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Abstract

Sequential learning methods such as active learning and Bayesian optimization select the
most informative data to learn about a task. In many medical or engineering applications,
the data selection is constrained by a priori unknown safety conditions. A promissing line
of safe learning methods utilize Gaussian processes (GPs) to model the safety probability
and perform data selection in areas with high safety confidence. However, accurate safety
modeling requires prior knowledge or consumes data. In addition, the safety confidence
centers around the given observations which leads to local exploration. As transferable
source knowledge is often available in safety critical experiments, we propose to consider
transfer safe sequential learning to accelerate the learning of safety. We further consider a
pre-computation of source components to reduce the additional computational load that
is introduced by incorporating source data. In this paper, we theoretically analyze the
maximum explorable safe regions of conventional safe learning methods. Furthermore, we
empirically demonstrate that our approach 1) learns a task with lower data consumption, 2)
globally explores multiple disjoint safe regions under guidance of the source knowledge, and
3) operates with computation comparable to conventional safe learning methods.

1 Introduction

Despite the great success of machine learning, accessing data is a non-trivial task. One prominent approach
is to consider experimental design (Lindley, 1956; Chaloner & Verdinelli, 1995; Brochu et al., 2010). In
particular, active learning (AL) (Krause et al., 2008; Kumar & Gupta, 2020) and Bayesian optimization
(BO) (Brochu et al., 2010; Snoek et al., 2012) resort to a sequential data selection process. The methods
initiate with a small amount of data, iteratively compute an acquisition function, query new data according
to the acquisition score, receive observations from the oracle, and update the belief, until the learning goal is
achieved or the acquisition budget is exhausted. These learning algorithms often utilize Gaussian processes
(GPs Rasmussen & Williams (2006)) as surrogate models for the acquisition computation.

In many applications such as spinal cord stimulation (Harkema et al., 2011) and robotic learning (Berkenkamp
et al., 2016; Dominik Baumann et al., 2021), the algorithms must respect some a priori unknown safety
concerns. One effective approach of performing safe learning is to model the safety constraints with additional
GPs (Sui et al., 2015; Schreiter et al., 2015; Zimmer et al., 2018; Yanan Sui et al., 2018; Matteo Turchetta
et al., 2019; Berkenkamp et al., 2020; Dominik Baumann et al., 2021; Li et al., 2022). The algorithms initiate
with given safe observations. A safe set is then defined to restrict the exploration to regions with high safety
confidence. The safe set expands as the learning proceeds, and thus the explorable area grows. Safe learning
is also considered in related domains such as Markov Decision Processes (Matteo Turchetta et al., 2019) and
reinforcement learning (García et al., 2015).

In this paper, we focus on GPs as they are often considered the gold-standard when it comes to calibrated
uncertainties. While such safe learning methods have achieved a huge impact, few challenges remain. Firstly,
GP priors need to be given prior to the exploration (Sui et al., 2015; Berkenkamp et al., 2016; 2020) or fitted
with initial data (note that accessing the data is expensive) (Schreiter et al., 2015; Zimmer et al., 2018; Li
et al., 2022). In addition, safe learning algorithms suffer from local exploration. GPs are typically smooth
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Figure 1: Illustration: safe sequential learning with transfer (top) and conventional (bottom) learning.

and the uncertainty increases beyond the reachable safe set boundary. Disconnected safe regions will be
classified as unsafe and will remain unexplored. We provide a detailed analysis and illustration of explorable
regions in Section 3. In reality, local exploration increases the effort of deploying safe learning algorithms
because the domain experts need to provide safe data from multiple safe regions.

Our contribution: As safe learning (Schreiter et al., 2015; Sui et al., 2015) is always initialized with
prior knowledge, we fairly assume correlated experiments have been performed and the results are available.
This assumption enables transfer learning (Figure 1), where the benefit is twofold: 1) exploration as well as
expansion of safe regions are significantly accelerated, and 2) the source task may provide guidance on safe
regions disconnected from the initial target data and thus helps us to explore globally. Concrete applications
are ubiquitous, including simulation to reality (Marco et al., 2017), serial production, and multi-fidelity
modeling (Li et al., 2020).

Transfer learning can be achieved by considering the source and target tasks jointly as multi-output GPs (Jour-
nel & Huijbregts, 1976; Álvarez et al., 2012). However, GPs are notorious for the cubic time complexity
due to the inversion of Gram matrices (Section 3). Large amount of source data thus introduce pronounced
computational time, which is often a bottleneck in real experiments. We further modularize the multi-output
GPs such that the source relevant components can be pre-computed and fixed. This alleviates the complexity
of multi-output GPs while the benefit is retained.

In summary, we 1) introduce the idea of transfer safe sequential learning supported by a thorough mathematical
formulation, 2) derive that conventional no-transfer approaches have an upper bound of explorable region, 3)
provide a modularized approach to multi-output GPs that can alleviate the computational burden of source
data, with our technique being more general than the previous method in Tighineanu et al. (2022), and 4)
demonstrate the empirical efficacy.

Related work: Safe learning is considered in many problems such as Markov Decision Processes (Matteo
Turchetta et al., 2019) and reinforcement learning (García et al., 2015). In this paper, we focus on GP
learning problems. In Gelbart et al. (2014); Hernandez-Lobato et al. (2015); Hernández-Lobato et al. (2016),
the authors investigated constrained learning with GPs. The authors integrated constraints directly into
the acquisition function (e.g. discounting the acquisition score by the probability of constraint violation).
These works do not exclude unsafe data from the search pool, and the experimenting examples are mostly not
safety critical. A safe set concept was introduced for safe BO (Sui et al., 2015) and safe AL (Schreiter et al.,
2015). The concept was then extended to BO with multiple safety constraints (Berkenkamp et al., 2020), to
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AL for time series modeling (Zimmer et al., 2018), and to AL for multi-output problems (Li et al., 2022).
For safe BO, Sui et al. Yanan Sui et al. (2018) proposed to conduct the safe set exploration and BO in two
distinguished stages. All of these methods suffer from local exploration (Section 3). Dominik Baumann et al.
(2021) proposed a global safe BO method on dynamical systems, assuming that unsafe areas are approached
slowly enough and that there exists an intervention mechanism which stops the system quickly enough. None
of these methods exploits transfer safe learning which can allow for global exploration given prior source
knowledge.

Transfer learning and multi-task learning have caught increasing attention. In particular, multi-output GP
methods have been developed for multi-task BO (Swersky et al., 2013; Poloczek et al., 2017), sim-to-real
transfer for BO (Marco et al., 2017), and multi-task AL (Zhang et al., 2016). However, GPs have time
complexity cubic to the number of observations, competed by multiple outputs. In Tighineanu et al. (2022),
the authors assume a specific structure of the multi-output kernel, and factorize the computation with an
ensembling technique. This eases the computational burdens for transfer sequential learning. In our paper,
we propose a modularized transfer safe learning to facilitate real experiments while avoiding cubic complexity.
Our modularization technique can be generalized to arbitrary multi-output kernels.

Paper structure: The remaining of this paper is structured as follows: we provide the goal of safe
sequential learning in Section 2; in Section 3, we introduce the background and analyze the local exploration
problem of safe learning; Section 4 elaborates our approach under a transfer learning scenario; Section 5 is
the experimental study; finally, we conclude our paper in Section 6.

2 Problem statement

Preliminary: Throughout this paper, we inspect regression output and safety values. Each input x ∈ X ⊆
RD has a corresponding noisy regression output y ∈ R and the corresponding noisy safety values jointly
expressed as a vector z = (z1, ..., zJ) ∈ RJ .

