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Abstract001

Model editing techniques, particularly task002
arithmetic using task vectors, have shown003
promise in efficiently modifying pre-trained004
models through arithmetic operations like task005
addition and negation. Despite computational006
advantages, these methods may inadvertently007
affect model fairness, creating risks in sensitive008
applications like hate speech detection. How-009
ever, the fairness implications of task arithmetic010
remain largely unexplored, presenting a criti-011
cal gap in the existing literature. We system-012
atically examine how manipulating task vec-013
tors affects fairness metrics, including Demo-014
graphic Parity and Equalized Odds. To rigor-015
ously assess these effects, we benchmark task016
arithmetic against full fine-tuning, a costly but017
widely used baseline, and Low-Rank Adapta-018
tion (LoRA), a prevalent parameter-efficient019
fine-tuning method. Additionally, we explore020
merging task vectors from models fine-tuned021
on demographic subgroups vulnerable to hate022
speech, investigating whether fairness out-023
comes can be controlled by adjusting task vec-024
tor coefficients, potentially enabling tailored025
model behavior. Our results offer novel insights026
into the fairness implications of model editing027
and establish a foundation for fairness-aware028
and responsible model editing practices.029

1 Introduction030

As large language models (LLMs) see broader ap-031

plication, efficient techniques for adapting them032

to specific tasks become increasingly crucial. Al-033

though there are models that have been distilled034

(Sanh et al., 2019; Jiao et al., 2020; Turc et al.,035

2020) or are relatively small in size (Abdin et al.,036

2024), task-specific fine-tuning often requires sub-037

stantial computational resources, prompting the038

development of parameter-efficient fine-tuning039

(PEFT) techniques (Houlsby et al., 2019; Hu et al.,040

2022; Ben Zaken et al., 2022; Dettmers et al.,041

2023).042

One notable example is Low-Rank Adaptation 043

(LoRA) (Hu et al., 2022), which updates a com- 044

pact set of parameters while leaving most of the 045

original weights untouched, thus reducing training 046

costs. Despite the popularity of PEFT methods, 047

they do not resolve every challenge: in high-stakes 048

tasks with imbalanced data, LoRA and similar ap- 049

proaches can preserve or even amplify biases, rais- 050

ing concerns about fairness (Ding et al., 2024b; Sap 051

et al., 2019). 052

An alternative strategy that has recently drawn 053

attention is model editing with task vectors (Ilharco 054

et al., 2023; Zhang et al., 2024; Yoshida et al., 055

2025). A task vector is defined as the parame- 056

ter difference between a base pre-trained model 057

θbase and a fine-tuned model θtask. By adding or 058

subtracting this vector within the original weight 059

space (so-called “task arithmetic”), a user can edit 060

or remove the corresponding task-specific behav- 061

ior without further gradient-based training (Ilharco 062

et al., 2023). Moreover, scaling the task vector 063

grants fine-grained control over the strength of the 064

transferred capability. This approach represents a 065

promising direction, as it directly manipulates pa- 066

rameters while avoiding a costly re-optimization of 067

the entire model. 068

In addition to these computational benefits, prior 069

work has suggested that separating and analyzing 070

task vectors may enhance interpretability (Cerrato 071

et al., 2025). By isolating the weight updates as- 072

sociated with particular subgroups (e.g., racial or 073

gender demographics), one can potentially trace 074

how the model adapts to each subgroup. This fea- 075

ture is appealing for investigating biases arising 076

from unequal representation in training data, as 077

it highlights which groups require larger shifts in 078

weight space. Nevertheless, open questions per- 079

sist regarding how well this model editing using 080

task-vector preserves or exacerbates fairness. For 081

instance, improving performance for one demo- 082

graphic might degrade outcomes for another, and 083
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it is not yet clear how to balance trade-offs with084

