
EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction

Anonymous ACL submission

Abstract

There has been a rising interest in utilizing tools001
in applications of autonomous agents based002
on large language models (LLMs) to address003
intricate real-world tasks. To develop LLM-004
based agents, it usually requires LLMs to un-005
derstand many tool functions from different006
tool documentations. However, these documen-007
tations could be diverse, redundant, or incom-008
plete, which immensely affects the capability009
of LLMs in using tools. Current LLMs ex-010
hibit satisfactory instruction-following capabil-011
ities based on instruction-following fine-tuning012
process. Motivated by this, in this paper, we013
introduce EASYTOOL, a framework transform-014
ing diverse and lengthy tool documentation015
into a unified and concise tool instruction to016
fully leverage instruction-following capabili-017
ties of LLMs for easier tool usage. EASYTOOL018
purifies essential information from extensive019
tool documentation of different sources, and020
elaborates a unified interface (i.e., tool instruc-021
tion) to offer standardized tool descriptions and022
functionalities for LLM-based agents. Exten-023
sive experiments on multiple different tasks024
demonstrate that EASYTOOL can significantly025
reduce token consumption and improve the per-026
formance of LLM-based agents on tool utiliza-027
tion in real-world scenarios.028

1 Introduction029

Large language models (LLMs) (OpenAI, 2023;030

Touvron et al., 2023a,b; Team and Google, 2023)031

have recently ignited the spark of LLM-based au-032

tonomous agents (Shen et al., 2023a; Gravitas,033

2023), which aim to interact with the real-world034

scenarios and address complex user requests. A035

rising trend in enhancing their effectiveness is to036

endow them with the capability of using external037

tools (Schick et al., 2023; Shen et al., 2023a; Qu038

et al., 2024). To bridge the gap between LLMs039

and tool usage, agents usually first analyze a user040

request, conduct planning or reasoning to decom-041

pose it into sub-tasks, and then select the most042

Tool Description Tool Functionality Guideline
with Example

List Movies is a tool
used to list and search
through all the
available movies. This
tool has 9 APIs:
1. 'With RT Ratings'
returns the list with
the Rotten Tomatoes
rating included...

{
 "name": "With RT Ratings",
 "description": "Returns the list
with the Rotten Tomatoes rating
included",
 "required_parameters": [
 {
 "name":
"with_rt_ratings",
 "type": "BOOLEAN",
 "description": "",
 "default": "false"
 }
],
 "optional_parameters": [],
 "Example": {
 "Scenario": "if you want to
get the list of movies with Rotten
Tomatoes ratings included",
 "Parameters": {
 "with_rt_ratings": true
 }
 }
}

Scenario:
if you want to get the
list of movies with
Rotten Tomatoes
ratings included.
Parameters:
with_rt_ratings: true

Web Service

"paths": {
"/movie/{movie_id}/
keywords": {
"parameters": [
{"name": "movie_id",
"in": "path",
"required": true,

Tool Instruction: Concise, Unified and Effective

ExampleRapidAPI

Tool Documentation

So much redundant
information!

Without examples, I do not know
when I should use these tools...

Why the formats of these tool
documents are so different! I can not
deal with them consistently!HFModel

{
 "downloads":1677372,
 "id":"ProsusAI/finbert",
 "likes":186,
 "pipeline_tag":"text-classification",
 "task":"text-classification",
 "meta":{
 "language":"en",
 "tags":[
 "financial-sentiment-analysis",
 "sentiment-analysis"
],
 "widget":[
 {
 "text":"Stocks rallied and
the British pound gained."
 }
]
 },
 "description":"\n\nFinBERT is a pre-
trained NLP model to analyze sentiment
of financial text. It is built by
further training the BERT language model
in the finance domain, using a large
financial corpus and thereby fine-tuning
it for financial sentiment
classification. [Financial PhraseBank]
(https://www.researchgate.net/
publication/
251231107_Good_Debt_or_Bad_Debt_Detectin
g_Semantic_Orientations_in_Economic_Text
s) by Malo et al. (2014) is used for
fine-tuning. For more details, please
see the paper [FinBERT: Financial
Sentiment Analysis with Pre-trained
Language Models](https://arxiv.org/abs/
1908.10063) and our related [blog post]
(https://medium.com/prosus-ai-tech-blog/
finbert-financial-sentiment-analysis-
with-bert-b277a3607101) on Medium.
\n\nThe model will give softmax outputs
for three labels: positive, negative or
neutral.\n\n"

RapidAPI

{
 "product_id":
"api_20295783-1e06-4cf8-98a2-4b09b829ae7
c",
 "home_url": "https://rapidapi.com/
jpbermoy/api/list-movies/",
 "pricing": "FREEMIUM",
 "host": "list-
movies.p.rapidapi.com",
 "tool_description": "An API used to
list and search through out all the
available movies. Can sort, filter,
search and order the results",
 "name": "List Movies",
 "title": "List Movies",
 "tool_name": "List Movies",
 "api_list": [
 {
 "name": "With RT Ratings",
 "url": "https://list-
movies.p.rapidapi.com/list_movies.json/
false",
 "description": "Returns the
list with the Rotten Tomatoes rating
included",
 "method": "GET",
 "required_parameters": [
 {
 "name":
"with_rt_ratings",
 "type": "BOOLEAN",
 "description": "",
 "default": "false"
 }
],
 "optional_parameters": [],
 }
]
}

pricing: FREEMIUM
host: list-movies.p.rapidapi.com
home_url:https://rapidapi.com/jpbermoy/
api/list-movies/

Figure 1: An illustration of the proposed EASYTOOL,
and some issues in tool documentation, e.g., Inconsis-
tency, Redundancy, Incompleteness. The documenta-
tions can be polished and refined by EASYTOOL into
more concise and effective tool instructions for better
tool usage.

