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Abstract

In morphologically complex languages like001
Arabic, developing a morphophonological pro-002
cessing system poses significant challenges.003
While deep learning models have shown suc-004
cess in this task, these models heavily rely on005
the size of the annotated data. However, creat-006
ing large datasets, especially for low-resource007
languages such as different Arabic dialects, is008
very time-consuming, hard, and expensive. Fur-009
thermore, not all annotated data contribute ben-010
eficial information for training models. To ad-011
dress these issues, active learning tries to guide012
the learning algorithm to choose informative013
samples for annotation. Despite the limited014
research on applying active learning to mor-015
phophonological processing, this paper intro-016
duces a novel combination of meta and active017
learning approaches for tackling this task. To018
the best of our knowledge, there is no research019
that focuses on the combination of these ap-020
proaches. The experimental results conducted021
on Egyptian Arabic demonstrate that achiev-022
ing similar performance as the state-of-the-art023
model on the entire dataset is possible with only024
approximately 23% of annotated data. Notably,025
our proposed method outperforms existing suc-026
cessful deep active learning methods.027

1 Introduction028

During the last few years, morphological inflection029

processing (Narasimhan et al., 2015; Kirov and Cot-030

terell, 2018; Belth et al., 2021) has received a great031

deal of attention. This task has gained significant032

attention in the NLP community (Halabi, 2016;033

Khalifa et al., 2020; Alhafni et al., 2020) and has034

recently been the focus of several shared tasks (Cot-035

terell et al., 2018; Vylomova et al., 2020; Batsuren036

et al., 2022). Neural seq2seq models achieved037

impressive precision, particularly when accessing038

extensive training datasets (Cotterell et al., 2018).039

Nonetheless, when trained with limited data, these040

neural models exhibit low performance, often for041

languages with complex morphological structures. 042

However, having enough annotated data is chal- 043

lenging, costly, and time-intensive. In addition, all 044

annotated data do not contain useful information 045

for enhancing the quality of the learning algorithm. 046

In this paper, we have introduced a novel meta 047

active learning (MetAL) approach to reduce the 048

amount of labeled data required for the Egyp- 049

tian Arabic morphophonological processing. Mor- 050

phophonological processing takes a sequence of 051

morphs and applies morphophonological processes 052

to obtain the surface form. It is an important 053

component of inflection. In our experiments, we 054

have selected an efficient transformer model for 055

character-level transduction tasks (Wu et al., 2021) 056

as our baseline model. We have used the pool- 057

based active learning method with maximum en- 058

tropy criterion for selecting uncertain samples. By 059

combining meta and active learning methods, we 060

have achieved similar results as supervised learn- 061

ing with only 23% of the training dataset, which 062

is a SOTA result in this area. Our approach also 063

surpasses currently effective deep active learning 064

(DAL) techniques, especially in scenarios where a 065

small amount of annotated data is involved. To the 066

best of our knowledge, our work is the first appli- 067

cation of a MetAL approach in the morphophono- 068

logical processing task. It should be noted that our 069

proposed method is not specific to Arabic, and it 070

can be also applied to other languages. 071

2 Previous Work 072

There has been extensive non-neural network re- 073

search focused on Arabic morphological model- 074

ing, which includes morphophonological process- 075

ing (Habash and Rambow, 2006; Graff et al., 2009; 076

Habash et al., 2022). Recently, with the popularity 077

of neural networks, various studies of DL models 078

based on character-level neural transducers using 079

transformers and RNNs approaches have been in- 080
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troduced (Wu et al., 2021; Dankers et al., 2021;081

