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Abstract

Many safety failures in machine learning arise when models are used to assign1

predictions to people – often in settings like lending, hiring, or content moderation –2

without accounting for how individuals can change their inputs under realistic3

constraints and imperfect data. In this work, we introduce a formal validation4

procedure for the responsiveness of predictions with respect to interventions on5

their features. Our procedure frames responsiveness as a type of sensitivity analysis6

in which practitioners control a set of changes by specifying constraints over7

interventions and distributions over downstream effects, allowing uncertainty from8

biased, truncated, or missing data to be made explicit. We describe how to estimate9

responsiveness for the predictions of any model and any dataset using only black-10

box access, and how to use these estimates to support tasks such as falsification and11

failure probability estimation. We develop algorithms that construct these estimates12

by generating a uniform sample of reachable points, and demonstrate how they13

can promote safety in real-world applications such as recidivism prediction, organ14

transplant prioritization, and content moderation.15

1 Introduction16

Many of the pressing safety issues with machine learning arise in cases where model predictions17

affect people [54] – be it to approve loans [27], screen job applicants [6, 49], prioritize organ18

transplants [3, 7, 43], or moderate posts on online platforms [20, 22]. In such applications, we fit19

models that use features about individuals for predictions but cannot account for the changes in20

the predictions if the features are intervened upon. As a result, we routinely deploy models whose21

predictions are either not responsive to the actions of their decision subjects, or are overly responsive.22

When the models are under-responsive, they can preclude access to loans, jobs, or healthcare [57]. In23

lending, for example, models can preclude credit access by assigning fixed predictions that applicants24

cannot change [33]. In healthcare, models can prolong wait times for organ transplants by assigning25

predictions on the basis of patient characteristics such as age [7, 43]. When models are overly26

responsive, they exhibit unfairness [34], or are susceptible to gaming [25]. For instance, in content27

moderation, models can promote the proliferation of misinformation by allowing malicious actors to28

evade moderation at scale [1, 50].29

A central challenge in addressing these issues is measuring the responsiveness of predictions – i.e., by30

how much the output of a model can change over a space of plausible feature vectors. Measuring this31

quantity in practice hinges on our ability to effectively specify the set of plausible feature changes. In32

applications where features encode semantically meaningful characteristics, this set must adhere to33

non-trivial constraints on both the plausible interventions and their downstream effects. Choosing a34

set that is too small can underestimate responsiveness by overlooking viable interventions, whereas35

choosing a set that is too large can overestimate responsiveness by considering unrealistic changes36

that no individual could enact.37
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Figure 1: Responsiveness verification with reachable sets. Left: Given an instance x, we generate a uniform
sample of reachable points X reach

A (x), i.e., feature vectors that can be reached following an intervention on
x. Here, x1 ∈ [10000, 60000] and x2 ∈ {0, . . . , 5} are monotonically increasing features. Middle: We use
X reach

A (x) to determine the vulnerability to gaming in a bot detection task; accounts that are flagged as bots
should not be able to readily change their prediction without human review [20, 22]. Here, fA is susceptible
to gaming at x. Right: We use X reach

A (x) to test for preclusion in a lending task by testing if an applicant can
change their prediction to be approved [33] and see that x is precluded from access under fB .

In this work, we present a formal procedure to validate models by measuring the responsiveness38

of their predictions under realistic constraints on interventions. Our aim is to provide practical39

validation tools that (i) remain applicable with only black-box model access, (ii) surface safety40

failures with examples, and (iii) explicitly account for strategic behavior and imperfect data. To this41

end, we develop machinery that can support formal validation tasks such as falsification and failure42

probability estimation [31]. More broadly, we seek to overcome barriers to adoption of models by43

developing a validation framework that is widely applicable, and by demonstrating its capabilities.44

Our contributions include:45

1. We introduce a formal procedure to estimate and test the responsiveness of predictions for models46

with semantically meaningful features. Our procedure can specify fine-grained constraints on47

interventions and their downstream effects. This allows practitioners to reveal failures that affect48

individual or system-wide safety, estimate their prevalence, and pair each failure with examples.49

2. We develop algorithms to estimate the responsiveness of predictions for any model and any dataset50

using only query access. Our methods generate a uniform sample of reachable points from a51

non-convex polytope over discrete and continuous features, and benefit from simple theoretical52

guarantees that can guide practical decisions in test design.53

3. We demonstrate how our machinery can reliably detect inadvertent failures in responsiveness in54

model development or deployment. We illustrate this through real-world applications in recidivism55

prediction, content moderation, and organ transplant prioritization.56

4. We provide a Python library to estimate and test responsiveness at this anonymized repository.57

Full Version and Supplementary Materials In the supplement we include: (1). Related work (2).58

A description of our sampling algorithm and pseudocode (3). Additional experiments59

2 Framework60

We describe a formal validation procedure to test if a machine learning model assigns predictions61

that are unsafe as a result on interventions on its features. We consider a task where we are given62

black-box access to a model f : X → Y to predict an outcome y ∈ Y from a set of d features63

x = [x1, . . . , xd] ∈ X . We assume that features are semantically meaningful, e.g., features that64

encode meaningful characteristics for the task at hand like income and employment_status as opposed65

to generic features such as pixel intensities or token embeddings.66

We consider a procedure where we validate a model by testing its predictions over a target population.67

We assume the target population covers all points x ∈ X , or a subset of instances we can identify68

from their features and/or predictions (e.g., all instances with features x such that f(x) = 0). We test69

if a model assigns unsafe predictions by measuring the responsiveness of predictions:70

Definition 1. Given an instance with features x ∈ X and a model f : X → Y , the responsiveness
71

2

https://anonymous.4open.science/r/neurips-2025-responsiveness-verification


of its prediction f(x) is the proportion of interventions that lead to a target prediction:

ρ(x; f,Xreach
A , Ŷ reach) = Pr (f(x′) ∈ Ŷ reach

x | x′ ∈ Xreach
A (x)) ,

Here:

• Xreach
A (x) ⊂ X is a set of reachable points, determined by the types of interventions we allow.

We denote the set of all possible interventions at a point x as A(x), and refer to it as the
intervention set. We assume that includes a null action 0.

• Ŷ reach
x ⊆ Y is a target prediction, which can represent a single value in a binary classification

task (e.g., Ŷ reach
x = {1}), a set of values in a multiclass classification task (e.g., Ŷ reach

x =
{spam, hate_speech} in content moderation), or an interval in a regression task (e.g., [700, 850]
in credit scoring). We write Ŷ reach

x to allow the target prediction to change based on x.
72

In what follows, we write ρ(x) when the model, target prediction and reachable set are clear from73

context. We can adapt our framework to various formal validation tasks:74

• Preclusion: Consider testing if a loan approval model f : X → {0, 1} assigns “fixed” predictions75

that preclude credit access [9, 33]. Here, the target population covers all denied applicants i.e.,76

{x : f(x) = 0}. Given a point x ∈ X , we estimate the responsiveness of each prediction ρ̂(x) to77

see if there exists some interventions that could overturn the current prediction to Ŷ reach
x = {1}.78

Given the estimate, we would test if ρ(x) > 0 and claim that the model precludes access if we79

cannot refute the claim that ρ(x) = 0.80

• Gaming: In a content moderation task where we use a model to detect bot accounts, we may81

wish to test if bot accounts can alter their features to pass as a human end-user. In this case, we82

would estimate the responsiveness of an account who is predicted as a bot. Contrary to lending,83

we could have a toleration threshold ε and raise a safety violation if ρ(x) > ε. We can also84

estimate responsiveness of individual predictions to characterize each point or compute aggregate85

responsiveness statistics to describe the model (i.e., mean responsiveness).86

• Unaffordability: In an insurance task, where we use a regression model to determine a monthly87

insurance premium, we may wish to test that the premium remains affordable for each instance88

even if we diagnose a pre-existing condition [10]. In this case, our test population would represent89

all instances x ∈ X and our target prediction Ŷ reach
x ⊂ R could change based on their income.90

Interventions and Downstream Effects The reliability of these procedures depends on how we91

specify the set of reachable points. Consider estimating if a model could be gamed by measuring92

the responsiveness of a prediction with respect to all interventions over ∥a∥p ≤ δ. In this case,93

our claims and estimates depend on how we set δ: small values may lead to blindspots while large94

values may lead to false alarms [see 30, for a discussion]. In tasks with semantically meaningful95

features, we can rarely mitigate these issues by setting δ because this practice provides no control96

over actionability. For example, a decision subject may be unable to change some features, which97

leads us to consider infeasible interventions. Alternatively, deliberate interventions could induce98

changes on others features and probabilistic changes on others (e.g., taking a medication may alter a99

patient’s blood pressure). We would overlook these effects if we only consider constraints that pertain100

to a single feature – immutability, bounds or monotonicity.101

We consider a general model that distinguishes interventions from downstream effects.102

Definition 2. Given an instance x, we assume that an intervention changes its features as:

x′ = x+ a+ r,

Here, a ∈ Rd captures an intervention – i.e., a deliberate action performed by an individual. In
turn, r ∈ Rd specifies downstream effects that stem from the intervention.

