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Abstract

Cross-lingual named entity recognition task001
is one of the critical problem for evaluating002
the potential transfer learning techniques on003
low resource languages. Knowledge distilla-004
tion using pre-trained multilingual language005
models between source and target languages006
have shown their superiority. However, ex-007
isting cross-lingual distillation models merely008
consider the potential transferability between009
two identical single tasks across both do-010
main. Other possible auxiliary tasks to im-011
prove the learning performance have not been012
fully investigated. In this study, based on the013
knowledge distillation framework and multi-014
task learning, we introduce the similarity met-015
ric model as an auxiliary task to improve the016
cross-lingual NER performance on target do-017
main. Specifically, an entity recognizer and a018
similarity evaluator teachers are first trained in019
parallel from the source domain. Then, two020
tasks in the student model are supervised by021
the two teachers simultaneously. Empirical022
studies on the datasets across 7 different lan-023
guages confirm the effectiveness of the pro-024
posed model.025

1 Introduction026

Named entity recognition, NER in short, refers to027

identifying entity types, i.e. location, person, orga-028

nization, etc., in a given sentence. The exploiting029

of deep neural networks, such as Bi-LSTM-CRF030

(Lample et al., 2016), Bi-LSTM-CNN (Chiu and031

Nichols, 2016) make this task achieves significant032

performances. However, since deep neural net-033

works highly relies on a large amount of labelled034

training data, the annotation acquiring process is035

expensive and time consuming. This situation is036

more severe for low-resource languages. With the037

help of transfer learning (Ruder et al., 2019) and038

multilingual BERT (short as mBERT) (Devlin et al.,039

2019), it is possible to transfer the annotated train-040
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Figure 1: Comparison between previous cross-
lingual NER models. Directly: direct model trans-
fer; TSL: teacher-student learning model; MTMT:
proposed multiple-task and multiple-teacher Model.
NER / NERtea: learned NER model for source lan-
guage; NERstu: learned NER model for target lan-
guage; SIMtea learned similarity model for source
language; {X,Y }src: labeled data in source lan-
guage; {X}tgt: unlabeled data in target language;
{X,P}tgt: labeled data in target language with
probability; {X,S}tgt: labeled data in target lan-
guage with entity similarity score.

