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Abstract

In morphologically complex languages like
Arabic, developing a morphophonological pro-
cessing system poses significant challenges.
While deep learning models have shown suc-
cess in this task, these models heavily rely on
the size of the annotated data. However, creat-
ing large datasets, especially for low-resource
languages such as different Arabic dialects, is
very time-consuming, hard, and expensive. Fur-
thermore, not all annotated data contribute ben-
eficial information for training models. To ad-
dress these issues, active learning tries to guide
the learning algorithm to choose informative
samples for annotation. Despite the limited
research on applying active learning to mor-
phophonological processing, this paper intro-
duces a novel combination of meta and active
learning approaches for tackling this task. To
the best of our knowledge, there is no research
that focuses on the combination of these ap-
proaches. The experimental results conducted
on Egyptian Arabic demonstrate that achiev-
ing similar performance as the state-of-the-art
model on the entire dataset is possible with only
approximately 23% of annotated data. Notably,
our proposed method outperforms existing suc-
cessful deep active learning methods.

1 Introduction

During the last few years, morphological inflection
processing (Narasimhan et al., 2015; Kirov and Cot-
terell, 2018; Belth et al., 2021) has received a great
deal of attention. This task has gained significant
attention in the NLP community (Halabi, 2016;
Khalifa et al., 2020; Alhafni et al., 2020) and has
recently been the focus of several shared tasks (Cot-
terell et al., 2018; Vylomova et al., 2020; Batsuren
et al., 2022). Neural seq2seq models achieved
impressive precision, particularly when accessing
extensive training datasets (Cotterell et al., 2018).
Nonetheless, when trained with limited data, these
neural models exhibit low performance, often for

languages with complex morphological structures.
However, having enough annotated data is chal-
lenging, costly, and time-intensive. In addition, all
annotated data do not contain useful information
for enhancing the quality of the learning algorithm.

In this paper, we have introduced a novel meta
active learning (MetAL) approach to reduce the
amount of labeled data required for the Egyp-
tian Arabic morphophonological processing. Mor-
phophonological processing takes a sequence of
morphs and applies morphophonological processes
to obtain the surface form. It is an important
component of inflection. In our experiments, we
have selected an efficient transformer model for
character-level transduction tasks (Wu et al., 2021)
as our baseline model. We have used the pool-
based active learning method with maximum en-
tropy criterion for selecting uncertain samples. By
combining meta and active learning methods, we
have achieved similar results as supervised learn-
ing with only 23% of the training dataset, which
is a SOTA result in this area. Our approach also
surpasses currently effective deep active learning
(DAL) techniques, especially in scenarios where a
small amount of annotated data is involved. To the
best of our knowledge, our work is the first appli-
cation of a MetAL approach in the morphophono-
logical processing task. It should be noted that our
proposed method is not specific to Arabic, and it
can be also applied to other languages.

2 Previous Work

There has been extensive non-neural network re-
search focused on Arabic morphological model-
ing, which includes morphophonological process-
ing (Habash and Rambow, 2006; Graff et al., 2009;
Habash et al., 2022). Recently, with the popularity
of neural networks, various studies of DL. models
based on character-level neural transducers using
transformers and RNNs approaches have been in-



troduced (Wu et al., 2021; Dankers et al., 2021;
Yang et al., 2022; Wehrli et al., 2022).

DAL has recently been used in various sub-fields
of NLP such as NER (Prabhu et al., 2019; Liu
et al., 2020) and machine translation (Liu et al.,
2018; Zhao et al., 2020). In the morphological
inflection task, Muradoglu and Hulden (2022) pre-
sented a novel DAL technique using word-level
entropy for lemma inflection in different languages.
Mirbostani et al. (2023) introduced another DAL
approach that utilizes character-level entropy. This
method achieved superior performance compared
to previous techniques.