Assumption 2.1. y = f(x) + εf , z
j = qj(x) + εqj

, where εf ∼ N
(

0, σ2
f

)
, εqj

∼ N
(

0, σ2
qj

)
. In addition,

ys = fs(xs) + εfs
, zjs = qj,s(xs) + εqj,s

, where εfs
∼ N

(
0, σ2

fs

)
, εqj,s

∼ N
(

0, σ2
qj,s

)
. {f, qj} are our target

black-box function and safety functions.

The source and target tasks may have different number of safety conditions, but we can add trivial constraints
(e.g. 1 ≥ −∞) to either task in order to have the same number of constraints J for both tasks.

Safe learning problem statement: We are given a small number of safe observations DN =
{XN ,Y N ,ZN}, XN = {x1, ...,xN} ⊆ X , Y N = {y1, ..., yN} ⊆ R and ZN = {zn|zjn ≥ Tj ,∀j = 1, ..., J}Nn=1.
∀j = 1, ..., J , Tj are safety thresholds. We are further given source data Ds = {XMs

s ,Y Ms
s ,ZMs

s },
XMs
s = {xs,1, ...,xs,Ms

} ⊆ X , Y Ms
s = {ys,1, ..., ys,Ms

} ⊆ R and ZMs
s = {(z1

s,n, ..., z
J
s,n)|n = 1, ...,Ms} ⊆ RJ .

Ms is the number of source data points. Notably, the source data do not need to be measured with the same
safety constraints as the target task. Here, we consider only one source task for simplicity. We assume Ms,
the number of source data, is large enough and we do not need to explore for the source task. This is often
the case when there is plenty of data from previous versions of systems or prototypes.

The goal is to evaluate the function f : X → R where each evaluation is expensive. In each iteration, we
select a point xn ∈ Xpool ⊆ X to evaluate (Xpool ⊆ X is the search pool which can be the entire space X or a
predefined subspace of X , depending on the applications). This selection should respect the a priori unknown
safety constraints ∀j = 1, ..., J, qj(xn) ≥ Tj , where true qj are inaccessible. Then, a budget consuming
labeling process occurs, and we obtain a noisy yn or/and noisy safety values zn. The labeled points are then
added to DN , with N being increased by 1, and we proceed to the next iterations (Algorithm 1).

This problem formulation applies to both AL and BO. In this paper, we focus on AL problems. The goal
is using the evaluations to make accurate predictions f(X ), and the points we select would favor general
understanding over space X , up to the safety constraints.
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3 Background & local exploration of safe learning methods

In this section, we introduce GPs, safe learning algorithms for GPs, and then provide detailed analysis and
illustration of the local exploration problem.

Gaussian processes (GPs): A GP is a stochastic process specified by a mean and a kernel function (Ras-
mussen & Williams, 2006; Kanagawa et al., 2018; Schoelkopf & Smola, 2002). Without loss of generality, we
assume the GPs have zero mean. In addition, without prior knowledge to the data, it is common to assume
the governing kernels are stationary.
Assumption 3.1. g ∈ {f, q1, ..., qJ}, g ∼ GP(0, kg) and kg(x,x′) := kg(x− x′) ≤ 1 are stationary.

Bounding the kernels by 1 provides advantages in theoretical analysis (Srinivas et al., 2012) and is not
restrictive because the data are usually normalized to zero mean and unit variance.

Denote Bf = Y N , and Bqj
= [ZN ]j := (zj1, ..., z

j
N ), Assumption 2.1 and Assumption 3.1 indicate predictive

distributions ∀g ∈ {f, q1, ..., qJ}, p
(
g(x∗)|XN ,Bg

)
= N

(
µg,N (x∗), σ2

g,N (x∗)
)
,

µg,N (x∗) =: µg,N = kg(XN ,x∗)T
(
Kg + σ2

gI
)−1

Bg,

σ2
g,N (x∗) =: σ2

g,N = kg(x∗,x∗)− kg(XN ,x∗)T
(
Kg + σ2

gI
)−1

kg(XN ,x∗),
(1)

where kg(XN ,x∗) = (kg(x1,x∗), ..., kg(xN ,x∗)) ∈ RN×1, and Kg ∈ RN×N is a matrix with [Kg]ij =
kg(xi,xj). Typically, kg is parameterized and can be fitted together with σ2

g .

Safe learning: A core of safe learning methods (Sui et al., 2015; Yanan Sui et al., 2018; Berkenkamp et al.,
2020; Dominik Baumann et al., 2021) is to compare the safety confidence bounds with the thresholds and
define a safe set SN ⊆ Xpool as

SN = ∩Jj=1{x ∈ Xpool|µqj ,N (x)− β1/2σqj ,N (x) ≥ Tj}, (2)

where β ∈ R+ is a parameter for probabilistic tolerance control (Sui et al., 2015; Berkenkamp et al., 2020). This
definition is equivalent to ∀x ∈ SN , p (q1(x) ≥ T1, ..., qJ(x) ≥ TJ) ≥ (1− α)J when α = 1−Φ(β1/2) (Schreiter
et al., 2015; Zimmer et al., 2018; Li et al., 2022).

In each iteration, a new point is queried by mapping safe candidate inputs to acquisition scores:

x∗ = argmaxx∈SN
a (x|DN ) , (3)

where DN is the current observed dataset and a is an acquisition function. In the literature (Schreiter
et al., 2015; Zimmer et al., 2018; Li et al., 2022; Sui et al., 2015; Berkenkamp et al., 2020), this constrained
optimization problem is solved on discrete pool with finite elements, i.e. Npool := |Xpool| <∞. The whole
learning process is summarized in Algorithm 1.

In AL problems, a prominent acquisition function is the predictive entropy: a(x|DN ) = Hf [x|DN ] =
1
2 log

(
2πeσ2

f,N (x)
)

(Schreiter et al., 2015; Zimmer et al., 2018; Li et al., 2022). We use a(x|DN ) =∑
g∈{f,q1,...,qJ}Hg [x|DN ] to accelerate the exploration of safety models. It is possible to exchange the

acquisition function by SafeOpt criteria for safe BO problems (Sui et al., 2015; Berkenkamp et al., 2020;
Rothfuss et al., 2022)).

Safe learning suffer from local exploration: In this section, we analyze the upper bound of explorable
safe regions. Commonly used stationary kernels (Assumption 3.1) measure the difference of a pair of points
while the actual point values do not matter. These kernels have the property that closer points correlate
strongly while distant points result in small kernel values. We first formulate this property as the following
assumption.
Assumption 3.2. Given a kernel function k : X × X → R, assume ∀δ > 0, ∃r > 0 s.t. ‖x − x′‖ ≥ r ⇒
k(x,x′) ≤ δ under L2 norm.
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Algorithm 1 Sequential Learning
Require: DN ,Xpool, β or α

1: for n = N, ..., N + num_steps do
2: Fit GPs (kf , kqj , σ

2
f , σ

2
qj
)

3: x∗ ← argmaxx∈Sn
a(x|Dn)

4: Evaluate at x∗ to get y∗ and z∗
5: Dn+1 ← Dn ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗}
6: end for

We provide expression of popular stationary kernels (RBF kernel and Matérn kernels), as well as their r − δ
relations in the Appendix B.3.

In the following, we derive a theorem showing that standard kernels only allow local exploration of safety
regions. The main idea is: when a point x∗ is far away from the observations, we can get very small δ (i.e.
small covariance measured by kernel). Thus the prediction at x∗ is weakly correlated to the observations. As
a result, the predictive mean is close to zero and the predictive uncertainty is large, both of which imply that
the method has small safety confidence, i.e. p

(
(qj(x∗) ≥ Tj)|XN , [ZN ]j

)
. Here we assume that qj ≥ Tj is

not a trivial condition, which indicates that Tj is in sensitive domain of qj (i.e. Tj is not far away from zero).