ing samples or trained models from a rich-resource 041

domain to a low-resource domain. 042

Many studies have been done to solve this cross- 043

language NER problem. Existing models can be 044

separated into three categories, shared feature space 045

based, translation based and knowledge distilla- 046

tion based. Shared feature space based models 047

exploit language-independent features, which lacks 048

the domain specific features for target language 049

(Tsai et al., 2016; Wu and Dredze, 2019; Keung 050

et al., 2019). Translation based models generate 051

pseudo labeled target language data to train the 052

cross-lingual NER model, but the noise from trans- 053

lation process restrains its performance. (Mayhew 054

et al., 2017; Xie et al., 2018; Wu et al., 2020b). 055

Knowledge distillation based models train a stu- 056

dent model using soft labels of the target language 057

(Wu et al., 2020a,b; Chen et al., 2021; Liang et al., 058

2021). Our model is developed on the basis of (Wu 059

1



et al., 2020a).060

Although above mentioned models solve the061

cross-lingual NER problem in some extent, the aux-062

iliary tasks, as in the multi-task learning, have not063

been studied in this problem. Due to the distributed064

representation of natural languages, the relatedness065

among the embedding of target languages, which066

is measured by the similarity, can be utilized to067

further boost the learned encoder and improve the068

final NER performance on target language.069

Here we give a concrete example to illustrate the070

importance of similarity between every two tokens071

under the situation when only the English data is072

labeled. Given a Spanish sentence “Arévalo (Avila),073

23 may (EFE).”, the token “Arévalo” is recognized074

as ORG type using the learned model from En-075

glish domain. In the meantime, the token “Arévalo”076

has high similarity scores with the Spanish tokens077

“Viena” from sentence “Viena, 23 may (EFE).", and078

“Madrid” from sentence “Madrid, 23 may (EFE).”.079

Also, the tokens “Viena” and “Madrid” are recog-080

nized correctly as LOC type using the same English081

model mentioned above. Then “Arévalo” can be082

recognized correctly as LOC type under the super-083

visory signal using the similarity between “Viena”084

and “Madrid”.085

To leverage the similarity between the tokens of086

the source languages, we design an multiple-task087

and multiple-teacher model (short as MTMT, as088

shown in Figure 1), which helps the NER learning089

process on the target languages. Specifically, we090

first introduce the knowledge distillation to build091

entity recognizer and similarity evaluator teachers092

in the source language and transfer the learned pat-093

terns to the student in the target language. In the094

student model, we then borrow the idea of multi-095

task learning to incorporate a similarity evaluation096

task as an auxiliary task into the entity recogni-097

tion classifier. During the student learning process,098

we input unlabelled samples from the target lan-099

guages into the entity recognizer and evaluator, and100

take output pesudo labels as supervisory signals for101

these two tasks in the student model. Note that a102

weighting strategy is also provide therein to take103

into consideration of the reliability of the teachers.104

We validate the model performance on the three105

commonly-used datasets across 7 languages and106

the experimental results shows the superiority our107

presented MTMT model.108

Our main contributions are as follows:109

• We propose an unsupervised knowledge dis-110

tillation framework for cross-language named 111

entity recognition and develop a teaching and 112

learning procedure under this framework. 113

• We present a novel multiple-task and multiple- 114

teacher model that introduces a entity simi- 115

larity evaluator to boost the performance of 116

student recognizer on target languages. 117

• We conduct extensive experiments on seven 118

languages compared with state-of-the-art 119

baselines and the results confirm the effec- 120

tiveness of the presented model. 121

2 Related Work 122

Our approach is closely related to the existing 123

works on cross-lingual NER, knowledge distilla- 124

tion and siamese network. 125

Cross-Lingual NER aims to extract entities from 126

a target language but assumes only source language 127

is annotated. The existing models can be catego- 128

rized to: a) Shared feature space based models, b) 129

Translation based models, c) Knowledge distilla- 130

tion based models. 131

Shared feature space based models generally 132

train a language-independent encoder using source 133

and target language data (Tsai et al., 2016). Re- 134

cently, the pre-trained multilingual language mod- 135

els mBERT is effective to address the challenge 136

(Devlin et al., 2019). Moreover, some research in- 137

troduces new components on top of the mBERT 138

by directly transferring the model learned from la- 139

beled source language to that of target languages 140

(Keung et al., 2019). The performance is still weak 141

due to the lack of annotations of target languages. 142

Translation based models generally generate pe- 143

sudo labeled target data to alleviate target data 144

scarcity. For example, (Wu et al., 2020b; Zhang 145

et al., 2021) gain a improvement by translating 146

the labeled source language to the target language 147

word-by-word. Our model achieves considerable 148

improvement by learning entity similarity in target 149

language data without translation. 150

Knowledge distillation based models includes 151

a teacher model and a student model (Wu et al., 152

2020c). The teacher model is trained on labeled 153

source language. The student model learns from 154

the soft label predicted by teacher model on unla- 155

beled target language data. Therefore, the student 156

model can capture the extra knowledge about target 157

languages. In our work, the student model not only 158

learns the recognizer teacher knowledge, but also 159
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learns the entity similarity knowledge inspired by160

multi-task learning.161

Siamese Network is originally introduced by162

(Bromley et al., 1994) to treat signature verifica-163

tion as a matching problem. It has been success-164

fully applied to transfer learning such as one-shot165

image recognition (Koch et al., 2015), text simi-166

larity (Neculoiu et al., 2016). However, there is a167

dilemma to adapt siamese network to token-level168

recognition tasks such as NER. Siamese network169

assumes the input is a pair, and the output is a sim-170

ilarity score. To handle this issue, we reconstruct171

the data to pair format. To the best of our knowl-172

edge, we are the first to learn the entity similarity173

by siamese network.174

3 Framework175

In this section, we introduce our framework and its176

detailed implementation. Our framework is con-177

sist of two models: teacher training model learned178

from source language and teacher-student distilla-179

tion learning model learned from target language.180

In the teacher training model, there are two sub-181

models, i.e. an entity recognizer teacher and a182

similarity evaluator teacher. These two models are183

two parallel tasks, wherein the entity recognition184

teacher focuses on identifying the named entities185

and the similarity evaluator teacher is to decide if186

two tokens are in the same type.187

We then present a teacher-student distillation188

learning model to learn from the two learned189

teacher models simultaneously. We note that, in190

this learning process, such a knowledge distillation191

makes the student model combine the advantages192

of both source language patterns of entity recog-193

nition and entity similarity evaluation. During the194

learning process, the samples from target language195

are fed into the teacher model and the outputs are196

taken as the supervisory signal for two tasks in the197

student model. To guarantee the student learning198

performance, we assign weights for each supervi-199

sory signal correspond to the output confidence200

of teacher sub-models. We argue that the student201

entity recognition task and the student entity sim-202

ilarity evaluation task improve the representation203

learning of the student encoder in the siamese struc-204

ture.205

3.1 Problem Definition206

Following standard practice, we formulate cross-207

lingual NER as a sequence labeling task. Given a208
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Figure 2: The training process of teacher models.

sentence x = {xi}Li=1 with L tokens, a NER model 209

produces a sequence of labels y = {yi}Li=1, where 210

xi is the i-th token and yi is the corresponding 211

label of xi. In the source language, we denote the 212

labeled training data as DS
train = {(x,y)} and test 213

data as DS
test. In the target language, we denote the 214

unlabeled train data as DT
train = {x} and the test 215

data asDT
test. Formally, our goal is to train a model 216

with DS
train and DT

train to perform well on DT
test. 217

3.2 Teacher Models 218

Here we first consider the training of two teacher 219

models. For every two tokens, we define Entity 220

Similarity Metric as a score which is the proba- 221

bility that two tokens belong to the same entity 222

type. We aim to find entity similarity to help the 223

cross-lingual NER model in target language. It is a 224

non-trivial task since we lack golden labels to help 225

us distinguish target named entities. To address 226

this challenge, we propose a binary classifier called 227

similarity teacher to leverage the labeled source lan- 228

guage data for similarity prediction. Our similarity 229

teacher model, inspired by siamese network (Koch 230

et al., 2015), are able to acquires more powerful 231

features via capturing the invariances to transforma- 232

tion in the input space. Figure 2 illustrated the two 233

teacher models training. The following subsections 234

will illustrate the two teacher models sequentially. 235

3.2.1 Entity Recognizer Teacher 236

Since the cross-lingual NER task, we unitize mul- 237

tilingual mBERT (Wu and Dredze, 2019) as basic 238

sequence feature extractor backbone to derive the 239

sequence embedding representation throughout this 240

paper. And a linear classifier with softmax upon 241

the pre-trained mBERT output. The model network 242
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structure could be formulated as,243