suitable tools for execution to obtain the final an- 043

swer. Therefore, improving LLMs’ capability to 044

use tools precisely has been critical to developing 045

an autonomous agent. 046

Previously, some researchers (Schick et al., 047

2023; Qin et al., 2023; Patil et al., 2023; Parisi 048

et al., 2022; Hao et al., 2023) fine-tune open-source 049

LLMs to generate calling functions to use tools. 050

However, these methods usually require additional 051

datasets with tool use for training, cannot be ex- 052

tended to widely deployed black-box LLMs, and 053

lack flexibility in integrating external tools in a 054

plug-and-play way. Another line of work (Song 055

et al., 2023; Lu et al., 2023; Xu et al., 2023; Chen 056

et al., 2023; Wang et al., 2024) retrieves and calls 057

external tools by providing tool documentation 058

and few-shot demonstrations of tool functional- 059

1

ity. However, these methods struggle with limited060

context length and face difficulties when handling061

unusual tools, and thus hinder the development062

of an omnipotent LLM-based agent. Therefore,063

extensive effort is still required to efficiently and064

effectively improve the quality of tool utilization.065

For tool utilization, tool documentation plays066

an indispensable component, which could include067

multiple meta information like tool descriptions,068

tool parameters, demonstrations and so on. How-069

ever, as shown in Figure 1, we summarize the issues070

from existing documentation that could hinder the071

tool utilization of LLM-based agents:072

• Inconsistency: Massive tools from different073

sources often have inconsistent and diverse doc-074

umentation formats, posing new challenges for075

LLMs to understand;076

• Redundancy: Tool documentation could encom-077

pass massive redundant and useless informa-078

tion, making it harder to grasp tool functionality079

and resulting in excessive token consumption in080

prompts;081

• Incompleteness: We expect the tool documen-082

tation to provide useful information to describe083

its functions, parameters and demonstrations for084

instructions. However, the absence of critical in-085

formation in some tool documentations impedes086

effective tool utilization.087

Overall, we regard the information provided by088

tool documentation as a critical element in instruct-089

ing LLMs to use tools. However, the above issues090

in tool documentation bring some challenges to091

LLM-based agents to understand, especially con-092

sidering the increasing of massive and diverse tools093

from different domains. Therefore, how to parse094

the documentation, extract the most essential infor-095

mation and provide a unified format has become a096

necessary topic to effectively use tools.097

Recent LLMs, such as GPT-4 (OpenAI, 2023),098

ChatGPT (OpenAI, 2022), Vicuna (Chiang et al.,099

2023), and Mistral (Jiang et al., 2023a), demon-100

strate strong instruction-following capabilities due101

to their fine-tuning for this skill (Wang et al., 2023;102

Ren et al., 2024). Inspired by this, in this paper,103

we introduce EASYTOOL, an easy and effective104

method to create clear, structured, and unified in-105

structions from tool documentations for improving106

LLM-based agents in using tools. High-quality tool107

instructions should follow two criteria: easy to 1)108

understand its functionality for selection and 2) pre- 109

dict its parameters for usage. To this end, we first 110

collect massive tool documentations from different 111

sources (e.g., RestBench (Song et al., 2023) and 112

ToolBench (Qin et al., 2023)). Instead of directly 113

using these various tool documentations with dif- 114

ferent complicated structures, we transform these 115

documentations into a more concise and unified 116

tool instruction, which includes standard tool de- 117

scriptions and guidelines for tool functionality. The 118

converted tool descriptions can eliminate irrelevant 119

content and only keep the core functionality of 120

each tool for LLMs to attend to. Moreover, EASY- 121

TOOL provides detailed information for tool usage 122

(e.g., its parameters with demonstrations generated 123

by ChatGPT (OpenAI, 2022)) in tool functionality 124

guidelines to instruct LLMs with tool usage. 125

Extensive experiments on multiple tool-usage 126

benchmarks demonstrate these concise tool instruc- 127

tions generated by EASYTOOL can significantly 128

reduce incorrect tool usage. Furthermore, we also 129

prove that the capability of EASYTOOL can be gen- 130

eralized to open-source LLMs in a plug-and-play 131

way and greatly improve their performance on tool 132

utilization in different real-world tool-usage scenar- 133

ios. Our contributions can be summarized as: 134

• We analyze and explore the limitations of current 135

tool utilization in LLM-based agents and first 136

point out the deficiencies of tool documentation 137

that hinder LLMs in using tools. 138

• To address these issues, we propose EASYTOOL, 139

which creates high-quality tool instructions from 140

documentation to facilitate tool usage in LLM- 141

based agents. 142

• Experimental results on three datasets from dis- 143

tinct domains show that our EASYTOOL effec- 144

tively and efficiently improves the capability of 145

LLMs in tool utilization. 146

2 Related Work 147

With the emergence of powerful LLMs (OpenAI, 148

2023; Touvron et al., 2023a,b), using tools has been 149

considered a new trend to enhance the capabilities 150

of LLMs A conventional strategy is to build syn- 151

thetic data (Schick et al., 2023; Qin et al., 2023; Li 152

et al., 2023; Patil et al., 2023; Shen et al., 2023b) 153

involved tool use and then fine-tune LLMs to gener- 154

ate text with tool invocation. However, these meth- 155

ods cannot be extended to some powerful closed 156

2

LLMs, and lack the capability to use new tools. Al-157

though some methods (Hao et al., 2023) attempted158

to fine-tune LLMs to obtain tool embeddings for159

plug-and-play usage, they still require additional160

data for training to get tool embeddings.161

Therefore, there has arisen another branch (Shen162

et al., 2023a; Song et al., 2023; Gravitas, 2023)163

that directly used LLMs as the controller and feed164

tool descriptions into prompts to instruct LLMs to165

understand and call tools. These methods do not166

need extra training and can use external tools in167

a plug-and-play paradigm, but they are limited to168

context sizes and the quality of tool documenta-169

tion. As a result, these methods will lead to some170

failed or incorrect tool invocation (Zhang et al.,171

2023). Some work (Hsieh et al., 2023; Xu et al.,172

2023) attempts to revise tool documentation to sup-173

port a zero-shot tool utilization, but some inherent174

issues of tool documentation in real-world scenar-175

ios still hinder the effective and efficient usage of176

many tools. Besides, different from naive prompt177

compression (Mu et al., 2023; Jiang et al., 2023b),178

which is only suitable to compress plain prompt,179

the streamlined information from tool documen-180

tation should satisfy specific format and need to181

confirm the accuracy of tool invocation when pro-182

cessing user requests.183

3 Preliminary184

3.1 Task Formulation185

Motivated by previous works (Shen et al., 2023a;186

Song et al., 2023), just as shown in Figure 5 in187

Appendix A, the pipeline of LLM-based agents for188

tool utilization can be summarized as a four-stage189

framework as:190

• Task Planning: Agents analyze a user re-191

quest T and decompose it into subtasks T =192

{t1, t2, ..., tn} with specific dependencies and ex-193

ecution orders, each optimized for execution with194

a single tool.195

• Tool Retrieval: Here, the focus is on matching196

these subtasks with suitable tools from the tool197

inventory based on the similarity between the198

subtasks and tools. The aim is to select the top-K199

tools {a1, a2, ..., aK}, that have the highest simi-200

larity to each subtask, forming a set of candidate201

tools for each.202

• Tool Selection: In this stage, the most ap-203

propriate tool for each subtask from the set204

Dataset TokenDesc. TokenDoc. Exp.

RestBench (Song et al., 2023) 58 3,881 ✗
Gorilla (Patil et al., 2023) 88 284 ✗
ToolAlpaca (Tang et al., 2023) 567 7,661 ✗
ToolBench (Qin et al., 2023) 744 2,530 ✗
HFmodels (Shen et al., 2023a) 777 1,196 ✓

Table 1: The statistics of tool documentations in tool
benchmarks. We report the average length of the
tool description with parameters (TokenDesc.), the aver-
age length of the tool documentations (TokenDoc.) and
whether the benchmarks have tool usage scenarios and
example (Exp.).

{a1, a2, ..., aK} is chosen based on its descrip- 205

tion. This stage also includes preparing the pa- 206

rameters for tool execution, as specified in its 207

document. 208

• Tool Execution: After tool selection and param- 209

eter setup, the tool is executed. If a tool fails 210

during execution, the process reverts to the tool 211

selection stage for an alternative choice. This 212

retry mechanism continues until successful exe- 213

cution or until the maximum trial R is reached. 214

After these stages, agents can orchestrate different 215

tools and use their powers to generate the final 216

answer for each user request. 217

3.2 Analysis 218

Previous studies typically adhere to the established 219

paradigm, instructing LLMs with the tool docu- 220

mentation to use tools. However, relying on the 221

tool documentation can hinder the performance of 222

LLM-based agents due to its inherent limitations. 223

Inconsistency In the real world, a wide variety 224

of tools from different sources results in substantial 225

diversity in terms of format, style, and guidelines. 226

As a result, this diversity contributes to a mess of 227

tool documentations without a cohesive and stan- 228

dardized structure, posing a significant challenge 229

for LLMs to effectively use these tools. 230

Redundancy Generally, the tool documents from 231

different communities usually contain redundant 232

information (e.g., URLs, IDs, etc.). In practical ap- 233

plication, we just require LLMs to understand the 234

core function of the tool and then decide whether 235

to use and how to use this tool. As shown in Ta- 236

ble 1, we analyze multiple tool-based benchmarks 237

and the results reveal a high proportion of redun- 238

dant information in many tool documentations. For 239

3

example, the average length of tool documenta-240

tions used in ToolBench is approximately 2,530241

tokens in Table 1.1 This useless information can242

severely hinder LLMs from retrieving and selecting243

tools, leading to an incorrect tool invocation. More-244

over, LLMs are constrained by a maximum context245

length, yet tool documentation is typically lengthy.246

This excessive length can limit the range of tool247

options available for LLMs to consider, posing a248

challenge for efficient tool selection.249

Incompleteness Previous work has demonstrated250

that LLMs may pass invalid parameters, leading251

to tool execution failure (Song et al., 2023; Qin252

et al., 2023; Zhang et al., 2023). As shown in253

Table 1, unlike human-oriented instruction manuals254

that provide usage scenarios and examples, existing255

tool documentation typically lacks such context,256

only offering example codes for tool invocation or257

results. This leads to LLMs struggling to know258

when and how to refer to the examples to pass the259

correct parameters, resulting in invalid parameters.260

4 Method261

As aforementioned, polishing, streamlining, and262

enhancing the tool documentation is important263

to improve tool utilization in LLM-based agents.264

Currently, most of LLMs (OpenAI, 2022, 2023;265

Jiang et al., 2023a; Chiang et al., 2023) exhibit266

satisfactory instrution-following capability due to267

instruction-following fine-tuning process (Wang268

et al., 2023; Ren et al., 2024). Motivated by this,269

we introduce EASYTOOL, a simple method to con-270

dense tool documentation into more concise and271

effective tool instructions to improve LLM-based272

agents in tool utilization. The overall workflow is273

illustrated in Figure 1. EASYTOOL comprises two274

stages: the first stage is to re-organize the original275

tool documentation by eliminating the irrelevant in-276

formation and only summarizing the multiple built-277

in function description of each tool (§ 4.1). For278

each tool, we further design a functional guideline279

instruction for LLMs and enable LLMs to further280

refine the tool documentation by providing param-281

eters of each tool and simultaneously the examples282

to instruct LLMs for usage (§ 4.2).283

4.1 Tool Description Generation284

As described above, tool documentation usually285

includes plenty of irrelevant information, making286

1We adopt cl100k_base encoding. The code is in https:
//github.com/openai/tiktoken.