established fairness metrics such as Demographic085

Parity (DPD) or Equalized Odds (EOD).086

To address this gap, we systematically examine087

how task-vector editing compares to both tradi-088

tional full-parameter fine-tuning (FFT) and LoRA,089

and we further explore whether injecting task vec-090

tors into an FFT model offers additional control091

over fairness. Our experiments focus on hate-092

speech detection on Llama-7B (Touvron et al.,093

2023) , measured by subgroup-specific accuracy094

and widely used fairness metrics. Our contributions095

and findings are summarized as follows:096

• A thorough comparison of four algorithms097

(FFT, LoRA, model editing using task-vector,098

and a hybrid approach injecting task vectors099

into FFT) in terms of their effects on fairness100

metrics and overall performance (Figure 1)].101

• An analysis showing that task vectors can102

substantially improve fairness while preserv-103

ing accuracy, provided that their scalar coeffi-104

cients are appropriately tuned (Figure 2).105

• Evidence that merging task vectors for under-106

represented subgroups with existing models107

can adjust fairness outcomes without incur-108

ring a significant accuracy drop (Figures 3a,109

3b and 4a).110

Through this analysis, we illustrate how task vec-111

tors can reduce risks from a fairness perspective112

while taking advantage of their flexibility and in-113

terpretability as a model editing approach. These114

findings provide a foundation for extending task-115

vector-based methods to promote fair and responsi-116

ble operation of large language models.117

2 Preliminaries118

In this section, we first provide an overview of the119

fundamental concept of task vectors and the proce-120

dure known as task arithmetic, which applies these121

vectors to edit model behavior. We then introduce122

methods for merging multiple task vectors into a123

single model.124

Task arithmetic. A task vector is defined as the125

difference in model parameters between a fine-126

tuned model on a given task and the original127

base model. Formally, if θbase are the pre-trained128

weights and θtask are the weights after fine-tuning129

on a task, then the task vector is: ∆θ = θtask−θbase130

(Ilharco et al., 2023).131

This vector represents a direction in weight space 132

such that moving the base model’s weights by ∆θ 133

steers the model to perform well on that task. In 134

other words, adding ∆θ to θbase yields a model 135

with improved performance on the target task, with- 136

out any additional training. Once computed, task 137

vectors can be manipulated through simple arith- 138

metic operations to edit model behavior directly in 139

weight space (Ilharco et al., 2023; Ortiz-Jimenez 140

et al., 2024). Key operations include: 141

Addition: Given two task vectors ∆θA 142

and ∆θB (for tasks A and B), their 143

sum can be applied to the base model 144

(θbase+∆θA+∆θB) to produce a model 145

that exhibits improved performance on 146

both tasks A and B (Ilharco et al., 2023). 147

This task addition effectively combines 148

knowledge from multiple tasks into one 149

model. 150

Negation: Using the negative of a task 151

vector, −∆θ, one can subtract a task’s 152

influence. Applying θbase + (−∆θA) 153

(equivalently θbase−∆θA) yields a model 154

with decreased performance on task 155

A, essentially unlearning or forgetting 156

that task, while leaving other behaviors 157

mostly unchanged (Ilharco et al., 2023). 158

This is useful for removing undesirable 159

skills or biases. 160

Scalar scaling: Multiplying a task vec- 161

tor by a scalar λ adjusts the strength 162

of the edit. For example, using θbase + 163

λ∆θA allows partial (0 < λ < 1) or 164

amplified (λ > 1) application of a task’s 165

effect. This scaling provides fine-grained 166

control over how strongly the task knowl- 167

edge is injected into the model. 168

Merging task vectors. Since task vectors reside 169

in a common weight space, they can be merged 170

by simple addition with tunable scaling. Formally, 171

given a base model θ0 and task vectors ∆θi, one 172

can construct a merged model as: 173

θmerged = θ0 +
∑
i

λi∆θi , (1) 174

where each coefficient λi controls the influence 175

of task i. Varying λi thus directly modulates how 176

strongly the i-th task’s knowledge is injected, al- 177

lowing fine-grained blending of capabilities. In- 178

deed, adding multiple task vectors with λi = 1 179
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(a) Gender-based demographic subgroups
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Figure 1: LoRA and FFT vs. Task addition with the optimal coefficient for the training accuracy (λ = 0.8 for
gender setting and λ = 0.5 for race setting) on group-wise accuracy, demographic parity difference (DPD, lower
is fairer), and equalized odds difference (EOD, lower is fairer). Error bars denote the standard error across three
seeds. Columns: group-wise accuracy, DPD, EOD. No consistent pattern emerges that task addition necessarily
degrades subgroup fairness relative to LoRA or FFT subgroups show improvements or comparable results under
task addition, while others show small declines.

endows a model with all those capabilities simul-180

taneously (Ilharco et al., 2023). Optimizing the181

λi values (i.e., learning an anisotropic scaling for182

each vector) further improves the composition by183

balancing contributions and reducing interference184

between tasks (Zhang et al., 2024).185

3 Related Work186

Task arithmetic: efficiency and interpretabil-187

ity. Task vectors offer a computationally efficient188

framework for editing and analyzing model be-189

havior. Once a task vector is computed—namely,190

the weight difference between a base model and191

its fine-tuned variant (Ilharco et al., 2023; Zhang192

et al., 2024; Yoshida et al., 2025)—no additional193

training data or retraining is required to transfer194

or remove task-specific capabilities. By treating195

each fine-tuning update as a direction in weight196

space, practitioners can combine or negate these197

updates through simple addition or subtraction (Il-198

harco et al., 2023). This modularity not only re-199

duces computational overhead but also enhances200

interpretability by isolating the contribution of each201

task.202

Beyond modularity, task arithmetic can reveal203

valuable information about how and where a model204

adapts to new tasks. Li et al. (2024) show a near-205

linear relationship between data size and the norm206

of a task vector, suggesting that over-represented207

tasks can dominate weight space shifts in multi-task 208

settings. In addition, the orientation of task vectors 209

can indicate synergies or conflicts among tasks (Li 210

et al., 2025), and decomposing these vectors by 211

layer can pinpoint which parts of the model are 212

most affected (Zhang et al., 2024; Gargiulo et al., 213

2025). Hence, task vectors offer a promising lens 214

for diagnosing training dynamics and identifying 215

potential biases. 216

Fairness metrics for LLMs. Fairness in large 217

language models is commonly evaluated using cri- 218

teria such as Demographic Parity, Equalized Odds, 219

and accuracy parity. Demographic Parity requires 220

similar positive outcome rates across demographic 221

groups, while Equalized Odds demands that true 222

and false positive rates be equivalent. Accuracy 223

parity checks for consistent predictive performance 224

across groups (Fraenkel, 2020; Kennedy et al., 225

2020a; Pitoura, 2019; Quan et al., 2023). These 226

metrics are broadly used to detect biases and mea- 227

sure whether a model’s behavior disproportionately 228

disadvantages certain populations. 229

FFT and LoRA under fairness constraints. 230

FFT remains a standard approach for aligning 231

LLMs to specific tasks. However, FFT can inadver- 232

tently magnify biases in the data, leading to wors- 233

ening performance for minority groups (Sap et al., 234

2019; Kotek et al., 2024). Studies have demon- 235
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strated that fine-tuned models may encode stronger236