Theorem 3.3 (Local exploration of single-output GPs). We are given ∀x∗ ∈ X , XN ⊆ X , a kernel
kqj

satisfying Assumption 3.2 and kqj
(·, ·) ≤ 1. Denote kjscale := max kqj

. qj ∼ GP(0, kqj
) is a GP,

[ZN ]j := (zj1, ..., z
j
N ) is a set of observed noisy values (Assumption 2.1) and ‖(zj1, ..., z

j
N )‖ ≤

√
N . Then

∀δ ∈ (0,
√
kjscaleσqj/

√
N),∃r > 0 s.t. when minxi∈XN ‖x∗−xi‖ ≥ r, the probability thresholded on a constant

Tj is bounded by p
(
(qj(x∗) ≥ Tj)|XN , [ZN ]j

)
≤ Φ

(
Nδ/σ2

qj
−Tj√

kj
scale

−(
√
Nδ/σqj

)2

)
.

Our theorem (proof in the Appendix B.4) provides the maximum safety probability of a point as a function
of its distance to the observed data in X . Therefore, it measures an upper bound of explorable safe area.
Notice that ‖[ZN ]j‖ ≤

√
N is not very restrictive because an unit-variance dataset has ‖[ZN ]j‖ =

√
N . This

theorem indicates that a standard GP with commonly used kernels explores only neighboring regions of the
initial XN .

Remark 3.4. In Section 4, we will see that our new transfer safe sequential learning framework may explore
beyond the neighborhood of target XN .

In the following, we plug exact numbers into Theorem 3.3 for an illustration.

Example 3.5. We consider a one-dimensional toy dataset which is also visualized in Figure 4. Assume
N = 10, σ2

q = 0.01 and T = 0. We omit j because J = 1 here. σq/
√
N is roughly 0.0316. In this example, the

generated data have ‖ZN‖ ≤
√

10. We train an unit-variance (kscale = 1) Matérn -5/2 kernel on this example,
and we obtain lengthscale ≈ 0.1256. This kernel is strictly decreasing, so Assumption 3.2 is satisfied. In

particular, r = 4.485 ∗ 0.1256 = 0.563316⇒ δ ≤ 0.002, noticing that δ = 0.002⇒ Φ
(

Nδ/σ2
q−T√

1−(
√
Nδ/σq)2

)
≈ Φ(2).

When the safety tolerance is set to β1/2 = 2, we can thus know from Theorem 3.3 that safe regions that are
0.563316 further from the observed ones are always identified as unsafe and is not explorable. In Figure S1,
the two safe regions are more than 0.7 distant from each other, indicating that the right safe region is never
explored by conventional safe learning methods. Please see Appendix B for numerical details and figures.

Our probability bound Φ
(

Nδ/σ2
q−T√

kj
scale

−(
√
Nδ/σq)2

)
is the worst case obtained with very mild assumptions.

Empirically, the explorable regions found by GP models are smaller (see Figures 4 to 5).
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4 Modularized GP transfer learning

In the previous section, we introduced GP safe learning technique, and we analyzed the local exploration
problem. In this section, we present our transfer learning strategy, where the aim is to facilitate safe learning
and to enable global exploration if properly guided by the source data.

Modeling the data with source knowledge: We exploit Assumption 2.1 and extend Assumption 3.1
to multi-output models (Journel & Huijbregts, 1976; Álvarez et al., 2012; Tighineanu et al., 2022). We define
f : X × {s, t} → R and qj : X × {s, t} → R, where the source and target functions are concatenated, i.e.
f(·, s) = fs(·), f(·, t) = f(·), qj(·, s) = qj,s(·) and qj(·, t) = qj(·).
Assumption 4.1. f ∼ GP (0, kf ) and qj ∼ GP

(
0, kqj

)
for some stationary kernels kf , kqj

: (X × {s, t})×
(X × {s, t})→ R.

Let X̂Ms
s := {(xi, s)|xi ∈ XMs

s } and X̂N := {(xi, t)|xi ∈ XN} denote the concatenated input data,
Bfs = Y Ms

s and Bqj,s = [ZMs
s ]j denote the source observations jointly. Then for g ∈ {f , qj}, the predictive

distribution given in Equation (1) becomes

µg,N (x∗, t) = vTg

(
Kgs + σ2

gs
IMs Kgs,g

KT
gs,g Kg + σ2

gIN

)−1(
Bgs

Bg

)
,

σ2
g,N (x∗, t) = kg ((x∗, t), (x∗, t))− vTg

(
Kgs

+ σ2
gs
IMs

Kgs,g

KT
gs,g Kg + σ2

gIN

)−1

vg,

vg = kg

((
X̂Ms
s

X̂N

)
, (x∗, t)

) (4)

where Kgs = kg(X̂Ms
s , X̂Ms

s ), Kgs,g = kg(X̂Ms
s , X̂N ) and Kg = kg(X̂N , X̂N ). Notice that GP models f and

qj are governed by kernels kf , kqj and noise parameters σ2
fs
, σ2
f , σ

2
qj,s

, σ2
qj

(fitted with data in this paper).

In this formulation, the covariance bound δ in Theorem 3.3 takes the source input XMs
s into consideration.

Thus incorporating a source task provides the potential to significantly enlarge the area where the safety
probability is not bounded by Theorem 3.3. We show empirically in Section 5 that global exploration is
indeed easier to achieve with appropriate XMs

s .

Algorithm 2 Modularized SL
Require: Ds,DN ,Xpool, β or α

1: Fit GPs and then fix θfs , θqj,s , σfs , σqj,s

2: Compute and fix Lfs
, Lqj,s

3: for n = N, ..., N + num_steps do
4: Fit GPs (remaining parameters)
5: x∗ ← argmaxx∈Sn

a(x|Dn)
6: Evaluate at x∗ to get y∗ and z∗
7: Dn+1 ← Dn ∪ {x∗, y∗, z∗},Xpool ← Xpool \ {x∗}
8: end for

In-experiment speed-up via source pre-computation: Computation of Ω−1
g has cubic complexity

O
(
(Ms +N)3) in time. This computation is also required for fitting the models: common fitting techniques

include Type II ML, Type II MAP and Bayesian treatment (Snoek et al., 2012; Riis et al., 2022) over kernel
and noise parameters (Rasmussen & Williams, 2006), all of which involves computing the marginal likelihood

N
((
Bgs

Bg

)
|0,Ωg

)
,∀g ∈ {f , qj}. In our paper, Bayesian treatment is not considered because MC sampling

is time consuming.

The goal now is to avoid calculating Ω−1
g repeatedly in the experiments. For GP models, the inversion is

achieved by performing a Cholesky decomposition L(Ωg), i.e. Ωg = L(Ωg)L(Ωg)T , where L(Ωg) is a lower
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triangular matrix (Rasmussen & Williams, 2006), and then for any matrix C, L(Ωg)−1C is computed by
solving a linear system.