We follow [29] and call a feature actionable if it can be directly changed by a decision subject,103

and inactionable otherwise. Our model allows practitioners to specify intervention set x, and a104

conditional probability distribution to specify downstream effects Px,a(r). This representation allows105

us to specify different classes of downstream effects:106

• Fixed Effects [9], where interventions induce deterministic changes on features due to feature107

encoding or deterministic causal effects. In a lending task, we can express a deterministic down-108
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stream effect such as n_monthly_payments = 12 → 24 will increase age by 1 as Px,a(rk) = 1 if109

rk = ⌊aj

12⌋ where j and k denote n_monthly_payments and age, respectively.110

• Random Effects, which capture random effects in feature values that arise independently of the in-111

tervention – e.g., due to noisy measurements or natural variability across repeated predictions. For112

instance, in a risk scoring system for organ transplant allocation, a patient’s score could be respon-113

sive to normal physiological fluctuations. As an example, bilirubin levels – used in liver-disease114

risk scores such as MELD [28] – may vary across lab tests for the same person. In such cases, we115

could have that Px,a(r) is independent of x,a, and Px,a(rbilirubin) = N (0 mg/dL, 5 (mg/dL)2).116

• Causal Effects, where downstream effects are sampled from a probability distribution that we obtain117

from applying an intervention on a structural causal model [see, e.g., 29, 47]. Consider a car insur-118

ance risk scoring task, where the feature annual_distance representing distance driven causally119

depends on whether the driver works remotely, indicated by an actionable binary remote_work120

feature. We can model this as:121

Px,a(rannual_distance) =

{
N (0 km, 1000 km2), aremote_work = 0

N (6000 km, 1000 km2), aremote_work = 1

Class Example Features Constraint

Immutability content_created_at should not change xj = content_created_at aj = 0

Monotonicity patient_age can only increase xj = patient_age aj ≥ 0

Integrality n_visits must be positive integer xj = n_visits aj ∈ Z ∩ [0− xj , 52− xj ]

Feature
Encoding

preserve one-hot encoding of
patient_type ∈ {In, Out}

xj = patient_type_in

xk = patient_type_out

aj + xj ∈ {0, 1} xk + ak ∈ {0, 1}
aj + xj + ak + xk = 1 aj + xj ≥ ak + xk

Missing
Values

if no_posts = TRUE

then num_posts = 0

else num_posts ≥ 0

xj = no_posts

xk = num_posts

aj + xj ∈ {0, 1} ak + xk ∈ [0, 107]

xj · xk = 0 xk ≥ 1− xj

Table 1: Examples of constraints on interventions. Each constraint can be expressed in natural language and
embedded into an optimization problem using standard techniques in mathematical programming [see 60].

Discussion In many of the use cases above, we can promote safety by detecting predictions that122

are unsafe with respect to a minimal response model. In a preclusion detection task, for example, a123

minimal model would capture constraints and distributions that are indisputable – e.g., interventions124

must ensure the integrity of feature encoding, and distributions must induce deterministic downstream125

effects. If we are able to detect instances of preclusion even under this minimal model, then it would126

imply that preclusion is likely to arise under any other realistic constraints as well.127

3 Estimating Responsiveness128

In this section, we describe a general framework to verify the responsiveness of predictions. Consider129

a probability distribution over the reachable points in Xreach
A (x) – i.e., x+ a+ r = x′ ∼ P reach

x ,130

where we set a ∼ Uniform[A(x)] to ensure coverage over the entire space of interventions, and131

r ∼ Px,a(·) according to our model of downstream effects. Given an instance x, we can compute its132

responsiveness using i.i.d. samples from this distribution:133

ρ(x) = Ex′∼P reach
x

[I[f(x′) ∈ Ŷ reach
x ]]

Given a model f, we estimate this quantity from n i.i.d. sampled points X̂n ∼ (P reach
x )n as:134

ρ̂n := 1
n |{x

′ ∈ X̂n : f(x′) ∈ Ŷ reach
x }| = Ŝn/n

This approach has several benefits:135

• We can estimate the responsiveness of predictions for any model. Our approach does not depend136

on model type and only requires black-box query access.137

• It yields simple but reliable statistical guarantees with respect to sample size n and a desired138

confidence level. This is a result of building our estimates from i.i.d. samples, allowing Ŝn to be a139

binomially distributed random variable.140

• We can extract a set of points Xunsafe ⊆ X that induce the failure mode and analyze them to141

facilitate debugging (e.g., identifying problematic features).142
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In what follows, we describe how to estimate responsiveness from a sample of reachable points, then143

describe how to generate uniform samples of reachable points across interventions in practice.144

Procedures and Guarantees We show how to use reachable sets to certify responsiveness of a145

prediction.146

Proposition 3 (Estimation). Consider estimating the responsiveness of the prediction at x from a
model, f . Given an estimate ρ̂n from n reachable points X̂n and confidence parameter α ∈ (0, 1),
denote the confidence interval as:

Ĉα(n, ρ̂n) := [Bα/2(nρ̂n, n− nρ̂n + 1),B1−α/2(nρ̂n + 1, n− nρ̂n)]

where Bα(a, b) denotes the αth quantile of a Beta distribution with parameters a, b. Then we have
that:

Pr (ρ(x) ∈ Ĉα(n, ρ̂n)) ≥ 1− α.

We can control the width of the confidence interval to L ∈ (0, 1) by estimating responsiveness with
n ≥ Nmin(α,L) reachable points where

Nmin(α,L) := min

{
n ∈ N : max

s∈[n]

∣∣∣Ĉα

(
n,

s

n

)∣∣∣ ≤ L.

}
Example 4 (Estimating Responsiveness for Feature Attribution). Consider a task where we need
to identify salient features for a prediction in a lending task where Y = {approve, deny} [9]. If
we were to do this based on responsiveness with a 0.05 margin of error where f(x) = deny, for
each feature j ∈ [d], we would set the parameters as follows:

• Ŷ reach
x = {approve}

• A(x): only allow feature j and features linked via downstream effects to change
• α = 0.05, L = 0.1, which implies Nmin(α,L) = 402

and estimate responsiveness of the prediction with respect to interventions on each feature,
identifying the most responsive features to report in mandated explanations (i.e., adverse action
notice in the U.S.).

In certain cases, we may wish to test if the responsiveness of predictions exceeds a threshold value147

ε ∈ (0, 1). We may want to either identify points with extremely low responsiveness (e.g, detecting148

preclusion) or with high responsiveness (e.g., detecting gaming).149

Proposition 5 (Testing). Consider testing whether the responsiveness of a prediction for a model,
f, at a point x exceeds a threshold value ε > 0 using the following hypotheses:

H0 : ρ(x) ≥ ε ⇔ at least 100 · ε% of interventions lead to target prediction f(x) ∈ Ŷ reach
x

H1 : ρ(x) < ε ⇔ less than 100 · ε% of interventions lead to target prediction f(x) ∈ Ŷ reach
x

,

Given a sample of n reachable points X̂n, let ρ̂n denote the responsiveness estimate and
ρU
2α(n, ρ̂n) := B1−α(nρ̂n + 1, n− nρ̂n) denote the upper bound of the confidence interval

Ĉ2α(n, ρ̂n), where α ∈ (0, 1) is the confidence parameter. In this case, we claim that the re-
sponsiveness is less than ε whenever

ρU
2α(n, ρ̂n) < ε ⇐⇒ Reject H0

Then, the probability of an incorrect unresponsiveness claim is bounded by the confidence level α:

Pr(ρU
2α(n, ρ̂n) < ε | ρ(x) ≥ ε) ≤ α.

We calculate the minimum sample size, Nmin, that allows us to correctly claim unresponsiveness
with probability 1 − β when the difference between ε and ρ, true responsiveness, is at least
∆ ∈ (0, ε):

Nmin(α, β, ε,∆) := min {n ∈ N : F(Bα(nε, n− nε);n(ε−∆), n− n(ε−∆) ≥ 1− β}

Here, F(·; a, b) is the cumulative beta distribution function with parameters a and b.
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Example 6 (Testing Robustness to Random Fluctuations). Consider testing if the predictions
of a sepsis prediction model, f , developed by a third party are stable w.r.t. natural variations
in clinical measurements using the medical devices of the local hospital. For each non-septic
patient with features x, we wish to limit the false alarms due to insignificant variation in certain
measurements to at most 10%. We could set the parameters as follows:

• Ŷ reach
x = {sepsis}

• A(x) is such that asystolic_bp ∈ [−5 mmHg,+5 mmHg], and
abilirubin ∈ [−0.1xbilirubin mg/dL, 0.1xbilirubin mg/dL]

• ε = 0.1, α = 0.01, β = 0.2, ∆ = 0.05, which would imply Nmin(α, β, ε,∆) = 254.

Suppose that we observe 4 sepsis predictions in a set of n = 254 reachable points X̂n. Then, we
have ρU

2α ≈ 0.045 < ε, thus we claim that the model is robust – allowing up to 10% predictions
sensitive to random fluctuations – with probability of the false robustness claim α = 1%, and the
probability of a correct robustness claim 1− β = 80% when the true responsiveness is at most
ε−∆ = 0.05.

