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Abstract

Event cameras offer high frame rates, minimal motion blur, and excellent dynamic
range. As a result they excel at reconstructing the geometry of 3D scenes. However,
their measurements do not contain absolute intensity information, which can make
accurately reconstructing the appearance of 3D scenes from events challenging.
In this work, we develop a multimodal neural 3D scene reconstruction framework
that simultaneously reconstructs scene geometry from events and scene appearance
from grayscale images. Our framework—which is based on neural surface repre-
sentations, as opposed to the neural radiance fields used in previous works—is able
to reconstruct both the structure and appearance of 3D scenes more accurately than
existing unimodal reconstruction methods.

1 Introduction
View synthesis in 3D scenes has long captivated computer vision research. The introduction of neural
radiance fields (NeRFs) and their success in crafting life-like 3D scene representations have spurred
numerous subsequent studies. NeRFs excel in encoding continuous signals via neural networks,
obviating the need for discrete sample storage and processing. They can generate novel scene views
from arbitrary camera poses and viewpoints. In comparison to conventional methods like Structure-
from-Motion [1] and light-field photography [2], NeRF and its successors, empowered by neural fields
and neural volume rendering, have achieved remarkable results in 3D scene reconstruction [3–6].
These advancements have left a profound impact across diverse industries, spanning robotics, urban
mapping, augmented and virtual reality, and the entertainment sector [7].

Conventional camera images face limitations in low-light conditions, long exposure times, motion
blur, and a limited dynamic range. Event cameras address these limitations by offering motion blur
resistance, high dynamic range, high temporal resolution, and low power consumption. They find
applications in object tracking [8, 9], optical flow estimation [10, 11], and geometry reconstruction [12,
13].

Recent studies demonstrated 3D reconstruction using neural radiance fields and event cameras [14–
16]. However, event-camera-based approaches have their own challenges. Firstly, the novel views they
generate often lack realism and quality, failing to align with human perception, while conventional-
camera-based methods produce more convincing results [3, 14–17]. Secondly, event-camera-based
methods often rely on external sensors for pose estimation, adding costs to experiments or real-world
deployments, whereas conventional camera based methods handle both training and pose estimation
without the need for extra sensors [3, 17]. Lastly, event-camera-based methods usually require
significantly longer training times compared to conventional cameras.
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The efficacy of neural surface reconstruction methods (such as NeuS, NeuS-2, and NDR [5, 18, 19])
over NeRFs has been highlighted recently, especially when trained on RGB and RGB-D data.
While NeRF-based methods dominate event-based 3D scene reconstruction [14–16], the potential of
NeuS-like methods in this context remains unexplored.

In this study, we propose a new framework to effectively learn neural scene representation on data
from two different modalities – event camera and conventional grayscale camera. Particularly, we
disentangle the learning of geometry and visual appearance by guiding their training with events and
grayscale images, respectively. Additionally, we explore the potential of neural surface reconstruction
from events for the first-time. We empirically demonstrate the capability of our framework to leverage
the benefits of both data modalities and side-step their shortcomings.

2 Method
We establish a pipeline to train NeuS[5] using both intensity (from conventional grayscale cameras)
and accumulated event-frames (from event cameras), alongside a similar pipeline for NeRF (Neural
Radiance Field)[3] for experimentation and comparison. Accumulated events represent cumulative
events over time at each 2D coordinate on the view plane [14]. First, we define the neural volume
rendering pipeline and the forward function we use to simulated events. Next, we introduce a new
training approach to efficiently learn from both data modalities where we decouple the learning of
geometry and visual appearance. Specifically, we use event-frames to guide 3D geometry learning
and intensity (grayscale-frames) for learning visual appearance.

2.1 Neural volume rendering
We aim to learn a function f(x; y; z; d) from that, given a 3D coordinate (x; y; z) and a viewing
direction d, can output the opaque density and intensity of that point through neural surface recon-
struction similar to [5]. Then, we can render 2D images from a particular viewing direction using
volume rendering.

Our method starts with sampling N points f(xi; yi; zi) j 0 � i � Ng along the viewing direction
d of a ray r. Their densities f�i j 0 � i � Ng and intensities fIi j 0 � i � Ng are computed
using the function f(xi; yi; zi; d). These are aggregated to compute the rendered intensity I(r; t) =PN
i=i Ti�iIi. Here, Ti denotes the accumulated transmittance, indicating the likelihood of ray r

reaching the i-th coordinate, while �i represents the opacity of this point, as discussed in previous
works [3–5, 18, 19]. It’s worth noting that NeuS [5] and NeRF [3] employ different sets of volume
rendering equations to compute Ti and �i. Detailed information can be found in their respective
papers. In our approach, we adopt NeuS’s formulation, where the learnable function is represented
using two consecutive feed-forward neural networks, namely the “SDF network” (SDFnet�) and
the “intensity network” (Inet�), parameterized by � and � respectively.