We propose to perform the decomposition as below. For each g ∈ {f, qj}, the key idea is to cluster the
parameters of kg into θg = (θgs

, θg), where the source kg ((·, s), (·, s)) is independent of θg. Then, as XMs
s

is invariant, Kgs adapts only to θgs . Given that the source tasks are well explored, the source likelihoods
p(Bgs |XMs

s ) = N (Bgs |0,Kgs +σ2
gs
IMs) can be barely increased while we explore for the target task. Thus we

assume Kgs
(i.e. θgs

) and σ2
gs

remain fixed in the experiments, and then we prepare a safe learning experiment
with pre-computed Lgs

= L(Kgs
+ σ2

gs
IMs

). The learning procedure is summarized in Algorithm 2. In each
iteration (line 4 of Algorithm 2), the time complexity becomes O(M2

sN) +O(MsN
2) +O(N3) instead of

O
(
(Ms +N)3). We provide mathematical details in the Appendix C. Our technique can be applied to any

multi-output kernel because the clustering θg = (θgs , θg) does not require independence of kg ((·, s), (·, t)) and
kg ((·, t), (·, t)) from θgs .

Kernel selection: In the following, we briefly review existing multi-output GP models and motivate
selection of the model we use later in our experiments. A widely investigated multi-output framework is

the linear model of corregionalization (LMC): kg =
∑
l

(
W 2
l,s + κs Wl,sWl,t

Wl,sWl,t W 2
l,t + κ

)
⊗ kl(·, ·), where kl(·, ·) is a

standard kernel as in Assumption 3.1, and (WlW
T
l + diag(κs, κ)) learns the task correlation induced by the

l-th latent function (Álvarez et al., 2012). When pairing this kernel with our Algorithm 2, we observe that
the training can become unstable due to multiple local optima in the first phase (line 1 of Algorithm 2). This
may be because LMC learns joint patterns from all present tasks.

In Poloczek et al. (2017); Marco et al. (2017); Tighineanu et al. (2022), the authors consider a hierarchical

GP (HGP): kg =
(
ks(·, ·) ks(·, ·)
ks(·, ·) ks(·, ·) + kt(·, ·)

)
. HGP is a variant of LMC, where the target task is treated as

a sum of the source (modeled by ks) and the target-source residual (modeled by kt). This formulation has
the benefit that the fitting of source (ks) and residual (kt) are separated and thus makes HGP a good model
to run Algorithm 2 (set θgs

the parameters of ks and θgs
the parameters of kt).

In Tighineanu et al. (2022), the authors derived an ensembling technique allowing also for a source pre-
computation. Their technique is equivalent to our method when we use HGP, but our approach can be
generalized to any multi-output kernels (with implicit restriction that a source fitting of the chosen model
needs to be accurate) while the ensembling technique is limited to HGP.

In our experiments, we perform Algorithm 2 with HGP as our main pipeline, and Algorithm 1 with LMC
(more flexible in learning yet slow) and with HGP as full transfer scenarios. The base kernels ks, kt, kl are all
Matérn-5/2 kernel with D lengthscale parameters (X ⊆ RD). The scaling variance of kl is fixed to 1 because
it can be absorbed into the output-covariance terms (see above). Although we did not pair Algorithm 2 with
LMC as discussed above, note that our modularized computation scheme can still benefit the general LMC in
closely related settings, e.g. (i) datasets in which more than one source task is available or (ii) sequential
learning schemes that only refit the GPs after receiving a batch of query points.

5 Experiments

In this section, we perform safe AL experiments to answer the following questions: 1) do multi-output GPs
facilitate learning of disconnected safe regions, 2) is it more data efficient to learn with transfer safe learning
than applying a conventional method, and 3) how is the runtime of our modularized approach compared
with the baseline?

We compare five experimental setups: 1) EffTransHGP: Algorithm 2 with multi-output HGP, 2) FullTran-
sHGP: Algorithm 1 with multi-output HGP, 3) FullTransLMC: Algorithm 1 with multi-output LMC, 4)
Rothfuss et al. 2022: GP model meta learned with the source data by applying Rothfuss et al. (2022), and 5)
SAL: the conventional Algorithm 1 with single-output GPs and Matérn-5/2 kernel.
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Figure 2: Safe AL experiments on three benchmark datasets: GP data f and safety function q ≥ 0 over
X = [−2, 2]D, D = 1 or 2, and the benchmark Branin function with constraint f ≥ 0 (Section 5.1). The
results are mean and one standard error of 100 (GP data) or 25 (Branin data) experiments. The test points
for RMSEs are sampled from all of the true safe area, including the regions individual methods (e.g. SAL)
may fail to explore. Note that FullTransLMC has more than ten model parameters, while in GP1D dataset
we start with N = 10. The TP/FP safe areas are portion of the input space area. Please also see Figure 8 for
more plots.

Figure 3: Safe AL experiments on engine data modeling. Ms = 500, N is from 20 to 120. The results are
mean and one standard error of 5 repetitions.

For the safety tolerance, we always fix β = 4, i.e. α = 1− Φ(β1/2) = 0.02275 (Equation (2)), implying that
each fitted GP safety model allows 2.275% unsafe tolerance when inferring safe set Equation (2). Notice
that with Rothfuss et al. (2022), the GP model parameters are trained up-front and remain fixed during
the experiments. Rothfuss et al. 2022 considered safe BO problems. We change the acquisition function to
entropy so it becomes a safe AL method. Our code will be published on GitHub.

We conduct experiments on simulated data and engine data. All of the simulation data have input dimension
D being 1 or 2. Therefore, it is analytically and computationally possible to cluster the disconnected safe
regions via connected component labeling algorithms (He et al., 2017). This means, in each iteration of the
experiments, we track to which safe region each observation belongs (Table 1 and Figure 8).
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Table 1: Number of discovered regions (N = 10 + 50 for D = 1 and N = 20 + 100 for D = 2)

methods GP1D+z GP2D+z Branin
EffTransHGP 1.79± 0.07 2.77± 0.13 2± 0
FullTransHGP 1.78± 0.07 3± 0.14213 2± 0
FullTransLMC 1.78± 0.08 2.68± 0.14 2± 0
Rothfuss2022 1.22± 0.05 1.07± 0.03 1± 0

SAL 1± 0 1.29± 0.09 1± 0
Transfer learning discovers multiple disjoint safe regions while baselines stick to neighborhood of the initial

region.

Table 2: Training time (N = 10 + 50 for D = 1 and N = 20 + 100 for D = 2)

methods GP1D+z GP2D+z Branin Engine
EffTransHGP 8.947± 0.198 10.73± 0.190 4.266± 0.143 9.596± 0.418
FullTransHGP 9.171± 0.133 39.31± 0.639 21.86± 0.640 124.99± 5.608
FullTransLMC 26.56± 0.628 202.8± 12.43 95.11± 12.24 615.7± 27.99
Rothfuss2022 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

SAL 6.881± 0.083 8.044± 0.142 4.691± 0.078 7.543± 0.207

The training time (s) of f and q (if q is not f) at the last iteration (the 50th of GP1D, 100th of GP2D,
Branin and Engine).

Metrics: The learning result of f is shown as RMSEs between the GP mean prediction and test y sampled
from true safe regions. To measure the performance of q, we use the area of SN (Equation (2)), as this
indicates the explorable coverage of the space. In particular, we look at the area of SN ∩ Strue (true positive
or TP area, the larger the better) and SN ∩ (X \ Strue) (false positive or FP area, the smaller the better).
Here, Strue ⊆ Xpool is the set of true safe candidate inputs, and this is available since our datasets in the
experiments are prepared as executed queries.

5.1 AL on simulations

We generate a source dataset and a target dataset. The datasets are generated such that the target task has
at least two disjoint safe regions where each region has a common safe area shared with the source and the
shared area is larger than 10% of the overall space. We set Ms = 100 if D = 1, Ms = 250 if D = 2, and N is
from 10 to 60 (num_steps = 50) if D = 1 or is from 20 to 120 (num_steps = 100) if D = 2. The details are
provided in Appendix D.2.