Propositions 3 and 5 draw on the fact that Ŝn ∼ Bin(n, ρ(x)) given an i.i.d. sample. Thus, we can150

construct confidence intervals on ρ(x) using the exact method [11] and numerically compute Nmin.151

Although these results provide a guideline for how one might choose the sample size n, there is a152

strict lower bound on n to avoid a trivial testing procedure that fails to reject H0 for all x:153

Remark 7. Given the H0 and H1 in Proposition 5 with confidence parameter α ∈ (0, 1),

Reject H0 =⇒ n > logα/log(1−ε)

In other words, n > logα/log(1−ε) is a necessary condition to identify an unresponsive prediction. If154

this condition is not satisfied, we are not able to reject H0, even if ρ̂(x) = 0.155

4 Use Cases for Responsiveness Testing156

We will demonstrate how our machinery can promote safety in model development or model auditing157

by estimating the responsiveness of predictions. We choose use cases in salient applications where158

we can build models with real-world datasets and highlight failure modes of responsiveness. We159

include additional details in Appendix C.160

Detecting Fixed Predictions in Recidivism Prediction Tools Many recidivism prediction models161

are designed to use features that cannot readily change – e.g., age and sex [see e.g., 4, 15, 26, 35],162

which assign more accurate risk predictions. These models tend to predict that defendants with certain163

characteristics beyond their control will recidivate by default – i.e., regardless of their charges or164

criminal history. As an example, we point to a risk score developed by the Pennsylvania Sentencing165

Commission [48] which assigns fixed predictions to male defendants under 21. This oversight166

perpetuates disproportionate harm against a vulnerable population, and was included in a model167

that took over five years to be developed by a panel of statisticians (with regular public feedback168

opportunities) before being implemented. Here, we show that our machinery could have revealed this169

via a simple audit in less than ten minutes.170

We work with a sample of prisoners from New York compiled by the U.S. Department of Justice [56],171

which contains n = 29,400 and d = 20 features related to their age, sex, and criminal history (note172

that we do not include race). Here, the label is yi = 1 if a defendant i is rearrested within three years173

of release. We follow common practice [14, 61] and apply a standard 80-20 train-test split to fit174

and evaluate a logistic regression model (train/test AUC of 0.704/0.702). We test that this model175

assigns fixed predictions with respect to hypothetical interventions that “clear” criminal history – i.e.,176

so that each defendant predicted to recidivate would be able to overturn their prediction by clearing177

features related to criminal history. We consider a test where ε = 0.1, α = 0.05, β = 0.2, and target178

a resulting Yi = 1. We say that a prediction is “fixed” when Pr(ρ(x)) < 0.01. Our intervention179

sets contains of 30 constraints – which capture changes to criminal history and their downstream180

effects (e.g., setting n_prior_arrests = 5 → 0 would set prior_arrests_for_felony = 1 → 0). We181

construct reachable sets with 20 samples per point, satisfying Remark 7.182

In Fig. 2, we show the distribution of fixed points. The model predicts that 18,614 individuals will183

recidivate on the training test of which 15,986 are assigned fixed predictions. We can also see that184
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Figure 2: Distribution of unresponsive predictions in demographic groups. Left: Train sample. Middle: Test
sample. Right: CDF of responsiveness proportion by demographic group

it follows patterns of prior recidivism models such as using age as a crucial indicator, and having a185

disproportionate impact across racial groups. We see that 100% of all prisoners under the age of 18186

are assigned fixed predictions. This is consistent with prior work showing that lower age is more187

correlated with a higher likelihood of models predicting recidivism [61]. We also see that non-white188

prisoners are assigned fixed predictions at a higher rate than white prisoners, especially in the ≥ 30189

age group. We see further evidence that age and ethnicity govern recidivism in the left-most plot.190

This provides further details on the relationship between age and race: as the age increases, race191

becomes a more important factor in determining if that prisoner will have recourse. Our methodology192

has (1) detected multiple failure modes of the model – racial bias and assigning fixed predictions,193

specifically disproportionately assigning fixed predictions across ethnic groups, and, importantly, (2)194

enabled finding these failures during model development.195

Testing Counterfactual Invariance in Organ Transplant Prioritization Predictive statistical196

models are routinely used in allocation of organ transplants [23]. Recently, they have attracted197

scrutiny both from the public and the academic circles because of their potential to assign fixed198

predictions, e.g., with evidence of lower access to transplants for younger patients [2, 43], and199

simulation studies showing that cancer patients are less likely to receive high prioritization [3].200

We consider Transplant Benefit Score (TBS), a system used to prioritize transplants in the UK since201

2018. We aim to test a basic monotonicity condition [5, 24] that the model should assign higher202

prioritization scores to a counterfactual patient with cancer, compared to the initial score of the patient203

without cancer. According to domain experts [3], having all other features fixed, getting cancer204

should increase the priority. Testing this system is challenging, as it comprises several submodules:205

two Cox proportional hazard regression model to predict need – survival without transplant – and206

two models to predict utility – survival with the transplant over the course of five years. We have the207

following component survival functions:208

f c
need(x) =

T∑
t=1

Sc
0,need(t)

exp(βc⊤
need(x−µc

need)), f nc
need(x) =

T∑
t=1

Snc
0,need(t)

exp(βnc⊤
need (x−µnc

need))

f c
utility(x) =

T∑
t=1

Sc
0,utility(t)

exp(βc⊤
utility(x−µc

utility)), f nc
utility(x) =

T∑
t=1

Snc
0,utility(t)

exp(βnc⊤
utility(x−µnc

utility))

where c and nc indicate models applied to patients with cancer and without, respectively, S0,· : N →209

[0, 1] for t ∈ [T ] for some T ∈ N are pre-defined baseline hazard functions, and the vectors β and210

µ are the corresponding model parameters and data normalizers, respectively. The final TBS score211

is computed as fTBS(x) = fxcancer

utility (x)− fxcancer

need (x). An inspection of model coefficients β does not212

yield a simple answer on whether the system preserves monotonicity, especially as getting cancer213

involves a modification of several features at once, and using different models, βc.214

To verify violations of monotonicity, we generate a cohort of 1,000 patients without cancer using a215

probabilistic model designed to mimic a prior simulation generated based on real patients [3]. We216

provide details on the dataset generation in Appendix C.3. We define two intervention sets: “small”217

in which we assign a patient to have a cancer with at most 2cm tumor size, and “large” with at218
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Figure 3: Average proportion of predictions that violate monotonicity across a cohort of simulated non-cancer
patients, across two intervention sets in which counterfactual simulated patients are assigned cancer with size of
either < 2cm (“small”) or < 5cm (“large”). Error bars show 95% confidence interval around average violation
across the simulated cohort.

Model Pool % Resp. (Perceived) % Resp. (True) AUC

Procedure Description # Models # Cert. Robust Train Test Valid Train Test Valid Train Test Valid

Manual
Train Models with
Immutable Features

370 370 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.531 0.570 0.581

Convex
Consider Responsiveness
w.r.t Convex Perturbation Check

901 687 0.3% 0.0% 0.9% 56.2% 57.1% 55.9% 0.743 0.754 0.759

Exact
Evaluate Responsiveness
w.r.t Exact Actions

901 76 9.6% 9.9% 9.3% 9.6% 9.9% 9.3% 0.722 0.727 0.734

Table 2: We report results for the model with the highest validation AUC among Considered models: ≤ 10%
“Bot” predictions with certified responsiveness ≥ ε = 0.05. % Responsive show % of “Bot” predictions with
responsiveness ≥ ε = 0.05 under the procedure’s reachable set (Perceived) and the exact reachable set (True).
We see that Convex under-reports model responsiveness and selects models prone to gaming.

most 5cm tumor size. Each intervention involves changing the disease indicator primary_disease,219

and the max_tumor_size, tumor_number features. Moreover, we use a random-effect response r(x;a)220

which simulates natural variation in liver parameters such as the albumin level (see Appendix C.3).221

We measure and report average responsiveness ρ̂(x), where the prediction set of interest Ŷ reach
x =222

{y | y < f(x)} is those predictions which violate the monotonicity condition. Thus, in this case,223

responsiveness represents the proportion of violations.224

We summarize our results in Fig. 3, shown separately for each submodule. These results show that225

(1) even inspecting individual components does not paint the full picture of model safety. Indeed,226

the need model (left) shows low average violation for the middle age group, but the utility (middle)227

shows significantly higher levels of violation. As the final score is a combination of both, it is unclear228

which result will be more important. The final TBS score (right), in the end, shows low violation in229

the middle age group. We can also see (2) that our procedure in a simulated cohort reveals that both230

younger and older patients could have their TBS scores decreased after getting cancer. Our tools231

flag this concrete safety issue on aggregate at the system level, enabling model developers to test232

responsiveness individually for each patient, and generate test cases for iterative model development.233

Preventing Gaming in Content Moderation Modern approaches for content moderation rely on234

machine learning models to limit misinformation or harassment at scale [20, 22]. In such settings, we235

often build models to predict if user account belong to a “bot” or “human”, using these predictions236

to guide follow-up actions (e.g., human review or verification) to facilitate a more pleasant online237

experience [38]. Bot detection is difficult at scale – since many accounts lack substantial data, models238

must assign millions of predictions from a limited number of features that is available among all239

users. At the same time, we want to deploy models that are robust to manipulation – so that “bots”240

cannot skirt detection by “gaming” their account history or characteristics. The primary difficulty241

arises from the lack of available features, necessitating models to utilize a majority of them, thereby242

reducing robustness. In essence, the problem of building a robust model is akin to building a model243

that is unresponsive with respect to a realistic attack model.244

We consider a task to detect bots derived from the twitterbot dataset [19] with n = 3,431245

accounts and d = 22 features on their account characteristics (e.g., n_tweets, inactivity,246

tweets_from_mobile_device). To build realistic attack models, we capture feasible interventions247

through 4 non-separable constraints like enforcing n_tweets = 0 when inactivity = 1 (and248

8



vice versa), and only allowing changes in tweets_from_mobile_device when n_tweets increases as249

one must upload a new post from their mobile device. We also assume some features such as250

num_followers_leq_1000 are not actionable. Given the intervention model, we use an approach251

inspired by Zhang et al. [62] in which we construct classifiers that are robust to manipulation by252

penalizing or excluding certain features. We train a pool of penalized logistic regression models over253

a large grid of l1 and l2 parameters using glmnet [17]. We train models and assess their robustness254

to gaming through three approaches:255

• Manual: We only use immutable features. This represents a baseline approach, which ensures256

robustness, but should attain low utility due to not utilizing all the available information.257

• Convex: We use all features, but consider the convex relaxation of the intervention model to measure258

responsiveness, which is a common approach in robustness [see, e.g., 51, for a discussion].259