biases than the original pretrained model, espe-237

cially when training data are imbalanced (Jin et al.,238

2021; Zhang and Zhou, 2024; Salmani and Lewis,239

2024).240

Parameter-efficient methods such as LoRA (Hu241

et al., 2022) address computational bottlenecks by242

training only a small set of parameters, yet they do243

not inherently solve fairness issues. In some cases,244

LoRA yields comparable subgroup performance to245

full fine-tuning (Ding et al., 2024b), while in others,246

it fails to mitigate toxic behaviors or biases (Das247

et al., 2024). The variance in outcomes depends on248

factors like the rank of the LoRA matrices, the base249

model’s quality, and the distribution of training data250

(Das et al., 2024).251

Merging tasks and fairness considerations. De-252

spite the potential efficiency gains and interpretabil-253

ity offered by task arithmetic, the merging of task254

vectors for multiple groups can trigger new chal-255

lenges. For instance, simply summing vectors may256

lead to “negative transfer,” where updates benefi-257

cial to one subgroup degrade performance for an-258

other (Ding et al., 2024a; Yu et al., 2020). In highly259

imbalanced settings, merging models through su-260

pervised fine-tuning can also disproportionately261

favor majority groups while disadvantaging mi-262

norities (Cross et al., 2024). Because fairness263

does not compose additively, interactions among264

subgroup-specific task vectors can produce unpre-265

dictable shifts in metrics like Demographic Parity266

and Equalized Odds (Gohar et al., 2023).267

Consequently, identifying effective ways to ad-268

just task vectors—such as through scalar scal-269

ing—remains a key step toward fairness-aware270

model editing. This work aims to fill that gap by271

systematically evaluating how these operations in-272

fluence both fairness and overall model accuracy.273

4 Experimental Setup274

4.1 Configuration.275

Building on the experimental framework estab-276

lished by (Ding et al., 2024b), we adopted their277

evaluation and experimental procedure to assess278

the fairness implications of LoRA in comparison279

to FFT. In our work, we extend this analysis by280

focusing on how task arithmetic compares to both281

LoRA and FFT in terms of fairness and perfor-282

mance. The detailed experimental setup is provided283

in Appendix B.284

Gender Subgroups Race Subgroups

Men 817 Asian 311
Non-binary 114 Black 1,007
Trans men 178 Latinx 368
Trans unspecified 173 Native American 153
Trans women 148 Middle Eastern 493
Women 2,057 Pacific Islander 138
Other 59 White 580

Other 302

Total 3,546 Total 3,352

Table 1: Data statistics in the gender and race subgroups.

Dataset. We use a modified version of the Berke- 285

ley D-Lab Hate Speech dataset originally intro- 286

duced by Kennedy et al. (2020a) and adapted by 287

Ding et al. (2024b), the research we are build- 288

ing upon. Our dataset contains a total of 6,898 289

tweet-sized text snippets annotated for hate speech 290

and categorized by sensitive attributes: Race and 291

Gender, each further divided into fine-grained sub- 292

groups (e.g., Women, Non-binary, Men within Gen- 293

der) as shown in Table 1. We frame hate speech 294

detection as a binary classification task: given a text 295

snippet, the model predicts whether it constitutes 296

hate speech (e.g., hatespeech in the Gender subset 297

may target Non-binary or Trans Women). Each 298

example includes both the hate speech label and 299

one or more protected attribute annotations (e.g., 300

gender = woman, race = Asian). These are used 301

to assess subgroup-level performance and fairness 302

metrics. 303

This setting supports rigorous fairness analysis 304

due to its rich attribute annotations and real-world 305

relevance. Hate speech detection is a challenging 306

and high-stakes classification problem: it requires 307

models to identify subtle or implicit harm, resolve 308

linguistic ambiguity, and perform robustly across 309

diverse dialects and identity references (Kennedy 310

et al., 2020a). As models increasingly mediate con- 311

tent moderation, ensuring reliable and equitable 312

hate speech detection is essential for safe deploy- 313

ment in real-world systems. 314

Evaluation metrics. We evaluate each method 315

on both predictive performance and fairness met- 316

rics. Our goal is to understand how scaling or 317

merging task vectors affects these measures. 318

• Predictive Performance: 319

Accuracy: Standard metric for classification 320

tasks, measuring the percentage of correct pre- 321

dictions. 322
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• Fairness Metrics: We also adopt the met-323

rics used for (Ding et al., 2024b) to quantify324

disparate performance across protected sub-325

groups. These metrics are widely used for326

fairness research in ML:327

Demographic Parity Difference (DPD):328

Measures the disparity in the model’s positive329

prediction rates across sensitive attribute330

groups. A smaller DPD indicates that the331

model assigns positive outcomes at similar332

rates across these groups, reflecting a more333

uniform treatment irrespective of group334

membership (Agarwal et al., 2018, 2019).335

336

Equalized Odds Difference (EOD) : Mea-337

sures the disparity in the model’s true and338

false positive rates across sensitive attribute339

groups. A smaller EOD indicates that the340

model’s overall error rate is more balanced341

across groups (Das et al., 2024).342

4.2 Protocol.343

We evaluate our methods using a main base model:344

LLaMA2-7B1. Our fairness evaluations focus on345

two sensitive attributes: gender and race, us-346

ing subgroup-wise metrics mentioned earlier –347

accuracy, DPD, and EOD.348

For FFT, the pretrained model was fine-tuned349

on the combined training data from all subgroups350

of the target attribute (gender or race). Evalua-351

tion was then performed on the test data from each352

corresponding subgroup, enabling fine-grained as-353

sessment of both performance and fairness.354

For LoRA, we followed the same training355

and evaluation procedure as FFT. In accordance356

with Ding et al. (2024b), the rank of the LoRA357

adaptation modules was set to 8.358

For task arithmetic, we applied a compositional359

fine-tuning approach. The training data was par-360

titioned by subgroup (gender or race), and FFT361

was applied separately to each subgroup’s data to362

produce fine-tuned models θi. From these, we com-363

puted task vectors ∆θi relative to the base model.364

These vectors were then merged using the approach365

described in Eq. (1), with a single, uniform scal-366

ing coefficient λ applied to all vectors. λ served367

as the sole hyperparameter in the merging process368

and was tuned on the training data. The evaluation369

1LLaMA 2 is licensed under the LLAMA 2 Community Li-
cense, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
See: https://ai.meta.com/llama/license