GP data: We adapt algorithm 1 of Kanagawa et al. (2018) to generate multi-output GP samples. The
first output is treated as our source task and the second output as the target task. We generate datasets
of D = 1 and D = 2. In both cases, we have one main function f and an additional safety function q.
Example datasets are plotted in the Appendix D. For each type, we generate 20 datasets and repeat the AL
experiments five times for each dataset.

Branin data: We take the numerical setting from Rothfuss et al. (2022); Tighineanu et al. (2022) to generate
five different datasets. With each dataset, we repeat the experiments for five times. Please see Appendix D.2
for details.

Result: In Figure 2, we show the results of GP data and the results of Branin data. We see that
EffTransHGP, FullTransHGP and FullTransLMC experiments achieve accurate and much larger safe set
coverage (larger TP area and small FP area). In addition, the learning of f is more efficient with EffTransHGP,
FullTransHGP and FullTransLMC as the RMSE drops faster compared to the baseline methods. Note that

9
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the test points are sampled from all of the true safe area, including the part baseline SAL fails to explore. It is
thus not guaranteed that RMSE of SAL monotonically decreases (Branin). We observe from the experiments
that the meta learning approach, Rothfuss et al. 2022, fails to generalize to larger area, which might be due
to a lack of data in target task representativeness (one source, very few for meta learning) or/and in quantity
(Ms = 100 or 250).

In Table 1, we count the number of safe regions explored by the queries. This confirms the ability to explore
disjoint safe regions. One remark is that Branin function is smooth and has two clear safe regions; while huge
stochasticity exists in GP data and we may have various number of small or large safe regions scattered in the
space. Table 2 shows the model fitting time, confirming that EffTransHGP has comparable time complexity
as baseline SAL, as opposed to FullTransHGP and FullTransLMC. Please also see our Table 3 and Figure 8
for the ratios of safe queries, which is a sanity check that the methods are indeed safe, and for the model
fitting time.

Please note the learning flexibility is FullTransLMC > FullTransHGP > EffTransHGP, and our experimental
results are consistent to this intuition (RMSE of FullTransLMC in 1D data is worse because we starts with
10 data points which is less than the number of LMC parameters, Figure 2).

5.2 AL on engine modeling

We have two datasets, measured from the same prototype of engine under different conditions. Both datasets
measure the temperature, roughness, emission HC, and emission NOx. The raw data were measured by
operating an engine and the measurement equipments. We perform independent AL experiments to learn
about roughness (Figure 3) and temperature (Figure 9), both constrained by the normalized temperature
values q ≤ 1.0. The safe set is around 0.5293 of the entire space. The datasets have two free variables and
two contextual inputs which are supposed to be fixed. The contextual inputs are recorded with noise, so we
interpolate the values with a multi-output GP simulator, trained on the full datasets. Thus this experiment
is performed on a semi-simulated condition. Details are given in Appendix D.3.

The safe set of this target task is actually not clearly separated into multiple disjoint regions. Thus the
conventional method can eventually identify most part of the safe area. Nevertheless, we still see a much
better RMSEs and much less data consumption for large safe set coverage (Figure 3). We also observe
that Rothfuss et al. 2022 failed to generalize the meta-learned source knowledge to the entire target space
exploration.

6 Conclusion

We propose a transfer safe sequential learning to facilitate real experiments. We demonstrate its pronounced
acceleration of learning which can be seen by a faster drop of RMSE and a larger safe set coverage. At the
same time, our modularized multi-output modeling 1) retains the potential of performing global GP safe
learning and 2) alleviates the cubic complexity in the experiments, leading to a considerable reduce of time
complexity.

Limitations: Our modularized method is in theory compatible with any multi-output kernel, in contrast
to the ensemble technique in Tighineanu et al. (2022) which is only valid for a specific kernel. However, one
limitation of source precomputation is that it requires to fix correct source relevant hyperparameters solely
with source data (e.g. HGP is a good candidate due to its separable source-target structure while LMC,
which learns joint patterns of tasks, will not be fixed correctly with only source data). Another limitation is
that the benefit of transfer learning relies on multi-task correlation. This means transfer learning will not be
helpful when the correlation is absent, or when the source data are not present in our target safe area.
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A Appendix Overview

Appendix B provides detailed analysis and illustrations of our main theorem. In Appendix C, we demonstrate
the math of our source pre-computation technique. Appendix D contains the experiment details.

B GPs with classical stationary kernels cannot jump through an unsafe valley

B.1 Bound of explorable region of safe learning methods

In our main script, we provide a bound of the safety probability. The theorem is restated here.
Theorem 3.3. We are given ∀x∗ ∈ X , XN ⊆ X , a kernel kqj satisfying Assumption 3.2 and kqj (·, ·) ≤ 1.
Denote kjscale := max kqj

. qj ∼ GP(0, kqj
) is a GP, [ZN ]j := (zj1, ..., z

j
N ) is a set of observed noisy values

Assumption 2.1 and ‖(zj1, ..., z
j
N )‖ ≤

√
N . Then ∀δ ∈ (0,

√
kjscaleσqj

/
√
N),∃r > 0 s.t. when minxi∈XN ‖x∗ −

xi‖ ≥ r, the probability thresholded on a constant Tj is bounded by p
(
(qj(x∗) ≥ Tj)|XN , [ZN ]j

)
≤

Φ
(

Nδ/σ2
qj
−Tj√

kj
scale

−(
√
Nδ/σqj

)2

)
.

In this section, we illustrate a concrete example of our theorem, where conventional methods cannot explore
the entire safe set in the space. Then we provide the proof of this theorem.

B.2 Single-output GP does not reach disconnected safe region

We plug some exact numbers into the probability bound. Consider an one dimensional situation as Figure 4
and Figure 5. We omit j because J = 1 here. Assume

1. N = 10,

2. σ2
q = 0.01,

3. T = 0 (notice [ZN ]j is normalized to 0-mean and unit-variance).

In this example, the generated data have ‖ZN‖ ≤
√
N (see Figure 4 for the rough functional values). Noticed

also that σq/
√
N is around 0.0316. We fix kscale = 1 (the surrogate model in Figure 4). Then our theoretical

bound of the safety probability is Φ
(

Nδ/σ2−T√
1−(
√
Nδ/σ)2

)
= Φ

(
1000δ√

1−1000δ2

)
.

In our main script, x∗ is unsafe if p
(
(qj(x∗) ≥ Tj)|XN ,ZN

)
< 1− Φ(−β1/2) = Φ(β1/2). We set the safety

tolerance to β1/2 = 2. The decision boundary of our theorem 1000δ√
1−1000δ2 = 2 means δ ≈ 0.002.

From Appendix B.3 we see that ‖x− x′‖ ≥ 4.485⇒ δ ≤ 0.002 for unit lengthscale Matérn-5/2 kernel. With
a lengthscale parameter l, this becomes ‖x−x′‖

l ≥ 4.485 ⇔ ‖x − x′‖ ≥ 4.485 ∗ l. Therefore δ ≤ 0.002 if
‖x− x′‖ ≥ 4.485 ∗ l.

The GP model trained on this example has lengthscale ≈ 0.1256 (the surrogate model in Figure 4 and
in left of Figure 5), so points that are at least 4.485 ∗ 0.1256 = 0.563316 away from the observations are
always identified unsafe. Thus the safe region on the right is never inferred as safe and is not explored with
conventional single-output GP model ( Figure 5, left), because the distance between the two disjoint safe
regions is around 0.7. We also show empirically that a multi-output GP model transfer safety confidence
from a source task and identify safe region Ssub2( Figure 5, right).

