
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BRIDGING LOTTERY TICKET AND GROKKING: UNDER-
STANDING GROKKING FROM INNER STRUCTURE OF
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Grokking is the intriguing phenomenon of delayed generalization: networks ini-
tially memorize training data with perfect accuracy but poor generalization, then
transition to a generalizing solution with continued training. While reasons for this
delayed generalization, such as weight norms and sparsity, have been discussed,
the influence of network structure, particularly the role of subnetworks, remains
underexplored. In this work, we link the grokking phenomenon to the lottery ticket
hypothesis to investigate the impact of inner network structures. We demonstrate
that using lottery tickets obtained at the generalizing phase (termed ‘grokking
tickets’) significantly reduces delayed generalization on various tasks, including
multiple modular arithmetic, polynomial regression, sparse parity, and MNIST.
Through a series of controlled experiments, our findings reveal that neither small
weight norms nor sparsity alone account for the reduction of delayed generalization;
instead, the presence of a good subnetwork structure is crucial. Analyzing the
transition from memorization to generalization, we observe that rapid changes
in subnetwork structures, measured by the Jaccard distance, correlate strongly
with improvements in test accuracy. We further show that pruning techniques
can accelerate the grokking process, transforming a memorizing network into a
generalizing one without updating the weights. Finally, we confirm the emergence
of periodic inner-structures, indicating that the model discovers internally good
structures (generalizing structures) suited for the task.

1 INTRODUCTION

Understanding the mechanism of generalization is a central question in understanding the efficacy
of neural networks. Recently, Power et al. (2022) unveiled the intriguing phenomenon of delayed
generalization (grokking); neural networks initially attain a memorizing network Cmem with the perfect
training accuracy but poor generalization, yet further training transitions the solution to a generalizing
network Cgen. This phenomenon, which contradicts standard machine learning expectations, is
being studied to answer the question: what underlies the transition between memorization and
generalization? (Liu et al., 2022; 2023a)

Regarding the relationship between generalization and deep learning in general, it is well known
that structure of networks significantly impacts generalization performance. For instance, image
recognition performance has greatly improved by leveraging the structure of convolution (Krizhevsky
et al., 2012). Moreover, as shown in Neyshabur (2020), incorporating β-Lasso regularization into fully
connected MLPs facilitates the emergence of locality—resembling the structures in CNNs—leading
to improved performance in image tasks. From a slightly different perspective, Frankle & Carbin
(2019) proposed the lottery ticket hypothesis (LTH), which suggests that good subnetworks (good
structure) help to achieve better performance with better sample efficiency (Zhang et al., 2021). Also,
Ramanujan et al. (2020) shows that exploring structures alone can achieve performance comparable
to weight updates, suggesting that good subnetworks are enough to achieve generalized performance.

While the importance of structure is well known in general, its connection to the phenomenon of
grokking has not been investigated enough. Similar to our study, several prior works connect the
grokking phenomenon to the property of networks, e.g., weight norm and sparsity of networks. For

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0

0.5

1

Ac
cu

ra
cy

Training Steps

0

0.5

1

Ac
cu

ra
cy

Training Steps

(a) Dense network

(b) Lottery Ticket (Good Subnetworks)

Delayed
generalization

No delay!!

■Observation: Lottery ticket
eliminates delayed generalization

■What happen during delayed
generalization?

Hypothesis 1: Reducing norm

Hypothesis 2: Finding good structure
Train Test

0

0.5

1

Ac
cu

ra
cy

Training Steps

0

0.5

1

Ac
cu

ra
cy

Training Steps

(a) Dense network

(b) Lottery Ticket (Good Subnetworks)

Delayed
generalization

Delay is
reduced!!

■Observation (sec 3): Lottery ticket
significantly reduces delayed generalization

■What happen during delayed generalization?
Why LT reduce delayed generalization?

H1 [Liu+]:
Reducing

weight norm

H2 [Merrill+]:
Reducing
Sparsity

Train Test

H3 (Ours):
Finding good
structure

𝐶𝑔 𝑒𝑛

smaller 𝜽 2

𝐶𝑚𝑒 𝑚

𝐶𝑔 𝑒𝑛

smaller 𝜽 0

𝐶𝑚𝑒 𝑚

𝐶𝑔 𝑒𝑛

𝐶𝑚𝑒 𝑚

bettr structure

Experiments: sec 4: controlled experiments, sec 5.1
Progress measure using H3, sec 5.2 pruning as force
to grokking, and sec 5.3 link to good representation

Figure 1: (Left) Accuracy of dense model and the lottery ticket obtained at generalizing solu-
tion (grokking ticket). When using a lottery ticket (good subnetworks), the train and test accuracy
increase almost similarly, i.e., the time from memorization (tmem) to generalization (tgen) has sig-
nificantly accelerated. Note that not only the subtraction (tgen − tmem) but the ratio (tgen/tmem) is
also significantly improved, meaning that it’s not just a matter of faster learning. (Right) Three
hypotheses on why delayed generalization is reduced with a lottery ticket. We show that it is not due
to a reduction in weight norm or an increase in sparsity, but rather the discovery of good structure.

example, Liu et al. (2023a) experimentally confirmed that generalizing solutions have smaller norms
compared to memorizing solutions. The original paper (Power et al., 2022) showed that adding
weight decay during training is necessary for triggering grokking. However, our work differs from
these works by discussing the relationship between the process of discovering good structures (i.e.,
subnetworks) and grokking rather than merely reducing the weight norm.

To investigate the role of structure in the grokking phenomenon, we first demonstrate that when
using the lottery ticket obtained at generalizing solution (referred to as grokking tickets), delayed
generalization is significantly reduced. Figure 1 (left) illustrates that the train and test accuracy
increase almost simultaneously with grokking tickets, unlike randomly initialized dense networks
where delayed generalization occurs. As will be shown later, this result is related to the pruning rate,
with proper pruning rates resulting in less delay. We conducted further experiments from several
perspectives to understand why delayed generalization is significantly reduced with grokking tickets.
First, as illustrated in Figure 1 (right), we decompose the differences between the grokking ticket
and a randomly initialized dense network into three elements: (1) small weight norms, (2) sparsity
and (3) good structure. We investigate which of these elements contribute to the significant reduction
of delayed generalization. For (1) weight norms, we find that dense networks with the same initial
weight norms as the grokking ticket do not generalize faster, indicating weight norm is not the cause.
For (2) sparsity, networks with the same parameter size using well-known pruning methods (Wang
et al., 2019; Lee et al., 2019; Tanaka et al., 2020) also do not generalize faster, indicating sparsity is
not the cause. These results suggest that (3) good structure is essential for understanding grokking.

Subsequently, based on the above results, we analyze whether good structure exploration truly occurs
during the transition phase. Using the jaccard distance (Paganini & Forde, 2020) as the metric
of structural distance, we show that the structure of the subnetwork is rapidly changing during
the transition between memorization and generalization. Furthermore, based on these results that
structure exploration is crucial for generalization performance, we demonstrate that pruning facilitates
generalization. We employ the edge-popup algorithm (Ramanujan et al., 2020), which finds a good
structure while keeping the weights unchanged and demonstrates that the memorizing network can
be transferred to the generalizing network through pruning without weight updates. Finally, we
analyzed the specific network structure exhibited by the grokking ticket. In the task of Modular
Addition, it is known that generalization performance improves when the network acquires periodic
representations (Nanda et al., 2023; Liu et al., 2022; Pearce et al., 2023). By examining the weights
of the grokking ticket, we observed that they also exhibit periodic representations, indicating that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the grokking ticket has acquired a periodic structure. This finding suggests that the model discovers
internally good structures (generalizing structures) suited for the task.

In summary, our contributions are below:

• By linking lottery tickets and grokking, we first investigate the role of inner structure
(subnetworks) in the grokking process. Our results show that using the lottery ticket
significantly reduces the occurrence of delayed generalization.