metrics were computed in the same manner as for 370

FFT and LoRA. 371

Task vector coefficient adjustment. Building on 372

the task vector merging framework introduced in 373

Eq. (1), we further explore the impact of the scaling 374

coefficient λ on fairness outcomes. Specifically, we 375

vary the uniform task vector coefficient λ across a 376

broad range (from 0.0 to 1.0 with 0.1 intervals) and 377

evaluate how this adjustment influences subgroup- 378

level fairness metrics, including accuracy, DPD, 379

and EOD. 380

Impact of worst-performing subgroup task vec- 381

tors on fairness and performance. To investi- 382

gate whether incorporating task vectors from under- 383

performing subgroups can improve fairness with- 384

out sacrificing overall performance, we first identi- 385

fied the lowest-performing subgroups within each 386

attribute based on the average of DPD and EOD 387

under the FFT setting. We excluded the "others" 388

group from this analysis as it does not reflect the 389

characteristics of any specific subgroup. This se- 390

lection was informed by both our experimental re- 391

sults and those reported in Ding et al. (2024b), 392

which showed consistent patterns. For gender, the 393

worst-performing subgroups were men and women; 394

for race, they were Asian and Native American. 395

We constructed a new model variant by injecting 396

a worst-performing subgroup task vector worst- 397

performing subgroup task vector into the base fine- 398

tuned model: 399

θnew = θSFT + λ(θworst-performing subgroup − θ0) 400

where λ controls the strength of the task vector 401

injection. We varied λ from from 0.0 to 1.0 at 402

0.2 intervals to analyze the effect of this targeted 403

addition on subgroup fairness metrics and overall 404

accuracy. 405

5 Results 406

Overview. 407

In Figure 1a, we compare the performance of 408

FFT, LoRA, and task addition across gender sub- 409

groups; Figure 1b presents results for race sub- 410

groups. For task addition, we selected λ = 0.8 411

for gender, λ = 0.5 for race, as it achieved the 412

highest average training accuracy across three ran- 413

dom seeds within the tested range λ ∈ [0.0, 1.0]. 414

These visualizations provide a direct comparison 415

of subgroup-wise model behavior. 416

5
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Figure 2: Varying the task arithmetic coefficient λ and comparing against FFT (purple dashed) and LoRA (orange
dashed) for macro-averaged accuracy (left), demographic parity difference (DPD, center), and equalized odds
difference (EOD, right). Evaluated on the gender subset of the data. Higher accuracy is better, while lower DPD
and EOD indicate improved fairness. As λ changes, task arithmetic maintains competitive accuracy and can reduce
fairness gaps relative to the baselines.

From the subgroup-level bar plots in Figure 1,417

we observe that accuracy remains consistently high418

and comparable across all three adaptation meth-419

ods, regardless of subgroup.420

However, fairness metrics (DPD and EOD) show421

notable variation across methods. The impact of422

task addition on fairness is not consistent. Com-423

pared to FFT, task addition improved fairness in 5424

out of 7 gender subgroups and in 3 out of 8 race425

subgroups. No single method yielded the best fair-426

ness performance across all demographic groups.427

Our experimental results closely align with the428

findings reported in (Ding et al., 2024b), particu-429

larly regarding the performance of FFT and LoRA430

on macro-averaged accuracy, DPD, and EOD. This431

consistency across demographic categories and432

with prior literature reinforces the robustness of433

our observations and supports the reliability of our434

evaluation framework.435

5.1 Controlling accuracy and fairness metrics436

through lambda.437

Figure 2 illustrates the overall performance of FFT,438

LoRA, and task arithmetic as the scaling coeffi-439

cients for task addition vary from 0.0 to 1.0. We440

observe how varying the task-arithmetic coefficient441

λ impacts macro-averaged accuracy (left), demo-442

graphic parity difference (DPD, center), and equal-443

ized odds difference (EOD, right) on a gender sub-444

set of the data. As λ increases from 0.0 to 0.2, we445

observe a peak in accuracy, but this configuration446

yields higher DPD and EOD, indicating reduced447

fairness. Beyond λ = 0.3, accuracy remains com-448

petitive compared to FFT and LoRA, while both449

DPD and EOD progressively decline, suggesting450

that fairness improves without severely compro-451

mising performance. Notably, these task addition452

curves stay consistently lower than FFT and LoRA 453

in terms of DPD and EOD at higher λ values. Over- 454

all, this ablation could indicate that tuning λ pro- 455

vides a practical mechanism for balancing accuracy 456

and fairness objectives, offering guidelines for prac- 457

titioners who wish to fine-tune fairness outcomes 458

while maintaining strong predictive performance. 459

5.2 Mixed trends when adding 460

worst-performing subgroup task vectors 461

To further analyze the effects of subgroup-specific 462

task composition, Figure 3a–3b illustrate heatmaps 463

where the y-axis lists each method or configuration 464

under evaluation: FFT as baseline, followed by task 465

arithmetic with varying scaling coefficients (0.0 to 466

1.0 with 0.2 intervals). The x-axis represents the 467

subgroups— (e.g., Women, Trans, etc. for Gender). 468

Each cell shows the corresponding performance 469

metric (e.g., macro-averaged accuracy, DPD, or 470

EOD for a given method on a specific subgroup. 471

For these experiments, we added the task vector 472

of the worst-performing subgroups (Women and 473

Men for the gender dataset subset, and Asian, and 474

Native American for the race dataset subset) to the 475

FFT model, as explained earlier. 476

We generally observe that increasing the scal- 477

ing coefficient λ tends to improve overall accu- 478

racy, consistent with the trends observed in Fig- 479

ure 2. However, the impact on fairness metrics 480

(DPD and EOD) is more variable. In the gender- 481

based plots, for example, the Asian subgroup con- 482

sistently achieves the highest accuracy and low- 483

est DPD/EOD—highlighting a recurring tradeoff 484

where performance gains for one group may exac- 485

erbate disparities for others. When the Women task 486

vector is added (Figure 3b), accuracy improves 487

for the Trans Women subgroups. However, fair- 488
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(b) When Women task vector added to the FFT model on the gender subset.

Figure 3: Heatmaps of Accuracy (left), DPD (center), and EOD (right) for gender (top) and race (bottom) subgroups
under the baseline FFT model (λ = 0.0) and with increasing λ values from 0.2 to 1.0 in 0.2 increments. The task
vector for Men was added on the gender subset (top), and the task vector for Women was added on the gender subset
(bottom). Darker cells indicate higher values on each metric’s scale; for DPD/EOD, lower values are better.