• Exact: We use all features and consider the exact intervention model.260

In Table 2, we report the results of the model that achieves the highest validation AUC among robust261

models – less than 10% of gameable predictions – that we train. Overall, our results highlight practical262

challenges when building a well-performing model that also limits gaming. Although models trained263

under the Manual procedure were all robust, they performed poorly with a Test AUC of 0.570.264

We also see that verifying responsiveness using a convex relaxation of the reachable set returns a265

well-performing model that appears robust. In fact, the test AUC of the model under the Convex266

regime (0.754) exceeds that of the model chosen under Exact (0.727). However, we see that the267

Convex procedure severely under-reports responsiveness: the perceived proportion of responsive268

points is near 0 in all three splits of the data, but, when verified against the actual reachable set, we269

see that the proportion of responsive points surges to > 50%.270

These results (1) show that there may exist a well-performing model that is robustness to gaming271

without additional adversarial training and (2) highlights the importance of validating responsiveness272

with respect to accurate interventions. Procedures like Convex can lead to unaccounted harm, where273

a model that is thought as robust can be deployed, only to be vulnerable to gaming.274

5 Concluding Remarks275

Over the past century, we have developed numerous practices to create and deploy technology that276

impacts people [44]—from tests that can be automated to standards that can be enforced. Even as277

machine learning models are routinely used to automate predictions that affect people, our practices278

are still in their infancy. Our work offers a concrete starting point to apply these approaches under279

imperfect data and action-induced distribution shift by presenting practitioners with machinery that280

can reliably detect failures in prediction responsiveness.281

One of the benefits of our machinery is that it pairs each failed test with a subset of reachable282

points, which can support downstream tasks such as debugging, regression testing, or improving283

the specification of constraints and distributions of interventions. These points are also useful284

as counterexamples in tasks where we wish to falsify a claim (e.g., “the model will not assign a285

prediction that could be gamed”), including interactive settings where individuals adapt strategically.286

Our machinery can output such points, but is not designed to do so efficiently, as the points are287

uniformly distributed. In such cases, an importance sampling approach that accounts for the decision288

boundary may be more appropriate [46].289

Limitations Our framework relies on practitioners specifying intervention constraints and down-290

stream effects based on domain knowledge, documentation, or policy rules. While this enables broad291

applicability, it does not account for cases where causal relationships must be learned from data. Our292

method also does not infer constraints or causal structure automatically. Additionally, the sampling293

procedure may be computationally intensive in high-dimensional or tightly constrained settings,294

though this cost is amortized by reuse across models. Finally, our uniform sampling approach priori-295

tizes coverage over efficiency; future work could explore adaptive or importance-based strategies for296

more efficient test generation.297
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A Supplementary Material for Section 1443

Related Work Our work is motivated by practical challenges in responsiveness that have broadly444

motivated work in adversarial robustness [21, 39], strategic classification [12, 18, 25, 37, 42], and445

counterfactual invariance [34, 53, 58]. Our machinery aims to detect these issues rather than resolve446

them in model development [c.f. work in strategic classification and robustness, e.g., 12, 16, 18, 25,447

30, 37, 42]. To this end, we test with the same kinds of measures used in validation literature [52, 59].448

Our work underscores how we can reap benefits from measuring responsiveness of models with449

semantically meaningful features – e.g., model selection [8] or identifying examples for debugging450

[55]. Our machinery provides a general way to enforce a rich set of semantic constraints for any451

model class.452

Our work builds on a growing body of research on the reliability of individual predictions [see e.g.,453

32, 40, 41, 45]. Our work is closely related to a recent stream of work on recourse verification – i.e.,454

a formal validation procedure to test if a model can provide recourse to its decision subjects [see e.g.,455

9, 33, 36]. Our approach builds on an idea introduced in Kothari et al. [33], who present a method456

to enumerate reachable points box to certify preclusion – i.e., that a model assigns predictions that457

cannot change. Their methods can output a deterministic guarantee of responsiveness but is restricted458

to datasets with discrete features and deterministic actions. Our methods to estimate responsiveness459

overcome these limitations by sampling a set of reachable points. This approach applies to tasks460

with discrete or continuous features, and can return estimates that support a broader class of model461

validation tasks.462
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B Supplementary Material for Section 3463

B.1 Uniform Sampling of Reachable Points464

Algorithm 1 Sampler for Reachable Sets
Require: x ∈ X Point
Require: n ≥ 1 Sample Size
Require: C Constraints
Require: D ⊆ [d] Downstream Features

X̂ ← ∅
1: repeat
2: a← 0
3: aj ← SampleInterv(x, j, C) for j ∈ [d] \D
4: if CheckFeasibility(x,a, CS) then
5: rk ← SampleEffect(a, k, C) for k ∈ D
6: X̂ ← X̂ ∪ {x+ a+ r}
7: end if
8: until |X̂| = n

Output X̂

The main technical challenge in testing respon-465

siveness is that it relies on a uniform sample466

of interventions a ∼ Uniform[A(x)], which is467

challenging due to the unconventional structure468

of the intervention set – i.e., some features are469

discrete while others could be continuous, with470

certain combinations being infeasible.471

We present a sampling procedure to yield a472

set of reachable points in Algorithm 1. In473

Line 3, given a subset of features S, we474

first sample an intervention aj for each ac-475

tionable feature j ∈ [d] \ D by calling the476

SampleInterv(x, j, C) routine. After sampling477

all interventions, we check if the resulting a is feasible under constraints in the block (Line 4) by478

solving a discrete optimization problem: mina′∈A(x) I[a
′ = a] s.t. a′ satisfies C. We formulate479

CheckFeasibility(x,a, C) using a mixed integer program and include a formulation in Appendix B.480

In Line 5, we then sample values for each downstream features by calling the SampleEffect(a, k, C)481

routine and add x+ a+ r to X̂i, the reachable set (Line 6).482

We improve the efficiency of the sampling procedure by proposing candidates that obey feature-483

level constraints (integrality, monotonicity, bounds) in the SampInterv routine – e.g., if feature j is484

integer-valued, bounded to B, and monotonically increasing, we sample from Uniform(xj , B). After485

sampling based on feature-level constraints, we use CheckFeasibility(x,a, CS) to ensure that they486

obey joint actionability constraints like encoding constraints. Given a, we then sample downstream487

effects. For deterministic effects, we compute the appropriate feature response value r(a;x) directly.488

For stochastic effects, we sample based from the specified condition distribution r(a;x) ∼ Px(a).489

By default, we sample from a uniform distribution of feasible values.490

We also execute Algorithm 1 over subsets of features that are independent with respect to interventions491

and downstream effects. We determine these subsets programmatically by identifying if a pair features492

j ̸= j′ ∈ [d] are coupled through constraints or distributions (e.g., if aj and a′j are linked directly or493

indirectly – through another feature ak). Given a graph that encodes this information for all j, j′ ∈ [d],494

we can construct a maximally independent partition of features – i.e., a set of k ≤ d feature subsets495

M := {S1, . . . , Sk} such that A(x) =
∏

S∈M AS(xS), where AS specifies intervention constraints496

that apply to xS . Partitioning allows us to independently sample interventions within each subset,497

which considerably improves sampling efficiency.498

B.2 Description of Routines in Algorithm 1499

Here we provide further details on each of the routines referenced in Algorithm 1.500

Description of the SampleInterv Routine501

The SampleInterv routine is designed to sample feasible values across features. Given a point x, a
feature j ∈ [d] and a set of constraints as defined by the intervention model C, SampleInterv(x, j, C)
samples an intervention aj ∼ Unif{a′j | a′ ∈ A(x)}. The procedure is designed to sample as
efficiently as possible in this setting by enforcing all constraints at the feature level: integrality,
monotonicity, bounds on the value of xj , and bounds on the value of aj . If feature j is discrete, we
take a uniform sample from

[LBj(x),UBj(x)]Z = [UBj(x)] \ [LBj(x)].

If feature j is continuous, we take a uniform sample from

[LBj(x),LBj(x)].

We define the lower and upper bounds for the intervention on j, LBj(x) and UBj(x) as:502

UBj(x) = I[j ↑] · (ubj − xj)
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LBj(x) = I[j ↓] · (xj − lbj)

Here, I[j ↑] = 1 if j can increase, I[j ↓] if j can decrease and lbj , ubj are bounds on feature j (note503

that xj ∈ [lbj , ubj ]).504

Description of CheckFeasibility Routine505

CheckFeasibility determines whether a′, the sampled intervention, is feasible under the constraint506

set C. Although SampleInterv ensures that each aj for j ∈ [d] abides by feature level constraints507

like integrality, monotonicity and bounds, we must additionally ensure that a′ does not violate508

non-separable constraints.509

More formally, given x, a sampled intervention a′ and a set of constraints C, CheckFeasibility510

solves the following problem:511

min
a∈A(x)

I[a′ = a] s.t. a abides by C (1)

We implement Eq. (1) as a mixed-integer program that consists of a baseline formulation – enforcing512

separable constraints like bounds and monotonicity – and additional constraints, which enforce513

non-separable constraints, and optionally, downstream effects. The baseline formulation has the form:514

min
∑
j∈[d]

(a+
j + a−

j ) (2a)

s.t. aj = a′
j j ∈ [d] intervene with a

′ (2b)

a+
j , a

−
j ∈ R+ j ∈ [d] positive, negative compoenets of aj (2c)

aj = a+
j − a−

j j ∈ [d] absolute value reconstruction (2d)

σj ∈ {0, 1} j ∈ [d] sign of aj (2e)

a+
j ≥ aj j ∈ [d] positive component of aj (2f)

a−
j ≥−aj j ∈ [d] negative component of aj (2g)

a+
j ≤UBj(x)σj j ∈ [d] only 1 of a+

j or a−
j can be positive (2h)

a−
j ≤LBj(x)(1− σj) j ∈ [d] only 1 of a+

j or a−
j can be positive (2i)

a ∈A(x) joint actionability constraints (2j)