• By decoupling the potential effect of lottery tickets into 1) weight norm, 2) sparsity, and 3)
good structure and designing a set of controlled experiments (section 4), we further discuss
why lottery tickets reduces the delayed generalization.

• We show that the change of inner structure (subnetworks obtained by the magnitude pruning)
highly correlates with the change in test accuracy (section 5.1). We also show that pruning
during training also accelerates the grokking process, and the memorizing solution can be
transformed into a generalizing solution with only pruning (section 5.2).

• We show the grokking ticket has acquired a periodic structure, which implies that model has
adapted to the task by learning a structure that facilitates generalization.

2 BACKGROUND

Grokking is a phenomenon where generalization happens long after overfitting the training data
(as shown in Figure 1 (left)). The phenomenon was initially observed in the modular addition task
((a + b) mod p for a, b ∈ (0, · · · , p − 1)), and the same phenomenon has been observed in more
complex datasets, encompassing modular arithmetic (Gromov, 2023; Davies et al., 2023; Rubin
et al., 2023; Stander et al., 2023; Furuta et al., 2024), semantic analysis (Liu et al., 2023a), n-k
parity (Merrill et al., 2023), polynomial regression (Kumar et al., 2023), hierarchical task (Murty
et al., 2023) and image classification (Liu et al., 2023a; Radhakrishnan et al., 2022). This paper
mainly focuses on grokking in the modular arithmetic tasks commonly used in prior studies.

To understand grokking, previous works proposed possible explanations, including the slingshot
mechanism (Thilak et al., 2022), random walk among minimizers (Millidge, 2022), formulation of
good representation (Liu et al., 2022), the scale of weight norm (Liu et al., 2023a; Varma et al., 2023),
simplicity of Fourier features (Nanda et al., 2023) and sparsity of generalizing network (Miller et al.,
2023). Among those, one of the dominant explanations regarding how the network changes during
the process of grokking are the simplicity of the generalization solution, particularly focusing on
the weight norms of network parameters ∥θ∥2. For example, the original paper (Power et al., 2022)
posited that weight decay plays a pivotal role in grokking, i.e., test accuracy will not increase without
weight decay. Liu et al. (2023a) analyzed the loss landscapes of train and test dataset, verifying that
grokking occurs by entering the generalization zone defined by L2 norm, with models having large
initial values θ0. More recently, Varma et al. (2023) demonstrated that the generalization solution
could produce higher logits with smaller weight norms. In this paper, we examine the changes in
the network’s structure and demonstrate that the network is not simply decreasing its overall weight
norms but searching for good structures within itself.

Several studies have proposed that acquiring good representations is the key to understanding
grokking. For example, Power et al. (2022); Liu et al. (2022) explained that the topology of the ideal
embeddings tends to be circles or cylinders within the context of modular addition tasks. Nanda
et al. (2023) identified the trigonometric algorithm by which the networks solve modular addition
after grokking and showed that it grows smoothly over training. Gromov (2023) showed an analytic
solution for the representations when learning modular addition with MLP. Zhong et al. (2023) show,
using modular addition as a prototypical problem, that algorithm discovery in neural networks is
sometimes more complex. These studies support the quality of representation as key to distinguishing
memorizing and generalizing networks; however, these studies do not explain what is happening
within the network’s structure.

The lottery ticket hypothesis proposed by Frankle & Carbin (2019) has garnered attention as an
explanation for why over-parameterized neural networks exhibit generalization capabilities (Allen-
Zhu et al., 2019). Informally, the lottery ticket hypothesis states that randomly initialized over-
parameterized networks include sparse subnetworks that reach good performance after train, and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the existence of the subnetworks is key to achieving good generalization in deep neural networks.
This claim was initially demonstrated experimentally, but theoretical foundations have also been
established (Frankle et al., 2020; Sakamoto & Sato, 2022). More formally, the process involves the
following steps:

1. Initialize dense network fθ0 and train the network for t epochs to obtain the weights θt

2. Perform k% pruning on the trained network based on absolute values |θt|. This process,
known as magnitude pruning, yields a mask mk

t ∈ {0, 1}|θt|.

3. Reset the weights of the network to their initial values. θ0 and get a subnetwork fθ0⊙mk
t
,

representing lottery ticket. Train the subnetwork for t′ epochs and obtain fθ′
t′
⊙mk

t
.

After the discovery of the lottery tickets, Ramanujan et al. (2020) show that there exist strong
lottery tickets, which achieve good performance without weight update. They use the edge-popup
algorithm (Ramanujan et al., 2020) to selects subnetworks based on a score s (s ∈ R|θ0|). In other
words, when pruning a certain proportion k of weights from the given weights θ0, the model predicts
using edges with the top (1− k) scores in a forward pass. For a detailed description of edge-popup,
refer to Appendix H. In section 5, we use the edge-popup algorithm to check if pruning can be
worked as a force to accelerate the grokking process.

3 LOTTERY TICKETS SIGNIFICANTLY REDUCES DELAYED GENERALIZATION

3.1 EXPERIMENT SETUP

Following (Power et al., 2022) and other grokking literatures (Nakkiran et al., 2019; Liu et al., 2022;
Gromov, 2023; Liu et al., 2023a), we constructed a dataset of equations of the form: (a+ b)%p = c.
The task involves predicting c given a pair of a and b. Our setup uses the following detailed
configurations: p = 67, 0 ≤ a, b, c < p. The dataset size is 2211, considering all possible pairs where
a ≥ b. We split it into training (40%) and test (60%) following (Liu et al., 2022).

Following Liu et al. (2022), we design the MLP as follows. Firstly, we map the one-hot encoding of
a, b with the embedding weights Wemb: Ea = Wemba,Eb = Wembb. We then feed the embeddings
Ea and Eb into the MLP as follows:

softmax(σ((Ea +Eb)Win)WoutWunemb) (1)

where Wemb, Win, Wout, and Wunemb are the trainable parameters, and σ is an activation function
ReLU (Nair & Hinton, 2010). The dimension of the embedding space is 500, and Win projects into
48-dimensional neurons. Following (Nanda et al., 2023), we used the AdamW optimizer (Loshchilov
& Hutter, 2019) with a learning rate 10−3, the weighting of weight decay α = 1.0, β1 = 0.9, and
β2 = 0.98. We initialize weights as θ0 ∼ N (0, κ/

√
din), where din represents the dimensionality

of the layer preceding each weight. If nothing is specified, assume κ = 1. Let us assume we
have training datasets Strain and test datasets Stest, and train a neural network f(x;θ) where x is an
input and θ represents weight parameters of the networks. Specifically, the network is trained using
AdamW over a cross-entropy loss and weight decay (L2 norm of weights ∥θ∥2):

argmin
θ

E(x,y)∼S

[
L(f(x;θ), y) + α

2
∥θ∥2

]
.

To quantitatively measure how much-delayed generalization is reduced, we define tmem as the step at
which the training accuracy exceeds P%, and tgen as the step at which the test accuracy exceeds P%.
Following Kumar et al. (2024), we use P = 95 for modular arithmetic tasks. We use the proposition
(τgrok = tgen/tmem) to measure the acceleration.