I: Tool Description Generation

/* I: Task prompt */
Your task is to create a concise and effective tool usage
description based on the tool documentation. You should
ensure the description only contains the purposes of the
tool without irrelevant information. Here is an example:
/* Examples */
{Tool Documentation}
Tool usage description:
{Tool_name} is a tool that can {General_Purposes}.
This tool has {Number} multiple built-in functions:
1. {Function_1} is to {Functionality_of_Function_1}
2. {Function_2} is to ...
/* Auto generation of tool description */
{Tool Documentation of ‘Aviation Weather Center’}
Tool usage description:
‘Aviation Weather Center’ is a tool which can provide official
aviation weather data...

II: Tool Function Guidelines Construction

/* Task prompt */
Your task is to create the scenario that will use the tool.
1. You are given a tool with its purpose and its parameters
list. The scenario should adopt the parameters in the list.
2. If the parameters are null, you
should set: {"Scenario": XX, "Parameters":{}}.
Here is an example:
/* Examples */
{Tool_name} is a tool that can {General_Purposes}.
{Function_i} is to {Functionality_of_Function_i}
{Parameter List of Function_i}
One scenario for {Function_i} of {Tool_name} is:
{"Scenario": XX, "Parameters":{XX:XX}}
/* Auto-construction for Tool Function Guidelines */
‘Ebay’ can get products from Ebay in a specific country.
‘Product Details’ in ‘Ebay’ can get the product details for a
given product id and a specific country.
{Parameter List of ‘Product Details’}
One scenario for ‘Product Details’ of ‘Ebay’ is:
{"Scenario": "if you want to know the details of the product
with product ID 1954 in Germany from Ebay",
"Parameters":{"product_id": 1954, "country": "Germany"}}.

Table 2: Examples of prompt for ChatGPT for tool
description generation and tool function guidelines con-
struction. Green texts are generated by ChatGPT.

it difficult to understand practical usage for LLMs. 287

Moreover, some tools that enable multiple built- 288

in functions for different scenarios are not always 289

comprehensively described. For example, Google 290

Maps offers both distance calculations and coordi- 291

nate provision, but its description might not cover 292

all functionalities. To address this, we expect to 293

use LLMs to polish and streamline these tool docu- 294

mentations and decode them into more concise and 295

effective tool descriptions. Here, just as shown in 296

Table 2 (I), we design an instruction and require 297

LLMs (i.e., ChatGPT) to convert tool documenta- 298

tion to summarize its general purpose by following 299

the designed instruction. Then, for each function 300

4

https://github.com/openai/tiktoken
https://github.com/openai/tiktoken

in tool documentation, we ask the LLM to generate301

the functionality of it. We also add extra demon-302

strations to enhance the instruction-following of303

LLMs in parsing tool documentation.304

4.2 Tool Functionality Guidelines305

Construction306

The tool descriptions generated in the previous step307

aid LLMs in tool retrieval and selection. How-308

ever, we still need to predict the correct parameters309

of each tool for a successful execution. Previous310

work (Qin et al., 2023; Zhang et al., 2023; Xu et al.,311

2023) also confirms that many open-source LLMs312

are still inadequate in executing tools, resulting in313

parameter errors. Therefore, we further polish our314

tool descriptions in the first stage to supplement315

the parameters in the tool instructions. Here, we316

design another instruction that requires LLMs to317

extract parameters from tool documentation and318

then organize it into a structured output, thus facili-319

tating LLMs to invoke tools. As shown in Table 2320

(II), we use ChatGPT to create examples, includ-321

ing scenarios and parameter names with values to322

demonstrate how to input parameters for different323

scenarios and enhance LLMs to precisely use tools.324

To verify the quality of generated examples for the325

tool functionality guidelines, we input the parame-326

ters to execute the tools to confirm the correct input327

of parameters and the accuracy of results.328

4.3 Evaluation329

To assess the quality of tool descriptions, we select330

100 examples from ToolBench and employ three331

annotators to evaluate their accuracy. To assess332

the plausibility of the scenarios, we also sample333

100 tool functionality guidelines from ToolBench334

and employ three annotators to evaluate the plau-335

sibility of the scenarios. To process conflicting336

annotations, we adopt a voting majority princi-337

ple to determine the results. Finally, the evalu-338

ation results demonstrate that the correctness of339

tool description and tool functionality guidelines340

can reach a value of 100% accuracy, with Fleiss’s341

κ = 0.97. This demonstrates that LLMs can sum-342

marize high-quality tool descriptions and generate343

plausible scenarios based on tool documentation,344

thereby highlighting the simplicity and effective-345

ness of EASYTOOL. The annotation details for tool346

instruction are shown in Appendix B. The evalua-347

tion on the robustness of the prompts is shown in348

Appendix E. We also compare with prompt com-349

pression methods in Appendix F.350

Dataset TokenDoc. TokenIns. Reduce (%)

ToolBench 2,530 748 70.43%
RestBench 3,881 103 97.35%

Table 3: The average number of tokens in each tool doc-
umentation (TokenDoc.) and tool instruction generated
by EASYTOOL (TokenIns.). We also report the reduced
ratio (i.e. Reduce (%)) for reference.

5 Experiment 351

In this section, we adopt EASYTOOL to three dis- 352

tinct tool-use applications to show that EASYTOOL 353

can help LLM-based agents better utilize tools. 354

5.1 Real-World Question Answering 355

Since LLMs are still limited in their training data, it 356

is essential for them to use external tools to access 357

up-to-date information in response to user requests. 358

Benchmark We choose ToolBench (Qin et al., 359

2023), a dataset containing diverse user requests 360

with a massive set of publicly available REST API 361

tools. The API tools in ToolBench are collected 362

from RapidAPI, which requires additional individ- 363

ual subscriptions with payments. Therefore, we 364

follow the strategy of many previous works to only 365

select the subsets for evaluation (Zhang et al., 2023; 366

Du et al., 2024; Liu et al., 2024). Other subsets 367

of ToolBench only contain a single tool from the 368

same category. Compared with other subsets of 369

ToolBench, I2-Category and I3-Instruction con- 370

tain complex user requests that need multiple tools 371

from different categories to solve, which are more 372

aligned with real-world user requests. Therefore, 373

we only select I2-Category and I3-Instruction and 374

conduct experiments on these 300 data samples. 375

Each data of ToolBench consists of a user request 376

with a ground truth toolset, and thus models only 377

need to select and execute the tools from the ground 378

truth toolset to complete the user request. 379

For evaluation, ToolBench designs two evalu- 380

ation metrics based on ChatGPT: (1) Pass Rate, 381

calculated by the proportion of instructions success- 382

fully completed within a limited budget; (2) Win 383

Rate, measured by asking a ChatGPT evaluator to 384

select its preference for two solution paths. Fol- 385

lowing (Qin et al., 2023), we also measure Success 386

Rate, which asks GPT-4 to check whether the re- 387

sponses can reasonably and accurately answer the 388

user requests.2 389

2The prompt template for evaluating success rate is shown

5

Model Method I2-Category I3-Instruction Average

Pass Win Success Pass Win Success Pass Win Success

ChatGPT

ReACT 39.0 - 18.0 23.0 - 1.0 31.0 - 9.5
DFSDT 64.5 63.0 24.0 60.0 70.0 6.0 62.3 66.5 15.0

+EASYTOOL 74.5 76.5 68.5 65.0 88.0 37.0 69.8 82.3 52.8
+EASYTOOL +Re. 69.0 71.0 60.5 66.0 89.0 42.0 67.5 80.0 51.3

ToolLLaMA-7B

ReACT 30.0 45.5 9.5 22.0 49.0 3.0 26.0 47.3 6.3
DFSDT 66.0 55.0 24.0 56.0 56.0 6.0 61.0 55.5 15.0

+Re. 57.0 60.0 11.5 54.0 69.0 2.0 55.5 64.5 6.8

Vicuna-7B

ReACT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+EASYTOOL 72.5 77.0 40.5 68.0 81.0 34.0 70.3 79.0 37.3
+EASYTOOL +Re. 75.0 68.0 46.5 67.0 85.0 36.0 71.0 76.5 41.3