B.3 r-δ relation for commonly used kernels

Our main theorem consider kernels satisfying Assumption 3.2 which is restated here:
Assumption 3.2. Given a kernel function k : X × X → R, assume ∀δ > 0, ∃r > 0 s.t. ‖x − x′‖ ≥ r ⇒
k(x,x′) ≤ δ under L2 norm.
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Notice that this assumption is weaker than k being strictly decreasing (see e.g. Lederer et al. (2019)), and it
does not explicitly force stationarity.

Here we want to find the exact r for commonly used kernels, given a δ. The following kernels (denoted
by k(·, ·)) are described in their standard forms. In the experiments, we often add a lengthscale l and
variance kscale, i.e. kparameterized(x,x′) = kscalek(x/l,x′/l) where kscale and l are trainable parameters. The
lengthscale l can also be a vector, where each component is a scaling factor of the corresponding dimension of
the data.

RBF kernel
k(x,x′) = exp

(
−‖x− x′‖2/2

)
:

k(x,x′) ≤ δ ⇔ ‖x− x′‖ ≥
√

log 1
δ2 .

E.g. δ ≤ 0.3⇐ ‖x− x′‖ ≥ 1.552
δ ≤ 0.1⇐ ‖x− x′‖ ≥ 2.146

δ ≤ 0.002⇐ ‖x− x′‖ ≥ 3.526

Matérn-1/2 kernel
k(x,x′) = exp (−‖x− x′‖): k(x,x′) ≤ δ ⇔ ‖x− x′‖ ≥ log 1

δ .

E.g. δ ≤ 0.3⇐ ‖x− x′‖ ≥ 1.204
δ ≤ 0.1⇐ ‖x− x′‖ ≥ 2.303

δ ≤ 0.002⇐ ‖x− x′‖ ≥ 6.217

Matérn-3/2 kernel
k(x,x′) =

(
1 +
√

3‖x− x′‖
)

exp
(
−
√

3‖x− x′‖
)
:

E.g. δ ≤ 0.3⇐ ‖x− x′‖ ≥ 1.409
δ ≤ 0.1⇐ ‖x− x′‖ ≥ 2.246

δ ≤ 0.002⇐ ‖x− x′‖ ≥ 4.886

Figure 4: The safety function q(x) = sin
(
10x3 − 5x− 10

)
+ 1

3x
2 − 1

2 . The observations are with noise drawn
from N (0, 0.01).
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Figure 5: The safety function q(x) = sin
(
10x3 − 5x− 10

)
+ 1

3x
2 − 1

2 . Safety threshold is set to T = 0. The
observations are with noise drawn from N (0, 0.01). Left: a GP with Matérn-5/2 kernel (lengthscale ≈ 0.1256)
is shown. The red lines indicate the largest observed x and the closest safe point of another region. The gap
between the red lines is close to 0.7, which is beyond explorable region of conventional safe learning methods.
Right: the multi-output model uses an LMC kernel with 2 latent Matérn-5/2 kernels (Álvarez et al., 2012).
Additional noisy data from function qs(x) = sin

(
10x3 − 5x− 10

)
+ sin(x2)− 1

2 are provided (yellow). Ssub1
and Ssub2 are the safe set inferred by the LMC.

Matérn-5/2 kernel
k(x,x′) =

(
1 +
√

5‖x− x′‖+ 5
3‖x− x

′‖2) exp
(
−
√

5‖x− x′‖
)
:

E.g. δ ≤ 0.3⇐ ‖x− x′‖ ≥ 1.457
δ ≤ 0.1⇐ ‖x− x′‖ ≥ 2.214

δ ≤ 0.002⇐ ‖x− x′‖ ≥ 4.485

B.4 Proof of our main theorem

We first introduce some necessary theoretical properties in Appendix B.4.1, and then use the properties to
prove Theorem 3.3 in Appendix B.4.2.

B.4.1 Additional lemmas

Definition B.1. Let k : X × X → R be a kernel, A ⊆ X be any dataset of finite number of elements, and
let σ be any positive real number, denote Ωk,A,σ2 := k(A,A) + σ2I.

Definition B.2. Given a kernel k : X × X → R, dataset A ⊆ X , and some positive real number σ, then for
x ∈ X , the k-, A-, and σ2-dependent function h(x) = k(A,x)TΩ−1

k,A,σ2 is called a weight function (Silverman,
1984).

Proposition B.3. C ∈ RM×M is a positive definite matrix and b ∈ RM is a vector. λmax is the maximum
eigenvalue of C. We have ‖Cb‖2 ≤ λmax‖b‖2.

Proof of Proposition B.3.
Because C is positive definite (symmetric), we can find orthonormal eigenvectors {e1, ..., eM} of C that form
a basis of RM . Let λi be the eigenvalue corresponding to ei, we have λi > 0.
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As {e1, ..., eM} is a basis, there exist b1, ..., bM ∈ R s.t. b =
∑M
i=1 biei. Since {ei} is orthonormal,

‖b‖2
2 =

∑
i b

2
i . Then

‖Cb‖2 = ‖
M∑
i=1

biλiei‖2 =

√√√√ M∑
i=1

b2
iλ

2
i

≤

√√√√ M∑
i=1

b2
iλ

2
max = λmax

√√√√ M∑
i=1

b2
i = λmax‖b‖2

.

Proposition B.4. ∀A ⊆ X , any kernel k, and any positive real number σ, an eigenvalue λ of Ωk,A,σ2 (Defi-
nition B.1) must satisfy λ ≥ σ2.

Proof of Proposition B.4.
Let K := k(A,A). We know that

1. K is positive semidefinite, so it has only non-negative eigenvalues, denote the minimal one by λK ,
and

2. σ2 is the only eigenvalue of σ2I.

Then Weyl’s inequality immediately gives us the result: λ ≥ λK + σ2 ≥ σ2.

Corollary B.5. We are given ∀x∗ ∈ X , A ⊆ X , any kernel k satisfying Assumption 3.2 and any positive real
number σ. LetM := #|A|, and let B ∈ RM be a vector. Then ∀δ > 0,∃r > 0 s.t. when minx′∈A‖x∗−x′‖ ≥ r,
we have

1. |h(x∗)B| ≤
√
Mδ‖B‖/σ2 (see also Definition B.2),

2. k(x∗,x∗)− k(A,x∗)TΩ−1
k,A,σ2k(A,x∗) ≥ k(x∗,x∗)−Mδ2/σ2 (see also Definition B.1).

Proof of Corollary B.5.
Let K := k(A,A).

Proposition B.4 implies that the eigenvalues of
(
K + σ2I

)−1 are bounded by 1
σ2 .

In addition, minx′∈A‖x∗ − x′‖ ≥ r ⇒ all components of row vector k(x∗,A) are in region [0, δ].

1. Apply Cauchy-Schwarz inequality (line 1) and Proposition B.3 (line 2), we obtain

|k(A,x∗)T
(
k(A,A) + σ2I

)−1
B| ≤ ‖k(A,x∗)T ‖‖

(
K + σ2I

)−1
B‖

≤ ‖k(A,x∗)‖
1
σ2 ‖B‖

≤ ‖(δ, ..., δ)‖ 1
σ2 ‖B‖

≤
√
Mδ‖B‖
σ2 .

2.
(
K + σ2I

)−1 is positive definite Hermititian matrix, so

k(A,x∗)T
(
K + σ2I

)−1
k(A,x∗) ≤

1
σ2 ‖k(A,x∗)‖2

≤ 1
σ2Mδ2.
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Then, we immediately see that

k(x∗,x∗)− k(A,x∗)T
(
K + σ2I

)−1
k(A,x∗) ≥ k(x∗,x∗)−

1
σ2 ‖k(A,x∗)‖2

≥ k(x∗,x∗)−
1
σ2Mδ2.