In recent years, meta-learning has found suc-
cessful applications in various NLP domains such
as machine translation (Gu et al., 2018), NER (Ma
etal., 2022), and semantic parsing (Langedijk et al.,
2022). It aims to address the challenge of quickly
adapting to new training data. Common meta-
learning techniques can be classified into three
groups: black-box adaptation (Santoro et al., 2016),
optimization (Finn et al., 2017), and metric learning
(Snell et al., 2017). Kann et al. (2020) introduced
a meta-learning-based approach for cross-lingual
transfer learning in the morphological inflection
task using the MAML algorithm (Finn et al., 2017).

3 Problem Definition and Dataset

In this paper, we focus on morphophonological
processing, in which a model receives an underly-
ing representation (UR) of a word and generate its
surface form (SF), i.e., spoken form. We use the
morphophonology dataset of Khalifa et al. (2022),
which consists of (UR, SF) pairs for Egyptian Ara-
bic and is derived from the ECAL dataset (Kilany
et al., 2002). The UR includes segmentation in-
formation, using # to indicate word boundaries,
— for prefixes, and = for suffixes. The dataset’s
split into TRAIN, DEV, and EVAL is based on the
ECAL’s split. Since in ECAL, the split is based
on running texts, some words may appear in mul-
tiple splits. To address this, Khalifa et al. (2022)
also created DEV-OOV and EVAL-OOQV subsets
by including only words that do not overlap with
TRAIN. Some samples of (UR, SF) pairs and the
dataset’s statistics are shown in appendix section.

4 Proposed Method
4.1 Baseline Network

We performed various experiments to choose the
best baseline model for our MetAL experiments,

and chose Wu et al. (2021)’s transformer-based
model. It has outperformed existing RNN-based
seq2seq models and achieved SOTA results on our
target dataset.

4.2 Meta Learning Method

Given the limited resources of character-level
datasets for morphophonological processing tasks,
an optimization-based meta-learning algorithm is
a practical method to achieve high accuracies with
small datasets and few training iterations. Accord-
ingly, we have adopted MAML (Finn et al., 2017),
a general optimization algorithm compatible with
gradient descent, in our method. The primary as-
sumption is that our neural transducer model, fy,
is parameterized by 6, and its loss function, £, is
minimized using a gradient-based learning tech-
nique. The model is trained over multiple tasks,
7, sampled from a distribution over tasks p(7) to
which the model should be adapted.

In our problem, each task has an associated
dataset containing pairs of (UR, SF) for words. It
is split into two subsets: support and query. The
support set (i.e., the training set) is a labeled sub-
set used for adaptation of the meta-learning model
through learning the initial parameters. The query
set (i.e., the test set) is the complement of the
support set used for evaluating the model’s per-
formance on new, unseen data points. Furthermore,
it indicates how well the model generalizes over
the tasks not seen in the meta-training phase.

Model adaptation is the process of quickly learn-
ing and adjusting the initial parameters to a task us-
ing a small number of samples. Equation (1) com-
putes adapted parameters of the model, fy, over a
single task, 7;, using one adaptation iteration (i.e.,
N, adapt — 1).

0; =0 — aVoLr,(fo) (1)

In the given equation, « is the step size, which
can be a fixed or a learned hyperparameter.

Applying multiple gradient updates on the meta-
learning model creates a trade-off between param-
eter refinement and adaptation speed. Therefore,
choosing a suitable Nagap depends on the complex-
ity of the task, as more resources and training time
is required to reach a thorough adaptation.

The optimal parameters of the model for better
performance of f,/ in terms of 6, adapted over

multiple tasks samf)led from p(7), are computed
using Equation (2).



0* = arg min Z L7(fy) )
Ti~p(T)

This method significantly improves the fine-
tuning of the model, with one or more adaptation
iterations (i.e., Nadapt = 1) on a new task from the
same distribution.

Given the adapted parameters over each task,
0;, the optimization of the model across all the
sampled tasks, 7;, is performed by updating the
model parameters, 6, using Equation (3):

0 0-5Ve Y Lr(fy) 3)
Ti~p(T)

where (3 is the meta step size.