Mistral-Instruct-7B

ReACT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+EASYTOOL 75.0 76.0 56.0 66.0 87.0 38.0 70.5 81.5 47.0
+EASYTOOL +Re. 74.5 71.5 54.5 68.0 88.0 38.0 71.3 79.8 46.3

GPT-4

ReACT 67.5 53.5 27.0 40.0 71.0 4.0 53.8 62.3 15.5
DFSDT 69.5 57.0 42.0 59.0 73.0 50.0 64.3 65.0 46.0

+EASYTOOL 76.5 78.5 76.0 69.0 89.0 64.0 72.8 83.8 70.0
+EASYTOOL +Re. 72.5 72.0 73.5 69.0 90.0 53.0 70.8 81.0 63.3

Table 4: Results of LLMs on ToolBench. Win rate (denoted as Win) is calculated by comparing each model with
ChatGPT-ReACT. The win rate higher than 50% means the model performs better than ChatGPT-ReACT. Following
(Qin et al., 2023), apart from adopting retriever (i.e., +Re.), all methods use the ground truth toolset to select tools.
The best results are bolded, and the second best ones are underlined.

Baselines Following (Qin et al., 2023), we select390

ChatGPT (OpenAI, 2022), GPT-4 (OpenAI, 2023),391

Vicuna-7B (Chiang et al., 2023), and ToolLLaMA-392

7B as backbone models. ToolLLaMA-7B is fine-393

tuned from a 7B LLaMA model (Touvron et al.,394

2023a) on ToolBench. Both ReACT (Yao et al.,395

2023) and DFSDT (Qin et al., 2023) are common396

baselines in tool learning and have been imple-397

mented in the ToolBench as well. To make a fair398

comparison, we apply them as our baseline. We399

do not adopt ToolLLaMA-7B on EASYTOOL due400

to its poor instruction-following capability. Fur-401

thermore, we also adopt Mistral-Instruct-7B (Jiang402

et al., 2023a) for comparison, which exhibits great403

instruction-following capability.3 For the baselines,404

we follow the settings in (Qin et al., 2023), which405

provides tool documentation for them to use tools.406

Main Result We simplify the tool documentation407

from ToolBench into concise tool instructions with408

EASYTOOL.4 Each tool instruction consists of a409

tool description and functionality guidelines. As410

shown in Table 3, with EASYTOOL, replacing tool411

in Appendix C.1
3Detailed information of baselines is shown in Ap-

pendix C.2
4The data examples of ToolBench are provided in Ap-

pendix G.1.

documentation with our tool instruction can greatly 412

reduce the token cost of each tool. Especially in 413

ToolBench, the token cost was reduced by 70.43%. 414

Furthermore, results in Table 4 show that: 1) EASY- 415

TOOL can help LLMs achieve state-of-the-art per- 416

formance, indicating the superiority of tool Instruc- 417

tions over tool documentation in facilitating tool 418

usage for LLM-based agents; 2) Vicuna-7B and 419

Mistral-Instruct-7B result in a failure when directly 420

using tools. Our findings align with those presented 421

in the original ToolBench paper (Qin et al., 2023). 422

Based on previous experiences (Shen et al., 2023b), 423

we attribute this phenomenon to the lack of train- 424

ing in formatted data (e.g., function call).5 How- 425

ever, tool instructions generated by EASYTOOL can 426

help these models to better understand the usage of 427

tools, even making them outperform the fine-tuned 428

method, i.e., ToolLLaMA; 3) Mistral-Instruct-7B 429

outperforms Vicuna-7B with EASYTOOL, indicat- 430

ing that models with better instruction-following 431

capabilities can achieve greater improvements with 432

high-quality tool instructions. 433

EASYTOOL for Tool Retrieval In real-world 434

scenarios, asking users to manually recommend 435

tools from a large pool for LLMs to select may 436

5More analysis about the results of Vicuna-7B and Mistral-
Instruct-7B is shown in Appendix C.3

6

Method I2-Category I3-Instruction Average

@1 @5 @1 @5 @1 @5

BERT Retriever 68.2 77.9 81.7 87.1 75.0 82.5
Ada 36.8 30.7 54.6 46.8 45.7 38.8

+ EASYTOOL 73.4 82.7 80.1 88.5 76.7 85.6

Table 5: The performance of different retrievers for
two subsets in ToolBench. We report NDCG@1 and
NDCG@5.

5 10 20 50
The Number of Candidate Tools

30
40
50
60
70
80

S
el

ec
tio

n
A
cc

ur
ac

y
(%

) ChatGPT
GPT-4

ChatGPT w/ EASYTOOL
GPT-4 w/ EASYTOOL

Figure 2: The selection accuracy of LLMs on I1-
instruciton of ToolBench.

not be practical. Therefore, ToolBench also pro-437

vides a dense retriever based on BERT-base (De-438

vlin et al., 2019) to retrieve relevant tools for439

solving user requests, and claims that it out-440

performs text-embedding-ada-002, i.e. GPT441

Ada (Ouyang et al., 2022), which retrieves tools442

based on the cosine embedding similarity between443

the subtasks decomposed by user requests and tool444

descriptions from original tool documentation in445

ToolBench. We argue that the poor performance446

of Ada may be due to low-quality tool descrip-447

tions, which often contain irrelevant details and448

lack clear functionality guidelines. Thus, we re-449

place the original tool descriptions with the ones450

generated by EASYTOOL. Following (Qin et al.,451

2023), we compare the performance of these re-452

trieval methods using NDCG (Järvelin and Kekäläi-453

nen, 2002). NDCG is a ranking quality metric that454

compares rankings to an ideal order in which all455

relevant items are at the top of the list. Results in456

Table 5 show EASYTOOL can greatly improve the457

tool retrieval performance.458

EASYTOOL for Tool Selection We utilize the459

I1-Instruciton of ToolBench, which comprises 100460

user requests solvable by a single tool. We first461

obtain the golden tool from I1-Instruction and then462

retrieve other different tools based on cosine em-463

bedding similarity between the user request and464

tool descriptions as candidate tools. Then, we eval-465

uate the selection accuracy of LLMs with vary-466

ChatGPT ChatGPT
+ EASYTOOL

GPT-4 GPT-4
+ EASYTOOL

0
5

10
15
20
25
30

Pr
op

or
tio

n
of

 T
oo

l C
al

ls
 (

%
)

8%

0%

5%

0%

25%

6%

17%

1%

Name Error Parameter Error

Figure 3: Error rates of tool calls in different LLMs.
The error rate is the number of two tool-related errors
relative to the total number of tool calls. The results are
evaluated by human annotators.

ing numbers of candidate tools, using either origi- 467

nal ToolBench descriptions or those generated by 468

EASYTOOL. Figure 2 illustrates that EASYTOOL 469

enhanced descriptions enable LLMs to select the 470

correct tool more effectively from a larger pool. 471

EASYTOOL for Tool Execution For each sub- 472

task in I2-Category and I3-Instruction, we retrieve 473

the top 10 most similar tools using our tool descrip- 474

tions and ask models to select and execute them. 475

As shown in Table 4, using these retrieved tools 476

proves comparable, and sometimes even superior, 477

to the ground truth tool set. The rationale is that 478

EASYTOOL with retriever can retrieve similar tools 479

with better functionalities to replace some tools in 480

the ground truth tool set. 481

Error Analysis We follow (Zhang et al., 2023) 482

and define two types of error: Tool name error 483

means models call non-existent tool functions that 484

are not in the tool inventory, and parameter error 485

means models pass invalid parameters. We sam- 486

ple 100 data from I2-Category and I3-Instruction 487

and employ three annotators to manually examine 488

the output of LLMs with tool documentation and 489

tool instruction generated by EASYTOOL (Fleiss’s 490

κ = 0.91). The results in Figure 3 show that EASY- 491

TOOL can significantly reduce these incorrect be- 492

haviors, leading to successful tool execution.6 493

5.2 Real-World Web Services 494

Real-world web services often need to execute 495

tools following a specific order. We aim to ex- 496

plore the capability of LLMs to find correct tool 497

solution paths. 498

Benchmark and Baselines We select Rest- 499

Bench (Song et al., 2023), comprising tasks in 500

6Annotation details are shown in Appendix B and fur-
ther analysis about the number of examples is shown in Ap-
pendix C.4.