h = mBERT(x)244

ŷi = softmax(Whi + b)245

where h = {hi}Li=1 and hi denotes the output of246

the pretrained mBERT that corresponds to the input247

token xi. ŷi denotes the predicted probability dis-248

tribution for xi. W and b are trainable parameters.249

For some sentence sample (x,y) ∈ DS
train and an250

entity token query index i, the loss function is,251

LER(x,y, i) = LCE(yi, ŷi)252

We train this entity recognition teacher model253

on the source lingual training corpus DS
train =254

{(x,y)} directly.255

3.2.2 Siamese Entity Similarity Evaluator256

In order to leverage the entity similarity to boost the257

unsupervised cross-lingual NER performance, we258

will present our entity pairs construction method259

and the siamese network model in the following.260

Entity Similarity Pairs Construction Accord-261

ing to entity labels, we randomly select sentences262

pair < x,x′ > with their some token pair <263

xi, x
′
j > and associated labels< yi, y

′
j > inDS

train,264

to form the siamese supervision training dataset,265

DS−siam
train = {(x,x′, i, j, t)}where the target t = 1266

indicates yi = y′j , and 0 otherwise. And the testing267

entity pairs DS−siam
test is constructed likewisely.268

Siamese Entity Similarity Network Our simi-269

larity backbone model is a siamese neural network270

with mBERT as feature extraction layer. Wherein h271

and h′ represent latent sequences encoding features272

derived by the two symmetric twins with respect to273

input sentence x and x′ respectively.274

The inter-entities similarity is measured on the275

tokens hidden representations hi and h′j , queried276

by the entity indices < i, j > on the sequences rep-277

resentations. The cosine function operator is added278

to compute on the entity token latent vectors’ dis-279

tance, so as to measure the similarity between each280

siamese twin, which is fed into a single sigmoid281

output unit for target t̂ estimation.282

More precisely, for a specific entity pair283

(x,x′, i, j, t) ∈ DS−siam
train , the siamese network284

could be formulated as,285

h =mBERT(x), h′ = mBERT(x′)286

t̂(x,x′, i, j) = σ(cos(hi, h
′
j))287
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Figure 3: Teacher-student distillation learning.

where cos is the cosine similarity metric func- 288

tion, σ is the sigmoid activation function, t̂ ∈ 289

[σ(−1), σ(1)] denotes the predicted similarity of 290

two queried tokens pair < xi, x
′
j >. Larger t̂ value 291

indicates higher similarity between the two queried 292

entities tokens. 293

The loss function of the similarity prediction can 294

be formulate as, 295

LSIM (x,x′, i, j, t) = LBCE(t, t̂). 296

Finally, we can train the siamese entity similar- 297

ity evaluator on DS−siam
train , and evaluate the per- 298

formance on test dataset DS−siam
test . Together with 299

entity recognizer model, this entity similarity eval- 300

uator are used as teachers in following knowledge 301

distillation learning process, and transfer knowl- 302

edge from source to target lingual corpus. 303

3.3 Teacher Student Distillation Learning 304

In this section, we consider to transfer the named 305

entity type and similarity knowledge learned on 306

labeled source language corpus to unlabeled tar- 307

get language NER task. To this end, we propose 308

a knowledge distillation learning process to train 309

a target language student NER model with its su- 310

pervisory signals mimicked by the entity type pre- 311

diction probability by the entity recognizer teacher 312

model and entity representation similarity target 313

by the entity siamese similarity evaluator teacher 314

model. Based on the original unlabeled target sen- 315

tence training data DT
train, we again construct unla- 316

beled target-language siamese pairwise entity data 317

DT−sim
train = {(xT ,x

′
T , i, j)}, with the sentence pair 318

< xT ,x
′
T > randomly sample fromDT

train and the 319

entity token indices pair < i, j > uniformly sam- 320

pled from the sentences therein. 321
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The multi-lingual BERT is also used as encoder322

for the sentence siamese pair, and the entity token323

feature queried from the latent sequence encoding324

representation. Specifically, for a sentence pair325

(xT ,x
′
T , i, j) ∈ D

T−sim
train , the student model trans-326

form them as follows,327

hT = mBERT(xT )328

ŷTi = softmax(WhT i + b)329

h′
T = mBERT(x′

T )330

ŷ′Tj
= softmax(Wh′T j + b)331

t̂T (xT ,x
′
T , i, j) = σ(cos(hT i, h

′
T j))332

Then for a specific sentence pair sample in the333

target siamese dataset, the student loss function has334

three breaches, LER(xT ,yS , i), LER(x
′
T ,y

′
S , j),335

and LSIM (xT ,x
′
T , i, j, t̂S). Note that supervision336

information yS , y′S , and t̂S are taught by the three337

teacher models. Summering over all the samples338

in DT−sim
train = {(xT ,x

′
T , i, j)}, the total student339

model training loss takes form,340

L = γ
∑

(xT ,x′T ,i,j)∈DT−sim
train

(α1LER(xT ,yS , i)