We compared the performance of 1) dense networks fθt′
and 2) trained lottery tickets fθ′

t′
⊙mk

t
,

where t′ is a training epoch to get the final score, t is timing of pruning, and k is a pruning ratio. As a
special case, when t ≥ tgen, we denote the subnetworks as grokking tickets. We tested various t and
k and investigated how they change the generalization speed. By default, we used k = 0.6.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Base model (test)
Base model (train)
Grokking tickets (test)
Grokking tickets (train)

(a) Modular Addition with MLP

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Base model (test)
Base model (train)
Grokking ticket (test)
Grokking ticket (train)

(b) Modular Addition with Transformer

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

a− b
a× b
a2 + b 2

Base model
Grokking tickets

(c) Modular Arithmetic with MLP

100 101 102 103 104

Epochs
0.0

0.5

1.0

1.5

2.0

M
SE

Base model (test)
Base model (train)
Grokking tickets (test)
Grokking tickets (train)

(d) Polynominal Regression with MLP

100 101 102
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Base model (train)
Base model (test)
Grokking tickets (train)
Grokking tickets (test)

(e) Accuracy on Sparse Parity with MLP

Figure 2: Comparing the grokking speed of dense networks and grokking tickets on various setups.
(a) Modular addition with MLP, (b) Modular addition with Transformer, and (c) Other modular
arithmetic tasks (represented by color) and experiments other than modular arithmetic: (d) loss
on polynomial regression, (e) accuracy on sparse parity. The dashed line represents the accuracy
of the base model, and the solid line represents that of grokking tickets. In all setups, the time to
generalization (tgen) is reduced by grokking tickets.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning rate

101

102

gr
ok

4.2663.629
5.0995.446

11.525

20.214

51.322

105.667

245.674

(a) Pruning rate and τgrok(log-scaled)

0 100 200 300 400 500
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
un

in
g

Ra
te

(b) Training accuracy with different pruning rate

Figure 3: Quantitative comparison of grokking speed among different pruning rates. Note that
pruning rate = 0.0 corresponds to the dense network. The definition of the τgrok is explained in
subsection 3.1

3.2 RESULTS

Figure 2-(a) shows the test accuracy of the grokking ticket and the base model on the modular addition
task. The base model refers to a dense model trained from random initial values. The grokking
ticket shows an improvement in test accuracy at nearly the same time as the improvement in training
accuracy of the base model. In Figure 2-(b), using experiments with transformers, the result also
shows that grokking tickets result in less delay of generalization. Following Power et al. (2022), we
conducted experiments on various modular arithmetic tasks to demonstrate the elimination of delayed
generalization. Figure 2-(c) shows a comparison of the base model (dashed line) and grokking ticket
(solid line) with various modular arithmetic tasks. Moreover, following Kumar et al. (2023); Pearce
et al. (2023), we also demonstrate that delayed generalization is reduced by the grokking ticket in both
the polynomial regression and sparse parity tasks in Figure 2-(d,e). The results show that grokking
tickets significantly reduced delayed generalization even on various tasks. See Appendix B for a
detailed explanation of the experimental setup.

Figure 3-(a) quantify the relationship between pruning rate and τgrok = tgen/tmem (log-scaled). When
the pruning rate is 0.7, τgrok reaches its minimum, indicating that grokking ticket significantly reduce
delayed generalization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Lottery ticket
Base model 2k

10k

20k

30k

Ep
oc

h
t a

t p
ru

ni
ng

 ti
m

in
g

(a) Different pruning timing t: mk
t

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Grokking ticket
Base model 0.1

0.3

0.5

0.7

0.9

Pr
un

in
g

ra
te

(b) Different pruning rate k: mk
t

Figure 4: (a) Comparison of the test accuracy of different epoch t in which lottery tickets are acquired.
We conducted every 2k epochs. The lottery tickets obtained before 25k epochs (non-grokking tickets)
do not fully generalize. Additionally, this generalization ability corresponds to the test accuracy of
the base model. The lottery tickets obtained after 25k epochs (grokking tickets) reduced delayed
generalization. (b) The effect of pruning rate k on grokking tickets. We conducted every 0.2 pruning
rate. Most pruning ratios (0.1, 0.3, 0.5, and 0.7) accelerate the generalization, indicating that the
above observation does not depend heavily on the selection of the pruning ratio.

Note that, as shown in Figure 3-(b), the tmem is delayed when using a higher pruning rate, meaning
that grokking tickets the grokking ticket are not simply accelerating the entire learning process but
specifically speeding up the transition from memorization to generalization.

In Figure 4-(a), we compare the test accuracy of different epoch t in which lottery tickets are acquired.
The results show that lottery tickets obtained before 25k epochs (non-grokking tickets) do not fully
generalize. Additionally, this generalization ability corresponds to the test accuracy of the base
model. On the other hand, lottery tickets obtained after 25k epochs (grokking tickets) get perfect
generalization and reduce delayed generalization. In Figure 4-(b), we investigate the effects of
pruning rate in grokking ticket, indicating if it’s too large (e.g., 0.9), it can’t generalize; if it’s too
small (e.g., 0.3), it doesn’t generalize quickly enough.

4 DECOUPLING LOTTERY TICKETS: NORM, SPARSITY, AND STRUCTURE

Figure 2 indicates that grokking ticket facilitates generalization. To better understand the inner
workings, we decouple the potential benefits of lottery tickets into (1) small weight norms, (2) higher
sparsity, and (3) good structure, as shown in Figure 1 (right). We conduct a series of controlled
experiments using a grokking ticket to decouple each effect. Firstly, we find that dense networks with
the same initial weight norms as the grokking ticket do not generalize faster. Additionally, compared
to networks with the same sparsity as grokking tickets, we show mere sparsity also does not promote
generalization. These results indicate that the reason why lottery tickets significantly accelerate the
generalization process is better attributed to the structure of networks, rather than small weight
norm and sparsity.

4.1 CONTROLLING WEIGHT NORM OF INITIAL NETWORK

Liu et al. (2023a); Varma et al. (2023) stated that the norm of a network’s weights is a key factor for
grokking. Liu et al. (2023a) assert that grokking occurs norm of the weights enter the ‘Generalized
zone’ (Fort & Scherlis, 2018) through regularization. To investigate whether the weight norm or the
good structure are more plausible explanations of delayed generalization, we prepared two dense
models with the same L2 and L1 norms as the grokking ticket, named the ‘controlled dense model.’
Such dense models are obtained through the following process:

1. Obtain lottery tickets after full generalization mk
tgen

.

2. Get weight Lp norm ratio rp =
∥θ0⊙mk

tgen∥p

∥θ0∥p

3. Create weights θ0 · rp with the same Lp norm as the grokking ticket.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Base model (test)
Base model (train)
Grokking tickets
Controlled dense (L1)
Controlled dense (L2)

(a) Controlling initial weight norms (L1 and L2)

0 10000 20000 30000 40000 50000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Base model
Grokking tickets
SNIP
Grasp
Synflow
Random

(b) Controlling sparsity w/ pruning at initialization

Figure 5: (a) Test accuracy dynamics of the base model, grokking ticket, and controlled dense
model (L1 norm and L2 norm). The grokking ticket reaches generalization much faster than other
models. (b) Comparing test accuracy of the different pruning methods. All PaI methods perform
worse than the base model or, in some cases, perform worse than the random pruning. These results
indicate neither the weight norm nor the sparsity alone is the cause of delayed generalization.

0 5000 10000 15000 20000 25000 30000
Epoch

10

15

20

25

L2
 n

or
m

Generalized zone

L2 norm

0 5000 10000 15000 20000 25000 30000
Epoch

1000

2000

3000

4000

L1
 n

or
m

L1 norm

Base model (test) Grokking tickets Controlled dense (L1 norm) Controlled dense (L2 norm)

Figure 6: (Left) L2 norm dynamics of the base model, grokking ticket, and controlled dense model.
(Right) L1 norm dynamics of the base model, grokking ticket, and controlled dense models. From the
perspective of the L2 norm, all models appear to converge to a similar solution (Generalized zone).
However, from the perspective of L1 norms, they converge to different values.

Figure 5-(a) shows the test accuracy of the base model, grokking ticket, and controlled dense models.
Despite having the same initial weight norms, the grokking ticket arrives at generalization much faster
than both controlled dense models. This result indicates that the delayed increase in test accuracy is
attributable not to the weight norms but to the discovery of good structure. The left of the Figure 6
shows the dynamics of the L2 norms for each model. Similar to Liu et al. (2023b), L2 norms decrease
in correspondence with the rise in test accuracy, converging towards a ‘Generalized zone’. However,
as shown on the right side of the Figure 6, the final convergence points of the L1 norms vary for
each model. This phenomenon of having similar L2 norms but smaller L1 norms suggests that good
subnetwork (grokking ticket) weights become stronger, as indicated in Miller et al. (2023). Similar
results have also been observed in Transformer (Figure 15). These results demonstrate that the weight
norm itself is insufficient to explain grokking.

