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Abstract

Model editing techniques, particularly task
arithmetic using task vectors, have shown
promise in efficiently modifying pre-trained
models through arithmetic operations like task
addition and negation. Despite computational
advantages, these methods may inadvertently
affect model fairness, creating risks in sensitive
applications like hate speech detection. How-
ever, the fairness implications of task arithmetic
remain largely unexplored, presenting a criti-
cal gap in the existing literature. We system-
atically examine how manipulating task vec-
tors affects fairness metrics, including Demo-
graphic Parity and Equalized Odds. To rigor-
ously assess these effects, we benchmark task
arithmetic against full fine-tuning, a costly but
widely used baseline, and Low-Rank Adapta-
tion (LoRA), a prevalent parameter-efficient
fine-tuning method. Additionally, we explore
merging task vectors from models fine-tuned
on demographic subgroups vulnerable to hate
speech, investigating whether fairness out-
comes can be controlled by adjusting task vec-
tor coefficients, potentially enabling tailored
model behavior. Our results offer novel insights
into the fairness implications of model editing
and establish a foundation for fairness-aware
and responsible model editing practices.

1 Introduction

As large language models (LLMs) see broader ap-
plication, efficient techniques for adapting them
to specific tasks become increasingly crucial. Al-
though there are models that have been distilled
(Sanh et al., 2019; Jiao et al., 2020; Turc et al.,
2020) or are relatively small in size (Abdin et al.,
2024), task-specific fine-tuning often requires sub-
stantial computational resources, prompting the
development of parameter-efficient fine-tuning
(PEFT) techniques (Houlsby et al., 2019; Hu et al.,
2022; Ben Zaken et al., 2022; Dettmers et al.,
2023).

One notable example is Low-Rank Adaptation
(LoRA) (Hu et al., 2022), which updates a com-
pact set of parameters while leaving most of the
original weights untouched, thus reducing training
costs. Despite the popularity of PEFT methods,
they do not resolve every challenge: in high-stakes
tasks with imbalanced data, LoRA and similar ap-
proaches can preserve or even amplify biases, rais-
ing concerns about fairness (Ding et al., 2024b; Sap
et al., 2019).

An alternative strategy that has recently drawn
attention is model editing with task vectors (Ilharco
et al., 2023; Zhang et al., 2024; Yoshida et al.,
2025). A task vector is defined as the parame-
ter difference between a base pre-trained model
Opase and a fine-tuned model 6;,4.. By adding or
subtracting this vector within the original weight
space (so-called “task arithmetic”), a user can edit
or remove the corresponding task-specific behav-
ior without further gradient-based training (Ilharco
et al., 2023). Moreover, scaling the task vector
grants fine-grained control over the strength of the
transferred capability. This approach represents a
promising direction, as it directly manipulates pa-
rameters while avoiding a costly re-optimization of
the entire model.

In addition to these computational benefits, prior
work has suggested that separating and analyzing
task vectors may enhance interpretability (Cerrato
et al., 2025). By isolating the weight updates as-
sociated with particular subgroups (e.g., racial or
gender demographics), one can potentially trace
how the model adapts to each subgroup. This fea-
ture is appealing for investigating biases arising
from unequal representation in training data, as
it highlights which groups require larger shifts in
weight space. Nevertheless, open questions per-
sist regarding how well this model editing using
task-vector preserves or exacerbates fairness. For
instance, improving performance for one demo-
graphic might degrade outcomes for another, and



it is not yet clear how to balance trade-offs with
established fairness metrics such as Demographic
Parity (DPD) or Equalized Odds (EOD).

To address this gap, we systematically examine
how task-vector editing compares to both tradi-
tional full-parameter fine-tuning (FFT) and LoRA,
and we further explore whether injecting task vec-
tors into an FFT model offers additional control
over fairness. Our experiments focus on hate-
speech detection on Llama-7B (Touvron et al.,
2023) , measured by subgroup-specific accuracy
and widely used fairness metrics. Our contributions
and findings are summarized as follows:

* A thorough comparison of four algorithms
(FFT, LoRA, model editing using task-vector,
and a hybrid approach injecting task vectors
into FFT) in terms of their effects on fairness
metrics and overall performance (Figure 1)].