+α2LER(x
′
T ,y

′
S , j)

+βLBCE(t̂T (xT ,x
′
T , i, j), t̂S))

341

where α1, α2, β and γ are weights in loss function342

which are set to make the student model learns less343

noisy knowledge from teachers. The weights are344

set as follows: α1(α2) is an increasing function345

with respect to the output of the entity recognizer346

teacher as shown in Figure.4. And β is set such347

that it is high when the output of the entity simi-348

larity teacher is close to 0 or 1, and it is low when349

the output is close to 0.5. γ indicates consistency350

level between the outputs from two teacher models,351

e.g. for two input tokens, if the output from entity352

similarity teacher is high, and the similarity level353

computed from the outputs of the entity recognizer354

teacher is low, then their consistency level is low.355

We want the student model to learn from the two356

teachers as follows: the higher the prediction of the357

entity recognizer teacher is (the further away from358

0.5 the prediction of the entity similarity teacher359

is, the higher the consistency level is), the more360

accurate the prediction is, thus the more attention361

the student model pays attention to the input tokens,362

and vice versa. Therefore, we heuristically devises363

the three weights scheduling as functions of the364

inputs,365
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Figure 4: Weights of loss. (a) indicates the weight
α(·) of LER. (b) indicates the weight β of LBCE .

α(·) = (max(ŷTi))
2 366

β = (2t̂T (xT ,x
′
T , i, j)− 1)2 367

γ = 1− |σ(cos(ŷTi , ŷ
′
Tj
))− t̂T (xT ,x

′
T , i, j)| 368

4 Experiment 369

In this section, we evaluate our multiple-task and 370

multiple-teacher model for cross-lingual NER and 371

compare our model with a series of state-of-the-art 372

models. 373

4.1 Dataset 374

We conducted experiments on three benchmark 375

datasets: CoNLL2002 (Tjong Kim Sang, 2002), 376

CoNLL2003 (Tjong Kim Sang and De Meulder, 377

2003) and WikiAnn (Pan et al., 2017). CoNLL2002 378

includes Spanish and Dutch, CoNLL2003 includes 379

English and German, and WikiAnn includes En- 380

glish and three non-western languages: Arabic, 381

Hindi, and Chinese. Each language is divided 382

into a training set, a development set and a test 383

set. All datasets were annotated with four entity 384

types: LOC, MISC, ORG, and PER. Following 385

(Wu and Dredze, 2019), all datasets are annotated 386

using the BIO entity labelling scheme. To imitate 387

the zero-resource cross lingual NER case, follow- 388

ing (Wu and Dredze, 2019), we used English as the 389

source language and other languages as the target 390

language. In cross-lingual NER, the training set 391

without entity label of the target language is also 392

available when training the model. We trained the 393

model with the labeled training set of the source 394

language and evaluated the model on the test set 395

of each target language. Table 1 and 2 shows the 396

statistics of all datasets. 397

4.2 Implementation Details 398

We use PyTorch 1.7.1 to implement our model. All 399

of the feature encoders mentioned in this paper use 400
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Language Type Train Dev Test
English-en Sentence 14,987 3,466 3,684

(CoNLL-2003) Entity 23,499 5,942 5,648
English-de Sentence 12,705 3,068 3,160

(CoNLL-2003) Entity 11,851 4,833 3,673
English-es Sentence 8,323 1,915 1,517

(CoNLL-2002) Entity 18,798 4,351 3,558
English-nl Sentence 15,806 2,895 5,195

(CoNLL-2002) Entity 13,344 2,616 3,941

Table 1: Statistics of CoNLL.

Language Type Train Dev Test
English-en Sentence 20,000 10,000 10,000

Entity 27,931 14,146 13,958
Arabic-ar Sentence 20,000 10,000 10,000

Entity 22,500 11,266 11,259
Hindi-hi Sentence 5,000 1,000 1,000

Entity 6,124 1,226 1,228
Chinese-zh Sentence 20,000 10,000 10,000

Entity 25,031 12,493 12,532

Table 2: Statistics of WikiAnn.