However, it is important to note that, unlike previous approaches, we apply the softplus activation
function at the end of Inet� instead of the sigmoid. The softplus function allows for a range of
[0;1], which better corresponds to the brightness levels a camera sensor can capture, making it more
suitable for event simulation, as shown in [20].

2.2 Forward function to simulate events
An event camera records asynchronous brightness changes at any pixel (u; v) as a stream of events,
fei(u; v; ti)gNe

i=1, with each event at timestamp ti is ei = p(u; v; ti) jC(u; v; ti)j, where pi(u; v; ti) 2
f+1;�1g is the event’s polarity and C(u; v; ti) is a hardware dependant threshold. An event-
generation roughly follows the following inequality,

j log(Itr(u; v; ti + �t))� log(Itr(u; v; ti))j � jC(u; v; ti)j; (1)

where Itr is the true intensity at pixel (u; v) and time ti, and �t is the time elapsed. Based on this,
accumulated event �E can be computed as,

�E(u; v; �t) = �ti2�t e(u; v; ti) = �ti2�t p(u; v; ti) jC(u; v; ti)j: (2)

Now, we can approximate �E as the change in measured brightness, �L(u; v; �d), using the
rendered intensities I(r; t) and I(r; t+ �t),

�E(u; v; �t) � �L(u; v; �t) = CM(I(r; t+ �t))� CM(I(r; t)); (3)

where r represents a ray through the point (u; v), and CM(:) is a function that approximately maps
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Figure 1: Comparison between Event-NeuS and Ev-NeRF. Top: gamma-corrected intensity. Bottom:
depth maps. Surface-based reconstructions more accurately recover 3D geometry.

the rendered intensity I(r; t) to measured brightness by the camera. We note that, in reality, the
camera measurement does not always follow a linear or logarithmic relation with the actual intensity
as shown in Eq. 1. In fact, it is mostly linear until a certain threshold and after that it approximately
follows a logarithmic function, as shown by Hu et al. [20]. We approximate this function as,

CM(I) �
�

logB(I); if I > B;
I=B; otherwise;

(4)

where B serves as the base of log when I > B, otherwise as a scaling factor. This formulation
ensures a smooth transition from linear to log scale, analogous to event-camera sensors [20].

2.3 Our proposed training strategy for multimodal learning
Our main idea is to disentangle the geometry and appearance training processes. We learn the
3D geometry only using events, since event cameras can capture details even in extreme low-light
condition, which conventional cameras cannot. We use the grayscale images only to optimize the
intensity so that it improves the appearance of 2D projections but cannot hurt the accuracy of learnt
geometry from events.

To learn the geometry, we leverage the event-rendering loss proposed by [15] (Eq. 5) for its robustness
against event noise. They assume the event threshold C(�) in Eq. 2 to be fairly constant across space,
which gave them promising accuracy. It is represented as two learnable functions for positive and
negative events, C+(t) and C�(t).

Je =

8<:
k�L ��E � C+k2

2; if �L ��E > C+;

k�L ��E � C�k2
2; if �L ��E < C�;

0; otherwise:
(5)

To prevent C+(t) and C�(t) from trivially producing zeros, [15] also formulated a constraint as
Jet = �tReLU(C+

0 �C+(t)) +ReLU(C�(t)�C�0 ). Here, C�0 and C+
0 are predefined minimum

and maximum possible values of C�(t) and C+(t), respectively. We train both SDFnet� and Inet�
on event signals, minimizing the total "event-loss" J �;�event = Je + �eJet, where �e is a predefined
scaling factor.

With a motivation to improve perceptual accuracy of rendered images, we also minimize the L1-loss
between rendered intensity I(�) and true intensity I�(�) from the conventional grayscale camera.
However, I�(�) may differ from the event camera’s intensity range. To handle this, we learn a scaling
factor � for the normalized true intensity, ~I�(�) = normalize(I�(�)) 2 [0; 1], and minimize the
loss JI = �r;tk�~I�(r; t) � I(r; t)k1. We note that without any constraints on �, we can end up
with � = 0 and a trivial solution of I(r; t) = 0. To prevent this, we include a regularization term
JIt = ReLU(�min��) to prevent � from going below �min, a predefined constant. We also employ
the Eikonal term Jeik for our NeuS-based framework to regularize the signed-distance function, as
proposed in [5]. Our final “intensity-loss” is J �intensity = JI + �IJIt + �eikJeik, where �I and
�eik are two predefined weighting factors. We use J �intensity only to optimize the parameters � in
our intensity network Inet� so that it can improve the perceptual accuracy, but cannot affect the
learnt geometry from events, as discussed before.
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