* An analysis showing that task vectors can
substantially improve fairness while preserv-
ing accuracy, provided that their scalar coeffi-
cients are appropriately tuned (Figure 2).

» Evidence that merging task vectors for under-
represented subgroups with existing models
can adjust fairness outcomes without incur-
ring a significant accuracy drop (Figures 3a,
3b and 4a).

Through this analysis, we illustrate how task vec-
tors can reduce risks from a fairness perspective
while taking advantage of their flexibility and in-
terpretability as a model editing approach. These
findings provide a foundation for extending task-
vector-based methods to promote fair and responsi-
ble operation of large language models.

2 Preliminaries

In this section, we first provide an overview of the
fundamental concept of task vectors and the proce-
dure known as task arithmetic, which applies these
vectors to edit model behavior. We then introduce
methods for merging multiple task vectors into a
single model.

Task arithmetic. A task vector is defined as the
difference in model parameters between a fine-
tuned model on a given task and the original
base model. Formally, if 6y, are the pre-trained
weights and 6y, are the weights after fine-tuning
on a task, then the task vector is: A8 = Gk — Opase
(Ilharco et al., 2023).

This vector represents a direction in weight space
such that moving the base model’s weights by A#
steers the model to perform well on that task. In
other words, adding Af to Opase yields a model
with improved performance on the target task, with-
out any additional training. Once computed, task
vectors can be manipulated through simple arith-
metic operations to edit model behavior directly in
weight space (Ilharco et al., 2023; Ortiz-Jimenez
et al., 2024). Key operations include:

Addition: Given two task vectors Af 4
and Afp (for tasks A and B), their
sum can be applied to the base model
(Bpase + A8 4 + Abp) to produce a model
that exhibits improved performance on
both tasks A and B (Ilharco et al., 2023).
This task addition effectively combines
knowledge from multiple tasks into one
model.

Negation: Using the negative of a task
vector, —/A@, one can subtract a task’s
influence. Applying Opase + (—Ab4)
(equivalently Opase — A8 1) yields a model
with decreased performance on task
A, essentially unlearning or forgetting
that task, while leaving other behaviors
mostly unchanged (Ilharco et al., 2023).
This is useful for removing undesirable
skills or biases.

Scalar scaling: Multiplying a task vec-
tor by a scalar A adjusts the strength
of the edit. For example, using Opse +
AABG 4 allows partial (0 < A < 1) or
amplified (A > 1) application of a task’s
effect. This scaling provides fine-grained
control over how strongly the task knowl-
edge is injected into the model.

Merging task vectors. Since task vectors reside
in a common weight space, they can be merged
by simple addition with tunable scaling. Formally,
given a base model 0y and task vectors Af;, one
can construct a merged model as:

Hmerged = 90 + Z )\z Ael ) (1)

7

where each coefficient A\; controls the influence
of task ¢. Varying \; thus directly modulates how
strongly the i-th task’s knowledge is injected, al-
lowing fine-grained blending of capabilities. In-
deed, adding multiple task vectors with \; = 1
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Figure 1: LoRA and FFT vs. Task addition with the optimal coefficient for the training accuracy (A = 0.8 for
gender setting and A = 0.5 for race setting) on group-wise accuracy, demographic parity difference (DPD, lower
is fairer), and equalized odds difference (EOD, lower is fairer). Error bars denote the standard error across three
seeds. Columns: group-wise accuracy, DPD, EOD. No consistent pattern emerges that task addition necessarily
degrades subgroup fairness relative to LoRA or FFT subgroups show improvements or comparable results under

task addition, while others show small declines.

endows a model with all those capabilities simul-
taneously (Ilharco et al., 2023). Optimizing the
A; values (i.e., learning an anisotropic scaling for
each vector) further improves the composition by
balancing contributions and reducing interference
between tasks (Zhang et al., 2024).

3 Related Work

Task arithmetic: efficiency and interpretabil-
ity. Task vectors offer a computationally efficient
framework for editing and analyzing model be-
havior. Once a task vector is computed—namely,
the weight difference between a base model and
its fine-tuned variant (Ilharco et al., 2023; Zhang
et al., 2024; Yoshida et al., 2025)—no additional
training data or retraining is required to transfer
or remove task-specific capabilities. By treating
each fine-tuning update as a direction in weight
space, practitioners can combine or negate these
updates through simple addition or subtraction (Il-
harco et al., 2023). This modularity not only re-
duces computational overhead but also enhances
interpretability by isolating the contribution of each
task.