ness metrics for subgroups such as Men tend to489

worsen as the scaling coefficient λ increases. In490

Figure 3a, injecting the Men task vector improves491

performance for some subgroups, yet Women con-492

sistently show lower accuracy and do not see con-493

sistent fairness improvements at higher λ. Some494

groups (e.g., Other, Trans Men, Trans Women) be-495

gin with relatively poor fairness under FFT and496

show partial improvements with task vector ad-497

dition. Still, these improvements are not univer-498

sal—for example, the Other subgroup often retains499

high EOD values regardless of λ. Likewise, Na-500

tive American accuracy remains mostly unchanged501

across λ, while fairness metrics can deteriorate502

when injecting task vectors for other groups.503

Overall, while increasing λ can improve both504

accuracy and fairness for certain subgroups, these505

effects are not consistent across all configurations.506

To visualize these results in more detail, Fig-507

ure 4a shows macro-averaged accuracy, DPD, and508

EOD for the Men task vector added to the FFT509

model. The plots illustrate how varying the scaling510

coefficient λ impacts overall performance and fair- 511

ness, highlighting the effects of subgroup-specific 512

task injection. We can observe in Figure 4a that 513

injecting the Men task vector into the FFT model 514

results in a slight accuracy gain and a clear mono- 515

tonic decrease in both DPD and EOD as λ in- 516

creases—indicating a favorable and consistent im- 517

provement in fairness on the gender subset. 518

However, Figure 4b and the additional plots in 519

Figures 10 and 11 in Appendix C.2 show more var- 520

ied patterns as seen on Figures 3a and 3b. When in- 521

jecting the Native American task vector (Figure 11), 522

accuracy remains stable while fairness seems to 523

decrease (increased DPD and EOD). Asian (Fig- 524

ure 10) shows the same behavior as injecting the 525

Men task vector (Figure 4a), positive increase of 526

fairness metrics as λ increases. 527

Taken together, these results confirm that task 528

vector injection can shift subgroup-wise fairness 529

and performance, but its effects are highly group- 530

specific. While some subgroups (e.g., Men, Asian) 531

exhibit smooth fairness gains, others (e.g., Women) 532
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Figure 4: Impact of injecting both the Men and Women subgroup task vectors into the FFT model on the gender
data subset. The plot illustrates how scaling coefficient λ reduces DPD and EOD, outperforming the baseline FFT
(blue dashed) and LoRA (orange dashed), with negligible impact on macro-averaged accuracy.

show erratic behavior. This reinforces our earlier533

conclusion: simple task addition is not a guaran-534

teed to have positive fairness influence, and more535

targeted strategies are likely needed - yet the scal-536

ing coefficient does show some relevant influence537

in fairness metrics.538

6 Conclusion and Limitations539

Conclusion. In this study, we investigated the540

impact of a task arithmetic approach using task541

vectors on fairness, in comparison to conventional542

FFT and LoRA methods. We conducted detailed543

experiments to assess how the task addition affects544

prediction accuracy and fairness metrics, including545

the DPD and EOD across various subgroups. The546

results indicate that, with appropriate settings of547

the scalar coefficient λ, the task arithmetic method548

can improve DPD and EOD without significantly549

compromising overall model accuracy. Notably,550

using low to moderate values of the task vector551

coefficient effectively reduced prediction bias in552

minority groups compared to FFT and LoRA.553

Furthermore, the task arithmetic framework al-554

lows for subgroup-specific evaluation and adjust-555

ment of model updates, enhancing interpretabil-556

ity—a key advantage of this method in the context557

of fairness. This interpretability facilitates the miti-558

gation of excessive bias or adverse effects on par-559

ticular groups, ultimately enabling more balanced 560

model training. 561

Limitations. Despite these promising results, 562

several challenges remain. The effectiveness of 563

task arithmetic depends on dataset characteristics 564

and subgroup distributions, necessitating further in- 565

vestigation into its generalizability across different 566

tasks and domains. Moreover, future work should 567

explore algorithms for automatically optimizing 568

the scalar coefficient λ and for balancing trade-offs 569

among multiple subgroups. 570

In summary, our study demonstrates that task 571

arithmetic using task vectors offers a promising ap- 572

proach for controlling model fairness. Further ex- 573

perimental validation, application to diverse tasks, 574

and developing trade-off optimization methods are 575

essential for improving fairness in broader and 576

more realistic deployment scenarios. 577

References 578

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed 579
Awadallah, Ammar Ahmad Awan, Nguyen Bach, 580
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat 581
Behl, and 1 others. 2024. Phi-3 technical report: A 582
highly capable language model locally on your phone. 583
arXiv preprint arXiv:2404.14219. 584

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, 585
John Langford, and Hanna Wallach. 2018. A reduc- 586

8



tions approach to fair classification. In Proceedings587
of the 35th International Conference on Machine588
Learning, volume 80 of Proceedings of Machine589
Learning Research, pages 60–69. PMLR.590

Alekh Agarwal, Miroslav Dudik, and Zhiwei Steven591
Wu. 2019. Fair regression: Quantitative definitions592
and reduction-based algorithms. In Proceedings of593
the 36th International Conference on Machine Learn-594
ing, volume 97 of Proceedings of Machine Learning595
Research, pages 120–129. PMLR.596

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.597
2022. Bitfit: Simple parameter-efficient fine-tuning598
for transformer-based masked language-models. In599
Findings of the Association for Computational Lin-600
guistics: ACL 2022, pages 1–9.601

Mattia Cerrato, Marius Köppel, Alexander Segner, and602
Stefan Kramer. 2025. Fair interpretable learning via603
correction vectors. arXiv preprint.604

James I. Cross, Wei Chuangpasomporn, and John A.605
Omoronyia. 2024. Bias in medical ai: Implications606
for clinical decision-making. PLOS Digital Health,607
1(1):e0000561. Published on 7 Nov 2024.608

Saswat Das, Marco Romanelli, Cuong Tran, Zarreen609
Reza, Bhavya Kailkhura, and Ferdinando Fioretto.610
2024. Low-rank finetuning for llms: A fairness per-611
spective. arXiv preprint.612

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and613
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning614
of quantized llms. In Advances in Neural Information615
Processing Systems (NeurIPS).616

Chuntao Ding, Zhichao Lu, Shanguang Wang, Ran617
Cheng, and Vishnu N. Boddeti. 2024a. Mitigating618
task interference in multi-task learning via explicit619
task routing with non-learnable primitives. In Pro-620
ceedings of the IEEE/CVF Conference on Computer621
Vision and Pattern Recognition (CVPR). IEEE.622

Zhoujie Ding, Ken Liu, Pura Peetathawatchai, Berivan623
Isik, and Sanmi Koyejo. 2024b. On fairness of low-624
rank adaptation of large models. arXiv preprint. Pub-625
lished: 10 Jul 2024, Last Modified: 25 Aug 2024.626

