance of the tree-structured graph data in the JSON format [Pezoa et al., 2016], and Figure 5
illustrates the corresponding schema (Definition 2 of the main paper). As can be seen (and as also mentioned in the main
paper), the leaf nodes contain different data types: integers, floats, and strings. In Figures 6-14, we provide the schemata of
the remaining datasets in Table 2.

9

https://relational.fit.cvut.cz/

Table 2: Datasets. The number of instances (trees) and the number of classes of the datasets under study.

dataset # of instances (trees) # of classes
mutagenesis 188 2

genes 862 15
cora 2708 7

citeseer 3312 6
webkp 877 5
world 239 7

craftbeer 558 51
chess 295 3

uwcse 278 4
hepatitis 500 2

References

Ole Barndorff-Nielsen. Information and exponential families: in statistical theory. John Wiley & Sons, 1978.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. NetGAN: Generating graphs via
random walks. In International conference on machine learning, pages 610–619. PMLR, 2018.

Hei Chan and Adnan Darwiche. On the robustness of most probable explanations. In Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence, pages 63–71, 2006.

Zhou Cheng, Chun Yuan, Jiancheng Li, and Haiqin Yang. TreeNet: Learning sentence representations with unconstrained
tree structure. In IJCAI, pages 4005–4011, 2018.

Adnan Darwiche. A differential approach to inference in Bayesian networks. Journal of the ACM (JACM), 50(3):280–305,
2003.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Federico Errica and Mathias Niepert. Tractable probabilistic graph representation learning with graph-induced sum-product
networks. arXiv preprint arXiv:2305.10544, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In International conference on machine learning, pages 1263–1272. PMLR, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks, 2005., volume 2, pages 729–734. IEEE, 2005.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs. In International
conference on machine learning, pages 2434–2444. PMLR, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. 2017.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. GraphGDP: Generative diffusion processes for permutation
invariant graph generation. arXiv preprint arXiv:2212.01842, 2022.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system of stochastic
differential equations. In International Conference on Machine Learning, pages 10362–10383. PMLR, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th International
Conference on Learning Representations (ICLR), 2017.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L Hamilton, David Duvenaud, Raquel Urtasun, and Richard
Zemel. Efficient graph generation with graph recurrent attention networks. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pages 4255–4265, 2019.

10

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, pages 13578–13588, 2019.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A discrete flow model for molecular graph generation. In
International Conference on Machine Learning, pages 7192–7203. PMLR, 2021.

Jan Motl and Oliver Schulte. The CTU Prague relational learning repository. arXiv preprint arXiv:1511.03086, 2015.

Aniruddh Nath and Pedro Domingos. Learning relational sum-product networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 29, 2015.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical properties of sum-product
networks. In 18th International Conference on Artificial Intelligence and Statistics, pages 744–752. PMLR, 2015.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian
Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable learning of tractable probabilistic circuits. In
International Conference on Machine Learning, pages 7563–7574. PMLR, 2020.

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč. Foundations of JSON schema. In
Proceedings of the 25th international conference on World Wide Web, pages 263–273, 2016.

Dinh Phung and Ba-Ngu Vo. A random finite set model for data clustering. In 17th International Conference on Information
Fusion (FUSION), pages 1–8. IEEE, 2014.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops), pages 689–690. IEEE, 2011.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network
model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of probabilistic models. Advances
in Neural Information Processing Systems, 29, 2016.

Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. DAG-recurrent neural networks for scene labeling. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3620–3629, 2016.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural
Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pages 412–422. Springer, 2018.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and natural language with recursive
neural networks. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 129–136,
2011.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from tree-structured
long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
1556–1566, 2015.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In 9th International Conference on Learning
Representations (ICLR), 2021.

Nhat-Quang Tran, Ba-Ngu Vo, Dinh Phung, and Ba-Tuong Vo. Clustering for point pattern data. In 2016 23rd International
Conference on Pattern Recognition (ICPR), pages 3174–3179. IEEE, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention
networks. In International Conference on Learning Representations (ICLR), 2018.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-product networks. Machine
Learning, 108(4):551–573, 2019.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard. DiGress: Discrete
denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734, 2022.