4.3 Meta Active Learning (MetAL) Method

In our approach, we have combined the principles
of meta-learning, described in Section 4.2, and ac-
tive learning (AL) to improve the accuracy of the
baseline model on our problem. The meta-learning
model shares the knowledge learned from previous
tasks of the same distribution with the new tasks
that are generated based on the most informative in-
stances in each AL training cycle. In our algorithm,
we have used the pool-based AL method integrated
with the maximum entropy criterion for selecting
uncertain samples in each training cycle.

The MetAL method initiates the training proce-
dure by random sampling, without replacement, of
a portion (around 10%) of a pool dataset, /. In
our case, U initially contains 13,170 unannotated
samples. In the next step, these randomly selected
samples are annotated and divided into two sub-
sets: tuning and training. A tuning subset, V, is a
dataset (500 samples in our experiments) used for
validating the trained models. A training subset,
D, is an augmented dataset (900 samples in our
experiments) used for training the model in the ini-
tial cycle according to the meta-learning method.
In subsequent training cycles, V remains constant;
however, D is increased by § (=250) number of
samples selected from the remaining samples of U/
based on their maximum entropy values.

For a given sample from U, Equation (4) com-
putes the entropy value of a word, w, in terms of
its characters’ logits, c, predicted by the most per-
formant model trained in the previous AL cycle.

N

H(w) = max(— Y _pj(c)logpi(c))  (4)

ccw
=1

p;(c) is the probability value of the i*" character
in an N-sized c and is calculated using the softmax
function, e/ Zf\i L €“. Given that the model’s
predicted characters with the lowest confidence
value have the highest entropy, the entropy of a
word, H (w), corresponds to the maximum value of
all the entropy values associated with its respective
characters.

A MetAL training cycle encompasses a meta-
learning method with N7 number of tasks. The
training dataset, D, is randomly divided into N+
equal subsets, D;. Each task, 7;, has an associated
D;, and during meta-learning iterations, undertakes
a meta-training and a meta-testing phase. The D;
is split into a support set, S;, and a query set, Q;,
to be used in those phases, respectively.

K sample batches are selected sequentially
from S; for meta-learning model adaptation dur-
ing meta-training. This phase helps the model ac-
quire knowledge and adaptability across current
tasks and learn to generalize for the next tasks by
updating the meta-learning model’s parameters us-
ing Equations (1) and (2). The meta-testing phase
involves exposing the model to the query set for
parameters optimization across all tasks, given the
adapted parameters over each task. K, shots of
sample batches are randomly chosen from Q; for
fine-tuning the model using Equation (3).

5 Experimental Results

We evaluated our proposed MetAL method by train-
ing the baseline model with MetAL, DAL, and ran-
dom training (i.e., passive learning) over 5 runs,
with each run utilizing a randomly chosen tuning
set based on different seed values, and evaluat-
ing on EVAL, EVAL-OOV, DEV, and DEV-OOV
datasets. Figure 1 shows the mean and standard
deviation (SD) of the model’s performance on the
morphophonological processing task in terms of
accuracy for each training cycle. It reflects the
average outcome across all 5 runs. During our anal-
ysis, no significant loss discrepancy between the
training and tuning sets has been observed, and
both the mean and SD of the results display rela-
tively minimal variations. The details regarding the
hyper-parameters and variables employed in our
experiments and the supplementary experiments
are presented in Appendices B and C.

As shown in Figure 1, the curve corresponding
to our proposed MetAL method displays a shape
that tends towards an asymptote. It demonstrates a
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Figure 1: Morphophonological processing task: The mean and standard deviation of the baseline model’s accuracy
trained using MetAL, DAL, and random training methods, and evaluated on (a) EVAL, EVAL-OQV, (b) DEV, and

DEV-OO0V datasets

considerably accelerated growth in contrast to the
DAL and random curves and initiates with a higher
level of accuracy, outperforming both alternative
training methods.

By achieving optimal accuracy with only approx-
imately 3,000 samples (i.e., about 23% of the train-
ing set) on EVAL-OOV and DEV-OOV, and only
around 4,000 samples (i.e., about 30% of the train-
ing set) on EVAL and DEV, our method demon-
strates its capacity to actively elicit a small set of
informative samples from the pool for labeling and
effectively adapt to these samples with few shots,
showing strong performance on out-of-vocabulary
datasets of the same distribution. Hence, it reveals
that this method excels over DAL on small-scale
datasets. In contrast, the random learner relies on
whole training set to reach its best accuracy level.