Remark B.6. A CDF of a standard Gaussian distribution is often denoted by p(x ≤ T ) = Φ(T ), x ∼ N (0, 1).
Notice that p(x ≤ −T ) = Φ(−T ) = 1− Φ(T ) = p(x ≥ T ).

B.4.2 Main proof

Theorem 3.3. We are given ∀x∗ ∈ X , XN ⊆ X , a kernel kqj satisfying Assumption 3.2 and kqj (·, ·) ≤ 1.
Denote kjscale := max kqj

. qj ∼ GP(0, kqj
) is a GP, [ZN ]j := (zj1, ..., z

j
N ) is a set of observed noisy values

Assumption 2.1 and ‖(zj1, ..., z
j
N )‖ ≤

√
N . Then ∀δ ∈ (0,

√
kjscaleσqj/

√
N),∃r > 0 s.t. when minxi∈XN ‖x∗ −

xi‖ ≥ r, the probability thresholded on a constant Tj is bounded by p
(
(qj(x∗) ≥ Tj)|XN , [ZN ]j

)
≤

Φ
(

Nδ/σ2
qj
−Tj√

kj
scale

−(
√
Nδ/σqj

)2

)
.

Proof.
From Equation (1) in the main script, we know that

p
(
qj(x∗)|XN , [ZN ]j

)
= N

(
x∗|µqj ,N (x∗), σ2

qj ,N (x∗)
)

µqj ,N (x∗) = kqj (XN ,x∗)TΩ−1
kqj

,XN ,σ2
qj

[ZN ]j

σ2
qj ,N (x∗) = kqj

(x∗,x∗)− kqj
(XN ,x∗)TΩ−1

kqj
,XN ,σ2

qj

kqj
(XN ,x∗).

We also know that (Remark B.6)

p
(
(qj(x∗) ≥ Tj)|XN , [ZN ]j

)
= 1− Φ

(
Tj − µqj ,N (x∗)
σqj ,N (x∗)

)
= Φ

(
µqj ,N (x∗)− Tj
σqj ,N (x∗)

)
.

From Corollary B.5, we get µqj ,N (x∗)−Tj

σqj ,N (x∗) ≤
√
Nδ‖[ZN ]j‖/σ2

qj
−Tj√

kqj
(x∗,x∗)−Nδ2/σ2

qj

. This is valid because we assume δ <√
kjscaleσqj

/
√
N . Then with ‖[ZN ]j‖ ≤

√
N and the fact that Φ is an increasing function, we immediately

see the result

p
(
(qj(x∗) ≥ Tj)|XN , [ZN ]j

)
≤ Φ

 Nδ/σ2
qj
− Tj√

kjscale − (
√
Nδ/σqj

)2

 .

C Multi-output GPs with source pre-computation

Given a multi-output GP g ∼ GP (0, kg) where kg is an arbitrary kernel, the main computational challenge
is to compute the inverse or Cholesky decomposition of

Ωg =
(
Kgs

+ σ2
gs
IMs

Kgs,g

KT
gs,g Kg + σ2

gIN

)
.
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Such computation has time complexity O
(
(Ms +N)3). We wish to avoid this computation repeatedly. As in

our main script, kg is parameterized and we write the parameters as θg = (θgs , θg), where kg ((·, s), (·, s)) is
independent of θg. kg ((·, s), (·, t)) and kg ((·, t), (·, t)) does not need to be independent of θgs

Here we propose to fix Kgs
(i.e. θgs

) and σ2
gs

and precompute the Cholesky decomposition of the source
components, Lgs = L(Kgs + σ2

gs
IMs), then

L (Ωg) =
(

Lgs
0(

L−1
gs
Kgs,g

)T
L
(
K̂t

))
,

K̂t = Kg + σ2
gIN −

(
L−1
gs
Kgs,g

)T
L−1
gs
Kgs,g.

(5)

This is obtained from the definition of Cholesky decomposition, i.e. Ωg = L (Ωg)L (Ωg)T , and from the fact
that a Cholesky decomposition exists and is unique for any positive definite matrix.

The complexity of computing L (Ωg) thus becomes O(M2
sN) +O(MsN

2) +O(N3) instead of O
(
(Ms +N)3).

In particular, computing L−1
gs
Kg,st is O(M2

sN), acquiring matrix product K̂t is O(MsN
2) and Cholesky

decomposition L(K̂t) is O(N3).

The learning procedure is summarized in Algorithm 2 in the main script. We prepare a safe learning
experiment with Ds and initial DN ; we fix θfs

, θqj,s
, σfs

, σqj,s
to appropriate values, and we precompute

Lfs , Lqj,s . During the experiment, the fitting and inference of GPs (for data acquisition) are achieved by
incorporating Equation (5) in Equation (4) of the main script (Section 4).

18



Under review as submission to TMLR

D Experiment details

D.1 Labeling safe regions

The goal is to label disjoint safe regions, so that we may track the exploration of each land. In our experiments,
the test safety values are always available because we are dealing with executed pool of data. It is thus
possible to access safety conditions of each test point as a binary label. We perform connected component
labeling (CCL, see He et al. (2017)) to the safety classes over grids (grids are available, see the following
sections). When D = 1, this labeling is trivial. When D = 2, we consider 4-neighbors of each pixel (He et al.,
2017). With simulated datasets, the ground truth is available, and thus CCL is deterministic.

After clustering the safe regions over grids, we identify which safe region each test point x∗ belongs to by
searching the grid nearest to x∗. See main Table 1 and the queried regions count of Figure 8 for the results.

D.2 Experiments on simulated data

We generate the simulated data with multi-output GPs and Branin as described below. When we run
algorithm 1 and 2 (in the main paper), we set N (number of observed target data), Ms (number of observed
source data) and Npool (size of discretized input space Xpool) as follows:

1. when input dimension D = 1, we set Ms = 100, N is initially 10, algorithm 1 or 2 is run for 50
iterations, which makes N = 60 after experiments, and Npool = 5000 which is dense enough in the
space;

2. when input dimension D = 2, Ms = 100, N is from 20 (initially) to 120 (after 100 iterations), and
Npool = 5000 which is dense enough in the space.

GP data: The first output is treated as our source task and the second output as the target task. We
reject the generated data unless all of the following conditions are satisfied: (i) the target task has at least
two disjoint safe regions, (ii) each of these regions has a common safe area shared with the source, and (iii)
for at least two disjoint target safe regions, each aforementioned shared area is larger than 10% of the overall
space (in total, at least 20% of the space is safe for both the source and the target tasks).

To generate the multi-output GP datasets, we use GPs with zero mean prior and multi-output kernel∑2
l=1 WlW

T
l ⊗ kl(·, ·), where ⊗ is the Kronecker product, each Wl is a 2 by 2 matrix and kl is a unit variance

Matérn-5/2 kernel (Álvarez et al., 2012). All components of Wl are generated in the following way: we
randomly sample from a uniform distribution over interval [−1, 1), and then the matrix is normalized such
that each row of Wl has norm 1. Each kl has an unit variance and a vector of lengthscale parameters,
consisting of D components. Each component of the lengthscale is sampled from a uniform distribution over
interval [0.1, 1). We adapt algorithm 1 of Kanagawa et al. (2018) for GP sampling, detailed as follows:

1. sample input dataset X ∈ Rn×D within interval [−2, 2], and n = 100D.

2. for l = 1, 2, compute Gram matrix Kl = kl(X,X).