7

RestGPT +ToolDec +EASYTOOL14
16
18
20
22
24
26

C
P%

Vicuna (13B) based model

ReAct RestGPT +EASYTOOL55
60
65
70
75
80

C
P%

ChatGPT based model

Figure 4: The correct path rate (CP%) on two versions
of RestBench with different methods.

real-world web service scenarios. We evaluate501

our method on a subset of RestBench, i.e., TMDB.502

TMDB is a movie information website that offers503

55 official RESTful APIs as tools. Following the504

evaluation metric in RestBench, we use the cor-505

rect path rate (CP%) to measure accuracy, which506

is the proportion of the model-generated tool path507

containing the gold tool path as a subsequence.508

We choose RestGPT (Song et al., 2023) as our509

backbone model. The RestGPT has two versions,510

i.e., Vicuna-13B-based RestGPT and ChatGPT-511

based RestGPT. For Vicuna-13B-based RestGPT,512

we compare our method with ToolDec, a decoding513

algorithm to help LLMs invoke tools properly. For514

ChatGPT-based RestGPT, we compare our method515

with ReAct since ToolDec cannot be applied to516

close-sourced models.517

Result We simplify the long tool documentation518

into concise tool instructions with EASYTOOL for519

LLMs to use.7 For comparison, we use the prompt520

from (Song et al., 2023) containing original tool521

descriptions and four examples. Table 3 demon-522

strates that EASYTOOL significantly reduces the523

token cost. Figure 4 highlights the considerable524

improvement in the correct path rate, signifying525

EASYTOOL’s effectiveness in aiding LLMs to find526

the correct tool solution paths.527

5.3 Numerical Reasoning528

We also explore whether EASYTOOL can help529

LLM-based agents in complex math problems with530

incomplete tool documentation.531

Benchmark and Baselines We adopt532

FuncQA (Hao et al., 2023), which tests the533

numerical reasoning ability of LLMs on complex534

math problems involving 13 arithmetic operations535

7The data examples of RestBench are provided in Ap-
pendix G.2.

Model One-hop (↑) Multi-hop (↑) Error (↓)

Vicuna-30B 15.00 1.00 -
+ CoT 13.33 4.00 -
+ ReAct 45.00 7.35 20.31
+ EASYTOOL 65.00 11.76 10.15

ChatGPT 55.00 9.00 -
+ CoT 48.33 17.64 -
+ ReAct 85.00 41.17 9.38
+ EASYTOOL 91.66 48.53 2.34

Table 6: The accuracy of Vicuna-30B and ChatGPT on
the FuncQA.

tools. FuncQA has two subsets, i.e., one-hop and 536

multi-hop. The one-hop questions consist of 68 537

math problems solvable with one tool. The 60 538

multi-hop questions require some reasoning steps, 539

averaging 2.78 tool uses per question. Apart from 540

accuracy, we also measure tool error rate (i.e., 541

Error), the proportion of tasks with at least one 542

tool-related error. Following (Hao et al., 2023), we 543

select Vicuna-30B and ChatGPT and compare our 544

method with 0-shot learning, Chain-of-thought 545

(CoT) prompting and ReAct. 546

Result Unlike the other datasets, FuncQA only 547

provides the name and calling function of a tool as 548

documentation, without any other tool descriptions 549

for further usage demonstration. Therefore, by 550

only leveraging the provided tool name and calling 551

function, we can also apply EASYTOOL to generate 552

tool descriptions with usage scenarios to construct 553

tool instruction for FuncQA.8 Results in Table 6 554

show that tool instructions generated based on our 555

method (+ EASYTOOL) significantly improve the 556

tool utilization ability of LLMs on complex math 557

problems. Furthermore, a lower tool error rate 558

indicates that EASYTOOL can better guide models 559

to select correct tools and pass valid parameters. 560

6 Conclusion 561

In this paper, we introduce EASYTOOL, an easy 562

but effective method to enhance the tool utilization 563

capabilities of LLM-based agents through the sim- 564

plification and refinement of tool documentation 565

into a clear, structured and practical tool instruction. 566

Our comprehensive experiments demonstrate that 567

EASYTOOL can effectively enhance performance 568

in different real-world applications. We also expect 569

EASYTOOL can facilitate the community to better 570

develop efficient tool utilization. 571

8The data examples of FuncQA are provided in Ap-
pendix G.3.

8

Limitations572

First, this paper only focuses on tool documenta-573

tion whose token length does not exceed the Chat-574

GPT input limit. Documentation with token counts575

surpassing this limit cannot be processed by EASY-576

TOOL without additional preprocessing. Second,577

our method is limited to single documentation, ne-578

glecting the dependencies among tools. Consider-579

ing these dependencies in tool descriptions could580

significantly enhance the model’s effectiveness in581

certain scenarios. Finally, EASYTOOL only works582

on models with instruction-following ability. Fu-583

ture work can focus on training specialized models584

using tool instructions generated by EASYTOOL,585

thereby improving their capability in tool utiliza-586

tion.587

Ethics Statement588

We acknowledge that all authors are informed589

about and adhere to the ACL Code of Ethics and590

the Code of Conduct.591

Use of Human Annotations Our institution re-592

cruited annotators to implement the annotations593

of tool descriptions and functionality guidelines.594

We ensure the privacy rights of the annotators are595

respected during the annotation process. The an-596

notators receive compensation exceeding the lo-597

cal minimum wage and have consented to the use598

of tool instructions generated by EASYTOOL for599

research purposes. Appendix B provides further600

details on the annotations.601

Risks The tool benchmarks in our experiment are602

sourced from publicly available sources. However,603

we cannot guarantee that they are devoid of socially604

harmful or toxic language. Furthermore, evaluating605

the data quality of tool instructions is based on606

common sense, which can vary among individuals607

from diverse backgrounds. We use ChatGPT to608

correct grammatical errors in this paper.609

References610

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun611
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,612
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2023.613
T-eval: Evaluating the tool utilization capability step614
by step. arXiv preprint arXiv:2312.14033.615

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,616
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan617
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion618

Stoica, and Eric P. Xing. 2023. Vicuna: An open- 619
source chatbot impressing gpt-4 with 90%* chatgpt 620
quality. 621

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 622
Kristina Toutanova. 2019. BERT: Pre-training of 623
deep bidirectional transformers for language under- 624
standing. In Proceedings of the 2019 Conference of 625
the North American Chapter of the Association for 626
Computational Linguistics: Human Language Tech- 627
nologies, Volume 1 (Long and Short Papers), pages 628
4171–4186, Minneapolis, Minnesota. Association for 629
Computational Linguistics. 630

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any- 631
tool: Self-reflective, hierarchical agents for large- 632
scale api calls. arXiv preprint arXiv:2402.04253. 633

Significant Gravitas. 2023. Auto-gpt: An au- 634
tonomous gpt-4 experiment. https://github.com/ 635
Significant-Gravitas/Auto-GPT. 636

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 637
2023. Toolkengpt: Augmenting frozen language 638
models with massive tools via tool embeddings. vol- 639
ume abs/2305.11554. 640

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa 641
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr- 642
ishna, and Tomas Pfister. 2023. Tool documenta- 643
tion enables zero-shot tool-usage with large language 644
models. 645