Beyond modularity, task arithmetic can reveal
valuable information about how and where a model
adapts to new tasks. Li et al. (2024) show a near-
linear relationship between data size and the norm
of a task vector, suggesting that over-represented

tasks can dominate weight space shifts in multi-task
settings. In addition, the orientation of task vectors
can indicate synergies or conflicts among tasks (Li
et al., 2025), and decomposing these vectors by
layer can pinpoint which parts of the model are
most affected (Zhang et al., 2024; Gargiulo et al.,
2025). Hence, task vectors offer a promising lens
for diagnosing training dynamics and identifying
potential biases.

Fairness metrics for LLMs. Fairness in large
language models is commonly evaluated using cri-
teria such as Demographic Parity, Equalized Odds,
and accuracy parity. Demographic Parity requires
similar positive outcome rates across demographic
groups, while Equalized Odds demands that true
and false positive rates be equivalent. Accuracy
parity checks for consistent predictive performance
across groups (Fraenkel, 2020; Kennedy et al.,
2020a; Pitoura, 2019; Quan et al., 2023). These
metrics are broadly used to detect biases and mea-
sure whether a model’s behavior disproportionately
disadvantages certain populations.

FFT and LoRA under fairness constraints.
FFT remains a standard approach for aligning
LLMs to specific tasks. However, FFT can inadver-
tently magnify biases in the data, leading to wors-
ening performance for minority groups (Sap et al.,
2019; Kotek et al., 2024). Studies have demon-



strated that fine-tuned models may encode stronger
biases than the original pretrained model, espe-
cially when training data are imbalanced (Jin et al.,
2021; Zhang and Zhou, 2024; Salmani and Lewis,
2024).

Parameter-efficient methods such as LoRA (Hu
et al., 2022) address computational bottlenecks by
training only a small set of parameters, yet they do
not inherently solve fairness issues. In some cases,
LoRA yields comparable subgroup performance to
full fine-tuning (Ding et al., 2024b), while in others,
it fails to mitigate toxic behaviors or biases (Das
et al., 2024). The variance in outcomes depends on
factors like the rank of the LoRA matrices, the base
model’s quality, and the distribution of training data
(Das et al., 2024).

Merging tasks and fairness considerations. De-
spite the potential efficiency gains and interpretabil-
ity offered by task arithmetic, the merging of task
vectors for multiple groups can trigger new chal-
lenges. For instance, simply summing vectors may
lead to “negative transfer,” where updates benefi-
cial to one subgroup degrade performance for an-
other (Ding et al., 2024a; Yu et al., 2020). In highly
imbalanced settings, merging models through su-
pervised fine-tuning can also disproportionately
favor majority groups while disadvantaging mi-
norities (Cross et al., 2024). Because fairness
does not compose additively, interactions among
subgroup-specific task vectors can produce unpre-
dictable shifts in metrics like Demographic Parity
and Equalized Odds (Gohar et al., 2023).
Consequently, identifying effective ways to ad-
just task vectors—such as through scalar scal-
ing—remains a key step toward fairness-aware
model editing. This work aims to fill that gap by
systematically evaluating how these operations in-
fluence both fairness and overall model accuracy.

4 Experimental Setup

4.1 Configuration.

Building on the experimental framework estab-
lished by (Ding et al., 2024b), we adopted their
evaluation and experimental procedure to assess
the fairness implications of LoRA in comparison
to FFT. In our work, we extend this analysis by
focusing on how task arithmetic compares to both
LoRA and FFT in terms of fairness and perfor-
mance. The detailed experimental setup is provided
in Appendix B.

Gender Subgroups Race Subgroups

Men 817 Asian 311
Non-binary 114 Black 1,007
Trans men 178 Latinx 368
Trans unspecified 173 Native American 153
Trans women 148 Middle Eastern 493
Women 2,057 Pacific Islander 138
Other 59 White 580

Other 302
Total 3,546 Total 3,352

Table 1: Data statistics in the gender and race subgroups.