pretrained multilingual bert model (Devlin et al.,401

2019) in HuggingFace’s Transformer1, which has402

12 Transformer blocks, 12 attention heads, and 768403

hidden units.404

We set our hyperparameters empirically follow-405

ing (Wu et al., 2020c) with some modifications. We406

do not freeze any layers and we use the output of407

the last layer as our hidden feature vector. We set408

batch size to be 32, maximum sequence length to409

be 128, dropout rate to be 0.2, and we use Adam as410

optimizer (Kingma and Ba, 2014). For the training411

of recognition teacher model and similarity teacher412

model, we set the learning rate to be 1e-5 and 5e-6413

separately. For knowledge distillation, we use a414

learning rate of 1e-6 for the student models train-415

ing. Note that if a word is divided into several416

subwords after tokenization, then only the first sub-417

word is considered in the loss function. Following418

(Tjong Kim Sang, 2002), we use the entity level419

F1-score as the evaluation metric. Moreover, we420

conduct each experiment 5 times and report the421

mean F1-score.422

4.3 Comparison423

Table 3 and 4 report the zero-resource cross-lingual424

NER results of different models on 6 target lan-425

guages.426

1https://github.com/huggingface/transformers

Model de es nl
Wiki(Tsai et al., 2016) 48.12 60.55 61.56
WS(Ni et al., 2017) 58.50 65.10 65.40
TMP(Jain et al., 2019) 61.50 73.50 69.9
Bert-f(Wu and Dredze, 2019) 69.56 74.96 77.57
AdvCE(Keung et al., 2019) 71.90 74.3 77.6
TSL(Wu et al., 2020a) 73.16 76.75 80.44
Unitrans(Wu et al., 2020b) 74.82 79.31 82.90

w/o translation 73.61 77.3 81.20
AdvPicker(Chen et al., 2021) 75.01 79.00 82.90
RIKD(Liang et al., 2021) 76.08 79.78 82.96

w/o IKD 74.86 78.90 81.02
TOF(Zhang et al., 2021) 76.57 80.35 82.79

w/o continual learning 76.39 79.44 81.64
MTMT 76.80 81.82 83.41

Table 3: Performance comparisons on CoNLL.

Model ar hi zh
Bert-f(Wu and Dredze, 2019) 42.30 67.60 52.90
TSL(Wu et al., 2020a) 43.12 69.54 48.12
RIKD(Liang et al., 2021) 45.96 70.28 50.40
MTMT 52.77 70.76 52.26

Table 4: Performance comparisons on WikiAnn.

Wiki (Tsai et al., 2016) introduces a language in- 427

dependent model building on cross-lingual wikifi- 428

cation for cross-lingual NER. 429

WS (Ni et al., 2017) presents two weakly super- 430

vised approaches for cross-lingual NER. 431

TMP (Jain et al., 2019) leverages machine transla- 432

tion to improve annotation projection approaches 433

to cross-lingual NER. 434

Bert-f (Wu and Dredze, 2019) applys the multilin- 435

gual BERT to cross-lingual NER. 436

AdvCE (Keung et al., 2019) improves upon mul- 437

tilingual BERT via adversarial learning for cross- 438

lingual NER. 439

Model de es nl
MTMT 76.80 81.82 83.41

MTST
74.11
(-2.69)

78.61
(-3.21)

81.97
(-1.44)

MTMT w/o weighting
76.08
(-0.72)

80.84
(-0.98)

82.96
(-0.45)

MTMT w/o similarity
73.82
(-2.98)

77.53
(-4.29)

80.82
(-2.59)

Table 5: Ablation study on cross-lingual NER.
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#1
Spanish

Entity Recognizer Teacher: Arévalo[B-ORG] (Avila[B-LOC]), 23 may (EFE[B-ORG]).
Student: Arévalo[B-LOC] (Avila[B-LOC]), 23 may (EFE[B-ORG]).
Entity Recognizer and Entity Similarity Evaluator Teachers:

a. Viena[B-LOC, 0.7157] , 23 may (EFE[B-ORG]).
b. Madrid[B-LOC, 0.7156] , 23 may (EFE[B-ORG]).

#2
Dutch

Entity Recognizer Teacher: Universiteit[B-ORG] Antwerpen[I-ORG] ( Ruca[B-LOC] ) en De...
Student: Universiteit[B-ORG] Antwerpen[I-ORG] ( Ruca[B-ORG] ) en De...
Entity Recognizer and Entity Similarity Evaluator Teachers:

a. ...voor[I-ORG] het[I-ORG] Preventiebeleid[I-ORG] ( VSPP[B-ORG,0.7134] ) is...
b. Transparency[B-ORG] International[I-ORG] ( Sozialarbeit[I-TI,0.7130] ), de onderhand...

#3
German

Entity Recognizer Teacher: Hessischen[B-ORG] Staatskanzlei[O] auf das Thema...
Student: Hessischen[B-ORG] Staatskanzlei[I-ORG] auf das Thema...
Entity Recognizer and Entity Similarity Evaluator Teachers:

a. Internationalen[B-ORG] Bund[I-ORG] für[I-ORG] Sozialarbeit[I-ORG,0.7162] ...
b. Kickers[B-ORG] Offenbach[I-ORG] II[I-ORG,0.7157] - Rotweiß[B-ORG] ...

Table 6: Case study on cross-lingual NER. The GREEN (RED) highlight indicates a correct (incorrect)
label. The real-valued numbers indicate the entity similarity score.