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu- 646
lated gain-based evaluation of ir techniques. ACM 647
Trans. Inf. Syst., 20(4):422–446. 648

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 649
sch, Chris Bamford, Devendra Singh Chaplot, Diego 650
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 651
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 652
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 653
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 654
and William El Sayed. 2023a. Mistral 7b. 655

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 656
Yang, and Lili Qiu. 2023b. LLMLingua: Compress- 657
ing prompts for accelerated inference of large lan- 658
guage models. In Proceedings of the 2023 Confer- 659
ence on Empirical Methods in Natural Language Pro- 660
cessing, pages 13358–13376, Singapore. Association 661
for Computational Linguistics. 662

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 663
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 664
and Yongbin Li. 2023. Api-bank: A comprehensive 665
benchmark for tool-augmented llms. In Proceedings 666
of the 2023 Conference on Empirical Methods in Nat- 667
ural Language Processing, EMNLP 2023, Singapore, 668
December 6-10, 2023, pages 3102–3116. 669

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, 670
Lirong Xiang, Yuchen Liu, and Dongkuan Xu. 671
2024. Toolnet: Connecting large language models 672
with massive tools via tool graph. arXiv preprint 673
arXiv:2403.00839. 674

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://doi.org/10.48550/arXiv.2305.11554
https://doi.org/10.48550/arXiv.2305.11554
https://doi.org/10.48550/arXiv.2305.11554
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-675
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and676
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-677
positional reasoning with large language models. vol-678
ume abs/2304.09842.679

Jesse Mu, Xiang Lisa Li, and Noah D. Goodman.680
2023. Learning to compress prompts with gist to-681
kens. CoRR, abs/2304.08467.682

OpenAI. 2022. Chatgpt.683

OpenAI. 2023. GPT-4 technical report.684

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,685
Carroll Wainwright, Pamela Mishkin, Chong Zhang,686
Sandhini Agarwal, Katarina Slama, Alex Gray, John687
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,688
Maddie Simens, Amanda Askell, Peter Welinder,689
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.690
Training language models to follow instructions with691
human feedback. In Advances in Neural Information692
Processing Systems.693

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.694
TALM: tool augmented language models. CoRR,695
abs/2205.12255.696

Shishir G. Patil, Tianjun Zhang, Xin Wang, and697
Joseph E. Gonzalez. 2023. Gorilla: Large lan-698
guage model connected with massive apis. CoRR,699
abs/2305.15334.700

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan701
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,702
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,703
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,704
and Maosong Sun. 2023. Toolllm: Facilitating large705
language models to master 16000+ real-world apis.706
CoRR, abs/2307.16789.707

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,708
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong709
Wen. 2024. Tool learning with large language mod-710
els: A survey. arXiv preprint arXiv:2405.17935.711

Mengjie Ren, Boxi Cao, Hongyu Lin, Liu Cao, Xi-712
anpei Han, Ke Zeng, Guanglu Wan, Xunliang Cai,713
and Le Sun. 2024. Learning or self-aligning? re-714
thinking instruction fine-tuning. arXiv preprint715
arXiv:2402.18243.716

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta717
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola718
Cancedda, and Thomas Scialom. 2023. Toolformer:719
Language models can teach themselves to use tools.720
CoRR, abs/2302.04761.721

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,722
Weiming Lu, and Yueting Zhuang. 2023a. Hugging-723
gpt: Solving AI tasks with chatgpt and its friends in724
huggingface. volume abs/2303.17580.725

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,726
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,727

and Yueting Zhuang. 2023b. Taskbench: Benchmark- 728
ing large language models for task automation. arXiv 729
preprint arXiv:2311.18760. 730

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, 731
Han Qian, Mingbo Song, Hailiang Huang, Cheng 732
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li. 733
2023. Restgpt: Connecting large language models 734
with real-world restful apis. 735

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 736
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener- 737
alized tool learning for language models with 3000 738
simulated cases. 739

Gemini Team and Google. 2023. Gemini: A family of 740
highly capable multimodal models. 741

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 742
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 743
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 744
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 745
Grave, and Guillaume Lample. 2023a. Llama: Open 746
and efficient foundation language models. CoRR, 747
abs/2302.13971. 748

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 749
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 750
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 751
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 752
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 753
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 754
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 755
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 756
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 757
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 758
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 759
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 760
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 761
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 762
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 763
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 764
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 765
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 766
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 767
Melanie Kambadur, Sharan Narang, Aurelien Ro- 768
driguez, Robert Stojnic, Sergey Edunov, and Thomas 769
Scialom. 2023b. Llama 2: Open foundation and 770
fine-tuned chat models. CoRR, abs/2307.09288. 771

Boshi Wang, Hao Fang, Jason Eisner, Benjamin 772
Van Durme, and Yu Su. 2024. Llms in the imag- 773
inarium: tool learning through simulated trial and 774
error. arXiv preprint arXiv:2403.04746. 775

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 776
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 777
Hajishirzi. 2023. Self-instruct: Aligning language 778
models with self-generated instructions. In Proceed- 779
ings of the 61st Annual Meeting of the Association for 780
Computational Linguistics (Volume 1: Long Papers), 781
pages 13484–13508, Toronto, Canada. Association 782
for Computational Linguistics. 783

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, 784
Zhengyu Chen, and Jian Zhang. 2023. On the tool 785

10

https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754

manipulation capability of open-source large lan-786
guage models.787

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak788
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.789
React: Synergizing reasoning and acting in language790
models. In The Eleventh International Conference791
on Learning Representations.792

Kexun Zhang, Hongqiao Chen, Lei Li, and William793
Wang. 2023. Syntax error-free and generalizable tool794
use for llms via finite-state decoding.795

11

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
http://arxiv.org/abs/2310.07075
http://arxiv.org/abs/2310.07075
http://arxiv.org/abs/2310.07075

A Tool Utilization Pipeline796

The four-stage framework of LLM-based agents in797

tool-usage applications is shown in Figure 5.798

B Crowd-sourcing Details for Tool799

Instruction Evaluation and Error800

Analysis801

For tool instruction evaluation, we have recruited a802

team of three undergraduates. We pay each annota-803

tor $8/h, exceeding the local minimum wage. The804

screenshots of the instructions and interface for tool805

description and functionality guideline annotation806

are shown in Figure 7 and Figure 8.807

For error analysis, we have recruited a team of808

three undergraduates as annotators. We pay each809

annotator $8/h, exceeding the local minimum wage.810

We randomly sampled 100 data from I2-Category811

and I3-Instruction and asked them to manually ex-812

amine the output of LLMs using tool documenta-813

tion and tool instructions generated by EASYTOOL.814

Each sample is examined by these three annotators815

with Fleiss’s κ = 0.91. In cases of disagreement816

among them, the decision of the majority was ac-817

cepted. The screenshots of the instructions and818

interface for error annotation are shown in Figure 9.819

C Details of ToolBench820

C.1 Success Rate Evaluation821

The prompt of the success rate evaluation is given822

in List 1.823

Listing 1: Instruction templates for GPT-4 to evaluate
the success rate of the results on ToolBench
Please check whether the response can824
reasonably and accurately answer the825
question. If it can , please output 'YES826
'; If not , please output 'NO '827

828
You need to give reasons first and then829
decide whether the response can830
reasonably and accurately answer the831
question. You must only output in a832
parsible JSON format. Two example833
outputs look like:834

835
Example 1: {" Reason ": "The reason why836
you think the response can reasonably837
and accurately answer the question", "838
Choice ": "Yes"}839
"Example 2: {" Reason ": "The reason why840
you think the response cannot reasonably841
and accurately answer the question", "842

Choice ": "No"}843
844

This is the user 's question: {question}845
This is the response: {answer}846
Output:847

user request

Subtask 1 Subtask 2 Subtask n

Tool Retrieval

Tool Selection

Tool Execution

......

Based on Tool Description

Pass the required parameters

Based on Tool Functionality

Incorrect Output Answer

Task Planning

Tool 1 Tool 2 Tool 3

...

Based on Tool Description

Figure 5: The four-stage framework of LLM-based
agents in tool-usage applications.