Dataset. We use a modified version of the Berke-
ley D-Lab Hate Speech dataset originally intro-
duced by Kennedy et al. (2020a) and adapted by
Ding et al. (2024b), the research we are build-
ing upon. Our dataset contains a total of 6,898
tweet-sized text snippets annotated for hate speech
and categorized by sensitive attributes: Race and
Gender, each further divided into fine-grained sub-
groups (e.g., Women, Non-binary, Men within Gen-
der) as shown in Table 1. We frame hate speech
detection as a binary classification task: given a text
snippet, the model predicts whether it constitutes
hate speech (e.g., hatespeech in the Gender subset
may target Non-binary or Trans Women). Each
example includes both the hate speech label and
one or more protected attribute annotations (e.g.,
gender = woman, race = Asian). These are used
to assess subgroup-level performance and fairness
metrics.

This setting supports rigorous fairness analysis
due to its rich attribute annotations and real-world
relevance. Hate speech detection is a challenging
and high-stakes classification problem: it requires
models to identify subtle or implicit harm, resolve
linguistic ambiguity, and perform robustly across
diverse dialects and identity references (Kennedy
et al., 2020a). As models increasingly mediate con-
tent moderation, ensuring reliable and equitable
hate speech detection is essential for safe deploy-
ment in real-world systems.

Evaluation metrics. We evaluate each method
on both predictive performance and fairness met-
rics. Our goal is to understand how scaling or
merging task vectors affects these measures.

e Predictive Performance:

Accuracy: Standard metric for classification
tasks, measuring the percentage of correct pre-
dictions.



* Fairness Metrics: We also adopt the met-
rics used for (Ding et al., 2024b) to quantify
disparate performance across protected sub-
groups. These metrics are widely used for
fairness research in ML:

Demographic Parity Difference (DPD):

Measures the disparity in the model’s positive
prediction rates across sensitive attribute
groups. A smaller DPD indicates that the
model assigns positive outcomes at similar
rates across these groups, reflecting a more
uniform treatment irrespective of group
membership (Agarwal et al., 2018, 2019).

Equalized Odds Difference (EOD) : Mea-
sures the disparity in the model’s true and
false positive rates across sensitive attribute
groups. A smaller EOD indicates that the
model’s overall error rate is more balanced
across groups (Das et al., 2024).

4.2 Protocol.

We evaluate our methods using a main base model:
LLaMA2-7B!. Our fairness evaluations focus on
two sensitive attributes: gender and race, us-
ing subgroup-wise metrics mentioned earlier —
accuracy, DPD, and EOD.

For FFT, the pretrained model was fine-tuned
on the combined training data from all subgroups
of the target attribute (gender or race). Evalua-
tion was then performed on the test data from each
corresponding subgroup, enabling fine-grained as-
sessment of both performance and fairness.

For LoRA, we followed the same training
and evaluation procedure as FFT. In accordance
with Ding et al. (2024b), the rank of the LoRA
adaptation modules was set to 8.

For task arithmetic, we applied a compositional
fine-tuning approach. The training data was par-
titioned by subgroup (gender or race), and FFT
was applied separately to each subgroup’s data to
produce fine-tuned models #;. From these, we com-
puted task vectors A#; relative to the base model.
These vectors were then merged using the approach
described in Eq. (1), with a single, uniform scal-
ing coefficient A applied to all vectors. \ served
as the sole hyperparameter in the merging process
and was tuned on the training data. The evaluation

"LLaMA 2 is licensed under the LLAMA 2 Community Li-
cense, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
See: https://ai.meta.com/1lama/license

metrics were computed in the same manner as for
FFT and LoRA.

Task vector coefficient adjustment. Building on
the task vector merging framework introduced in
Eq. (1), we further explore the impact of the scaling
coefficient \ on fairness outcomes. Specifically, we
vary the uniform task vector coefficient A across a
broad range (from 0.0 to 1.0 with 0.1 intervals) and
evaluate how this adjustment influences subgroup-
level fairness metrics, including accuracy, DPD,
and EOD.