The baseline formulation in Eq. (2) minimizes the l1 norm of a, splitting a into positive and negative515

parts a+j , a
−
j ≥ 0 (2d), of which only one is non-zero. This allows us to use this baseline formulation516

for both sampling and enumeration. Here, σj := I[aj > 0] is a boolean variable which we set to 1517

when aj is positive to ensure that signed components can have a positive value through (2e).518

(2b) stipulates that we intervene with a′ – i.e., find an intervention a such that satisfies the remaining519

constraints and is equal to a′. The remaining constraints enforces separable (constraint (2h), (2i))520

and non-separable actionability constraints (constraint (2j)).521

Below we provide two examples of non-separable actionability constraints and their explicit formu-522

lation in Eq. (2). For additional examples of how we can explicitly encode constraints into Eq. (2),523

refer to [33].524

Encoding Directional Linkage Constraints We often encounter features where intervening on525

them has a direct (and sometimes deterministic) effect on other features. For example, in Table 8,526

joint constraint 4 stipulates that urls_count increases at most as the change in num_tweets. Here, the527

“source variable” – the source of the effect – is num_tweets and the “target variable" – the feature528

affected – is urls_count.529

We capture this effect, called Directional Linkage, by adding additional constraints to Eq. (2). Given530

source feature k ∈ [d], a non-empty set of target features T ⊆ [d] \ {k} and a scale vector s ∈ R|T |,531

which captures the scale of the effect for each l ∈ T , we add the following constraints:532

bl − sl · ak = 0 (3)
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cl − al − bl = 0 (4)

for each target feature l ∈ T , where bl indicates the change in feature l as a result of intervention ak,533

and cl represents the aggregate change in l.534

We can also substitute the equality in Eq. (3) with inequalities. The aforementioned example with535

num_tweets and urls_count is a case where the relationship is an inequality (≤) and s = 1.536

Encoding Thermometer Encoding Constraints Datasets often include features that are based on537

thresholds. These features are often encoded like unary codes, a number of ones followed by zeros.538

For example, in Table 8, age_of_account_geq has a thermometer encoding with thresholds at 180,539

365, 730 and 1825 days. Hence there are five possible encoding values:540

1. [0, 0, 0, 0]: account is less than 180 days old541

2. [1, 0, 0, 0]: account is older than 180 days but less than 365 days old542

3. [1, 1, 0, 0]: account is older than 365 days but less than 730 days old543

4. [1, 1, 1, 0]: account is older than 730 days but less than 1825 days old544

5. [1, 1, 1, 1]: account is more than 1825 days old545

Given an ordered set of feasible values V , like above, we also define a reachability matrix E ∈546

{0, 1}|V |×|V |, where the (i, j)-th entry of E is 1 when we can reach from the i-th element of V to547

its jth element and 0 otherwise. Note that there are three possibilities for E: an upper triangular548

matrix, a lower triangular matrix of ones, or an all-one matrix. For example, age_of_account_geq,549

we also have a monotonicity constraint – age can only increase. So given the set of viable values (in550

order), the reachability matrix E is an upper triangle matrix of ones (i.e., can reach [1, 0, 0, 0] from551

[0, 0, 0, 0], but not ther other way around).552

Then, we add the following constraints to Eq. (2):553 ∑
k∈[|V |]

uk = 1 (5)

aj =
∑

k∈[|V |]

ej,k(vk,j − xj)uk (6)

where uk = 1 when resulting feature vector after the proposed intervention a′ corresponds to the554

k-th encoding in V , vk, 0 otherwise. ej,k indicates whether vk is reachable (based on E). Eq. (5)555

ensures that a′ has a valid encoding and Eq. (6) computes the required change (if feasible).556

Description of SampleEffect Routine557

The implementation SampleEffect changes based on the nature and relationships for the downstream558

effects we wish to sample:559

• For deterministic downstream effects, we do not sample but calculate the effect directly as there is560

only one feasible value. We have implemented a baseline sampler for non-deterministic downstream561

effects, which takes a uniform sample from possible feature values and runs CheckFeasibility on562

the resulting final intervention a+ r.563

• For random or causal effects, we sample r(a;x) from the specified distribution or model Px(a).564

Note that the parameters of the distribution need not be the same for all points.565

Partitioning for Efficiency566

We run Algorithm 1 separately over subsets of features, rather than jointly over all features in [d].567

These subsets are disjoint and are independent with respect to interventions and downstream effects.568

More formally, we call the collection of these independent subsets a partition M := {S1, S2, . . . , Sk}569

of [d] such that given two parts Sm, Sn, there are no joint constraints or downstream effects between570

all pairs (p, q) ∈ Sm × Sn of features. Another way to think about feature partitions would be as571

connected components in a graph, where features are nodes and edges represent joint constraints572

and/or downstream effects (i.e., ∃ edge (p, q) ⇐⇒ there are joint actionability constraints between573

p and q).574
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Figure 4: Convergence of responsiveness estimates and test metrics for a lending model built from the german
dataset [13]. We compute the true responsiveness of all instances in the dataset by enumeration, build sampled
reachable sets to estimate and test responsiveness (ε = 0.1, α = 0.05). Left: Absolute Estimation Error
(|ρ̂n−ρ|). Middle: Specificity (P (Claim Responsive | ρ ≥ ε), analogous to statistical power: 1−β) and Recall
(P (Claim Unresponsive | ρ < ε), analogous to confidence level 1− α). The dotted line is the statistical power
across different sample sizes n given effect size ∆ = 0.05. Right: Precision (P (ρ < ε | Claim Unresponsive)).
Red lines in Middle and Right figures show the minimum sample size required to reject the null hypothesis given
no positive observations: logα/log(1−ε) (Remark 7).

The benefit of sampling within partitions is two-fold:575

• Scalability: We only execute CheckFeasibility when necessary (i.e., when the partition is larger576

than size 1. Moreover, we only discard infeasible samples within the partition, rather than throwing577

out the entire sampled intervention. This significantly decreases run time for sampling.578

• Implementation: We can apply more efficient sampling procedures. In general, a dataset will have579

many kinds of features – e.g., continuous and discrete – with many different kinds of actionability580

constraints. However, subsets of features are likely to be similar. In effect, we can often find581

features that are not related to other features. Alternatively, we may find features that are all582

discrete and linked together by a single constraint (e.g., dummy variables with a one-hot encoding).583

Decomposition allows us apply different sampling procedures to each to sample more efficiently.584

B.3 Validation Study585

Convergence Guarantees Our sampling-based procedure provides several statistical guarantees for586

our responsiveness estimate: ρ̂(x) is an unbiased estimator and the (absolute) estimation error tends587

to 0 as the sample size n increases. For testing, our results in Proposition 5 state that the probability588

of correctly identifying responsiveness (Specificity) is at least 1− α and the probability of correctly589

identifying unresponsiveness (Recall) is at least 1− β given n ≥ Nmin. In practice, these guarantees590

imply that we can adapt tests to achieve any level of specificity or recall by setting the appropriate591

sample size.592

We demonstrate these guarantees through an empirical study detailed in Appendix B. We work with593

a dataset with discrete features where we can enumerate all reachable points for each instance and594

compute ground-truth responsiveness. We use these to estimate the absolute estimation error (|ρ̂n−ρ|),595

specificity (Pr (Claim Responsive | ρ ≥ ε)) and recall (Pr (Claim Unresponsive | ρ < ε)). In addition596

to verifying these guarantees, we investigate the precision (Pr (ρ < ε | Claim Unresponsive)) of our597

tests to gauge their reliability in action.598

As shown in Fig. 4, the absolute estimation error decreases as n increases and specificity remains599

above 1 − α = 95%. We also observe the results in Remark 7, where both precision and recall600

are 0 for n < logα/log(1−ε) since the test fails to reject H0 for all predictions (i.e., none flagged as601

unresponsive). For n > logα/log(1−ε), we see that the specificity of our test is above the statistical602

power (dotted line) computed at n. The precision of the test is also above 95% for n > logα/log(1−ε),603

indicating that our tests result in very few false positives (i.e., claiming unresponsiveness when the604

prediction is responsive).605

These results reaffirm our statistical guarantees and highlight that we can achieve low estimation error606

and high test reliability with a relatively small sample size. For example, a sampled reachable set607

with n = 30 has 4.2% absolute estimation error and 97.9% precision on average across 5 trials, while608

taking up 85% less storage. As a result, even in cases where the intervention sets are discrete and can609

be enumerated, sampling can lead to a meaningful reduction in compute and storage instances.610
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In Fig. 4, we conduct a study on sample size n to (1) validate our responsiveness estimation and611

testing procedure outlined in Section 3, and (2) determine their reliability under various sample sizes.612

We work with a discrete dataset, german, where we can fully enumerate reachable sets using the613

enumeration procedure from Kothari et al. [33]. The enumerated reachable sets provides ground614

truth responsiveness proportions. We compare our results to determine the error of our estimation615

procedure and the precision (in the main body, we refer to it as “reliability” for simplicity) of our616

testing procedure under two model classes: Logistic Regression (LR) and XGBoost (XGB).617

The german dataset is a credit dataset originally compiled in 1994 that is publicly available through618

the UCI Machine Learning Repository [13]. It contains n = 1,000 de-identified instances, each619

representing a credit applicant. It includes d = 20 categorical or discrete features, providing insights620

into aspects such as loan history, demographic information (including gender, age, and marital status),621

occupation, and past payment behavior. The objective is to predict whether an applicant is a “good”622