Yang et al., 2022; Wehrli et al., 2022).082

DAL has recently been used in various sub-fields083

of NLP such as NER (Prabhu et al., 2019; Liu084

et al., 2020) and machine translation (Liu et al.,085

2018; Zhao et al., 2020). In the morphological086

inflection task, Muradoglu and Hulden (2022) pre-087

sented a novel DAL technique using word-level088

entropy for lemma inflection in different languages.089

Mirbostani et al. (2023) introduced another DAL090

approach that utilizes character-level entropy. This091

method achieved superior performance compared092

to previous techniques.093

In recent years, meta-learning has found suc-094

cessful applications in various NLP domains such095

as machine translation (Gu et al., 2018), NER (Ma096

et al., 2022), and semantic parsing (Langedijk et al.,097

2022). It aims to address the challenge of quickly098

adapting to new training data. Common meta-099

learning techniques can be classified into three100

groups: black-box adaptation (Santoro et al., 2016),101

optimization (Finn et al., 2017), and metric learning102

(Snell et al., 2017). Kann et al. (2020) introduced103

a meta-learning-based approach for cross-lingual104

transfer learning in the morphological inflection105

task using the MAML algorithm (Finn et al., 2017).106

3 Problem Definition and Dataset107

In this paper, we focus on morphophonological108

processing, in which a model receives an underly-109

ing representation (UR) of a word and generate its110

surface form (SF), i.e., spoken form. We use the111

morphophonology dataset of Khalifa et al. (2022),112

which consists of (UR, SF) pairs for Egyptian Ara-113

bic and is derived from the ECAL dataset (Kilany114

et al., 2002). The UR includes segmentation in-115

formation, using # to indicate word boundaries,116

− for prefixes, and = for suffixes. The dataset’s117

split into TRAIN, DEV, and EVAL is based on the118

ECAL’s split. Since in ECAL, the split is based119

on running texts, some words may appear in mul-120

tiple splits. To address this, Khalifa et al. (2022)121

also created DEV-OOV and EVAL-OOV subsets122

by including only words that do not overlap with123

TRAIN. Some samples of (UR, SF) pairs and the124

dataset’s statistics are shown in appendix section.125

4 Proposed Method126

4.1 Baseline Network127

We performed various experiments to choose the128

best baseline model for our MetAL experiments,129

and chose Wu et al. (2021)’s transformer-based 130

model. It has outperformed existing RNN-based 131

seq2seq models and achieved SOTA results on our 132

target dataset. 133

4.2 Meta Learning Method 134

Given the limited resources of character-level 135

datasets for morphophonological processing tasks, 136

an optimization-based meta-learning algorithm is 137

a practical method to achieve high accuracies with 138

small datasets and few training iterations. Accord- 139

ingly, we have adopted MAML (Finn et al., 2017), 140

a general optimization algorithm compatible with 141

gradient descent, in our method. The primary as- 142

sumption is that our neural transducer model, fθ, 143

is parameterized by θ, and its loss function, L, is 144

minimized using a gradient-based learning tech- 145

nique. The model is trained over multiple tasks, 146

Ti, sampled from a distribution over tasks p(T ) to 147

which the model should be adapted. 148

In our problem, each task has an associated 149

dataset containing pairs of (UR, SF) for words. It 150

is split into two subsets: support and query. The 151

support set (i.e., the training set) is a labeled sub- 152

set used for adaptation of the meta-learning model 153

through learning the initial parameters. The query 154

set (i.e., the test set) is the complement of the 155

support set used for evaluating the model’s per- 156

formance on new, unseen data points. Furthermore, 157

it indicates how well the model generalizes over 158

the tasks not seen in the meta-training phase. 159

Model adaptation is the process of quickly learn- 160

ing and adjusting the initial parameters to a task us- 161

ing a small number of samples. Equation (1) com- 162

putes adapted parameters of the model, fθ, over a 163

single task, Ti, using one adaptation iteration (i.e., 164

Nadapt = 1). 165

θ
′
i = θ − α∇θLTi(fθ) (1) 166

In the given equation, α is the step size, which 167

can be a fixed or a learned hyperparameter. 168

Applying multiple gradient updates on the meta- 169

learning model creates a trade-off between param- 170

eter refinement and adaptation speed. Therefore, 171

choosing a suitable Nadapt depends on the complex- 172

ity of the task, as more resources and training time 173

is required to reach a thorough adaptation. 174

The optimal parameters of the model for better 175

performance of f
θ
′
i

in terms of θ, adapted over 176

multiple tasks sampled from p(T ), are computed 177

using Equation (2). 178
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θ∗ = argmin
θ

∑
Ti∼p(T )