4.2 CONTROLLING SPARSITY

In subsection 4.1, we show the discovery of good structure (sparse network) is a more critical factor
than weight norm in explaining the delayed generalization. However, it raises questions about
whether sparse models are crucial for grokking or grokking tickets possess good properties beyond
mere sparsity. In this section, using various pruning methods, we show that mere sparsity is also
insufficient for the explanation of delayed generalization. We compared the grokking ticket with
subnetworks that had the same level of sparsity but were identified using different pruning methods.
Specifically, we tested three well-known pruning at initialization (PaI) methods (Grasp (Wang et al.,
2020), SNIP (Lee et al., 2019), and Synflow (Tanaka et al., 2020)) and random pruning as baseline
methods. For details on each of the pruning methods, refer to the section Appendix G. Figure 5-(b)
compare the transition of the test accuracy of these PaI methods and the grokking ticket. The results
show that all PaI methods perform worse than the base model or, in some cases, perform worse than

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5000 10000 15000 20000 25000

Epoch
0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
cc

ur
ac

y
ch

an
ge

Wemb

5000 10000 15000 20000 25000

Epoch
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Winproj

5000 10000 15000 20000 25000

Epoch
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Woutproj

5000 10000 15000 20000 25000

Epoch
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Wunemb

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

di
st

an
ce

 c
ha

ng
e

Jaccard Distance Test Accuracy change

Figure 7: Comparison of jaccard distance (red) and changes in test accuracy (green) on each layer.
The jaccard distance is represented as JD(t+ δt, t), and the test accuracy change is the difference
between epoch t+ δt and t. The vertical line marks the most drastic change in test accuracy. When
there is a significant change in test accuracy, the jaccard distance (structural change) increases rapidly.

the random pruning. The results show that poor selection of the subnetworks hurts the generalization,
suggesting that the grokking ticket holds good properties beyond just a sparsity.

5 UNDERSTANDING GROKKING FROM INNER STRUCTURE OF NETWORKS

In section 4, we demonstrate that weight norm and sparsity are insufficient as an explanation for
delayed generalization and suggest that the reason why lottery tickets significantly reduce delayed
generalization can be better attributed to the structure of subnetworks. Questions are: (1) How is the
good property of subnetworks acquired during training? How does it correspond to the mystery of
the delayed generalization? (2) Can we accelerate grokking using pruning during traning? (3) How
does the inner structure perspective correspond to the good representations discussed in prior work?

5.1 PROGRESS MEASURE: STRUCTURAL SHIFT CAPTURE THE GENERALIZATION TIMING

In this section, we conduct a more rigorous analysis of how the good structure is acquired, and
we show that the discovery of the good structure corresponds to an improvement in test accuracy.
Firstly, we propose a metric of structural changes in the network, named jaccard Distance (JD) using
approach Paganini & Forde (2020); Jaccard (1901). We measure the jaccard distance between the
mask at epoch t+ δt and t.

JD(mt+δt,mt) = 1− |mt+δt ∩mt|
|mt+δt ∪mt|

mt represents a mask obtained at t epoch via magnitude pruning and δt is 2k epoch. If the two
structures differ, this metric is close to 1 and vice versa. Test accuracy change is also represented as a
difference between test accuracy at epoch t+ δt and t. In Figure 7, the red line represents the results
of the changes in test accuracy and jaccard distance between the mask at epoch t+ δt and t on each
layer. The results show that during significant changes in test accuracy (16k-20k), the maximum
change in the mask corresponds, indicating that the discovery of good structure corresponds to an
improvement in test accuracy. In the Appendix C, we demonstrate that similar results are obtained
for both the polynomial regression and sparse parity tasks.

5.2 PRUNING DURING TRAINING: PRUNING PROMOTE GENERALIZATION

Based on the result that the discovery of a good structure corresponds to an improvement in test
accuracy, we demonstrate that pruning alone can transition from memorizing solutions to generalizing
solutions without weight update, and furthermore, the combination of pruning and weight decay
promotes generalization more effectively than mere regularization of weight norms.

To verify this, we introduce edge-popup (Ramanujan et al., 2020), a method that learns how
to prune weights without weight updates. In edge-popup, each weight is assigned a score, and
these scores are updated through backpropagation to determine which weights to prune. For details
regarding edge-popup, refer to the Appendix H. We validate our claim by optimizing using three
different methods.

WD : Training from θmem using Weight Decay with weight update (same as base model).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy changes with different optimization methods starting from memorized solutions.
WD (Weight Decay) reflects the regularization effect of weight decay, using the same optimization
as the base model. In EP w/o WD (Edge-Popup without Weight Decay), accuracy improves solely
through pruning, without weight updates. Combining pruning with weight decay in EP w/ WD results
in faster generalization than weight decay alone.

Epoch 600 1000 1400 2000
WD 0.53± 0.31 0.95± 0.03 1.00± 0.00 1.00± 0.00

EP w/o WD 0.68± 0.19 0.80± 0.17 0.84± 0.16 0.92± 0.06
EP w/ WD 0.82± 0.04 0.96± 0.01 0.99± 0.00 1.00± 0.00

Base model, 0k Base model, 2k Base model, 30k

Grokking ticket, 30kGrokking ticket, 2kGrokking ticket, 0k

3.2

3.25

3.3

3.35

3.4

3.45

0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y
En

tr
op

y

Ac
cu

ra
cy

Training Steps

Test Accuracy (Dense)

Test Acc (LT)

FE (Dense)

FE (LT)

Base model, 0k Base model, 2k Base model, 30k

Grokking ticket, 30kGrokking ticket, 2kGrokking ticket, 0k

Figure 8: (top) Frequency entropy (FE) and test accuracy of the base model and the grokking ticket.
The grokking ticket converges to a smaller frequency entropy much faster than the base model.
(bottom) The transition of the input-side weights for each neuron of the base model and grokking
ticket. The marks correspond to the epochs of the marks in FE dynamics. The results indicate that
grokking tickets acquire good structures for generalization as periodic structures.

EP w/o WD : Training from θmem using Edge-Popup without weight update.
EP w/ WD : Training from θmem using Edge-Popup and Weight Decay with weight update.

In Table 1, the result in EP w/o WD shows the network exhibits a generalizing performance (0.92)
without any change in weights (merely by pruning weights). Additionally, the EP w/ WD result shows
the fastest improvement in test accuracy and is the most effective in promoting generalization. These
insights suggest that practitioners may improve generalization by incorporating methods that directly
optimize beneficial structures rather than solely relying on traditional regularization techniques like
weight decay. Our findings highlight the potential of grokking tickets to inform the development of
new, structure-oriented regularization techniques.

5.3 ACQUISITION OF GOOD STRUCTURES AS PERIODIC STRUCTURES

The previous study (Pearce et al., 2023; Nanda et al., 2023) shows that models acquire periodic
representations when generalizing in Modular Addition (see details in Appendix L). In this section,
following prior research, we examine what kind of structure is acquired by grokking tickets. Our
analysis of the network weights after generalization reveals a clear periodicity (see the Base model
at 30k steps in Figure 8 (bottom)). Notably, grokking tickets develop this periodic structure much
earlier than the base model (see the Grokking ticket at 2k steps in Figure 8 (bottom)). This finding
highlights that grokking tickets acquire a task-adaptive structure. To quantify this periodicity as
a good structure, we introduce Fourier Entropy (FE) as follows. In general, the discrete Fourier
transform F(ω) of a function f(x) is defined as follows:

F(ω) =
N∑

x=0

f(x) exp

(
−i2πωx

N

)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In this case, since we want to know the periodicity of each neuron’s weights, f(x) is the weight of
the i-th neuron on the j-th input, and d is the dimension of the input. Then, the Fourier Entropy is
calculated as follows:

FE = −
n∑

i=1

pi log pi

Here, pi is the normalized value of F(ω), and n represents a number of neurons. A low value of
FE indicates that the frequency of the weights of each neuron has little variation, converging to
specific frequencies, which shows that the network has acquired task-adaptive structure.