(yi = 1) or “bad” (yi = 0) credit customer. We note that the dataset does not have missing values,623

and have adapted some feature names for clarity.624

Intervention Model We consider an intervention model where each applicant can intervene on625

current features like account balances, but not history nor credit related features. For example,626

Housing=Owner is not actionable since one cannot go from renting to buying without additional loans.627

This intervention model is conservative and is intended to capture indisputable actionability con-628

straints. In total, our dataset contains 36 features of which 9 are actionable and 10 are mutable. There629

a total of four constraints: two Directional Linkage, and two Thermometer Encoding constraints:630

• Directional Linkage constraints in this intervention model govern downstream effects on Age from631

1) YearsAtResidence and 20 YearsEmployed≥1, which form a partition.632

• Thermometer Encoding constraints enforce conceptual requirements in this dataset - 1) requiring633

CheckingAcct≥0=True to be reachable only if CheckingAcct_exists is also True, and 2) requiring634

SavingsAcct≥100=True to be reachable only if SavingsAcct_exists is True.635

These lead to 31 partitions.636

We present a list of all features and their corresponding feature-level constraints in Table 3 and list637

the non-separable joint constraints below it.638

1. DirectionalLinkage: Actions on YearsAtResidence will induce actions on [‘Age’]. Each unit639

change in YearsAtResidence leads to a unit change in Age640

2. DirectionalLinkage: Actions on YearsEmployed≥1 will induce actions on [‘Age’]. Each unit change641

in YearsEmployed≥1 leads to a unit change in Age642

3. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct≥0] must preserve ther-643

mometer encoding of CheckingAcct., which can only increase. Actions can only turn on644

higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and645

CheckingAcct≥0 is the highest-level-dummy.646

4. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct≥100] must preserve ther-647

mometer encoding of SavingsAcct., which can only increase. Actions can only turn on higher-level648

dummies that are off, where SavingsAcctexists is the lowest-level dummy and SavingsAcct≥100649

is the highest-level-dummy.650

Lastly, we report model performance statistics for our LR and XGB model:651
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Name Type LB UB Actionable Sign Joint Constraints Partition ID

Age Z 19 75 No 1, 2 0
YearsAtResidence Z 0 7 Yes + 1 0
YearsEmployed≥1 {0, 1} 0 1 Yes + 2 0
CheckingAcct_exists {0, 1} 0 1 Yes + 3 30
CheckingAcct≥0 {0, 1} 0 1 Yes + 3 30
SavingsAcct_exists {0, 1} 0 1 Yes + 4 31
SavingsAcct≥100 {0, 1} 0 1 Yes + 4 31
Male {0, 1} 0 1 No – 1
Single {0, 1} 0 1 No – 2
ForeignWorker {0, 1} 0 1 No – 3
LiablePersons Z 1 2 No – 4
Housing=Renter {0, 1} 0 1 No – 5
Housing=Owner {0, 1} 0 1 No – 6
Housing=Free {0, 1} 0 1 No – 7
Job=Unskilled {0, 1} 0 1 No – 8
Job=Skilled {0, 1} 0 1 No – 9
Job=Management {0, 1} 0 1 No – 10
CreditAmt≥1000K {0, 1} 0 1 No – 11
CreditAmt≥2000K {0, 1} 0 1 No – 12
CreditAmt≥5000K {0, 1} 0 1 No – 13
CreditAmt≥10000K {0, 1} 0 1 No – 14
LoanDuration≤6 {0, 1} 0 1 No – 15
LoanDuration≥12 {0, 1} 0 1 No – 16
LoanDuration≥24 {0, 1} 0 1 No – 17
LoanDuration≥36 {0, 1} 0 1 No – 18
LoanRate Z 1 4 No – 19
HasGuarantor {0, 1} 0 1 Yes + – 20
LoanRequiredForBusiness {0, 1} 0 1 No – 21
LoanRequiredForEducation {0, 1} 0 1 No – 22
LoanRequiredForCar {0, 1} 0 1 No – 23
LoanRequiredForHome {0, 1} 0 1 No – 24
NoCreditHistory {0, 1} 0 1 No – 25
HistoryOfLatePayments {0, 1} 0 1 No – 26
HistoryOfDelinquency {0, 1} 0 1 No – 27
HistoryOfBankInstallments {0, 1} 0 1 Yes + – 28
HistoryOfStoreInstallments {0, 1} 0 1 Yes + – 29

Table 3: Intervention Model for the processed german dataset. Type indicates the feature type (Z for integer,
{0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates whether the
feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity constraints
– whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable constraint
indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature belongs to.

LR XGB

Train Test Train Test

AUC 0.807 0.768 0.819 0.7615

Expected Calibration Error 20.0% 20.0% 0.0% 10.0%

Error 27.2% 28.0% 21.9% 23.0%

n 800 200 800 200

npos 560 140 560 140

p 70.0% 70.0% 70.0% 70.0%

nclf_pos 738 186 615 120

nclf_neg 62 14 185 80
Table 4: Additional model statistics of LR and XGB models for the german dataset

.
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C Supplementary Material for Section 4652

In this Appendix, we provide additional details and results for each of the use cases in Section 4.653

C.1 Detecting Fixed Predictions in Recidivism Prediction Tools654

C.1.1 Description of Dataset655

We work with a large sample of defendants from New York state derived from the “Recidivism of656

Prisoners Released in 1994” dataset released by the U.S. Department of Justice [56], which contains657

n = 29,400 and d = 20 features about their criminal history. This dataset has been used in recidivism658

studies such as [40, 61]. Here, the label is yi = 1 if a prisoner is rearrested within the 3 years of659

release from prison. We include 12 features explicitly related to criminal history, two immutable660

characteristics (age and female), and six mutable characteristics, four of which are actionable, do not661

provide additional information about criminal history.662

• Criminal History Features: All features relating to prior_arrests, all features relating to663

time_served, any_prior_prb_or_fine664

• Mutable: edu_program_particicipation, voc_program_participation, drug_abuser,665

drug_treatment, alcohol_abuser, alcohol_treatment666

We bucketize age_at_release as follows:667

• ≤ 16668

• 16 to 19669

• 19 to 23670

• 23 to 27671

• 27 to 30672

• 30 to 35673

• 35 to 40674

• 40 to 45675

• ≥ 45676

C.1.2 Intervention Model677

Intervention Model We consider an intervention model where each defendant can perform (1)678

actions that change actionable features about their participation in rehabilitation profile (e.g., partici-679

pating in educational programs, setting edu_program_participation to True), and (2) hypothetical680

actions that would clear their criminal history (see below for detailed examples).681

Our dataset contains 20 features of which 7 are actionable and 18 are mutable. The intervention682

model contains a total of 27 constraints: 24 Directional Linkage constraints, and three Reachability683

Constraints:684

• Criminal History Constraints. Each of prior_arrests=1, prior_arrests≥2, and prior_arrests≥5685

has the same sets of constraints: Each time_served variable must decrease, any_prior_prb_or_fine686

must decrease, prior_arrests_for_felony, prior_arrests_for_misdemeanor, and687

prior_arrests_for_general_violence must decrease, and finally no_prior_arrests must688

be True. The associated ReachabilityConstraint forces prior_arrests=1, prior_arrests≥2, and689

prior_arrests≥5 to only be able to reach no_prior_arrests, fully clearing arrest history and690

preventing the number of arrests from decreasing by 1.691

• Non-Criminal History Constraints: Both drug_abuser and alcohol_abuser have a Reachability-692

Constraint with their corresponding treatment feature - this constraint ensures that treatment is693

only reachable if abuser is True.694

Note that these create corresponding partitions (see Table 5): 0 (alcohol features), and 1 (drug695

features), 2 (edu_program_participation, which can only increase), 3 (voc_program_participation,696

which can only increase), 4 (age_at_release, immutable), 5 (female, immutable), and 6 (the criminal697

history constraints outlined above).698

We present a list of all features and their corresponding feature-level constraints in Table 5.699
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Name Type LB UB Actionable Sign Constraints Partition ID

prior_arrests=1 {0, 1} 0 1 Yes − 2, 5, 8, 11, 14, 17, 20, 23, 25 6
prior_arrests≥2 {0, 1} 0 1 Yes − 1, 4, 7, 10, 13, 16, 19, 22, 25 6
prior_arrests≥5 {0, 1} 0 1 Yes − 3, 6, 9, 12, 15, 18, 21, 24, 25 6
no_prior_arrests {0, 1} 0 1 No 25 6
time_served≤1_year {0, 1} 0 1 No 1, 2, 3 6
time_served_g_1_year {0, 1} 0 1 No 4, 5, 6 6
time_served_g_2_years {0, 1} 0 1 No 7, 8, 9 6
time_served_g_5_years {0, 1} 0 1 No 10, 11, 12 6
prior_arrests_for_misdemeanor {0, 1} 0 1 No 13, 14, 15 6
prior_arrests_for_felony {0, 1} 0 1 No 22, 23, 24 6
prior_arrests_for_general_violence {0, 1} 0 1 No 16, 17, 18 6
any_prior_prb_or_fine {0, 1} 0 1 No 19, 20, 21 6
drug_abuser {0, 1} 0 1 No 26 0
drug_treatment {0, 1} 0 1 Yes + 26 0
alcohol_abuser {0, 1} 0 1 No 27 1
alcohol_treatment {0, 1} 0 1 Yes + 27 1
edu_program_participation {0, 1} 0 1 Yes + – 2
voc_program_participation {0, 1} 0 1 Yes + – 3
age_at_release R 17.3 83.9 No – 4
female {0, 1} 0 1 No – 5

Table 5: Intervention model for the rearrest_NY dataset. Type indicates the feature type (R for real numbers,
{0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates whether the
feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity constraints
– whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable constraint
indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature belongs to.