TSL (Wu et al., 2020c) proposes a teacher-student440

learning model for cross-lingual NER.441

Unitrans (Wu et al., 2020b) unifies a data transfer442

and model transfer for cross-lingual NER.443

AdvPicker (Chen et al., 2021) proposes a adver-444

sarial discriminator for cross-lingual NER.445

RIKD (Liang et al., 2021) develops a reinforced446

iterative knowledge distillation for cross-lingual447

NER.448

TOF (Zhang et al., 2021) transfers knowledge from449

three aspects for cross-lingual NER.450

It can be seen that our model outperforms the451

state-of-the-arts. Specifically, compared with the452

remarkable RIKD, AdvPicker and Unitrans, which453

also use knowledge distillation but ignore the en-454

tity similarity knowledge, our model obtains sig-455

nificant and consistent improvements in F1-score456

ranging from 0.23 for German[de] to 6.81 for Ara-457

bic[ar]. That demonstrates the benefits of our pro-458

posed MTMT model, compared to direct model459

transfer (Wu and Dredze, 2019).460

Note that Bert-f performs better than our model461

on Chinese dataset due to their re-tokenization of462

the dataset. Moreover, compared with the latest463

model TOF, RIKD, Unitrans, our model requires464

much lower computational costs for both trans-465

lation and iterative knowledge distillation, mean-466

while reaching superior performance. For a fair467

comparison, we compare our model against the ver-468

sion of TOF w/o continual learning (Zhang et al.,469
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Figure 5: t-SNE plot of embeddings of teacher and
student models. (a) Entity recognizer teacher. (b)
Entity similarity evaluator teacher. (c) Student.

2021), RIKD w/o IKD (Liang et al., 2021) and Uni- 470

trans w/o translation (Wu et al., 2020b) as reported 471

in their paper. 472

4.4 Ablation Study 473

To demonstrate the effectiveness of our approach, 474

we designed the following ablation studies. Table 475

5 presents the results. 476

(1) MTST, which combines the multiple-teacher 477

to single-teacher. That is, both of the teacher 478

and student have the same neural network 479

structure. This causes a performance drop 480

across all languages due to two single teachers 481

cannot make a difference with combination. 482

(2) MTMT w/o weighting, which set the α1,α2, β 483

and γ all to be 1 in the loss of student model 484

learning. It can be seen that the performance 485

decrease in terms of F1-score ranges from 486

0.45 for Dutch(nl) to 0.98 for Spanish(es), 487
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which validates that weighting loss can bring488

more confident knowledge to student model.489

(3) MTMT w/o similarity, which removes the490

similarity teacher model. In this case, our491

approach degrades into the Single Teacher-492

Student learning model as in TSL (Wu et al.,493

2020a). Without the similarity knowledge fed494

into the student model, the performance drops495

significantly.496

4.5 Case Study497

We give a case study to show that the failed cases498

of baseline models can be corrected by our model.499

We try to bring up insights on why the proposed500

multiple-task and multiple-teacher model works.501

The proposed MTMT model can help to correct502

labels using the Entity Similarity defined in sec-503

tion 3.2. Specifically, if there is a set of tokens in504

which every two of them have high Entity Simi-505

larity score, and one of the tokens is predicted to506

have a distinct label while other tokens have iden-507

tical labels, then the one with the distinct label is508

predicted wrongly and is corrected by the student509

model to have the label of all other tokens. As510

shown in Table 6, in example #1, the entity recog-511

nizer teacher fails to identify “Arévalo” as B-ORG512

type, while the student model can correctly pre-513

dict it. The reason lies in that the entity recognizer514

teacher predicts “Viena”(‘Madrid”) as B-LOC type515

correctly, and the similarity evaluator teacher pre-516

dicts “Viena”(“Madrid”) to have a high similarity517

score(0.7157, 0.7156) with “Arévalo”. The student518

learns from both teachers and predict the correct519

label for “Arévalo”. Examples #2 and #3 present520

the same results with different sentences.521

4.6 Embeddings Distribution522

This section investigates the effect of embeddings523

of the two different teacher models. It can be524

seen that the embeddings distribution of student525

model is close to similarity evaluator teacher, as526

illustrated in Figure 5. We conjecture that the stu-527

dent model captures similarity knowledge from the528

similarity evaluator teacher, i.e. the same class of529

examples tend to cluster and the different class of530

examples tend to segregate in the embeddings distri-531

bution. This validates the proposed MTMT model532

not only transfers cross-lingual NER knowledge533

from source language, but also learns the similarity534

knowledge of target language data.535
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Figure 6: Weights analysis of student learning.
(a) α, F1-score in different probability interval.
(b) β, F1-score in different similarity score interval.
(c) F1-score of yS , y′S , and t̂S in different γ inter-
val.

4.7 Effect of Weights 536

In the section, we evaluate the effectiveness of the 537

weighting loss in student learning from quantitative 538

perspective. All of the following experiments are 539

conducted on Spanish(es) data. 540

For α analysis, we calculate the F1-score in 541

different probability intervals of entity recognizer 542

teacher, we find that the recognizer teacher tends 543

to predict more correct in higher probability in- 544

terval, as illustrated in Figure 6a. Therefore, the 545

student model is better suited to target language 546

with learning less low-confidence misrecognitions 547

for the target language. 548

For β analysis, we observe that F1-score are 549

increasing with the entity similarity score from 0.5 550

to both sides 0 and 1 in Figure 6b. The encoder of 551

student model obtains the clustering information of 552

the target language with the help of β. 553

For γ analysis, we consider the consistency of 554

recognition results and similarity score by teachers. 555

The F1-score and similarity score of teachers are 556

all higher in the higher γ intervals, as shown in 557

Figure 6c. The student model learns less from un- 558

reasonable results, and it can make more accuracy 559

entity recognition for the target language. 560

5 Conclusion 561

In this paper, we propose an unsupervised multiple- 562

task and multiple-teacher model for cross-lingual 563

NER. The student model learns two source lan- 564

guage patterns of entity recognition and entity sim- 565

ilarity evaluation. Moreover, in order to guarantee 566

the student learning performance, we also propose 567

a weighting strategy to take consideration of the 568

reliability of the teachers. Our experimental results 569

show that the proposed model yields significant im- 570

provements on six target language datasets and out- 571

performs the existing state-of-the-art approaches. 572

8



References573

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard574
Säckinger, and Roopak Shah. 1994. Signature veri-575
fication using a "siamese" time delay neural network.576
In Advances in Neural Information Processing Sys-577
tems, volume 6. Morgan-Kaufmann.578