The SD of our MetAL method (over the exper-
imental results using 5 runs) has a consistent de-
crease in each subsequent training cycle, in ad-
dition to being lower compared to that of the
DAL and random training methods. This can be
attributed to the effective utilization of data en-
abled by the rapid adaptation to new tasks in meta-
learning, increasing the model’s robustness, reduc-
ing the impact of variations in the training set, and
resulting in a lower SD. In contrast, DAL focuses
on selecting informative instances, which may not
directly address data variability.

Adopting the meta-learning method to go over
multiple tasks during each training iteration, the
model has developed the capacity to generalize
its gained experience from sampled tasks to im-

prove over unseen samples of the same distribu-
tion. In our approach, exposing the model to a few
shots of informative data points extracted from a
small-sized AL training cycle dataset, D, greatly
reduces the required annotation and accelerates the
model’s training process compared to employing
DAL method alone.

6 Conclusion

We have introduced the meta active learning algo-
rithm, a combination of meta and active learning ap-
proaches, using the morphophonological process-
ing task for Egyptian Arabic dialect as a sample
task. The results of our experiment demonstrate
that achieving similar accuracy as the SOTA model
on the entire dataset is possible with only 23%
of the total training dataset, which outperforms
existing successful deep active learning methods,
especially on lower amounts of annotated data.

Our method has been designed to be language
and model agnostic. We hypothesize that by con-
centrating on Arabic, a language renowned for its
morphological intricacies, our approach’s efficacy
will extend to diverse languages. As our prospec-
tive research topics, we suggest addressing the in-
tricacies of templatic morphology, a substantial
source of complexity within Arabic, in addition to
analyzing the application of our method to train
other baseline models, generate datasets for low-
resource Arabic dialects and other languages, and
incorporate alternative uncertainty criteria.



Limitations

Our work, like many deep learning algorithms, re-
lies on GPU resources. In common learning prob-
lems, models are trained once on training datasets,
tuned on the development sets, and then ready for
inference. However, the training process involves
conducting multiple iterations whenever new infor-
mative samples from the pool are annotated and
added to the training set throughout AL cycles. As
the augmented training set grows, the demand for
GPU resources increases.

Furthermore, there is a trade-off between the
adaptation speed and the generalization perfor-
mance during the meta-learning phase. Additional
adaptation iterations and support shots are required
for broader task generalization in meta-learning,
increasing GPU resource demand. However, the
requirement for GPU resources is not specifically
tied to our proposed method but rather stems from
the inherent nature of active learning and meta-
learning methods.

Our algorithm is language and model agnostic;
however, it has only been evaluated on the Egyp-
tian Arabic dialect. Therefore, further research
is needed to examine the accuracy of the model
across other languages and dialects using different
learning models.

It is worth mentioning that the proposed method
exhibits the potential to achieve higher accuracy
with increased hyperparameter values. Unfortu-
nately, due to hardware limitations, we were unable
to perform the experiments to validate this.

Ethics Statement

This study is primarily focused on fundamental
research and is not related to a specific applica-
tion. We do not anticipate any ethical concerns aris-
ing from the algorithms and technologies proposed
in this work. This research has utilized datasets
and open-source libraries that have been previously
published and publicly accessible.
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A Dataset

For the purpose of this paper, our concentration lies
on the intricate Arabic morphophonological pro-
cessing task, given its substantial complexity and
variation among the dialects. Accordingly, we have
used the annotated Egyptian Arabic morphophonol-
ogy dataset introduced by Khalifa et al. (2020) to
assess our proposed method on a low-resource lan-
guage with a high degree of morphological com-
plexity. The dataset contains pairs of (UR, SF) split-
ted into TRAIN, DEYV, and EVAL subsets, based
on the ECAL’s splits introduced by Kilany et al.
(2002), in addition to EVAL-OOV and DEV-OOV
subsets, specific to this dataset. Two samples of
(UR, SF) pairs along with the sizes of different
splits of the dataset used in our task are shown in
Tables A.1 and A.2.