In this case, the intervention model must enforce a large set of deterministic downstream effects700

to maintain the semantic relationships between the features of the model while “clearing criminal701

history.” In general, we would enforce these relationships through the sampling distribution. Given702

that they are deterministic effects, however, we enforce them by defining non-separable constraints.703

The final set of joint actionability constraints include:704

1. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on [timeserved≤1year].705

Each unit change in priorarrests≥2 leads to a unit change in timeserved≤1year706

2. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeserved≤1year. Each707

unit change in priorarrests=1 leads to a unit change in timeserved≤1year708

3. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeserved≤1year. Each709

unit change in priorarrests≥5 leads to a unit change in timeserved≤1year710

4. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on timeservedg1year. Each711

unit change in priorarrests≥2 leads to a unit change in timeservedg1year712

5. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg1year. Each713

unit change in priorarrests=1 leads to a unit change in timeservedg1year714

6. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeservedg1year. Each715

unit change in priorarrests≥5 leads to a unit change in timeservedg1year716

7. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on timeservedg2years. Each717

unit change in priorarrests≥2 leads to a unit change in timeservedg2years718

8. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg2years. Each719

unit change in priorarrests=1 leads to a unit change in timeservedg2years720

9. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeservedg2years. Each721

unit change in priorarrests≥5 leads to a unit change in timeservedg2years722

10. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on timeservedg5years. Each723

unit change in priorarrests≥2 leads to a unit change in timeservedg5years724

11. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg5years. Each725

unit change in priorarrests=1 leads to a unit change in timeservedg5years726

12. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeservedg5years. Each727

unit change in priorarrests≥5 leads to a unit change in timeservedg5years728

13. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on priorarrestsforfelony.729

Each unit change in priorarrests≥2 leads to a unit change in priorarrestsforfelony730

14. DirectionalLinkage: Actions on priorarrests=1 will induce actions on priorarrestsforfelony.731

Each unit change in priorarrests=1 leads to a unit change in priorarrestsforfelony732
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15. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on priorarrestsforfelony.733

Each unit change in priorarrests≥5 leads to a unit change in priorarrestsforfelony734

16. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on735

priorarrestsformisdemeanor. Each unit change in priorarrests≥2 leads to a unit change in736

priorarrestsformisdemeanor737

17. DirectionalLinkage: Actions on priorarrests=1 will induce actions on738

priorarrestsformisdemeanor. Each unit change in priorarrests=1 leads to a unit change in739

priorarrestsformisdemeanor740

18. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on741

priorarrestsformisdemeanor. Each unit change in priorarrests≥5 leads to a unit change in742

priorarrestsformisdemeanor743

19. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on744

priorarrestsforgeneralviolence. Each unit change in priorarrests≥2 leads to a unit745

change in priorarrestsforgeneralviolence746

20. DirectionalLinkage: Actions on priorarrests=1 will induce actions on747

priorarrestsforgeneralviolence. Each unit change in priorarrests=1 leads to a unit748

change in priorarrestsforgeneralviolence749

21. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on750

priorarrestsforgeneralviolence. Each unit change in priorarrests≥5 leads to a unit751

change in priorarrestsforgeneralviolence752

22. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on anypriorprborfine. Each753

unit change in priorarrests≥2 leads to a unit change in anypriorprborfine754

23. DirectionalLinkage: Actions on priorarrests=1 will induce actions on anypriorprborfine. Each755

unit change in priorarrests=1 leads to a unit change in anypriorprborfine756

24. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on anypriorprborfine. Each757

unit change in priorarrests≥5 leads to a unit change in anypriorprborfine758

25. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on759

[’priorarrestsforfelony’]. Each unit change in priorarrests≥2 leads to a unit change760

in priorarrestsforfelony761

26. DirectionalLinkage: Actions on priorarrests=1 will induce actions on762

[’priorarrestsforfelony’]. Each unit change in priorarrests=1 leads to a unit change763

in priorarrestsforfelony764

27. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on765

[’priorarrestsforfelony’]. Each unit change in priorarrests≥5 leads to a unit change766

in priorarrestsforfelony767

28. ReachabilityConstraint: The values of [priorarrests≥2, priorarrests=1, nopriorarrests,768

priorarrests≥5] must belong to one of 4 values with custom reachability conditions.769

29. ReachabilityConstraint: The values of [drugabuser, drugtreatment] must belong to one of 4 values770

with custom reachability conditions.771

30. ReachabilityConstraint: The values of [alcoholabuser, alcoholtreatment] must belong to one of772

4 values with custom reachability conditions.773

C.1.3 Additional Results774

This table includes additional model training and performance statistics. p is the percent of positive775

points, n is the number of points,nclf_pos is the number of points that are classified as positive, and776

nclf_neg is the number of points that are classified as negative.777
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Train Test

AUC 0.704 0.702

Expected Calibration Error 0.19% 0.24%

Error 35.2% 35.4%

n 15414 3854

npos 7707 1927

p 50.0% 50.0%

nclf_pos 6407 1606

nclf_neg 9007 2248
Table 6: Additional model statistics for the recidivism dataset

.

This figure is the test component of the left-most figure in Fig. 2.778

Figure 5: CDF of points by responsiveness percentage

Ablation Testing We performed additional ablation tests on the recidivism dataset, and show our779

results in the table below. We note that the pattern of unresponsiveness being higher among the non-780

white peisoners being higher than the white prisoners continues. The test AUC is also consistently781

lower when non-criminal history features (such as program participation and substance abuse) are782

removed.783
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% Fixed (White) % Fixed (Non-White) AUC

Dropped Features Dropped Constraints ≤ 18 19 - 29 ≥ 30 ≤ 18 19 - 29 ≥ 30 Train Test

All age Bins None 39.0% 65.6% 39.0% 51.4% 69.2% 51.4% 0.696 0.686

drug_treatment

alcohol_treatment
29, 30 49.8% 66.8% 49.8% 61.9% 73.3% 61.9% 0.699 0.69

drug_abuser

alcohol_abuser

drug_treatment

alcohol_treatment

29, 30 50.5% 67.3% 50.5% 61.8% 73.1% 61.8% 0.698 0.691

edu_program_participation

voc_program_participation
None 43.2% 66.3% 43.2% 56.3% 67.9% 56.3% 0.701 0.691

None All 42.1% 64.3% 42.1% 51.0% 66.8% 51.0% 0.706 0.699

Table 7: Ablation testing results and details for each set of dropped features and constraints. Constraint numbers
are from Table 5. ϵ and α are 0.1 and 0.05.
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C.2 Preventing Gaming in Content Moderation784

C.2.1 Description of Dataset785

We work with the twitterbot which was originally curated by Gilani et al. [19]. The dataset defines786

a binary classification task where we wish to predict if an user account on Twitter belongs to a787

human (yi = 1) or a bot (yi = 0). The dataset contains a total of n = 3,431 instances and d = 19788

features that encode semantically meaningful characteristics about their interactions and login history789

– e.g., age_of_account_in_days for account age, user_tweeted for the number of user tweets, and790

source_identity for source of user interaction (mobile, web, etc.).791

In this case, the dataset contains a limited number of features given that all features are not readily792

available or shared across accounts. We process the dataset to define a subset of additional fea-793

tures as follows: (1) we include additional dummies to indicate “missing” values for num_tweets,794

num_retweets and num_replies; (2) we binarize features by using a adding a thermometer encoding795

to num_followers and age_of_accounts_in_days, setting thresholds that reflect salient milestones for796

follows and membership history; (3) we multi-hot encoded source_identity.797

C.2.2 Intervention Model798

We consider an intervention model where each user can intervene on their platform interaction799

features. Our dataset contains 20 features of which 11 are actionable and 15 are mutable. Note that800

we do not allow interventions on features that a user cannot change themselves – i.e., number of801

followers.802

We present a list of all features and their corresponding feature-level constraints in Table 8 and list803

joint actionability constraints below it.804

Exact Procedure We detail the intervention model for Exact procedure.805

Name Type LB UB Actionable Sign Joint Constraints Partition ID

followers≥1k {0, 1} 0 1 No 4 0
followers≥100k {0, 1} 0 1 No 4 0
followers≥1M {0, 1} 0 1 No 4 0
followers≥10M {0, 1} 0 1 No 4 0
num_tweets Z 0 35000 Yes + 1, 5 5
no_tweets {0, 1} 0 1 Yes − 1 5
urls_count Z 0 13013 No 5 5
num_retweets Z 0 3000 Yes + 2 6
no_retweets {0, 1} 0 1 Yes − 2 6
num_replies Z 0 6991 Yes + 3 7
no_replies {0, 1} 0 1 Yes − 3 7
age_of_account≥180_days {0, 1} 0 1 Yes – 1
age_of_account≥365_days {0, 1} 0 1 Yes – 2
age_of_account≥730_days {0, 1} 0 1 Yes – 3
age_of_account≥1825_days {0, 1} 0 1 Yes – 4
follower_friend_ratio R 0.0 13364332.2 Yes − – 8
source_web {0, 1} 0 1 No – 10
source_mobile {0, 1} 0 1 No – 11
source_app {0, 1} 0 1 No – 12
source_news {0, 1} 0 1 No – 15

Table 8: Intervention Model for the processed twitterbot dataset. Type indicates the feature type (Z for
integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates
whether the feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity
constraints – whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable
constraint indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature
belongs to.