LTi(fθ′i) (2)179

This method significantly improves the fine-180

tuning of the model, with one or more adaptation181

iterations (i.e., Nadapt ≥ 1) on a new task from the182

same distribution.183

Given the adapted parameters over each task,184

θ
′
i, the optimization of the model across all the185

sampled tasks, Ti, is performed by updating the186

model parameters, θ, using Equation (3):187

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi(fθ′i) (3)188

where β is the meta step size.189

4.3 Meta Active Learning (MetAL) Method190

In our approach, we have combined the principles191

of meta-learning, described in Section 4.2, and ac-192

tive learning (AL) to improve the accuracy of the193

baseline model on our problem. The meta-learning194

model shares the knowledge learned from previous195

tasks of the same distribution with the new tasks196

that are generated based on the most informative in-197

stances in each AL training cycle. In our algorithm,198

we have used the pool-based AL method integrated199

with the maximum entropy criterion for selecting200

uncertain samples in each training cycle.201

The MetAL method initiates the training proce-202

dure by random sampling, without replacement, of203

a portion (around 10%) of a pool dataset, U . In204

our case, U initially contains 13,170 unannotated205

samples. In the next step, these randomly selected206

samples are annotated and divided into two sub-207

sets: tuning and training. A tuning subset, V , is a208

dataset (500 samples in our experiments) used for209

validating the trained models. A training subset,210

D, is an augmented dataset (900 samples in our211

experiments) used for training the model in the ini-212

tial cycle according to the meta-learning method.213

In subsequent training cycles, V remains constant;214

however, D is increased by δ (=250) number of215

samples selected from the remaining samples of U216

based on their maximum entropy values.217

For a given sample from U , Equation (4) com-218

putes the entropy value of a word, w, in terms of219

its characters’ logits, c, predicted by the most per-220

formant model trained in the previous AL cycle.221

H(w) = max
c∈w

(−
N∑
i=1

pi(c) log pi(c)) (4)222

pi(c) is the probability value of the ith character 223

in an N -sized c and is calculated using the softmax 224

function, eci/
∑N

i=1 e
ci . Given that the model’s 225

predicted characters with the lowest confidence 226

value have the highest entropy, the entropy of a 227

word, H(w), corresponds to the maximum value of 228

all the entropy values associated with its respective 229

characters. 230

A MetAL training cycle encompasses a meta- 231

learning method with NT number of tasks. The 232

training dataset, D, is randomly divided into NT 233

equal subsets, Di. Each task, Ti, has an associated 234

Di, and during meta-learning iterations, undertakes 235

a meta-training and a meta-testing phase. The Di 236

is split into a support set, Si, and a query set, Qi, 237

to be used in those phases, respectively. 238

Ks sample batches are selected sequentially 239

from Si for meta-learning model adaptation dur- 240

ing meta-training. This phase helps the model ac- 241

quire knowledge and adaptability across current 242

tasks and learn to generalize for the next tasks by 243

updating the meta-learning model’s parameters us- 244

ing Equations (1) and (2). The meta-testing phase 245

involves exposing the model to the query set for 246

parameters optimization across all tasks, given the 247

adapted parameters over each task. Kq shots of 248

sample batches are randomly chosen from Qi for 249

fine-tuning the model using Equation (3). 250

5 Experimental Results 251

We evaluated our proposed MetAL method by train- 252

ing the baseline model with MetAL, DAL, and ran- 253

dom training (i.e., passive learning) over 5 runs, 254

with each run utilizing a randomly chosen tuning 255

set based on different seed values, and evaluat- 256

ing on EVAL, EVAL-OOV, DEV, and DEV-OOV 257

datasets. Figure 1 shows the mean and standard 258

deviation (SD) of the model’s performance on the 259

morphophonological processing task in terms of 260

accuracy for each training cycle. It reflects the 261

average outcome across all 5 runs. During our anal- 262

ysis, no significant loss discrepancy between the 263

training and tuning sets has been observed, and 264

both the mean and SD of the results display rela- 265

tively minimal variations. The details regarding the 266

hyper-parameters and variables employed in our 267

experiments and the supplementary experiments 268

are presented in Appendices B and C. 269

As shown in Figure 1, the curve corresponding 270

to our proposed MetAL method displays a shape 271

that tends towards an asymptote. It demonstrates a 272
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Figure 1: Morphophonological processing task: The mean and standard deviation of the baseline model’s accuracy
trained using MetAL, DAL, and random training methods, and evaluated on (a) EVAL, EVAL-OOV, (b) DEV, and
DEV-OOV datasets