11

Ba-Ngu Vo, Nhan Dam, Dinh Phung, Quang N Tran, and Ba-Tuong Vo. Model-based learning for point pattern data. Pattern
Recognition, 84:136–151, 2018.

Riting Xia, Yan Zhang, Chunxu Zhang, Xueyan Liu, and Bo Yang. Multi-head variational graph autoencoder constrained by
sum-product networks. In Proceedings of the ACM Web Conference 2023, pages 641–650, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating realistic graphs with
deep auto-regressive models. In International conference on machine learning, pages 5708–5717. PMLR, 2018.

Kaiyu Zheng, Andrzej Pronobis, and Rajesh Rao. Learning graph-structured sum-product networks for probabilistic
semantic maps. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

{
"ind1": 1,
"lumo": -1.246,
"inda": 0,
"logp": 4.23,
"atoms": [

{
"element": "c",

"bonds": [
{ "element": "c", "charge": -0.117, "type_bond": 7, "type_atom": 22 },
{ "element": "h", "charge": 0.142, "type_bond": 1, "type_atom": 3 },
{ "element": "c", "charge": -0.117, "type_bond": 7, "type_atom": 22 }

],
"charge": -0.117,

"type_atom": 22
},
.
.
.
{
"element": "h",

"bonds": [
{ "element": "c", "charge": -0.117, "type_bond": 1, "type_atom": 22 }

],
"charge": 0.142,

"type_atom": 3
}

]
}

Figure 4: Instance. A single instance of the tree-structured graph in the JSON format, taken from the mutagenesis dataset.

[Dict]
lumo: [Scalar - Float64]
inda: [Scalar - Int64]
logp: [Scalar - Float64,Int64]
ind1: [Scalar - Int64]
atoms: [List]

[Dict]
element: [Scalar - String]

bonds: [List]
[Dict]

element: [Scalar - String]
type_bond: [Scalar - Int64]
type_atom: [Scalar - Int64]

charge: [Scalar - Float64]
type_atom: [Scalar - Int64]

charge: [Scalar - Float64]

Figure 5: Schema. The schema (Definition 2 of the main paper) of the tree-structured graph in Figure 4 (the mutagenesis dataset).

12

[Dict]
interactions: [List]

[Dict]
type: [Scalar - String]

expression_Corr: [Scalar - Float64,Int64]
records: [List]

[Dict]
localization: [Scalar - String]

complex: [Scalar - String]
chromosome: [Scalar - Int64]

function: [Scalar - String]
essential: [Scalar - String]

class: [Scalar - String]
phenotype: [Scalar - String]

motif: [Scalar - String]
records: [List]

[Dict]
localization: [Scalar - String]

complex: [Scalar - String]
chromosome: [Scalar - Int64]
function: [Scalar - String]

essential: [Scalar - String]
class: [Scalar - String]

phenotype: [Scalar - String]
motif: [Scalar - String]

Figure 6: The schema of the genes dataset.

[Dict]
citing: [List]

[Dict]
word_cited_id: [List]

[Scalar - String]
word_cited_id: [List]

[Scalar - String]

Figure 7: The schema of the cora dataset.

[Dict]
citing: [List]

[Dict]
word_cited_id: [List]

[Scalar - String]
word_cited_id: [List]

[Scalar - String]

Figure 8: The schema of the citeseer dataset.

[Dict]
citing: [List]

[Dict]
word_cited_id: [List]

[Scalar - String]
word_cited_id: [List]

[Scalar - String]

Figure 9: The schema of the webkp dataset.

13

[Dict]
life_expectancy: [Scalar - Float64,Int64]

region: [Scalar - String]
gnp: [Scalar - Float64,Int64]

code2: [Scalar - String]
population: [Scalar - Int64]

cities: [List]
[Dict]

district: [Scalar - String]
name: [Scalar - String]

population: [Scalar - Int64]
capital: [Scalar - Int64]

name: [Scalar - String]
gnpold: [Scalar - Int64]

indep_year: [Scalar - Int64]
surface_area: [Scalar - Float64,Int64]

languages: [List]
[Dict]

language: [Scalar - String]
is-official: [Scalar - String]
percentage: [Scalar - Float64,Int64]

government_form: [Scalar - String]
head_of_state: [Scalar - String]

local_name: [Scalar - String]

Figure 10: The schema of the world dataset.