1. IfThenConstraint: If notweets = 0.0, then numtweets > 1.0806

2. IfThenConstraint: If noretweets = 0.0, then numretweets > 1.0807

3. IfThenConstraint: If noreplies = 0.0, then numreplies > 1.0808

4. DirectionalLinkage: Actions on numtweets will induce to actions on [‘urlscount’]. Each unit809

change in numtweets leads to at least 1.00-unit change in urlscount810
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C.2.3 Additional Results811

Model Pool % Resp. (Perceived) % Resp. (True) AUC

Procedure Description # Models # Cert. Robust Train Test Valid Train Test Valid Train Test Valid

Manual
Train Models with
Immutable Features

370 370 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.531 0.570 0.581

Convex
Consider Responsiveness
w.r.t Convex Perturbation Check

901 687 0.3% 0.0% 0.9% 56.2% 57.1% 55.9% 0.743 0.754 0.759

Exact
Evaluate Responsiveness
w.r.t Exact Actions

901 76 9.6% 9.9% 9.3% 9.6% 9.9% 9.3% 0.722 0.727 0.734

Table 9: Full train, test, validation set results for the model with the highest validation AUC among Considered
models: ≤ 10% “Bot” predictions with certified responsiveness ≥ ε = 0.05. % Responsive show % of "Bot"
predictions with responsiveness ≥ ε = 0.05 under the procedure’s reachable set (Perceived) and the exact
reachable set (True).

0.5

0.6

0.7

0.01 0.05 0.10 0.20

Respnsiveness Threshold (ε)

Te
st

 A
U

C

Inspection Relaxation Exact

Figure 6: Test AUC of the best model that has less than 10% "Bot" predictions that have higher responsiveness
than ε = 0.01, 0.05, 0.1, 0.2 for each procedure. Model does not change for Inspection since features are
immutable.
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C.3 Organ Transplant Score812

C.3.1 Description of Dataset813

As the availability of healthcare data is scarce and tightly regulated, we follow the methodology in the814

high-profile study of Attia et al. [3], who have demonstrated lower rates of prioritization for cancer815

patients using a simulated cohort of patients. Attia et al. generated the realistic simulated cohort by816

hand-crafting the probabilistic data model, and checking the resulting distributional characteristic817

against the real cohort of liver transplant patients. For this case study, we aim to reproduce their818

approach and derive a synthetic dataset which attains similar statistical properties. Specifically, we819

generate n = 1,000 simulated patients with d = 32 features.820

We note that the TBS model itself is publicly available. For the purposes of our simulation, we821

reproduce its implementation based on an interactive R interface by Ewen Harrison.1822

We use the default patient case from this implementation to set the baseline characteristics in our823

cohort. We modify certain variables in the default case as follows.824

Static Variables We simulate the demographics as follows:825

Age ∼ Uniform({30, 31, . . . , 80}) (7)
Gender ∼ Bernoulli(0.5) where 0 = man, 1 = woman. (8)

Note that we do not aim to have a representative distribution of a demographics in a population.826

We also simulate other lab values as follows:827

Albumin ∼ Uniform[30, 40] (9)
Potassium ∼ Uniform[3.5, 5.0] (10)

We detail the model for sampling other clinical variables next.828

Liver Parameters We set up the following structural causal model (SCM) [47] for the liver829

parameters: bilirubin, sodium, international normalized ratio (INR), and creatinine. We use this830

probabilistic model both to generate the initial patient cohort, and to simulate the random effects due831

to natural variation in the reachable sets.832

Let U = (Ubili, UNa, UINR, Ucreat) denote the vector of exogenous noise variables, and let x =833

(Xbili, XNa, XINR, Xcreat) denote the vector of correlated endogenous variables representing the four834

liver parameters.835

Exogenous Variables. We set U ∼ N (0,Σ) with:836

Σ =


1.0 0.447 0.320 −0.257

0.447 1.0 0.370 −0.043

0.320 0.370 1.0 −0.091

−0.257 −0.043 −0.091 1.0

 (11)

Structural Equations. The endogenous variables are determined by the following structural equations:837

Xbili = min(200,max(15, exp(0.5 · Ubili + 3.5))) (12)
XNa = min(145,max(125, 5 · UNa + 137)) (13)
XINR = min(2.4,max(0.9, exp(0.3 · UINR − 0.2) + 0.8)) (14)
Xcreat = min(200,max(45, exp(0.4 · Ucreat + 4.2))) (15)

where:838

• Xbili represents bilirubin levels (clipped to [15, 200])839

• XNa represents sodium levels (clipped to [125, 145])840

• XINR represents international normalized ratio (clipped to [0.9, 2.4])841

• Xcreat represents creatinine levels (clipped to [45, 200])842

We choose the parameters to approximately match the reported statistics in a simulated cohort from843

Attia et al. [3]. We show the statistical properties of our generated cohort in Fig. 7.844

1https://github.com/SurgicalInformatics/transplantbenefit/
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C.3.2 Intervention Model845

We detail the dataset features and the considered intervention model in the table:

Name Type LB UB Actionable Sign Joint Constraints Partition ID

rinpatient_tbs {0, 1} 0 1 No – 3
rregistration_tbs Z 1 7 No – 4
rwaiting_time_tbs Z 0 3650 No – 5
rage_tbs Z 30 80 No – 6
rgender_tbs {0, 1} 0 1 No – 7
rdisease_primary_tbs Z 1 9 Yes 1, 2 1
rdisease_secondary_tbs Z 1 9 No – 8
rdisease_tertiary_tbs Z 1 9 No – 9
previous_tx_tbs {0, 1} 0 1 No – 10
rprevious_surgery_tbs {0, 1} 0 1 No – 11
rbilirubin_tbs Z 15 200 No – 2
rinr_tbs R 0.9 2.4 No – 2
rcreatinine_tbs Z 45 200 No – 2
rrenal_tbs {0, 1} 0 1 No – 12
rsodium_tbs Z 125 145 No – 2
rpotassium_tbs R 3.5 5.0 No – 13
ralbumin_tbs Z 30 40 No – 14
rencephalopathy_tbs {0, 1} 0 1 No – 15
rascites_tbs {0, 1} 0 1 No – 16
rdiabetes_tbs {0, 1} 0 1 No – 17
rmax_afp_tbs Z 0 1000 No – 18
rtumour_number_tbs {’0 or 1’∗, ‘2’, ‘3+’} Yes 1, 2 1
rmax_tumour_size_tbs R 0 20 Yes 1, 2 1
dage_tbs Z 18 80 No – 19
dcause_tbs Z 1 4 No – 20
dbmi_tbs R 15 50 No – 21
ddiabetes_tbs Z 1 3 No – 22
dtype_tbs {0, 1} 0 1 No – 23
bloodgroup_compatible_tbs {0, 1} 0 1 No – 24
splittable_tbs {0, 1} 0 1 No – 25

* This feature value is treated as no tumours if the primary disease does not indicate cancer, rdisease_primary_tbs ̸= 1, and as one tumour otherwise.

846

1. IfThenConstraint: If rtumour_number_tbs ∈ {‘2’,‘3+’}, then rdisease_primary_tbs = 1 (cancer)847

2. IfThenConstraint: If rdisease_primary_tbs = 1, then rmax_tumour_size_tbs > 0.848

Concretely, to generate counterfactual patients with cancer, we define two intervention sets for small849

and large tumours, following Attia et al. [3]. In the small intervention set, we consider interventions850

so that the rtumour_number_tbs = ‘2’ and rmax_tumour_size_tbs = 2; in the large intervention set,851

the number of tumours is the same but rmax_tumour_size_tbs = 5852

Random Effects For generating noise around existing parameter values x(0) =853

(x
(0)
bili , x

(0)
Na , x

(0)
INR, x

(0)
creat), we first perform approximate abduction to infer the corresponding854

exogenous values U(0) using the inverse structural equations. Then, we generate the perturbed855

exogenous variables as:856

U(1) = U(0) + ε (16)
where ε ∼ N (0,Σ) represents correlated noise. The counterfactual endogenous variables x(1) are857

then computed by applying the structural equations to U(1).858

Thus, response probability distribution Pa(x) is the distribution of Pr(x(1) − x(0) − a), where859

a = (abili, aNa, aINR, acreat) is the intervention.860

C.3.3 Additional Results861
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1Figure 7: Pairwise relationships of the four liver parameter distributions according to our probabilistic model.
These statistics are similar to those obtained by Attia et al. [3].
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1Figure 8: Average predictions of the TBS model and its components (need model on the left, utility model in
the middle, combined on the right) over the reachable sets in the simulated cohorts. We can see that only for
the middle-age group the average predicted survival w/o transplant decreases under the intervention, with other
groups having the monotonicity constraints violated.
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D Omitted Formal Results862

Remark 8. Given the H0 and H1 in Proposition 5 with confidence parameter α ∈ (0, 1),

Reject H0 =⇒ n > logα/log(1−ε)

Proof. From the definition of the exact Binomial confidence interval, we have that:

ρU
2α(n, ρ̂n) = B1−α(nρ̂n + 1, n− nρ̂n) (17)

provides a one-sided guarantee Pr(ρ(x) ≤ ρU
2α(n, ρ̂n)) ≥ 1− α.

The cumulative distribution of the Beta distribution is given by:

F(x; a, b) =
B(x; a, b)

B(a, b)

where B(x; a, b) is the incomplete beta function, defined as:

B(x; a, b) =

∫ x

0

ta−1(1− t)(b−1) dt

and B(a, b) = B(1; a, b).

Suppose ρ̂(x) = 0. Then our parameters for the beta distribution are a = 1, b = n. Hence,

F(x; 1, n) = 1− (1− x)n

Since the quantile function is the inverse of the CDF, we have

B1−α(1, n) = 1− α
1
n

To reject H0, we need B1−α(1, n) = 1− α
1
n < ε. By rearranging the inequality, we have

n >
ln(α)

ln(1− ε)

863
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