considerably accelerated growth in contrast to the273

DAL and random curves and initiates with a higher274

level of accuracy, outperforming both alternative275

training methods.276

By achieving optimal accuracy with only approx-277

imately 3,000 samples (i.e., about 23% of the train-278

ing set) on EVAL-OOV and DEV-OOV, and only279

around 4,000 samples (i.e., about 30% of the train-280

ing set) on EVAL and DEV, our method demon-281

strates its capacity to actively elicit a small set of282

informative samples from the pool for labeling and283

effectively adapt to these samples with few shots,284

showing strong performance on out-of-vocabulary285

datasets of the same distribution. Hence, it reveals286

that this method excels over DAL on small-scale287

datasets. In contrast, the random learner relies on288

whole training set to reach its best accuracy level.289

The SD of our MetAL method (over the exper-290

imental results using 5 runs) has a consistent de-291

crease in each subsequent training cycle, in ad-292

dition to being lower compared to that of the293

DAL and random training methods. This can be294

attributed to the effective utilization of data en-295

abled by the rapid adaptation to new tasks in meta-296

learning, increasing the model’s robustness, reduc-297

ing the impact of variations in the training set, and298

resulting in a lower SD. In contrast, DAL focuses299

on selecting informative instances, which may not300

directly address data variability.301

Adopting the meta-learning method to go over302

multiple tasks during each training iteration, the303

model has developed the capacity to generalize304

its gained experience from sampled tasks to im-305

prove over unseen samples of the same distribu- 306

tion. In our approach, exposing the model to a few 307

shots of informative data points extracted from a 308

small-sized AL training cycle dataset, D, greatly 309

reduces the required annotation and accelerates the 310

model’s training process compared to employing 311

DAL method alone. 312

6 Conclusion 313

We have introduced the meta active learning algo- 314

rithm, a combination of meta and active learning ap- 315

proaches, using the morphophonological process- 316

ing task for Egyptian Arabic dialect as a sample 317

task. The results of our experiment demonstrate 318

that achieving similar accuracy as the SOTA model 319

on the entire dataset is possible with only 23% 320

of the total training dataset, which outperforms 321

existing successful deep active learning methods, 322

especially on lower amounts of annotated data. 323

Our method has been designed to be language 324

and model agnostic. We hypothesize that by con- 325

centrating on Arabic, a language renowned for its 326

morphological intricacies, our approach’s efficacy 327

will extend to diverse languages. As our prospec- 328

tive research topics, we suggest addressing the in- 329

tricacies of templatic morphology, a substantial 330

source of complexity within Arabic, in addition to 331

analyzing the application of our method to train 332

other baseline models, generate datasets for low- 333

resource Arabic dialects and other languages, and 334

incorporate alternative uncertainty criteria. 335

4



Limitations336

Our work, like many deep learning algorithms, re-337

lies on GPU resources. In common learning prob-338

lems, models are trained once on training datasets,339

tuned on the development sets, and then ready for340

inference. However, the training process involves341

conducting multiple iterations whenever new infor-342

mative samples from the pool are annotated and343

added to the training set throughout AL cycles. As344

the augmented training set grows, the demand for345

GPU resources increases.346

Furthermore, there is a trade-off between the347

adaptation speed and the generalization perfor-348

mance during the meta-learning phase. Additional349

adaptation iterations and support shots are required350

for broader task generalization in meta-learning,351

increasing GPU resource demand. However, the352

requirement for GPU resources is not specifically353

tied to our proposed method but rather stems from354

the inherent nature of active learning and meta-355

learning methods.356

Our algorithm is language and model agnostic;357

however, it has only been evaluated on the Egyp-358

tian Arabic dialect. Therefore, further research359

is needed to examine the accuracy of the model360

across other languages and dialects using different361

learning models.362

It is worth mentioning that the proposed method363

exhibits the potential to achieve higher accuracy364

with increased hyperparameter values. Unfortu-365

nately, due to hardware limitations, we were unable366

to perform the experiments to validate this.367

Ethics Statement368

This study is primarily focused on fundamental369

research and is not related to a specific applica-370

tion. We do not anticipate any ethical concerns aris-371

ing from the algorithms and technologies proposed372

in this work. This research has utilized datasets373

and open-source libraries that have been previously374

published and publicly accessible.375
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A Dataset558

For the purpose of this paper, our concentration lies559

on the intricate Arabic morphophonological pro-560

cessing task, given its substantial complexity and561

variation among the dialects. Accordingly, we have562

used the annotated Egyptian Arabic morphophonol-563

ogy dataset introduced by Khalifa et al. (2020) to564

assess our proposed method on a low-resource lan-565

guage with a high degree of morphological com-566

plexity. The dataset contains pairs of (UR, SF) split-567

ted into TRAIN, DEV, and EVAL subsets, based568

on the ECAL’s splits introduced by Kilany et al.569

(2002), in addition to EVAL-OOV and DEV-OOV570

subsets, specific to this dataset. Two samples of571

(UR, SF) pairs along with the sizes of different572

splits of the dataset used in our task are shown in573

Tables A.1 and A.2.574

UR SF
#qAl=li=hum# #qalluhum#
#bi-t-Akl=I# #bitakli#

Table A.1: Two samples of (UR, SF) pairs of the dataset.