Figure 8 (top) shows the FE of the base model (green) and grokking ticket (blue). The results
show that the grokking ticket has neurons with periodic structure at an early stage (2k epochs) and
exhibits a rapid decrease in FE in the early epoch. This indicates that the model discovers internally
good structures (generalizing structures) suited for the task (Modular Addition). To provide a more
detailed analysis, we have added visualizations of the weight matrices and grokking ticket masks in
Appendix K.

6 DISCUSSION AND RELATED WORKS

In this paper, we conducted a set of experiments to understand the mechanism of grokking (delayed
generalization). Below is a summary of observations. (1) In subsection 3.2, the use of the lottery
ticket significantly reduces delayed generalization. (2) In section 4, good structure is a more important
factor in explaining grokking than the weight norm and sparsity by comparing it with the same weight
norm and sparsity level. (3) In Figure 7, good structure is gradually discovered, corresponding to
improvement of test accuracy. (4) In Table 1, pruning without updating weights from a memorizing
solution increases test accuracy. (5) In Figure 8, finding a good structure corresponds to the acquisition
of representations. Our work also contributes to a deeper understanding of grokking and may inspire
a more rigorous approach to deep learning.

Weight norm reduction Liu et al. (2023a) suggests that the reduction of weight norms is crucial
for generalization. In Figure 5, our results go further to show that, rather than simply reducing weight
norms, the network discovers good structure (subnetwork), resulting in the reduction of weight norms.

Representation learning Liu et al. (2022); Nanda et al. (2023); Liu et al. (2023a); Gromov (2023)
showed the quality of representation as key to distinguishing memorizing and generalizing networks.
Figure 8 demonstrates that good structure contributes to the acquisition of good representation,
suggesting the importance of inner structure (network topology) in achieving good representations

Sparsity and Efficiency Merrill et al. (2023) argued that the grokking phase transition corresponds
to the emergence of a sparse subnetwork that dominates model predictions. While they empirically
studied parse parity tasks where sparsity is evident, we are conducting tasks (modular arithmetic,
MNIST) commonly used in grokking research and architecture (MLP, Transformer). Furthermore,
Figure 5, we demonstrate not only sparsity but also that good structure is crucial.

Regularization Weight decay (Rumelhart et al., 1986) is one of the most commonly used regu-
larization techniques and is known to be a critical factor in grokking (Power et al., 2022; Liu et al.,
2023a). In Appendix E, we show if the good structure is discovered, the network generalizes without
weight decay, indicating that weight decay works as a structure exploration, which suggests that
weight decay contributes not to reducing weight but to exploring good structure. In addition, we
tested pruning as a new force to induce generalization (Table 1).

Lottery ticket hypothesis The lottery ticket hypothesis (Frankle & Carbin, 2019) suggests that good
structures are crucial for generalization, but it remains unclear how these structures are acquired during
training and how they correspond to the network’s representations. To the best of my knowledge,
our paper is the first to connect grokking and the lottery ticket hypothesis, demonstrating how
good structures emerge (subsection 5.1) and contribute to effective representations (subsection 5.3).
Building on this, we further show that while faster generalization is a well-documented property of
winning tickets, our work goes beyond by exploring how the discovery of good structures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization, 2019.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023.

Stanislav Fort and Adam Scherlis. The goldilocks zone: Towards better understanding of neural
network loss landscapes, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis, 2020.

Hiroki Furuta, Gouki Minegishi, Yusuke Iwasawa, and Yutaka Matsuo. Interpreting grokked trans-
formers in complex modular arithmetic, 2024.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

P. Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et du Jura.
Bulletin de la Société vaudoise des sciences naturelles. Impr. Corbaz, 1901. URL https:
//books.google.co.jp/books?id=JCNdmgEACAAJ.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp.
1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. arXiv preprint arXiv:2310.06110, 2023.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=vt5mnLVIVo.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning
based on connection sensitivity, 2019.

Noam Levi, Alon Beck, and Yohai Bar-Sinai. Grokking in linear estimators – a solvable model that
groks without understanding, 2023. URL https://arxiv.org/abs/2310.16441.

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. arXiv preprint
arXiv:2205.10343, 2022.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
International Conference on Learning Representations, 2023a.

Ziming Liu, Ziqian Zhong, and Max Tegmark. Grokking as compression: A nonlinear complexity
perspective. arXiv preprint arXiv:2310.05918, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

11

https://books.google.co.jp/books?id=JCNdmgEACAAJ
https://books.google.co.jp/books?id=JCNdmgEACAAJ
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://openreview.net/forum?id=vt5mnLVIVo
https://arxiv.org/abs/2310.16441

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks. arXiv preprint arXiv:2303.11873, 2023.

Jack Miller, Charles O’Neill, and Thang Bui. Grokking beyond neural networks: An empirical
exploration with model complexity. arXiv preprint arXiv:2310.17247, 2023.

Beren Millidge. Grokking ’grokking’, 2022. URL https://www.beren.io/
2022-01-11-Grokking-Grokking/.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D. Manning. Grokking of
hierarchical structure in vanilla transformers. arXiv preprint arXiv:2305.18741, 2023.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. arXiv preprint arXiv:1912.02292, 2019.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In International Conference on Learning Representations,
2023.

Behnam Neyshabur. Towards learning convolutions from scratch, 2020. URL https://arxiv.
org/abs/2007.13657.

Michela Paganini and Jessica Zosa Forde. Bespoke vs. prêt-à-porter lottery tickets: Exploiting mask
similarity for trainable sub-network finding, 2020.

Adam Pearce, Asma Ghandeharioun, Nada Hussein, Nithum Thain, Martin Wattenberg, and Lucas
Dixo. Do machine learning models memorize or generalize? https://pair.withgoogle.
com/explorables/grokking/, 2023. [Online; accessed 11-October-2023].

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mechanism
of feature learning in deep fully connected networks and kernel machines that recursively learn
features. arXiv preprint arXiv:2212.13881, 2022.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network?, 2020.

Noa Rubin, Inbar Seroussi, and Zohar Ringel. Droplets of good representations: Grokking as a first
order phase transition in two layer networks. arXiv preprint arXiv:2310.03789, 2023.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Keitaro Sakamoto and Issei Sato. Analyzing lottery ticket hypothesis from pac-bayesian theory
perspective, 2022.

Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman. Grokking group multiplication with
cosets. arXiv preprint arXiv:2312.06581, 2023.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow, 2020.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

12

https://www.beren.io/2022-01-11-Grokking-Grokking/
https://www.beren.io/2022-01-11-Grokking-Grokking/
https://arxiv.org/abs/2007.13657
https://arxiv.org/abs/2007.13657
https://pair.withgoogle.com/explorables/grokking/
https://pair.withgoogle.com/explorables/grokking/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow, 2020.

Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning
from scratch, 2019.

Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang. Efficient lottery ticket finding:
Less data is more, 2021.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories
in mechanistic explanation of neural networks. In Neural Information Processing Systems, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENTS WITH DIFFERENT SEEDS

To ensure reproducibility, we conduct experiments with three different seeds and present the results
for experiments in Figure 2. In addition to accuracy, we plot the loss of train and test in Figure 9.