Aaron Fraenkel. 2020. Fairness and Algorithmic Deci-627
sion Making. Lecture Notes for UCSD course DSC628
167.629

Antonio Gargiulo, Donato Crisostomi, Maria Sofia Bu-630
carelli, Simone Scardapane, Fabrizio Silvestri, and631
Emanuele Rodola. 2025. Task singular vectors: Re-632
ducing task interference in model merging. arXiv633
preprint arXiv:2412.00831. Version 3, 3 Jan 2025.634

Usman Gohar, Nuno Ribeiro, and Harichandra Ra-635
madurgam. 2023. Towards understanding fairness636
and its composition in ensemble machine learning.637
arXiv preprint arXiv:2102.96452. Version 3, 25 Mar638
2023.639

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 640
Bruna Morrone, Quentin De Laroussilhe, Andrea 641
Gesmundo, Mohammad Attariyan, and Sylvain Gelly. 642
2019. Parameter-efficient transfer learning for nlp. 643
In International Conference on Machine Learning, 644
pages 2790–2799. PMLR. 645

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 646
Allen-Zhu, Yuanzhi Li, Shawn Wang, and Weizhu 647
Chen. 2022. LoRA: Low-rank adaptation of large 648
language models. In International Conference on 649
Learning Representations (ICLR). 650

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts- 651
man, Suchin Gururangan, Ludwig Schmidt, Han- 652
naneh Hajishirzi, and Ali Farhadi. 2023. Editing 653
models with task arithmetic. In International Confer- 654
ence on Learning Representations (ICLR). Published 655
as a conference paper at ICLR 2023. 656

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 657
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. 658
Tinybert: Distilling bert for natural language under- 659
standing. In Proceedings of the 2020 Conference on 660
Empirical Methods in Natural Language Processing 661
(EMNLP), pages 4163–4174. 662

Xisen Jin, Francesca Barbieri, Brendan Kennedy, Aida 663
Mostafazadeh Davani, Leonardo Neves, and Xiang 664
Ren. 2021. Transferability of bias mitigation effects 665
in language model fine-tuning. In Proceedings of 666
the 2021 Conference of the North American Chap- 667
ter of the Association for Computational Linguistics: 668
Human Language Technologies, pages 3745–3757, 669
Online. Association for Computational Linguistics. 670

Brendan Kennedy, Xisen Jin, Aida Mostafazadeh Da- 671
vani, Morteza Dehghani, and Xiang Ren. 2020a. Con- 672
textualizing hate speech classifiers with post-hoc ex- 673
planation. In Proceedings of the 2020 Conference on 674
Empirical Methods in Natural Language Processing 675
(EMNLP), pages –. 676

Chris J Kennedy, Geoff Bacon, Alexander Sahn, and 677
Claudia von Vacano. 2020b. Constructing interval 678
variables via faceted rasch measurement and multi- 679
task deep learning: a hate speech application. arXiv 680
preprint arXiv:2009.10277. 681

Hadas Kotek, David Q. Sun, Zidi Xiu, Margit Bowler, 682
and Christopher Klein. 2024. Protected group bias 683
and stereotypes in large language models. arXiv 684
preprint arXiv:2403.14772. 21 Mar 2024. 685

Hongkang Li, Yinhua Zhang, Shuai Zhang, Pin-Yu 686
Chen, Sijia Liu, and Meng Wang. 2025. When is 687
task vector provably effective for model editing? a 688
generalization analysis of nonlinear transformers. In- 689
ternational Conference on Learning Representations 690
(ICLR). Published as conference paper at ICLR 2025. 691

Mingxin Li, Zhijie Nie, Yanzhao Zhang, Dingkun Long, 692
Richong Zhang, and Pengjun Xie. 2024. Improving 693
general text embedding model: Tackling task conflict 694
and data imbalance through model merging. arXiv 695
preprint arXiv:2410.15035v1. 19 Oct 2024. 696

9

https://doi.org/10.1371/journal.pdig.0000561
https://doi.org/10.1371/journal.pdig.0000561
https://doi.org/10.1371/journal.pdig.0000561
https://colmweb.org/
https://colmweb.org/
https://colmweb.org/
https://afraenkel.github.io/fairness-book/intro.html
https://afraenkel.github.io/fairness-book/intro.html
https://afraenkel.github.io/fairness-book/intro.html
https://arxiv.org/abs/2412.00831
https://arxiv.org/abs/2412.00831
https://arxiv.org/abs/2412.00831
https://arxiv.org/pdf/2212.04593
https://arxiv.org/pdf/2212.04593
https://arxiv.org/pdf/2212.04593
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2021.naacl-main.296
https://doi.org/10.18653/v1/2021.naacl-main.296
https://doi.org/10.18653/v1/2021.naacl-main.296
https://arxiv.org/abs/2403.14772
https://arxiv.org/abs/2403.14772
https://arxiv.org/abs/2403.14772
https://openreview.net/pdf?id=vRvVVb0NAz
https://openreview.net/pdf?id=vRvVVb0NAz
https://openreview.net/pdf?id=vRvVVb0NAz
https://openreview.net/pdf?id=vRvVVb0NAz
https://openreview.net/pdf?id=vRvVVb0NAz
https://arxiv.org/abs/2410.15035
https://arxiv.org/abs/2410.15035
https://arxiv.org/abs/2410.15035
https://arxiv.org/abs/2410.15035
https://arxiv.org/abs/2410.15035


Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-697
cal Frossard. 2024. Task arithmetic in the tangent698
space: Improved editing of pre-trained models. arXiv699
preprint.700

Evaggelia Pitoura. 2019. Towards diversity-aware, fair,701
and unbiased data management. In ISIP 2019, Her-702
aklion, Greece.703

Tangkun Quan, Fei Zhu, Quan Liu, and Fanzhang Li.704
2023. Learning fair representations for accuracy par-705
ity. Engineering Applications of Artificial Intelli-706
gence, 119:105819.707