C.2 The Details about Baselines of ToolBench 848

Vicuna-7B (Chiang et al., 2023) is the LLaMA vari- 849

ant fine-tuned on instructions and user-shared con- 850

versations. Mistral-Instruct-7B (Jiang et al., 2023a) 851

is the Mistral-7B variant fine-tuned on instructions, 852

which exhibits great instruction-following and rea- 853

soning capability. For OpenAI models, we use 854

gpt-3.5-turbo-0613 and gpt-4-0613. We set 855

the temperature to 0 for all models. 856

For baselines, ReACT is a general paradigm 857

that combines reasoning and acting with language 858

models to solve diverse language reasoning and 859

decision-making tasks (Yao et al., 2023). DFSDT 860

is a depth-first search-based decision tree method, 861

which allows the model to assess different reason- 862

ing paths and choose to either (1) proceed along 863

a promising path or (2) abandon an existing node 864

(such as a node with a failed API call) by calling 865

the “Finish by Giving Up” function and expand a 866

new node. 867

Following the setting in (Qin et al., 2023), for 868

ChatGPT and GPT-4, we directly leverage the func- 869

tion call to use tools 9. For other models, we synthe- 870

size input in function call format to these models. 871

C.3 Analysis about Results of Vicuna-7B and 872

Mistral-Instruct-7B 873

In the original ToolBench paper (Qin et al., 2023), 874

the authors synthesized tool documentation in the 875

function call JSON format for these models. For 876

example: 877

{ 878
"name ":" 879
air_quality_history_for_air_quality", 880

9https://openai.com/blog/
function-calling-and-other-api-updates

12

https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates

"description ":"You can use this tool.881
The description of this function is:882
\" Returns the past 24 hours of air883

quality observations for any point in884
the world given a lat/lon.\"",885

"parameters ":{886
"type ":" object",887
"properties ":{888

"lat":{889
"type ":" integer",890
"description ":" Latitude",891
"example_value ":"35.779"892

},893
"lon":{894

"type ":" integer",895
"description ":" Longitude",896
"example_value ":" -78.638"897

}898
},899
"required ":[900

"lat",901
"lon"902

],903
"optional ":[904

905
]906

}907
}908

When we convert this function call from JSON909

to Markdown, as shown below, Vicuna-7B and910

Mistral-Instruct-7B can better choose the correct911

tool name and pass valid parameters.912

air_quality_history_for_air_quality913
914

** Description **: This tool provides the915
past 24 hours of air quality916
observations for any point in the world917
given a lat/lon.918

919
Parameters920

921
Parameters must be an object with the922
following properties:923

924
- **lat** (required):925

- **Type **: integer926
- ** Description **: Latitude927
- ** Example Value **: 35.779928

929
- **lon** (required):930

- **Type **: integer931
- ** Description **: Longitude932
- ** Example Value **: -78.638933

Thus, we attribute this phenomenon to a lack of934

training in formatted data (e.g., function calls).935

That means Vicuna-7B and Mixtral-7B cannot ef-936

fectively process JSON-style data without addi-937

tional examples, which results in low performance.938

Although converting data into markdown format939

allows them to use the tool, the redundancy of tool940

documentation has not been effectively resolved.941

Tool instructions generated by EASYTOOL are con-942

cise, with clear and standard tool descriptions and943

Model Method Name Parameter

ChatGPT

Tool documentation 8 25
EASYTOOL w/o example 0 21
EASYTOOL w/1 example 0 6
EASYTOOL w/3 examples 0 5

GPT-4

Tool documentation 5 17
EASYTOOL w/o example 0 14
EASYTOOL w/1 example 0 1
EASYTOOL w/3 examples 0 1

Table 7: Error rates of tool calls in ChatGPT and GPT-4
with different examples generated by EASYTOOL.

guidelines for tool functionality, that can help these 944

models better understand how to use tools and thus 945

achieve good performance. 946

C.4 Error Analysis about Example Number 947

We further conduct the ablation study of GPT- 948

generated examples. Specifically, we sample 100 949

data from I2-Category and I3-Instruction and em- 950

ploy three annotators to manually examine the 951

output of LLMs with: 1) Tool documentation; 2) 952

EASYTOOL-generated tool instruction generated 953

without examples (EASYTOOL w/o example); 3) 954

EASYTOOL-generated tool instruction with one 955

example (EASYTOOL w/ 1 example); 4) EASY- 956

TOOL-generated tool instruction generated with 957

three examples (EASYTOOL w/ 3 examples). The 958

results in Table 7 show that: With concise and effec- 959

tive tool instruction, EASYTOOL can significantly 960

reduce these incorrect behaviors, leading to suc- 961

cessful tool execution. A clear tool description gen- 962

erated by EASYTOOL can help LLM-based agents 963

avoid calling non-existent tool functions. GPT- 964

generated examples can better help LLM-based 965

agents pass invalid parameters. 966

D Tool Instruction Generation 967

The prompt of the tool instruction generation is 968

given in List 2. 969

Listing 2: Instruction templates for GPT-4 to generate
the tool instruction for FuncQA
Your task is to generate a tool 970
instruction for the tool given the 971
function of the tool. 972
The tool instruction consists of two 973
parts: tool description and tool 974
function guidelines. 975

976
The tool description only contains the 977
purposes of the tool without other 978
irrelevant information. Here is an 979
example: 980

13

'add_ ' returns the sum of all the981
arguments passed to it, normalized to 2982
decimal places.983

984
The tool function guidelines introduce985
the parameters with examples that986
contain the scenario adopting the987
parameters. Here is an example:988
"Usage":989
{990

"required_parameters ":[991
{992

"name ":" input",993
"type ":" List"994

}995
],996

"Example ":{997
"Scenario ":"if you want to998
add 2 to 1.",999
"Parameters ":{1000

"input ":[2 ,1]1001
}1002

}1003
}1004

1005
You should first generate the tool1006
description and then give the tool1007
function guidelines. You must only1008
output in a parsible JSON format. Two1009
example outputs look like:1010
{" tool_description ": XX, "Usage": XX}1011

1012
This is the tool name: {tool_name}1013
This is the function of tool: {1014
tool_function}1015
Output:1016

E Robustness Evaluation1017

In this section, we aim to evaluate the robustness1018

of the task prompts in Table 2. We ask ChatGPT to1019

rewrite these task prompts three times and the new1020

task prompts are shown in List 3. We sample 1001021

tool documentations from ToolBench and ask Chat-1022

GPT to generate tool descriptions and tool func-1023

tionality guidelines based on the new task prompts.1024

Then we ask two annotators to evaluate the qual-1025

ity of four results (one from our task prompts, and1026

three from ChatGPT generated task prompts). The1027

results in Figure 6 show that the changes to the task1028

prompt, without altering the actual meaning, do not1029

affect the quality of the tool description and tool1030

functionality guidelines, thereby demonstrating the1031

robustness of our prompts.1032

Listing 3: The ChatGPT generated task prompts for
tool description generation and tool function guidelines
construction.
Prompt -1:1033
- Tool Description:1034
Your assignment involves developing a1035
succinct and practical description on1036
using a specific tool , as outlined in1037

its documentation. This description 1038
should focus solely on the tool 's 1039
functions , excluding any extraneous 1040
details. 1041
- Tool Function Guidelines: 1042
Create a scenario that incorporates the 1043
use of a specified tool , ensuring it 1044
utilizes the provided parameters. 1045
Receive a description of a tool , 1046
including its purpose and a list of 1047
parameters. Design a scenario that 1048
effectively employs these parameters. 1049
If both "required_parameters" and " 1050
optional_parameters" are absent , format 1051
your response as: 1052
{" Scenario ": XX, "Parameters ": {}}. 1053

1054
Prompt -2: 1055
- Tool Description: 1056
Your assignment involves crafting a 1057
succinct and practical description of a 1058
tool , using its documentation as a 1059
reference. Focus on outlining the tool 's 1060
functions , excluding any extraneous 1061

details. 1062
- Tool Function Guidelines: 1063
Your assignment involves developing a 1064
scenario that utilizes a specified tool. 1065
Here are the guidelines: 1066

You will receive information about a 1067
tool , including its intended use and a 1068
list of parameters. Your scenario should 1069
incorporate these parameters. 1070