Weile Chen, Huiqiang Jiang, Qianhui Wu, Börje Karls-579
son, and Yi Guan. 2021. AdvPicker: Effectively580
Leveraging Unlabeled Data via Adversarial Discrim-581
inator for Cross-Lingual NER. In Proceedings of the582
59th Annual Meeting of the Association for Compu-583
tational Linguistics and the 11th International Joint584
Conference on Natural Language Processing (Vol-585
ume 1: Long Papers), pages 743–753, Online. As-586
sociation for Computational Linguistics.587

Jason P.C. Chiu and Eric Nichols. 2016. Named entity588
recognition with bidirectional LSTM-CNNs. Trans-589
actions of the Association for Computational Lin-590
guistics, 4:357–370.591

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and592
Kristina Toutanova. 2019. BERT: Pre-training of593
deep bidirectional transformers for language under-594
standing. In Proceedings of the 2019 Conference595
of the North American Chapter of the Association596
for Computational Linguistics: Human Language597
Technologies, Volume 1 (Long and Short Papers),598
pages 4171–4186, Minneapolis, Minnesota. Associ-599
ation for Computational Linguistics.600

Alankar Jain, Bhargavi Paranjape, and Zachary C. Lip-601
ton. 2019. Entity projection via machine transla-602
tion for cross-lingual NER. In Proceedings of the603
2019 Conference on Empirical Methods in Natu-604
ral Language Processing and the 9th International605
Joint Conference on Natural Language Processing606
(EMNLP-IJCNLP), pages 1083–1092, Hong Kong,607
China. Association for Computational Linguistics.608

Phillip Keung, Yichao Lu, and Vikas Bhardwaj. 2019.609
Adversarial learning with contextual embeddings for610
zero-resource cross-lingual classification and NER.611
In Proceedings of the 2019 Conference on Empirical612
Methods in Natural Language Processing and the613
9th International Joint Conference on Natural Lan-614
guage Processing (EMNLP-IJCNLP), pages 1355–615
1360, Hong Kong, China. Association for Computa-616
tional Linguistics.617

Diederik P. Kingma and Jimmy Ba. 2014. Adam:618
A method for stochastic optimization. Cite619
arxiv:1412.6980Comment: Published as a confer-620
ence paper at the 3rd International Conference for621
Learning Representations, San Diego, 2015.622

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov,623
et al. 2015. Siamese neural networks for one-shot624
image recognition. In ICML deep learning work-625
shop, volume 2. Lille.626

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-627
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.628
Neural architectures for named entity recognition.629

In Proceedings of the 2016 Conference of the North 630
American Chapter of the Association for Computa- 631
tional Linguistics: Human Language Technologies, 632
pages 260–270, San Diego, California. Association 633
for Computational Linguistics. 634

Shining Liang, Ming Gong, Jian Pei, Linjun Shou, 635
Wanli Zuo, Xianglin Zuo, and Daxin Jiang. 2021. 636
Reinforced iterative knowledge distillation for cross- 637
lingual named entity recognition. In Proceedings 638
of the 27th ACM SIGKDD Conference on Knowl- 639
edge Discovery amp; Data Mining, KDD ’21, page 640
3231–3239, New York, NY, USA. Association for 641
Computing Machinery. 642

Stephen Mayhew, Chen-Tse Tsai, and Dan Roth. 2017. 643
Cheap translation for cross-lingual named entity 644
recognition. In Proceedings of the 2017 Conference 645
on Empirical Methods in Natural Language Process- 646
ing, pages 2536–2545, Copenhagen, Denmark. As- 647
sociation for Computational Linguistics. 648

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 649
2016. Learning text similarity with Siamese re- 650
current networks. In Proceedings of the 1st Work- 651
shop on Representation Learning for NLP, pages 652
148–157, Berlin, Germany. Association for Compu- 653
tational Linguistics. 654

Jian Ni, Georgiana Dinu, and Radu Florian. 2017. 655
Weakly supervised cross-lingual named entity recog- 656
nition via effective annotation and representation 657
projection. In Proceedings of the 55th Annual Meet- 658
ing of the Association for Computational Linguistics 659
(Volume 1: Long Papers), pages 1470–1480, Van- 660
couver, Canada. Association for Computational Lin- 661
guistics. 662

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel 663
Nothman, Kevin Knight, and Heng Ji. 2017. Cross- 664
lingual name tagging and linking for 282 languages. 665
In Proceedings of the 55th Annual Meeting of the 666
Association for Computational Linguistics (Volume 667
1: Long Papers), pages 1946–1958, Vancouver, 668
Canada. Association for Computational Linguistics. 669