0 5000 10000 15000 20000 25000 30000
Epoch

0

10

20

30

40

Lo
ss

MLP on MA

Base model (test)
Base model (train)
Grokking ticket (test)
Grokking ticket (train)

(a) Loss of MLP on Modular Addition

0 5000 10000 15000 20000 25000 30000
Epoch

0

5

10

15

20

25

30

35

Lo
ss

Transformer on MA

Base model test
Base model train
Grokking-tickets (test)
Grokking-tickets (train)

(b) Loss of Transformer on Modular Addition

Figure 9: Train and Test loss of base model and grokking ticket on MLP and Transformer. In both of
architectures, grokking ticket convergent 0 faster than base model

Additionally, to ensure reproducibility, we conduct experiments with three different seeds and present
the results for experiments in subsection 4.1 and Transformer architecture experiment.

0 5000 10000 15000 20000 25000 30000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy

0 5000 10000 15000 20000 25000 30000

Epoch

10

12

14

16

18

20

22

24

26

L2
 n

or
m

Generalized zone

L2 norm

0 5000 10000 15000 20000 25000 30000

Epoch

1000

1500

2000

2500

3000

3500

4000

L1
 n

or
m

L1 norm

Base model (train) Base model (test) Grokking tickets Controlled dense (L1 norm) Controlled dense (L2 norm)

Figure 10: (Left) Test accuracy dynamics of the base model, grokking ticket, and controlled dense
model (L1 norm and L2 norm) with three different seeds. The grokking ticket reaches generalization
much faster than other models. (Center) L2 norm dynamics of the base model, grokking ticket, and
controlled dense model. (Right) L1 norm dynamics of the base model, grokking ticket, and controlled
dense models. From the perspective of the L2 norm, all models appear to converge to a similar
solution (Generalized zone). However, from the perspective of L1 norms, they converge to different
values.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy

0 5000 10000 15000 20000 25000 30000

Epoch
6

8

10

12

14

L2
 n

or
m

L2 norm

0 5000 10000 15000 20000 25000 30000

Epoch
400

600

800

1000

1200

1400

1600

L1
 n

or
m

L1 norm

Base model (train) Base model (test) Grokking tickets Controlled dense (L1 norm) Controlled dense (L2 norm)

Figure 11: Test accuracy dynamics of the base model, grokking ticket, and controlled dense model
(L1 norm and L2 norm) with three different seeds in the Transformer. The grokking ticket reaches
generalization much faster than other models. (Center) L2 norm dynamics of the base model, grokking
ticket, and controlled dense model. (Right) L1 norm dynamics of the base model, grokking ticket,
and controlled dense models. From the perspective of the L2 norm, all models appear to converge to
a similar solution (Generalized zone). However, from the perspective of L1 norms, they converge to
different values.

0 10000 20000 30000 40000 50000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Base model
Grokking tickets

Synflow
SNIP

Grasp
Random

Figure 12: Comparing test accuracy of the different pruning methods. All PaI methods perform worse
than the base model or, in some cases, perform worse than the random pruning with three different
seeds.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B DIFFERENT CONFIGURATIONS OF THE TASK AND THE ARCHITECTURE.

B.1 MLP FOR MNIST

We use 4-layer MLP for the MNIST classification. The difference from the regular classification is
that we are using Mean Squared Error (MSE) for the loss. We adopted this setting following prior
research (Liu et al., 2023a). In (Liu et al., 2023a), it was confirmed in the Appendix that grokking
occurred without any problems, even when trying with cross-entropy. Figure 13 shows the test and
train accuracy on various configurations. It is evident that grokking tickets accelerate generalization
in all configurations, and the exploration of grokking tickets contributes to generalization.

B.2 TRANSFORMER FOR MODULAR ADDITION

Similar to Nanda et al. (2023), we use a 1-layer transformer in all experiments. We use single-head
attention and omit layer norm.

• Hyperparameters:
– dvocab = 67: Size of the input and output spaces (same as p).
– demb = 500: Embedding size.
– dmlp = 128: Width of the MLP layer.

• Parameters:
– WE : Embedding layer.
– Wpos: Positional embedding.
– WQ: Query matrix.
– WK : Key matrix.
– WV : Value matrix.
– WO: Attention output.
– Win, bin: Weights and bias of the first layer of the MLP.
– Wout, bout: Weights and bias of the second layer of the MLP.
– WU : Unembedding layer.

We describe the process of obtaining the logits for the single-layer model. Note that the loss is only
calculated from the logits on the final token. Let x(l)

i denote the token at position i in layer l. Here, i
is 0 or 1, as the number of input tokens is 2, and x

(0)
i is a one-hot vector. We denote the attention

scores as A and the triangular matrix with negative infinite elements as M , which is used for causal
attention.

The logits are calculated via the following equations:

x
(1)
i = WEx

(0)
i +Wposx

(0)
i ,

A = softmax(x(1)TW T
KWQx

(1) −M),

x(2) = WOWV (x
(1)A) + x(1),

x(3) = WoutReLU(Winx
(2) + bin) + bout + x(2),

logits = softmax(WUx
(3)).

Figure 13 shows the training and test accuracy of the base model (green) and the Grokking ticket (blue).
Across datasets (e.g., Modular Addition, MNIST) and architectures (Transformer), the Grokking
ticket (blue) consistently reaches generalization faster than the base model (green). These results
underscore the importance of structural elements in grokking, regardless of the task or architecture.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

MLP on MA

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Transformer on MA

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0 MLP on MNIST

Base model (test)
Grokking tickets (test)

Base model (train)
Grokking tickets (train)

Figure 13: Comparison of base model (green) and Grokking ticket (blue). Each column corresponds
to the different configurations of the task (Modular Addition and MNIST) and the architecture (MLP
and Transformer). The dashed line represents the results of the training data.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C STRUCTURAL CHANGES IN TASKS OTHER THAN THE MODULAR
ADDITION TASK

100 101 102
Checkpoints

0.05

0.00

0.05

0.10

0.15

0.20

Ac
cu

ra
cy

 c
ha

ng
e

Test loss change

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ja
cc

ar
d

Di
st

an
ce

 c
ha

ng
e

Jaccard Distance

(a) Jaccard Distance on Polynominal Regression

100 101 102
Checkpoints

0.000

0.002

0.004

0.006

0.008

0.010

Ac
cu

ra
cy

 c
ha

ng
e

Test Accuracy change

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ja
cc

ar
d

Di
st

an
ce

 c
ha

ng
e

Jaccard Distance

(b) Jaccard Distance on Sparse Parity

Figure 14: Jaccard distance change and test accuracy change on polynominal regression (a) and
sparse parity (b). Structural changes (Jaccard distance) correspond to the acquisition of generalization
ability.

D IS WEIGHT NORM SUFFICIENT TO EXPLAIN GROKKING IN
TRANSFORMER?

Figure 15 show the accuracy of base model, Grokking ticket and Controlled dense (L1 and L2) on
Transformer. The results show Grokking ticket generalize faster than any other model. The results
suggests that even in the case of Transformer, the discovery of Grokking ticket is more important
than weight norms.

0 5000 10000 15000 20000 25000 30000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy

Base model (train)
Base model (test)

Grokking tickets
Controlled dense (L1 norm)

Controlled dense (L2 norm)

Figure 15: Accuracy of base model, Grokking ticket and Controlled dense on Transformer.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E WEIGHT DECAY WORK AS STRUCTURE EXPLORER

Our result is that the discovery of good structure happens between memorization and generalization,
which indicates weight decay is essential for uncovering good structure but becomes redundant after
their discovery.