UR SF
#qAl=li=hum# #qalluhum#
#bi-t-Akl=I# #bitakli#

Table A.1: Two samples of (UR, SF) pairs of the dataset.

TRAIN DEV EVAL
All 13,170 5,180 6,974
(010) 2,189 2,271

Table A.2: The sizes of different splits of the dataset.

Owing to the dataset’s comprehensive anno-
tations, we undertook our experiments using a
simulation-based active learning approach. As out-
lined in Section 4.3, during each MetAL cycle, we
deliberately select K s samples as the support set
from the pool of annotated training samples, se-
quentially presenting it to the model. Conversely,
the query set, containing K, samples, is formed
from the complementary set of the support set and
is introduced to the model in a randomized manner.

B Experimental Setup

We performed a series of experiments involving
various successful approaches, including the Neu-
ral Transducer by Wu et al. (2021), and Cluzh
by Wehrli et al. (2022). As a result, we se-
lected the character-level neural transducer (i.e.,
Wu et al. (2021) system) as our baseline model.
This choice stems from its standing as a SOTA
transformer-based model, outperforming existing
RNN-based seq2seq models and showcasing suc-
cessful outcomes across the entirety of the Ara-

bic morphophonological processing dataset. The
model is a compact transformer consisting of 4
encoder-decoder layers, 4 self-attention heads, an
embedding dimension of 256, and a hidden size
of 1024 for the feed-forward layer. The model has
7.37M parameters, excluding embeddings and the
pre-softmax linear layer.

The optimal values for the hyper-parameters of
our experiments are listed in Table B.1. We con-
ducted multiple experiments with different values
to analyze the performance of our proposed MetAL
method. The mean and standard deviation of the
results in terms of accuracy for each training cycle
is reported in Figure 1.

Parameter Value
D (initial) samples 900
V samples 500

0 samples 250
Support Feeding Methodology  rotation
Query Feeding Methodology =~ random
Uncertainty criterion entropy
Training batch size (BS) 100
Evaluation batch size 6

o learning rate 0.001
[ learning rate 0.0001
Dropout 0.3
Ny 4
K 8
K, 8
N, adapt 1

Table B.1: The optimal hyper-parameter values of the
experiments.

We have used PyTorch, NumPy, Pandas, and
Matplotlib software packages to implement the pro-
posed algorithm. The experiments were performed
on a hardware comprising an Intel Core 17-8700K
CPU with 6 cores running at 3.70GHz speed, a
GeForce GTX 1080 GPU with 8GB of VRAM,
and 64GB of RAM. Each MetAL training cycle
needs a minimum of 7.92GB of GPU memory and
4.86GB of RAM.

C Supplementary Experiments

In addition to showcasing the most optimal hyper-
parameter values in the paper, as shown in Ta-
ble B.1, we conducted a thorough study to illustrate
the importance of the hyper-parameters and compo-
nents of our proposed MetAL approach. We tuned
essential hyper-parameters such as the number of



tasks (N7), support shots (K), query shots (K,),
adaptation iterations (Nagapt), training batch size
(BS), and feeding methodology for passing batched
samples to the model (FM). For instance, the exam-
ples demonstrated in Table C.1 outline our model’s
performance on the tune set. We conducted five
experiments in which we employed different seed
values to randomly select tuning sets, and the re-
sults represent the average outcome derived from
all five experiments.



N7 Ks K; Nagape BS Support FM  Query FM  Epochs  Accuracy
1 1 1 1 100 random random 667 44.08%
4 1 1 1 100 random random 559 89.45%
4 2 2 1 100 random random 650 91.90%
4 6 2 1 100 random random 980 93.02%
4 6 6 1 100 random random 680 94.71%
4 6 6 1 400 random random 700 95.14%
4 6 6 1 100 rotation random 760 95.37%

Table C.1: The effects of different hyperparameters on the accuracy of the model on the tune set.
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