Impact of worst-performing subgroup task vec-
tors on fairness and performance. To investi-
gate whether incorporating task vectors from under-
performing subgroups can improve fairness with-
out sacrificing overall performance, we first identi-
fied the lowest-performing subgroups within each
attribute based on the average of DPD and EOD
under the FFT setting. We excluded the "others"
group from this analysis as it does not reflect the
characteristics of any specific subgroup. This se-
lection was informed by both our experimental re-
sults and those reported in Ding et al. (2024b),
which showed consistent patterns. For gender, the
worst-performing subgroups were men and women;
for race, they were Asian and Native American.
We constructed a new model variant by injecting
a worst-performing subgroup task vector worst-
performing subgroup task vector into the base fine-
tuned model:

enew = QSFT + )\(eworst—performing subgroup — 90)

where A controls the strength of the task vector
injection. We varied A from from 0.0 to 1.0 at
0.2 intervals to analyze the effect of this targeted
addition on subgroup fairness metrics and overall
accuracy.

5 Results

Overview.

In Figure 1a, we compare the performance of
FFT, LoRA, and task addition across gender sub-
groups; Figure 1b presents results for race sub-
groups. For task addition, we selected A = 0.8
for gender, A = 0.5 for race, as it achieved the
highest average training accuracy across three ran-
dom seeds within the tested range A € [0.0, 1.0].
These visualizations provide a direct comparison
of subgroup-wise model behavior.
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Figure 2: Varying the task arithmetic coefficient A and comparing against FFT (purple dashed) and LoRA (orange
dashed) for macro-averaged accuracy (left), demographic parity difference (DPD, center), and equalized odds
difference (EOD, right). Evaluated on the gender subset of the data. Higher accuracy is better, while lower DPD
and EOD indicate improved fairness. As A changes, task arithmetic maintains competitive accuracy and can reduce

fairness gaps relative to the baselines.

From the subgroup-level bar plots in Figure 1,
we observe that accuracy remains consistently high
and comparable across all three adaptation meth-
ods, regardless of subgroup.

However, fairness metrics (DPD and EOD) show
notable variation across methods. The impact of
task addition on fairness is not consistent. Com-
pared to FFT, task addition improved fairness in 5
out of 7 gender subgroups and in 3 out of 8 race
subgroups. No single method yielded the best fair-
ness performance across all demographic groups.

Our experimental results closely align with the
findings reported in (Ding et al., 2024b), particu-
larly regarding the performance of FFT and LoRA
on macro-averaged accuracy, DPD, and EOD. This
consistency across demographic categories and
with prior literature reinforces the robustness of
our observations and supports the reliability of our
evaluation framework.

5.1 Controlling accuracy and fairness metrics
through lambda.

Figure 2 illustrates the overall performance of FFT,
LoRA, and task arithmetic as the scaling coeffi-
cients for task addition vary from 0.0 to 1.0. We
observe how varying the task-arithmetic coefficient
A impacts macro-averaged accuracy (left), demo-
graphic parity difference (DPD, center), and equal-
ized odds difference (EOD, right) on a gender sub-
set of the data. As A increases from 0.0 to 0.2, we
observe a peak in accuracy, but this configuration
yields higher DPD and EOD, indicating reduced
fairness. Beyond A = 0.3, accuracy remains com-
petitive compared to FFT and LoRA, while both
DPD and EOD progressively decline, suggesting
that fairness improves without severely compro-
mising performance. Notably, these task addition

curves stay consistently lower than FFT and LoRA
in terms of DPD and EOD at higher A values. Over-
all, this ablation could indicate that tuning A\ pro-
vides a practical mechanism for balancing accuracy
and fairness objectives, offering guidelines for prac-
titioners who wish to fine-tune fairness outcomes
while maintaining strong predictive performance.

5.2 Mixed trends when adding
worst-performing subgroup task vectors

To further analyze the effects of subgroup-specific
task composition, Figure 3a—3b illustrate heatmaps
where the y-axis lists each method or configuration
under evaluation: FFT as baseline, followed by task
arithmetic with varying scaling coefficients (0.0 to
1.0 with 0.2 intervals). The x-axis represents the
subgroups— (e.g., Women, Trans, etc. for Gender).
Each cell shows the corresponding performance
metric (e.g., macro-averaged accuracy, DPD, or
EQOD for a given method on a specific subgroup.
For these experiments, we added the task vector
of the worst-performing subgroups (Women and
Men for the gender dataset subset, and Asian, and
Native American for the race dataset subset) to the
FFT model, as explained earlier.