[Dict]
beers: [List]

[Dict]
ibu: [Scalar - Int64]
id: [Scalar - Int64]

name: [Scalar - String]
abv: [Scalar - Float64]

ounces: [Scalar - Float64,Int64]
style: [Scalar - String]

id: [Scalar - Int64]
name: [Scalar - String]
city: [Scalar - String]

Figure 11: The schema of the craft_beer dataset.

[Dict]
person: [Dict]

hasPosition: [Scalar -String]
student: [Scalar -String]

professor: [Scalar -String]
id: [Scalar -Int64]

yearsInProgram: [Scalar -String]
courses: [List]

[Scalar -String]
interactions: [List]

[Dict]
hasPosition: [Scalar -String]

student: [Scalar -String]
professor: [Scalar -String]

id: [Scalar -Int64]
yearsInProgram: [Scalar -String]

courses: [List]
[Scalar -String]

Figure 12: The schema of the the uw_cse dataset.

14

[Dict]
sex: [Scalar - String]
age: [Scalar - String]
inf: [List]

[Dict]
dur: [Scalar - String]

bio: [List]
[Dict]

activity: [Scalar - String]
fibros: [Scalar - String]

indis: [List]
[Dict]

dbil: [Scalar - String]
tcho: [Scalar - String]
gpt: [Scalar - String]
alb: [Scalar - String]
tp: [Scalar - String]
ttt: [Scalar - String]
got: [Scalar - String]
che: [Scalar - String]

in_id: [Scalar - Int64]
ztt: [Scalar - String]
tbil: [Scalar - String]

Figure 13: The schema of the hepatitis dataset.

15

[Dict]
w3: [List]

[Scalar - Int64]
w7: [List]

[Scalar - Int64]
b5: [List]

[Scalar - Int64]
b2: [List]

[Scalar - Int64]
white: [List]

[Scalar - Int64]
w6: [List]

[Scalar - Int64]
w4: [List]

[Scalar - Int64]
b8: [List]

[Scalar - Int64]
event: [List]

[Scalar - Int64]
b9: [List]

[Scalar - Int64]
whiteElo: [Scalar - Int64]

event_date: [Scalar - String]
b1: [List]

[Scalar - Int64]
w1: [List]

[Scalar - Int64]
b6: [List]

[Scalar - Int64]
site: [List]

[Scalar - Int64]
w5: [List]

[Scalar - Int64]
ECO: [List]

[Scalar - Int64]
b10: [List]

[Scalar - Int64]
opening_id: [Scalar - Int64]
openings: [List]

[Dict]
w3: [List]

[Scalar - Int64]
b2: [List]

[Scalar - Int64]
w4: [List]

[Scalar - Int64]
w1: [List]

[Scalar - Int64]
variation: [List]

[Scalar - Int64]
b1: [List]

[Scalar - Int64]
opening_id: [Scalar - Int64]

name: [List]
[Scalar - Int64]

b3: [List]
[Scalar - Int64]

b4: [List]
[Scalar - Int64]

w2: [List]
[Scalar - Int64]

code: [List]
[Scalar - Int64]

w8: [List]
[Scalar - Int64]

b3: [List]
[Scalar - Int64]

opening: [List]
[Scalar - Int64]

round: [List]
[Scalar - Int64]

black: [List]
[Scalar - Int64]

w2: [List]
[Scalar - Int64]

w10: [List]
[Scalar - Int64]

b4: [List]
[Scalar - Int64]

b7: [List]
[Scalar - Int64]

BlackElo: [Scalar - Int64]
game_id: [Scalar - Int64]

w9: [List]
[Scalar - Int64]

Figure 14: The schema of the chess dataset.

16

	Introduction
	Tree-Structured Data
	Sum-Product-Set Networks
	Experiments
	Conclusion
	Probabilistic Circuits
	Related Work
	Experimental Settings
	Additional results
	Datasets