In this section, we first explore the critical pruning ratio, which is the maximum pruning rate that
can induce generalization without weight decay Figure 16-(a). We recognize that the critical pruning
rate is between 0.8 and 0.9 because if the pruning rate increases to 0.9, the test accuracy dramatically
decreases. Thus, we gradually increased the pruning rate in increments of 0.01 from 0.8 and found
that the k = 0.81 is the critical pruning ratio. We then compare the behavior of the grokking ticket
without weight decay and the base model. Figure 16-(b) shows the results of the experiments. The
results show that if good structure is discovered, the network fully generalizes without weight decay,
indicating that weight decay works as a structure explorer. In this section, we show that with precise

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
un

in
g

ra
te

(a) Test accuracy with different pruning rate

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Base model Grokking tickets w/o weight decay

(b) Test accuracy with the critical pruning rato
(0.81)

Figure 16: The effect of pruning rate on test accuracy without weight decay(left). Test accuracy of
grokking ticket with critical pruning rate (0.81) without weight decay(right).

pruning ratios, the grokking ticket does not require weight decay to generalize, indicating that weight
decay is essential for uncovering good subnetworks but becomes redundant after their discovery. We
first explore the critical pruning ratio, which is the maximum pruning rate that can induce grokking
(Figure 16-a). In this case (Figure 16-a), we recognize that the critical pruning rate is between 0.8
and 0.9 because if the pruning rate increases to 0.9, the test accuracy dramatically decreases. Thus,
we gradually increased the pruning rate in increments of 0.01 from 0.8 and found that the k = 0.81
is the critical pruning ratio. We then compare the behavior of the grokking ticket without weight
decay (α = 0.0) and the base model. Figure 16-b show the results of the experiments. As shown in
the figure, the test accuracy reaches perfect generalization without weight decay. The results show
that the grokking ticket with the critical pruning ratio does not require any weight decay during the
optimization.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F DISCRETE FOURIER TRANSFORM

The discrete Fourier transform of f(x) is as follows:

F (ω) =

N−1∑
x=0

f(x) exp(−i2πωx
N

)

The number of sample points (N) is 67, the same as the input dimension. We conduct this discrete
Fourier transform for both the input-side weights and the output-side weights of each neuron. The
Fourier entropy is as follows:

FE = − 1

K

K∑
i=0

[p2]∑
ω=0

Fi(ω) logFi(ω)

The number of neurons (K) is 48, the number of frequency points ([p2]) is 33 and pi(t) is the
normalized value at the tth sample point for the ith neuron. Figure 17 shows the transition of
the input-side weights for all neurons of the base model and grokking ticket. The horizontal axis
represents the input dimension (67), while the vertical axis represents weight values. The grokking
ticket acquires representations at the early phase. Figure 18 shows that Fourier transform (F (ω)

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

0 20 40 60

0.25

0.00

0.25

(a) Base model, 0k

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

0 20 40 60

2.5

0.0

2.5

(b) Base model, 2k

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

(c) Base model, 30k

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

0 20 40 60
0.2

0.0

0.2

(d) Grokking ticket, 0k

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

(e) Grokking ticket, 2k

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

0 20 40 60

2

0

2

(f) Grokking ticket, 30k

Figure 17: Comparison of the base model and grokking ticket. The top/bottom row shows the
transition of the input-side weights for each neuron of the base model/grokking ticket. The horizontal
axis represents the input dimension (67), while the vertical axis represents weight values. The
grokking ticket acquires representations at the early phase.

of the inside-weights (Win) of each neurons. After generalization, the frequency characteristics of
most neurons in the base model are prominent for a specific frequency. In grokking ticket, neurons
responsive to specific frequencies emerge at an early stage. (2k epochs).

G PRUNING AT INITIALIZATION METHODS

Currently, the methodologies of pruning neural networks (NN) at initialization (such as SNIP, GraSP,
SynFlow) still exhibit a gap when compared to methods that use post-training information for pruning
(like Lottery Ticket). Nonetheless, this area is experiencing a surge in research activity.

The basic flow of the pruning at initialization is as follows:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

0 10 20 30

0.0

0.2

0.4

(a) base model, 0k

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

0 10 20 30
0

2

4

(b) base model, 2k

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

(c) base model, 30k

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

0 10 20 30
0.1

0.0

0.1

0.2

(d) Grokking ticket, 0k

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

(e) Grokking ticket, 2k

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

(f) Grokking ticket, 30k

Figure 18: Comparison of base model and Grokking ticket. The top/bottom row shows the transition
of the frequency decomposition of weight values for each neurons of base model/Grokking ticket.
The horizontal axis represents frequency, while the vertical axis represents amplification.

1. Randomly initialize a neural network f(x;θ0).
2. Prune p% of the parameters in θ0 according to the scores S(θ), creating a mask m .
3. Train the network from θ0 ⊙m.

According to Tanaka et al. (2020), research on pruning at initialization boils down to the methodology
of determining the score in the above process 2, which can be uniformly described as follows:

S(θ) =
∂R

∂θ
⊙ θ

When the R is the training loss L, the resulting synaptic saliency metric is equivalent to |∂L∂θ ⊙ θ|
used in SNIP (Lee et al., 2019). −(H ∂L

∂θ) ⊙ θ use in Grasp (Wang et al., 2020).Tanaka et al.
(2020) proposed synflow algorithm RSF = 1T (

∏L
l=1 |θ|l||)1. In section 4.2, all initial values were

experimented with using the same weights and the same pruning rate.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

H EDGE-POPUP ALGORITHM

We provide a detailed explanation of the edge-popup algorithm. Edge-popup ? is a method for finding
effective subnetworks within randomly initialized neural networks without weight updates.

Basic Flow:

1. Random Initialization: Initialize the weights w of a large neural network randomly.
2. Assign Scores: Assign a score sij to each edge wij randomly.
3. Select Subnetwork: Form a subnetwork G using only the edges with top k% scores.
4. Optimize Scores: Update the scores sij based on the performance of the subnetwork G.

Score Updates: Update the score sij of each edge wij using the following formula:

sij ← sij − α
∂L

∂Ij
Ziwij

• α is the learning rate
• ∂L

∂Ij
is the gradient of the loss with respect to the input of the j-th neuron

• Zi is the output of the i-th neuron

Actual Computation: Forward Pass: Compute using only the edges whose scores sij are in the top
k%.

Ij =
∑
i∈V

wijZih(sij)

Here, h(sij) is 1 if sij is in the top k% and 0 otherwise.

I LIMITATION

First, our study uses the framework of the lottery ticket hypothesis, so neural network models are
within its scope. Therefore, grokking phenomena in non-neural networks, as seen in studies Levi
et al. (2023); Miller et al. (2023), are outside the scope and are considered future work.

Additionally, although we have verified various experimental settings (Modular Arithmetic, MNIST
classification, Polynomial regression, Sparse parity), the tasks and networks used are still simple, as
in previous grokking studies. The lottery ticket hypothesis has been studied in more practical cases,
so experiments in more practical scenarios are interesting and remain as future work.

In addition, our paper shows that structural changes correspond to generalization ability, but it does
not propose specific metrics for what structural characteristics lead to good representations. Research
on the network characteristics of good structures remains in future work.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

J GROKKING TICKETS IN NLP TASKS

Following Liu et al. (2023a), we conducted a sentiment analysis task on the IMDb dataset (Maas
et al., 2011), which consists of 50,000 movie reviews classified as either positive or negative. The
data was pre-processed by extracting the 1,000 most frequent words and tokenizing each review into
an array of token indices, with less frequent words ignored and each review padded to a length of
500. For classification, we utilized a two-layer LSTM model (Hochreiter, 1997) with an embedding
dimension of 64 and a hidden dimension of 128. The model was trained using the Adam optimizer
with a learning rate of 0.001 and weight decay of 0.001 to minimize the binary cross-entropy loss,
and 25% of the dataset was reserved for testing.

In our sentiment analysis task, which involves two-class classification with a chance rate of 50%, we
observe distinct learning dynamics between the base model and the grokking ticket. The base model
rapidly achieves 100% training accuracy; however, its test accuracy remains low until approximately
10,000 optimization steps, after which it begins to improve. On the other hand, the grokking
ticket demonstrates a different behavior, with test accuracy improving almost simultaneously with
training accuracy from the very beginning of the optimization process. These results suggest that the
delayed generalization observed in grokking is closely linked to the discovery of optimal structural
representations, highlighting its potential for uncovering meaningful patterns in the data.