We generally observe that increasing the scal-
ing coefficient A\ tends to improve overall accu-
racy, consistent with the trends observed in Fig-
ure 2. However, the impact on fairness metrics
(DPD and EOD) is more variable. In the gender-
based plots, for example, the Asian subgroup con-
sistently achieves the highest accuracy and low-
est DPD/EOD—highlighting a recurring tradeoff
where performance gains for one group may exac-
erbate disparities for others. When the Women task
vector is added (Figure 3b), accuracy improves
for the Trans Women subgroups. However, fair-
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Figure 3: Heatmaps of Accuracy (left), DPD (center), and EOD (right) for gender (top) and race (bottom) subgroups
under the baseline FFT model (A = 0.0) and with increasing A values from 0.2 to 1.0 in 0.2 increments. The task
vector for Men was added on the gender subset (top), and the task vector for Women was added on the gender subset
(bottom). Darker cells indicate higher values on each metric’s scale; for DPD/EOD, lower values are better.

coefficient X impacts overall performance and fair-
ness, highlighting the effects of subgroup-specific
task injection. We can observe in Figure 4a that
injecting the Men task vector into the FFT model
results in a slight accuracy gain and a clear mono-
tonic decrease in both DPD and EOD as X in-
creases—indicating a favorable and consistent im-
provement in fairness on the gender subset.

However, Figure 4b and the additional plots in
Figures 10 and 11 in Appendix C.2 show more var-
ied patterns as seen on Figures 3a and 3b. When in-
jecting the Native American task vector (Figure 11),
accuracy remains stable while fairness seems to
decrease (increased DPD and EOD). Asian (Fig-
ure 10) shows the same behavior as injecting the
Men task vector (Figure 4a), positive increase of
fairness metrics as A increases.

Taken together, these results confirm that task
vector injection can shift subgroup-wise fairness
and performance, but its effects are highly group-
specific. While some subgroups (e.g., Men, Asian)
exhibit smooth fairness gains, others (e.g., Women)

ness metrics for subgroups such as Men tend to
worsen as the scaling coefficient ) increases. In
Figure 3a, injecting the Men task vector improves
performance for some subgroups, yet Women con-
sistently show lower accuracy and do not see con-
sistent fairness improvements at higher A. Some
groups (e.g., Other, Trans Men, Trans Women) be-
gin with relatively poor fairness under FFT and
show partial improvements with task vector ad-
dition. Still, these improvements are not univer-
sal—for example, the Other subgroup often retains
high EOD values regardless of . Likewise, Na-
tive American accuracy remains mostly unchanged
across A, while fairness metrics can deteriorate
when injecting task vectors for other groups.
Overall, while increasing A can improve both
accuracy and fairness for certain subgroups, these
effects are not consistent across all configurations.
To visualize these results in more detail, Fig-
ure 4a shows macro-averaged accuracy, DPD, and
EOD for the Men task vector added to the FFT
model. The plots illustrate how varying the scaling
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Figure 4: Impact of injecting both the Men and Women subgroup task vectors into the FFT model on the gender
data subset. The plot illustrates how scaling coefficient A reduces DPD and EOD, outperforming the baseline FFT
(blue dashed) and LoRA (orange dashed), with negligible impact on macro-averaged accuracy.

show erratic behavior. This reinforces our earlier
conclusion: simple task addition is not a guaran-
teed to have positive fairness influence, and more
targeted strategies are likely needed - yet the scal-
ing coefficient does show some relevant influence
in fairness metrics.

6 Conclusion and Limitations

Conclusion. In this study, we investigated the
impact of a task arithmetic approach using task
vectors on fairness, in comparison to conventional
FFT and LoRA methods. We conducted detailed
experiments to assess how the task addition affects
prediction accuracy and fairness metrics, including
the DPD and EOD across various subgroups. The
results indicate that, with appropriate settings of
the scalar coefficient ), the task arithmetic method
can improve DPD and EOD without significantly
compromising overall model accuracy. Notably,
using low to moderate values of the task vector
coefficient effectively reduced prediction bias in
minority groups compared to FFT and LoRA.
Furthermore, the task arithmetic framework al-
lows for subgroup-specific evaluation and adjust-
ment of model updates, enhancing interpretabil-
ity—a key advantage of this method in the context
of fairness. This interpretability facilitates the miti-
gation of excessive bias or adverse effects on par-

ticular groups, ultimately enabling more balanced
model training.