3. compute Cholesky decomposition Ll = L(WlW
T
l ⊗Kl) = L(WlW

T
l )⊗L(Kl) (i.e. WlW

T
l ⊗Kl = LlL

T
l ,

Ll ∈ R2∗n×2∗n).

4. for l = 1, 2, draw ul ∼ N (0, I2∗n) (ul ∈ R(2∗n)×1).

5. obtain noise-free output dataset F =
∑2
l=1 Llul

6. reshape F =
(
f(X, s)
f(X, t)

)
∈ R2∗n×1 into F =

(
f(X, s) f(X, t)

)
∈ Rn×2.

7. normalize F again s.t. each column has mean 0 and unit variance.
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8. generate initial observations (more than needed in the experiments, always sampled from the largest
safe region shared between the source and the target).

During the AL experiments, the generated data X and F are treated as grids. We construct an oracle on
continuous space [−2, 2]D by interpolation. During the experiments, the training data and test data are
blurred with a Gaussian noise of standard deviation 0.01.

We generate datasets of D = 1 and D = 2. Once we sample the GP hyperparameters, we sample one main
function f and an additional safety function from the GP. During the experiments, the constraint is set to
q ≥ 0. For each type (D = 1 or 2), we generated 20 datasets and repeat the AL experiments 5 times for each
dataset. We illustrate examples of X and F in Figure 6 and Figure 7.

Branin data: The Branin function is a function defined over (x1, x2) ∈ X = [−5, 10]× [0, 15] as

fa,b,c,r,s,t ((x1, x2)) = a(x2 − bx2
1 + cx1 − r) + s(1− t)cos(x1) + s,

where a, b, c, r, s, t are constants. It is common to set (a, b, c, r, s, t) = (1, 5.1
4π2 ,

5
π , 6, 10, 1

8π ), which is our setting
for target task.

We take the numerical setting of Tighineanu et al. (2022); Rothfuss et al. (2022) to generate five different
source datasets (and later repeat 5 experiments for each dataset):

a ∼Uniform(0.5, 1.5),
b ∼Uniform(0.1, 0.15),
c ∼Uniform(1.0, 2.0),
r ∼Uniform(5.0, 7.0),
s ∼Uniform(8.0, 12.0),
t ∼Uniform(0.03, 0.05).

After obtaining the constants for our experiments, we sample noise free data points and use the samples to
normalize our output

fa,b,c,r,s,t ((x1, x2))normalize = fa,b,c,r,s,t ((x1, x2))−mean(fa,b,c,r,s,t)
std(fa,b,c,r,s,t)

.

Then we set safety constraint f ≥ 0 and sample initial safe data. The sampling noise is Gaussian during the
experiments.

D.3 Experiments on engine data

We have 2 datasets, measured from the same prototype of engine under different conditions. Both datasets
measure the temperature, roughness, emission HC, and emission NOx. The inputs are engine speed, relative
cylinder air charge, position of camshaft phaser and air-fuel-ratio. The contextual input variables "position of
camshaft phaser" and "air-fuel-ratio" are desired to be fixed. These two contextual inputs are recorded with
noise, so we interpolate the values with a multi-output GP simulator. We construct a LMC trained with the
2 datasets, each task as one output. During the training, we split each of the datasets (both safe and unsafe)
into 60% training data and 40% test data. After the model parameters are selected, the trained models along
with full dataset are utilized as our GP simulators (one simulator for each output channel, e.g. temperature
simulator, roughness simulator, etc). The first output of each GP simulator is the source task and the second
output the target task. The simulators provide GP predictive mean as the observations. During the AL
experiments, the input space is a rectangle spanned from the datasets, and Xpool is a discretization of this
space from the simulators with Npool = 3000. We set Ms = 500, N = 20 (initially) and we query for 100
iterations (N = 20 + 100). When we fit the models for simulators, the test RMSEs (60% training and 40%
test data) of roughness is around 0.45 and of temperature around 0.25.
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Table 3: Ratio of safe queries (N = 10 + 50 for D = 1 and N = 20 + 100 for D = 2)

methods GP1D + z GP2D + z Branin
EffTransHGP 0.986± 0.001 0.974± 0.002 1.0± 0.0
FullTransHGP 0.979± 0.004 0.952± 0.005 0.9995± 0.0005
FullTransLMC 0.984± 0.002 0.969± 0.002 0.993± 0.001
Rothfuss2022 0.975± 0.003 0.905± 0.006 1.0± 0.0

SAL 0.995± 0.001 0.958± 0.005 1.0± 0.0

Ratio of all queries selected by the methods which are safe in the ground truth (initial data not included).
This is a sanity check in additional to FP safe set area, demonstrates that all the methods are safe during
the experiments (our datasets have 0 mean, the constraint q ≥ 0 indicates that around half of the space is
unsafe). Note: β = 4 (equivalently α = 1− Φ(β1/2) = 0.002275) implies 2.275 % unsafe tolerance is allowed
by each fitted GP safety model.

In an sequential learning experiment, the surrogate models are trainable GP models. These surrogate models
interact with the simulators, i.e. take Xpool from the simulators, infer the safety and query from Xpool,
and then obtain observations from the simulators. The surrogate models are the GP models described in
Algorithm 1 & 2 in our main script, while the GP simulators are systems that respond to queries x∗.

In addition to the experiments presented in the main script, we perform experiments of learning f =
q =temperature, and the results are shown in Figure 9.

Figure 6: Example simulated GP data of D = 1, f is the function we want to learn (top), under an additional
safety constraint q ≥ 0 (bottom). The curves are true source (yellow) and target (black) functions. The dots
are safe source data and a pool of initial target ticket (this pool of target data are more than those actually
used in the experiments).
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Figure 7: Example simulated GP data of D = 2, f is the function we want to learn (left), with an additional
safety function q (middle), and the green is true safe regions q ≥ 0 (right). The top is source task and the
bottom is target task. The dots are safe source data and a pool of initial target ticket (this pool of target
data are more than those actually used in the experiments).
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Figure 8: Safe AL experiments on three benchmark datasets: GP data with X = [−2, 2]D, D = 1 or 2,
constrained to q ≥ 0, and the benchmark Branin function with constraint f ≥ 0. The results are mean and
one standard error of 100 (GP data) or 25 (Branin data) experiments. Xpool is discretized from X with
Npool = 5000. We set Ms = 100 and N is from 10 (0th iteration) to 60 (50th iteration) if D = 1, and
Ms = 250, N is 20 to 120 if D = 2. The first, second and fourth rows are presented in Figure 2 of the main
paper. The TP/FP areas are computed as number of TP/FP points divided by Npool (i.e. TP/FP as portion
of Xpool). The third row shows the number of disjoint safe regions explored by the queries (main Table 1
is taken from the last iteration here). The fifth row, the unsafe queries ratio, are presented as percentage
of number of iterations (e.g. at the 2nd-iteration out of a total of 50 iterations, one of the two queries is
unsafe, then the ratio is 1 divided by 50). The last row demonstrates the model fitting time. At the first
iteration (iter 0-th), this includes the time for fitting both the source components and the target components
(EffTransHGP). With Rothfuss et al. 2022, source fitting is the meta learning phase.
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Figure 9: Safe AL experiments on engine emission modeling, AL on f (temperature) constrained by q = f ≤ 1.0.
Baseline is safe AL without source data. Transfer is LMC without modularization. Efficient_transfer is HGP
with fixed and pre-computed source knowledge. Ms = 500, N is from 20 to 120. The results are mean and
one standard error of 5 repetitions. The fitting time is in seconds.
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