In cases where both "required_parameters 1071
" and "optional_parameters" are absent , 1072
format your response as follows: 1073
{" Scenario ": XX, "Parameters ": {}}. 1074

1075
Prompt -3: 1076
- Tool Description: 1077
Your assignment involves writing a 1078
succinct and clear description of a tool 1079
's usage , guided by its documentation. 1080
This description should exclusively 1081
focus on the tool 's functions , omitting 1082
any extraneous details. 1083
- Tool Function Guidelines: 1084
Your assignment involves crafting a 1085
scenario that utilizes a specific tool. 1086
Here 's how to proceed: 1087
First , familiarize yourself with the 1088
tool 's intended use and its available 1089
parameters. Then , design a scenario that 1090
effectively incorporates these 1091

parameters. 1092
In cases where both "required_parameters 1093
" and "optional_parameters" are absent , 1094
format your response as follows: 1095
{" Scenario ": XX, "Parameters ": {}}. 1096

F Prompt Compression Method 1097

We also adopt LLMLingua (Jiang et al., 2023b), 1098

a prompt compression method, to identify and re- 1099

move non-essential tokens in tool documentation. 1100

As shown in Table 8, this method can not be applied 1101

to our task since it may compress some tokens in 1102

14

0 50 100

Pr
om

pt
-1

Pr
om

pt
-2

Pr
om

pt
-3

1.0%

2.0%

0.0%

97.0%

95.0%

98.0%

2.0%

3.0%

2.0%

Win Tie Lose

Figure 6: Comparison of our task prompts with Chat-
GPT generated task prompts. Percentage of wins, ties
and losses are calculated.

parameters and functions, which are essential for1103

successful tool execution.1104

G Examples of Tool Instruction1105

G.1 Data Examples of ToolBench1106

Table 9 presents some examples of tool instructions1107

generated by EASYTOOL in ToolBench for a better1108

understanding.1109

G.2 Data Examples of RestBench1110

Table 10 presents some examples of tool instruc-1111

tions generated by EASYTOOL in RestBench for a1112

better understanding.1113

G.3 Data Examples of FuncQA1114

Table 11 presents some examples of tool instruc-1115

tions generated by EASYTOOL in FuncQA for a1116

better understanding.1117

15

Tool Documentation:
{

"product_id ": "api_b04d269d -c7dd -4b84 -8e17 -6 fba24d64d3d",
"tool_description ": "Get Products from Ebay (Unofficial)",
"home_url ": "https :// rapidapi.com/felixeschmittfes/api/ebay32/",
"name": "Ebay",
"title": "Ebay",
"pricing ": "FREEMIUM",
"tool_name ": "Ebay",
"host": "ebay32.p.rapidapi.com",
"api_list ": [

{
"name": "Product Details",
"url": "https :// ebay32.p.rapidapi.com/product /195499451557" ,
"description ": "Get the product details for a given product id and a
specific country.",
"method ": "GET",
"required_parameters ": [

{
"name": "product_id",
"type": "NUMBER",
"description ": "ID of the product. Can be obtained from the url
of the product or by using the `/search ` endpoint.",
"default ": "195499451557"

}
],
"optional_parameters ": [

{
"name": "country",
"type": "STRING",
"description ": "Valid country to return offers for.\ nValid
values are in description of this endpoint .\ nDefault: `united
states `.",
"default ": "germany"

},
{

"name": "country_code",
"type": "STRING",
"description ": "Country code of the valid country to return
offers for.\ nValid values are in description of this endpoint .\
nDefault: `us `.",
"default ": "de"

}
]

}
]

}

Tool Instruction Compressed By LLMLingua:
{

"product "_b04d269d -c7be -fba24d64d",
"_ "Get fromay (Unofficial "://id./ fixeschmittfes/ay/ " " " " "FREEM " " ".p. "_ [

" "Product Details",
"url": "https :// ebay32.p.rapidapi.com/product /195499451557" ,
"description ": "Get the product details for a given product id and a
specific country.

Default country is `United States `.
Specify country with country name or country code.

Table 8: The original tool documentation and tool instruction compressed by LLMLingua.

16

Figure 7: The screenshots of the instructions and interface for tool description annotation.

17

Figure 8: The screenshots of the instructions and interface for tool functionality guidelines annotation.

18

Figure 9: The screenshots of the instructions and interface for error annotation.

19

Tool Description:
/* Example 1 */
'TokopediaApi ' can search and retrieve product details from Tokopedia. This tool has
2 APIs: 1. 'Search Product ' can search for products on Tokopedia based on a query

string and action type. 2. 'Get Product Detail ' can retrieve detailed information
about a product on Tokopedia based on its slug.
/* Example 2 */
'Tokopedia Super API ' can effortlessly retrieve shop and product information. This
tool has 1 API: 1. 'sortProductsMaster ' can provide the list of available sorting
methods.

Tool Function Guidelines:
/* Example 1 */
{

"name": "Search Product",
"description ": "Search The Product",
"required_parameters ": [

{
"name": "query",
"type": "STRING",
"description ": "",
"default ": "Celana Jeans"

},
{

"name": "act",
"type": "STRING",
"description ": "",
"default ": "search"

}
],
"optional_parameters ": [],
"Example ": {

"Scenario ": "if you want to search for a product with the query 'Celana
Jeans ' using the 'search ' action",
"Parameters ": {

"query": "Celana Jeans",
"act": "search"

}
}

}
/* Example 2 */
{

"name": "sortProductsMaster",
"description ": "the list of available sorting methods",
"required_parameters ": [],
"optional_parameters ": [],
"Example ": {

"Scenario ": "if you want to retrieve the list of available sorting methods
for products using Tokopedia Super API",
"Parameters ": {}

}
}

Table 9: The tool instruction of ToolBench generated by EASYTOOL.

20

Tool Description:
/* Example 1 */
'/tv/latest ' can get the most newly created TV show.
/* Example 2 */
'/search/collection ' can search for collections , which can obtain collection_id.

Tool Function Guidelines:
/* Example 1 */
{

"tool_usage ": "GET /person /{ person_id }/ tv_credits",
"Example ": {

"Scenario ": "If you want to get the TV show credits of a person with
person_id 456.",
"Parameters ": {

"input": "GET /person /456/ tv_credits"
}

}
}
/* Example 2 */
{

"tool_usage ": "GET /tv/latest",
"Example ": {

"Scenario ": "If you want to get the most newly created TV show.",
"Parameters ": {

"input": "GET /tv/latest"
}

}
}

Table 10: The tool instruction of RestBench generated by EASYTOOL.

21

Tool Description:
/* Example 1 */
'add_ ' returns the sum of all the arguments passed to it, normalized to 2 decimal
places.
/* Example 2 */
'subtract_ ' returns the difference of the arguments passed to it, starting with the
first argument and subtracting all subsequent arguments , normalized to 2 decimal
places.

Tool Function Guidelines:
/* Example 1 */
{

"required_parameters ":[
{

"name ":" input",
"type ":" List"

}
],
"Example ":{

"Scenario ":"if you want to add 2 to 1.",
"Parameters ":{
"input ":[2 ,1]
}

}
}
/* Example 2 */
{

"required_parameters ": [
{

"name": "input",
"type": "List"

}
],
"Example ": {

"Scenario ": "if you want to subtract 2 from 1.",
"Parameters ": {

"input": [1,2]
}

}
}

Table 11: The tool instruction of FuncQA generated by EASYTOOL.

22

	Introduction
	Related Work
	Preliminary
	Task Formulation
	Analysis

	Method
	Tool Description Generation
	Tool Functionality Guidelines Construction
	Evaluation

	Experiment
	Real-World Question Answering
	Real-World Web Services
	Numerical Reasoning

	Conclusion
	Tool Utilization Pipeline
	Crowd-sourcing Details for Tool Instruction Evaluation and Error Analysis
	Details of ToolBench
	Success Rate Evaluation
	The Details about Baselines of ToolBench
	Analysis about Results of Vicuna-7B and Mistral-Instruct-7B
	Error Analysis about Example Number

	Tool Instruction Generation
	Robustness Evaluation
	Prompt Compression Method
	Examples of Tool Instruction
	Data Examples of ToolBench
	Data Examples of RestBench
	Data Examples of FuncQA