Parisa Salmani and Peter R. Lewis. 2024. Transfer708
learning can introduce bias. In Proceedings of the709
6th European Conference on the Impact of Artificial710
Intelligence and Robotics (ECIAIR). IOS Press. Pub-711
lished under CC-BY 4.0 License.712

Victor Sanh, Lysandre Debut, Julien Chaumond, and713
Thomas Wolf. 2019. Distilbert, a distilled version714
of bert: smaller, faster, cheaper and lighter. arXiv715
preprint arXiv:1910.01108.716

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,717
and Noah A. Smith. 2019. The risk of racial bias718
in hate speech detection. In Proceedings of the 57th719
Annual Meeting of the Association for Computational720
Linguistics, pages 1668–1678, Florence, Italy. Asso-721
ciation for Computational Linguistics.722

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier723
Martinet, Marie-Anne Lachaux, Timothée Lacroix,724
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal725
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard726
Grave, and Guillaume Lample. 2023. Llama: Open727
and efficient foundation language models. arXiv728
preprint arXiv:2302.13971.729

Catalin Turc, Ming-Wei Chang, Kenton Lee, and730
Kristina Toutanova. 2020. Well-read students learn731
better: On the importance of pre-training compact732
models. In Findings of the Association for Computa-733
tional Linguistics: EMNLP 2020, pages 3592–3601.734

Kotaro Yoshida, Yuji Naraki, Takafumi Horie, Ryosuke735
Yamaki, Ryotaro Shimizu, Yuki Saito, Julian736
McAuley, and Hiroki Naganuma. 2025. Mastering737
task arithmetic: τ jp as a key indicator for weight738
disentanglement. In The Thirteenth International739
Conference on Learning Representations.740

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey741
Levine, Karol Hausman, and Chelsea Finn. 2020.742
Gradient surgery for multi-task learning. In Ad-743
vances in Neural Information Processing Systems,744
volume 33.745

Frederic Z. Zhang, Paul Albert, Cristian Rodriguez-746
Opazo, Anton van den Hengel, and Ehsan Abbasne-747
jad. 2024. Knowledge composition using task vec-748
tors with learned anisotropic scaling. In Advances in749
Neural Information Processing Systems (NeurIPS).750
Main Conference Track.751

Yuxuan Zhang and Feng Zhou. 2024. Bias mitigation in 752
fine-tuning pre-trained models for enhanced fairness 753
and efficiency. arXiv preprint arXiv:2309.00625. 6 754
Mar 2024. 755

10

https://doi.org/10.1016/j.engappai.2023.105819
https://doi.org/10.1016/j.engappai.2023.105819
https://doi.org/10.1016/j.engappai.2023.105819
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=1VwWi6zbxs
https://openreview.net/forum?id=1VwWi6zbxs
https://openreview.net/forum?id=1VwWi6zbxs
https://openreview.net/forum?id=1VwWi6zbxs
https://openreview.net/forum?id=1VwWi6zbxs
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/
https://proceedings.neurips.cc/
https://proceedings.neurips.cc/
https://arxiv.org/abs/2309.00625
https://arxiv.org/abs/2309.00625
https://arxiv.org/abs/2309.00625
https://arxiv.org/abs/2309.00625
https://arxiv.org/abs/2309.00625