TRAIN
All 13,170
OOV -

DEV EVAL
5,180 6,974
2,189 2,271

Table A.2: The sizes of different splits of the dataset.

Owing to the dataset’s comprehensive anno-575

tations, we undertook our experiments using a576

simulation-based active learning approach. As out-577

lined in Section 4.3, during each MetAL cycle, we578

deliberately select Ks samples as the support set579

from the pool of annotated training samples, se-580

quentially presenting it to the model. Conversely,581

the query set, containing Kq samples, is formed582

from the complementary set of the support set and583

is introduced to the model in a randomized manner.584

B Experimental Setup585

We performed a series of experiments involving586

various successful approaches, including the Neu-587

ral Transducer by Wu et al. (2021), and Cluzh588

by Wehrli et al. (2022). As a result, we se-589

lected the character-level neural transducer (i.e.,590

Wu et al. (2021) system) as our baseline model.591

This choice stems from its standing as a SOTA592

transformer-based model, outperforming existing593

RNN-based seq2seq models and showcasing suc-594

cessful outcomes across the entirety of the Ara-595

bic morphophonological processing dataset. The 596

model is a compact transformer consisting of 4 597

encoder-decoder layers, 4 self-attention heads, an 598

embedding dimension of 256, and a hidden size 599

of 1024 for the feed-forward layer. The model has 600

7.37M parameters, excluding embeddings and the 601

pre-softmax linear layer. 602

The optimal values for the hyper-parameters of 603

our experiments are listed in Table B.1. We con- 604

ducted multiple experiments with different values 605

to analyze the performance of our proposed MetAL 606

method. The mean and standard deviation of the 607

results in terms of accuracy for each training cycle 608

is reported in Figure 1. 609

Parameter Value
D (initial) samples 900
V samples 500
δ samples 250
Support Feeding Methodology rotation
Query Feeding Methodology random
Uncertainty criterion entropy
Training batch size (BS) 100
Evaluation batch size 6
α learning rate 0.001
β learning rate 0.0001
Dropout 0.3
NT 4
Ks 8
Kq 8
Nadapt 1

Table B.1: The optimal hyper-parameter values of the
experiments.

We have used PyTorch, NumPy, Pandas, and 610

Matplotlib software packages to implement the pro- 611

posed algorithm. The experiments were performed 612

on a hardware comprising an Intel Core i7-8700K 613

CPU with 6 cores running at 3.70GHz speed, a 614

GeForce GTX 1080 GPU with 8GB of VRAM, 615

and 64GB of RAM. Each MetAL training cycle 616

needs a minimum of 7.92GB of GPU memory and 617

4.86GB of RAM. 618

C Supplementary Experiments 619

In addition to showcasing the most optimal hyper- 620

parameter values in the paper, as shown in Ta- 621

ble B.1, we conducted a thorough study to illustrate 622

the importance of the hyper-parameters and compo- 623

nents of our proposed MetAL approach. We tuned 624

essential hyper-parameters such as the number of 625
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tasks (NT ), support shots (Ks), query shots (Kq),626

adaptation iterations (Nadapt), training batch size627

(BS), and feeding methodology for passing batched628

samples to the model (FM). For instance, the exam-629

ples demonstrated in Table C.1 outline our model’s630

performance on the tune set. We conducted five631

experiments in which we employed different seed632

values to randomly select tuning sets, and the re-633

sults represent the average outcome derived from634

all five experiments.635
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NT Ks Kq Nadapt BS Support FM Query FM Epochs Accuracy
1 1 1 1 100 random random 667 44.08%
4 1 1 1 100 random random 559 89.45%
4 2 2 1 100 random random 650 91.90%
4 6 2 1 100 random random 980 93.02%
4 6 6 1 100 random random 680 94.71%
4 6 6 1 400 random random 700 95.14%
4 6 6 1 100 rotation random 760 95.37%

Table C.1: The effects of different hyperparameters on the accuracy of the model on the tune set.
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