102 103 104

Optimize step

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Chance

Base model (train)
Grokking ticket (train)
Base model (test)
Grokking ticket (test)

Figure 19: Results of sentiment analysis for two-class classification, with a chance rate of 50%. The
base model (green) rapidly achieves 100% training accuracy, but test accuracy starts to improve
only around 10k steps. In contrast, the grokking ticket (blue) shows simultaneous improvement in
both training and test accuracy. These results support our hypothesis that delayed generalization in
grokking is associated with the discovery of optimal structures.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

K VISUALIZATION OF WEIGHTS AND GROKKING TICKET

To reveal the characteristics of the grokking ticket, we visualized the weight matrices and the
corresponding masks of the grokking ticket, as shown in Figure 20. The task under consideration is
Modular Addition, implemented using the following MLP architecture:

softmax(σ((Ea +Eb)Win)WoutWunemb), (2)

where Ea and Eb are the input embeddings, Win, Wout, and Wunemb are the respective weight matrices,
and σ denotes the activation function. This architecture models the relationship between inputs in the
Modular Addition task.

Figure 20 visualizes the learned weight matrices WE , Winproj, Woutproj, and WU (top row) after
generalization, as well as the corresponding masks from the grokking ticket (bottom row). The weight
matrices exhibit periodic patterns, reflecting good structure learned during training. Furthermore, the
grokking ticket masks align with these periodic characteristics, indicating that the grokking ticket
has successfully acquired structures that are beneficial for the task of Modular Addition. These
results highlight the ability of the grokking ticket to uncover meaningful patterns that contribute to
the model’s performance.

For comparison, Figure 21 show visualization of masks (structures) obtained by pruning-at-
initialization (PaI) methods: Random, GraSP, SNIP, and SynFlow. Unlike the results shown in
Figure 20, these methods do not exhibit periodic structures. This comparison highlights the superior-
ity of the grokking ticket in acquiring structures that are more conducive to the Modular Addition
task, further emphasizing its advantage over traditional PaI methods.

Figure 20: Visualization of weight matrices WE , Winproj, Woutproj, and WU (top), as well as the
corresponding masks from the grokking ticket (bottom). Periodic patterns are observed in the weight
matrices, and the masks of the grokking ticket reflect these characteristics. This indicates that the
grokking ticket has acquired structures beneficial for the task (Modular Addition).

(a) Random (b) Grasp

(c) Snip (d) Synflow

Figure 21: Visualization of masks (structures) obtained by pruning-at-initialization (PaI) methods:
Random, GraSP, SNIP, and SynFlow. Compared to grokking ticket in Figure 20, it can be observed
that periodic structures are not achieved.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

L SIGNIFICANCE OF PERIODICITY IN THE MODULAR ADDITION TASK

The modular addition task, defined as predicting c ≡ (a+ b) mod p, inherently involves periodicity
due to the modular arithmetic structure. Nanda et al. (2023) demonstrated that transformers trained
on modular addition tasks rely on periodic representations to achieve generalization. Specifically, the
networks embed inputs a and b into a Fourier basis, encoding them as sine and cosine components of
key frequencies wk = 2kπ

p for some k ∈ N. These periodic representations are then combined using
trigonometric identities within the network layers to compute the modular sum.

Mechanism of Periodic Representations

Nanda et al. (2023) reverse-engineered the weights and activations of a one-layer transformer trained
on this task and found that the model computes:

cos(wk(a+ b)) = cos(wka) cos(wkb)− sin(wka) sin(wkb),

sin(wk(a+ b)) = sin(wka) cos(wkb) + cos(wka) sin(wkb),

using the embedding matrix and the attention and MLP layers. The logits for each possible output c
are then computed by projecting these values using:

cos(wk(a+ b− c)) = cos(wk(a+ b)) cos(wkc) + sin(wk(a+ b)) sin(wkc).

This approach ensures that the network’s output logits exhibit constructive interference at c ≡ (a+ b)
mod p, while destructive interference suppresses other incorrect values.

Given this mechanism, it can be inferred that the model internally utilizes periodicity, such as the
addition formulas, to perform modular arithmetic.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

M HYPERPARAMETER EFFECTS ON τgrok

Figure 23 shows the effects of learning rate and weight decay on τgrok, defined in Section 3 as
ttrain/ttest.

Learning Rate (Left): With weight decay fixed at 1, τgrok is NaN for lr=0.001 due to a failure to
generalize. Larger learning rates (e.g., 0.01) lead to faster grokking, while smaller rates (e.g., 0.0001)
significantly slow down the process.

Weight Decay (Right): With lr=0.01, smaller weight decay (e.g., 0.1) delays grokking, while larger
values (e.g., 10) accelerates grokking, reducing τgrok.

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Weight decay = 1, lr varying

lr: 0.0001 (train)
lr: 0.001 (train)
lr: 0.01 (train)
lr: 0.0001 (test)
lr: 0.001 (test)
lr: 0.01 (test)

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Lr = 0.01, weight decay varying

wd: 0.1 (train)
wd: 1 (train)
wd: 10 (train)
wd: 0.1 (test)
wd: 1 (test)
wd: 10 (test)

Figure 22: The effect of learning rate (left) and weight decay (right) on training and testing accuracy.
(Left) Training and testing accuracy curves are plotted for different learning rates (lr) with a fixed
weight decay of 1. A higher learning rate (e.g., 0.01) accelerates convergence but may cause instability,
while lower learning rates (e.g., 0.0001) converge more smoothly but slower. (Right) Training and
testing accuracy curves for different weight decay values (wd) with a fixed learning rate of 0.01.
Larger weight decay values (e.g., 10) improve generalization, whereas smaller values (e.g., 0.1) result
in delay.

0.0001 0.001 0.01
Learning rate

0

50

100

150

200

250

gr
ok

Nan

199.333

176.625

grok (weight decay=1)

0.1 1 10
Weight decay

0

100

200

300

400

500

600

700

800

gr
ok

826.600

176.625

4.118

grok (lr=0.01)

Figure 23: Comparison of τgrok values under varying learning rates (left) and weight decay (right).
(Left) τgrok values are shown for different learning rates (0.0001, 0.001, and 0.01) with a fixed
weight decay of 1. The learning rate of 0.001 fails to generalize, resulting in NaN values for τgrok.
The results indicate that larger learning rates (e.g., 0.01) achieve grokking faster compared to smaller
learning rates (e.g., 0.001). (Right) τgrok values for varying weight decay (0.1, 1, and 10) with a
fixed learning rate of 0.01. Lower weight decay values (e.g., 0.1) significantly slow down grokking,
whereas larger weight decay values (e.g., 10) accelerates grokking.

26

	Introduction
	Background
	Lottery Tickets significantly reduces Delayed Generalization
	Experiment Setup
	Results

	Decoupling Lottery Tickets: Norm, Sparsity, and Structure
	Controlling Weight Norm of Initial Network
	Controlling Sparsity

	Understanding Grokking from Inner Structure of Networks
	Progress Measure: Structural Shift Capture the Generalization Timing
	Pruning during Training: Pruning Promote Generalization
	cbpurpleAcquisition of good structures as periodic structures

	Discussion and Related Works
	Experiments with Different Seeds
	Different configurations of the task and the architecture.
	MLP for MNIST
	cbpurpleTransformer for modular addition

	Structural Changes in Tasks Other Than the Modular Addition Task
	 Is Weight Norm Sufficient to Explain Grokking in Transformer?
	Weight Decay work as Structure Explorer
	Discrete Fourier Transform
	Pruning at initialization methods
	Edge-popup algorithm
	Limitation
	 cbpurple Grokking Tickets in NLP Tasks
	cbpurpleVisualization of Weights and Grokking ticket
	cbpurpleSignificance of Periodicity in the Modular Addition Task
	 cbpurple Hyperparameter Effects on grok