A Fairness metrics756

A.1 Demographic Parity Difference757

(DPD) (Agarwal et al., 2018, 2019)758

DPD measures how varied the model’s rate of posi-759

tive predictions are across attributes. This metric is760

calculated as follows:761

MDPD =
∣∣∣Pr[f(X) = 1 | A = 1]762

− Pr[f(X) = 1 | A = 0]
∣∣∣ (2)763

where A is the sensitive attributes, f(X) is the764

prediction from the models, and X is the feature765

vector. The larger the DPD, the greater the dif-766

ference in prediction outcomes across attributes,767

indicating greater unfairness in the model predic-768

tions.769

A.2 Equalized Odds Difference (EOD) (Ding770

et al., 2024b)771

EOD is a metric that measures whether the model772

exhibits similar predictive performance in terms of773

true and false positives, regardless of the attribute.774

Meod = max {MTP,MFP} (3)775

Here, letting Y denote the true label, MTP and776

MFP are defined as follows:777

MTP =
∣∣∣Pr[f(X) = 1 | Y = 1, A = 1]778

− Pr[f(X) = 1 | Y = 1, A = 0]
∣∣∣, (4)779

MFP =
∣∣∣Pr[f(X) = 1 | Y = 0, A = 1]780

− Pr[f(X) = 1 | Y = 0, A = 0]
∣∣∣ (5)781

A.3 Accuracy Parity782

Accuracy parity refers to the expectation that a clas-783

sifier achieves comparable accuracy across differ-784

ent sensitive attribute groups. Formally, accuracy785

parity is satisfied when the probability of correct786

classification is equal across groups, i.e.,787

E(Y = Ŷ | S = 0) = E(Y = Ŷ | S = 1) (6)788

This notion of fairness ensures that all subgroups789

receive equally reliable predictions, and is partic-790

ularly relevant in applications where consistent791

model performance across demographics is crit- 792

ical. Unlike statistical parity or equal opportunity, 793

accuracy parity focuses on equal overall correct- 794

ness rather than specific error types or outcome 795

rates (Quan et al., 2023). 796

We observed high degree of accuracy parity 797

in both gender and race settings, as the accuracy 798

differences between subgroups are negligible, indi- 799

cating that the model performs consistently across 800

all groups. 801

B Experimental details 802

B.1 Computational Resources and Software 803

Environment 804

Hardware and Software: All experiments pre- 805

sented in this study were performed using com- 806

putational resources equipped with two NVIDIA 807

H100 GPUs. The experiments leveraged a GPU 808

environment consisting of CUDA 12.1.0, cuDNN 809

9.0.0, and NCCL 2.20.5 . 810

The experiments were conducted using Python 811

3.9.18, incorporating several essential Python li- 812

braries specifically optimized for deep learning 813

tasks. The primary libraries included PyTorch (ver- 814

sion 2.6.0), transformers (version 4.49.0), tokeniz- 815

ers (version 0.21.1), DeepSpeed (version 0.16.4), 816

and Accelerate (version 1.5.2). 817

The training experiments utilized the DeepSpeed 818

framework with the following key configurations: 819

a gradient accumulation step of 4, optimizer of- 820

floaded to the CPU, zero redundancy optimizer at 821

stage 2 (ZeRO-2), and mixed precision training 822

employing FP16 and BF16 for enhanced perfor- 823

mance and memory efficiency. All experiments 824

were conducted with a total computational cost of 825

approximately 30 GPU-hours. 826

Protocol: We fine-tuned models based on the 827

Llama-7B (Touvron et al., 2023) architecture ob- 828

tained via HuggingFace repositories. 829

Each model was trained for 4 epochs, employing a 830

cosine learning rate scheduler with a learning rate 831

of 1× 10−5, a warm-up ratio of 0.01, and a weight 832

decay of 0.001. Training utilized a per-device batch 833

size of 2, with an effective batch size of 16 achieved 834

through gradient accumulation. Reproducibility 835

was ensured by setting a random seed of 13, 14, 15 836

across all experiments. 837

For Low-Rank Adaptation (LoRA) experiments 838

were conducted with a rank (lora_r) of 8, scaling 839

factor (lora_alpha) of 16, and no dropout. 840
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B.2 Dataset841

We use the Berkeley D-Lab hatespeech detection842

dataset (Kennedy et al., 2020b) 2 for our experi-843

ments. The dataset is divided into subgroups based844

on the following attributes: Race or Ethnicity, Reli-845

gion, National Origin or Citizenship Status, Gen-846

der Identity, Sexual Orientation, Age and Disability847

Status. In our study, we use some of these sub-848

groups to evaluate fairness.849

Following (Das et al., 2024), we binarize the hate850

speech score associated with each review using a851

threshold of 0.5 to determine whether the review852

constitutes hate speech. When multiple annotations853

exist for the same instance, we obtain one human854

annotation to avoid duplication.855

C Additional Results856

Here, we present results focusing on diverse sub-857

groups, which we could not include in the main858

paper due to space constraints.859

C.1 Comparison of FFT, LoRA, and Task860

Arithmetic861

Figure 7 illustrates the overall performance of FFT,862

LoRA, and task arithmetic as the scaling for task863

arithmetic vary from 0.0 to 1.0. Trends observed864

reinforced results on the gender subset on Figure 2.865

Overall, λ provides a practical mechanism for bal-866

ancing accuracy and fairness objectives, and simi-867

larly there is a peak at λ = 0.2 for highest accuracy,868

and higher DPD and EOD (less fairness).869

2https://huggingface.co/datasets/
ucberkeley-dlab/measuring-hate-speech

C.2 Subgroup-Specific Task Addition to FFT 870

We include additional heatmaps that visualize 871

subgroup-wise performance across FFT and vary- 872

ing scaling coefficients for the FFT model injected 873

with a worst-performing subgroup. These supple- 874

mentary plots, which follow the same setup de- 875

scribed earlier, are consistent with the trends ob- 876

served in Figures 3a–3b. 877

In both gender and race subgroup experiments, 878

increasing the scaling coefficient λ generally leads 879

to improved macro-averaged accuracy. However, 880

its impact on fairness metrics—DPD and EOD—is 881

less predictable and varies across subgroups. For in- 882

stance, some subgroups benefit from improved fair- 883

ness as their corresponding task vectors are added, 884

while others experience increased disparity, even if 885

accuracy remains stable or improves. 886

This nuanced behavior reflects a broader pattern: 887

gains in performance for certain subgroups can 888

sometimes come at the expense of fairness for oth- 889

ers. Injecting task vectors from worst-performing 890

subgroups does not consistently reduce disparities 891

and, in some cases, can amplify them. 892

Figures 11–4b present additional results for 893

the Full+Worst configuration, in which task vec- 894

tors from the worst-performing subgroups (Native 895

American, Asian, Men, and Women) are added to 896

the FFT model. These plots show macro-averaged 897

accuracy, DPD, and EOD as a function of the scal- 898

ing coefficient λ. 899

Across these figures, we observe mixed effects: 900

while accuracy generally remains stable or im- 901

proves slightly, fairness outcomes vary by sub- 902

group. In Figure 11, DPD and EOD worsen despite 903

minimal accuracy changes. Meanwhile, Figure 4b 904

reveals stable performance with minor fairness im- 905

provements, though gains are not consistent across 906

metrics. These results further emphasize that task 907

vector injection alone does not ensure universal fair- 908

ness improvements and often introduces subgroup- 909

specific trade-offs. 910
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Figure 5: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized odds difference
(EOD) for —FFT, LoRA, and task addition with coefficient (λ = 0.8) —evaluated on the gender subset of the
data. Higher accuracy is desirable, whereas lower DPD and EOD values indicate improved fairness. Boxplots show
medians, interquartile ranges, and variability (with standard error across three seeds). While accuracy is similar
across methods, Task Addition generally yields lower DPD and EOD medians than FFT and LoRA, suggesting a
better balance between performance and fairness, though overlapping distributions imply these differences are not
uniformly significant.
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the data. Higher accuracy is desirable, whereas lower DPD and EOD values indicate improved fairness. Boxplots
show medians, interquartile ranges, and variability (with standard error across three seeds).
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Figure 8: The task vector corresponding to Asian was added to the FFT model on the race data subset. Heatmap
of Accuracy (left), DPD (center), and EOD (right) under the baseline (FFT) and increasing λ values (0.2 to 1.0).
Darker cells indicate higher values in each metric’s scale; for DPD/EOD, lower is better.
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Figure 9: The task vector corresponding to Native American was added to the FFT model on the race data subset.
Heatmap of Accuracy (left), DPD (center), and EOD (right) under the baseline (FFT) and increasing λ values (0.2
to 1.0). Darker cells indicate higher values in each metric’s scale; for DPD/EOD, lower is better.
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Figure 10: Effect of adding the Asian task vector to the FFT model on the race subset. Accuracy keeps competitive
with increasing λ, and both DPD and EOD decrease consistently.
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Figure 11: Results of injecting the Native American task vector into the FFT model. Accuracy shows minimal
change across λ, while DPD and EOD increase (worsen fairness).
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