Limitations. Despite these promising results,
several challenges remain. The effectiveness of
task arithmetic depends on dataset characteristics
and subgroup distributions, necessitating further in-
vestigation into its generalizability across different
tasks and domains. Moreover, future work should
explore algorithms for automatically optimizing
the scalar coefficient A and for balancing trade-offs
among multiple subgroups.

In summary, our study demonstrates that task
arithmetic using task vectors offers a promising ap-
proach for controlling model fairness. Further ex-
perimental validation, application to diverse tasks,
and developing trade-off optimization methods are
essential for improving fairness in broader and
more realistic deployment scenarios.
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A Fairness metrics

A.1 Demographic Parity Difference
(DPD) (Agarwal et al., 2018, 2019)

DPD measures how varied the model’s rate of posi-
tive predictions are across attributes. This metric is
calculated as follows:

MDPD = Pr[f(X) =1 | A= 1]

“PfX)=1]A=0] @

where A is the sensitive attributes, f(X) is the
prediction from the models, and X is the feature
vector. The larger the DPD, the greater the dif-
ference in prediction outcomes across attributes,
indicating greater unfairness in the model predic-
tions.

A.2 Equalized Odds Difference (EOD) (Ding
et al., 2024b)

EOD is a metric that measures whether the model
exhibits similar predictive performance in terms of
true and false positives, regardless of the attribute.

Meoq = max { Mrp, Mgp} 3)

Here, letting Y denote the true label, M7p and
Mpp are defined as follows:

Map = ’Pr[f(X) —1|Yy=1,A=1]

—Pr[f(X)=1|Y = 1,A=0]‘, “4)

Mp = ‘Pr[f(X) —1|Y =0A4=1]
—Pr[f(X):l\Y:O,A:O]‘ )

A.3 Accuracy Parity

Accuracy parity refers to the expectation that a clas-
sifier achieves comparable accuracy across differ-
ent sensitive attribute groups. Formally, accuracy
parity is satisfied when the probability of correct
classification is equal across groups, i.e.,

EY=Y|S=0=EY =Y |S=1) (6)

This notion of fairness ensures that all subgroups
receive equally reliable predictions, and is partic-
ularly relevant in applications where consistent
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model performance across demographics is crit-
ical. Unlike statistical parity or equal opportunity,
accuracy parity focuses on equal overall correct-
ness rather than specific error types or outcome
rates (Quan et al., 2023).

We observed high degree of accuracy parity
in both gender and race settings, as the accuracy
differences between subgroups are negligible, indi-
cating that the model performs consistently across
all groups.

B Experimental details

B.1 Computational Resources and Software
Environment

Hardware and Software: All experiments pre-
sented in this study were performed using com-
putational resources equipped with two NVIDIA
H100 GPUs. The experiments leveraged a GPU
environment consisting of CUDA 12.1.0, cuDNN
9.0.0, and NCCL 2.20.5 .

The experiments were conducted using Python
3.9.18, incorporating several essential Python li-
braries specifically optimized for deep learning
tasks. The primary libraries included PyTorch (ver-
sion 2.6.0), transformers (version 4.49.0), tokeniz-
ers (version 0.21.1), DeepSpeed (version 0.16.4),
and Accelerate (version 1.5.2).

The training experiments utilized the DeepSpeed
framework with the following key configurations:
a gradient accumulation step of 4, optimizer of-
floaded to the CPU, zero redundancy optimizer at
stage 2 (ZeRO-2), and mixed precision training
employing FP16 and BF16 for enhanced perfor-
mance and memory efficiency. All experiments
were conducted with a total computational cost of
approximately 30 GPU-hours.

Protocol: We fine-tuned models based on the
Llama-7B (Touvron et al., 2023) architecture ob-
tained via HuggingFace repositories.

Each model was trained for 4 epochs, employing a
cosine learning rate scheduler with a learning rate
of 1 x 1075, a warm-up ratio of 0.01, and a weight
decay of 0.001. Training utilized a per-device batch
size of 2, with an effective batch size of 16 achieved
through gradient accumulation. Reproducibility
was ensured by setting a random seed of 13, 14, 15
across all experiments.

For Low-Rank Adaptation (LoRA) experiments
were conducted with a rank (lora_r) of 8, scaling
factor (lora_alpha) of 16, and no dropout.