Sebastian Ruder, Matthew E. Peters, Swabha 670
Swayamdipta, and Thomas Wolf. 2019. Trans- 671
fer learning in natural language processing. In 672
Proceedings of the 2019 Conference of the North 673
American Chapter of the Association for Com- 674
putational Linguistics: Tutorials, pages 15–18, 675
Minneapolis, Minnesota. Association for Computa- 676
tional Linguistics. 677

Erik F. Tjong Kim Sang. 2002. Introduction to the 678
CoNLL-2002 shared task: Language-independent 679
named entity recognition. In COLING-02: The 680
6th Conference on Natural Language Learning 2002 681
(CoNLL-2002). 682

Erik F. Tjong Kim Sang and Fien De Meulder. 683
2003. Introduction to the CoNLL-2003 shared task: 684
Language-independent named entity recognition. In 685

9

https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.61
https://doi.org/10.18653/v1/2021.acl-long.61
https://doi.org/10.18653/v1/2021.acl-long.61
https://doi.org/10.18653/v1/2021.acl-long.61
https://doi.org/10.18653/v1/2021.acl-long.61
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1100
https://doi.org/10.18653/v1/D19-1100
https://doi.org/10.18653/v1/D19-1100
https://doi.org/10.18653/v1/D19-1138
https://doi.org/10.18653/v1/D19-1138
https://doi.org/10.18653/v1/D19-1138
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.1145/3447548.3467196
https://doi.org/10.1145/3447548.3467196
https://doi.org/10.1145/3447548.3467196
https://doi.org/10.18653/v1/D17-1269
https://doi.org/10.18653/v1/D17-1269
https://doi.org/10.18653/v1/D17-1269
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1135
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419


Proceedings of the Seventh Conference on Natu-686
ral Language Learning at HLT-NAACL 2003, pages687
142–147.688

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016.689
Cross-lingual named entity recognition via wikifica-690
tion. In Proceedings of The 20th SIGNLL Confer-691
ence on Computational Natural Language Learning,692
pages 219–228, Berlin, Germany. Association for693
Computational Linguistics.694

Qianhui Wu, Zijia Lin, Börje Karlsson, Jian-Guang695
Lou, and Biqing Huang. 2020a. Single-/multi-696
source cross-lingual NER via teacher-student learn-697
ing on unlabeled data in target language. In Pro-698
ceedings of the 58th Annual Meeting of the Asso-699
ciation for Computational Linguistics, pages 6505–700
6514, Online. Association for Computational Lin-701
guistics.702

Qianhui Wu, Zijia Lin, Börje F. Karlsson, Biqing703
Huang, and Jian-Guang Lou. 2020b. Unitrans704
: Unifying model transfer and data transfer for705
cross-lingual named entity recognition with unla-706
beled data. In Proceedings of the Twenty-Ninth707
International Joint Conference on Artificial Intel-708
ligence, IJCAI-20, pages 3926–3932. International709
Joint Conferences on Artificial Intelligence Organi-710
zation. Main track.711

Qianhui Wu, Zijia Lin, Guoxin Wang, Hui Chen,712
Börje F. Karlsson, Biqing Huang, and Chin-Yew Lin.713
2020c. Enhanced meta-learning for cross-lingual714
named entity recognition with minimal resources.715
Proceedings of the AAAI Conference on Artificial In-716
telligence, 34(05):9274–9281.717

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-718
cas: The surprising cross-lingual effectiveness of719
BERT. In Proceedings of the 2019 Conference on720
Empirical Methods in Natural Language Processing721
and the 9th International Joint Conference on Natu-722
ral Language Processing (EMNLP-IJCNLP), pages723
833–844, Hong Kong, China. Association for Com-724
putational Linguistics.725

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A.726
Smith, and Jaime Carbonell. 2018. Neural cross-727
lingual named entity recognition with minimal re-728
sources. In Proceedings of the 2018 Conference on729
Empirical Methods in Natural Language Processing,730
pages 369–379, Brussels, Belgium. Association for731
Computational Linguistics.732

Ying Zhang, Fandong Meng, Yufeng Chen, Jinan Xu,733
and Jie Zhou. 2021. Target-oriented fine-tuning for734
zero-resource named entity recognition. In Find-735
ings of the Association for Computational Linguis-736
tics: ACL-IJCNLP 2021, pages 1603–1615, Online.737
Association for Computational Linguistics.738

10

https://doi.org/10.18653/v1/K16-1022
https://doi.org/10.18653/v1/K16-1022
https://doi.org/10.18653/v1/K16-1022
https://doi.org/10.18653/v1/2020.acl-main.581
https://doi.org/10.18653/v1/2020.acl-main.581
https://doi.org/10.18653/v1/2020.acl-main.581
https://doi.org/10.18653/v1/2020.acl-main.581
https://doi.org/10.18653/v1/2020.acl-main.581
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.1609/aaai.v34i05.6466
https://doi.org/10.1609/aaai.v34i05.6466
https://doi.org/10.1609/aaai.v34i05.6466
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/D18-1034
https://doi.org/10.18653/v1/2021.findings-acl.140
https://doi.org/10.18653/v1/2021.findings-acl.140
https://doi.org/10.18653/v1/2021.findings-acl.140