B.2 Dataset

We use the Berkeley D-Lab hatespeech detection
dataset (Kennedy et al., 2020b) 2 for our experi-
ments. The dataset is divided into subgroups based
on the following attributes: Race or Ethnicity, Reli-
gion, National Origin or Citizenship Status, Gen-
der Identity, Sexual Orientation, Age and Disability
Status. In our study, we use some of these sub-
groups to evaluate fairness.

Following (Das et al., 2024), we binarize the hate
speech score associated with each review using a
threshold of 0.5 to determine whether the review
constitutes hate speech. When multiple annotations
exist for the same instance, we obtain one human
annotation to avoid duplication.

C Additional Results

Here, we present results focusing on diverse sub-
groups, which we could not include in the main
paper due to space constraints.

C.1 Comparison of FFT, LoRA, and Task
Arithmetic

Figure 7 illustrates the overall performance of FFT,
LoRA, and task arithmetic as the scaling for task
arithmetic vary from 0.0 to 1.0. Trends observed
reinforced results on the gender subset on Figure 2.
Overall, A provides a practical mechanism for bal-
ancing accuracy and fairness objectives, and simi-
larly there is a peak at A = 0.2 for highest accuracy,
and higher DPD and EOD (less fairness).

2h'ctps ://huggingface.co/datasets/
ucberkeley-dlab/measuring-hate-speech
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C.2 Subgroup-Specific Task Addition to FFT

We include additional heatmaps that visualize
subgroup-wise performance across FFT and vary-
ing scaling coefficients for the FFT model injected
with a worst-performing subgroup. These supple-
mentary plots, which follow the same setup de-
scribed earlier, are consistent with the trends ob-
served in Figures 3a—3b.

In both gender and race subgroup experiments,
increasing the scaling coefficient A generally leads
to improved macro-averaged accuracy. However,
its impact on fairness metrics—DPD and EOD—is
less predictable and varies across subgroups. For in-
stance, some subgroups benefit from improved fair-
ness as their corresponding task vectors are added,
while others experience increased disparity, even if
accuracy remains stable or improves.

This nuanced behavior reflects a broader pattern:
gains in performance for certain subgroups can
sometimes come at the expense of fairness for oth-
ers. Injecting task vectors from worst-performing
subgroups does not consistently reduce disparities
and, in some cases, can amplify them.

Figures 11-4b present additional results for
the Full+Worst configuration, in which task vec-
tors from the worst-performing subgroups (Native
American, Asian, Men, and Women) are added to
the FFT model. These plots show macro-averaged
accuracy, DPD, and EOD as a function of the scal-
ing coefficient \.

Across these figures, we observe mixed effects:
while accuracy generally remains stable or im-
proves slightly, fairness outcomes vary by sub-
group. In Figure 11, DPD and EOD worsen despite
minimal accuracy changes. Meanwhile, Figure 4b
reveals stable performance with minor fairness im-
provements, though gains are not consistent across
metrics. These results further emphasize that task
vector injection alone does not ensure universal fair-
ness improvements and often introduces subgroup-
specific trade-offs.


https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
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Figure 5: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized odds difference
(EOD) for —FFT, LoRA, and task addition with coefficient (A = 0.8) —evaluated on the gender subset of the
data. Higher accuracy is desirable, whereas lower DPD and EOD values indicate improved fairness. Boxplots show
medians, interquartile ranges, and variability (with standard error across three seeds). While accuracy is similar
across methods, Task Addition generally yields lower DPD and EOD medians than FFT and LoRA, suggesting a
better balance between performance and fairness, though overlapping distributions imply these differences are not

uniformly significant.
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Figure 6: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized odds difference
(EOD) for —FFT, LoRA, and Task Addition with optimal coefficient (A = 0.5) —evaluated on the race subset of
the data. Higher accuracy is desirable, whereas lower DPD and EOD values indicate improved fairness. Boxplots
show medians, interquartile ranges, and variability (with standard error across three seeds).
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to 1.0). Darker cells indicate higher values in each metric’s scale; for DPD/EOD, lower is better.
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Figure 11: Results of injecting the Native American task vector into the FFT model. Accuracy shows minimal
change across A, while DPD and EOD increase (worsen fairness).
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