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Abstract001

Aligning Large Language Models (LLM) to002
address subjectivity and nuanced preference003
levels requires adequate flexibility and con-004
trol, which can be a resource-intensive and005
time-consuming procedure. Existing training-006
time alignment methods require full re-training007
when a change is needed and inference-time008
ones typically require access to the reward009
model at each inference step. We intro-010
duce MEAV, an inference-time model-editing-011
based LLM alignment method that learns en-012
coded representations of preference dimen-013
sions, called Alignment Vectors (AV). These014
representations enable dynamic adjusting of015
the model behavior during inference through016
simple linear operations. Here, we focus on017
three gradual response levels across three spe-018
cialized domains: medical, legal, and financial,019
exemplifying its practical potential. This new020
alignment paradigm introduces adjustable pref-021
erence knobs during inference, allowing users022
to tailor their LLM outputs while reducing the023
inference cost by half compared to the prompt024
engineering approach. Additionally, we find025
that AVs are transferable across different fine-026
tuning stages of the same model, demonstrat-027
ing their flexibility. AVs also facilitate multido-028
main, diverse preference alignment, making the029
process 12x faster than the retraining approach.030

1 Introduction031

Aligning LLMs is crucial for adapting them to032

meet human preferences. Standard training-time033

alignment methods, such as RLHF (Ouyang et al.,034

2022) and DPO (Rafailov et al., 2024), are con-035

ducted during model training. However, making nu-036

anced preference adjustments during inference with037

these approaches necessitates retraining, which re-038

quires substantial amounts of time, preference data039

and computational resources. Inference-time LLM040

alignment, by contrast, delays the alignment pro-041

cess until inference (Wang et al., 2024). While042

preference alignment can be achieved through 043

training-time methods or targeted prompting, fine- 044

grained control over preferences at inference re- 045

mains largely unexplored in current State-of-the- 046

Art (SOTA) works (Sahoo et al., 2024; Guo et al., 047

2024). This research introduces an inference-time 048

model editing technique via Alignment Vectors 049

(AV), offering users dynamic preference adjust- 050

ments without additional computational overhead. 051

Due to their extensive capabilities, LLMs are 052

now employed in different fields, but the diverse 053

needs of a broad customer base require that LLM 054

outputs be carefully refined. For instance, while a 055

healthcare provider might need detailed medical re- 056

sponses for professional use, a public health forum 057

may prefer more generalized information to avoid 058

misinterpretation. Although prompt engineering 059

can temporarily address these needs, it becomes 060

costly when scaled (Li et al., 2023). 061

Furthermore, managing multiple alignment ob- 062

jectives can be complex. Consider an insurance 063

company that needs expert legal responses, generic 064

financial answers, and to avoid medical responses; 065

balancing these demands poses a significant chal- 066

lenge. A joint training with targeted preference 067

levels can resolve the problem, however, it lacks 068

flexibility, and training can be resource inten- 069

sive. Hence, at present, there is no work that ad- 070

dresses such preference flexibility in the inference 071

time. Thus, developing flexible, inference-time 072

adjustable model alignment to manage costs and 073

maintain efficiency in the long term remains a ma- 074

jor research gap. 075

076
Why not the conventional training-time ap-
proach? In contrast to conventional approaches,
inference time alignment provides flexibility and
adaptability by enabling dynamic adjustments
to model behavior based on task or user needs
without retraining.

077
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Preference dimensions like helpfulness, harm-078

lessness, and honesty are well-studied, with some079

work exploring their controllability via numeri-080

cal levels (Bai et al., 2022; Ji et al., 2024; Guo081

et al., 2024). However, specialized dimensions of-082

fer finer granularity, enabling better control during083

inference. To enhance preference tunability, we084

focus on proficiency levels in specialized domains085

while also demonstrating tunability in a general do-086

main, such as safety. Since existing literature lacks087

domain-specific preference alignment datasets, we088

generate synthetic Query-Response pairs by deriv-089

ing queries from the PersonaHub dataset (Chan090

et al., 2024) and augmenting them with novel per-091

sonas created via LLM-generated prompts.092

In addition, to achieve inference time preference093

tunability, we propose a simple technique called094

Model Editing via Alignment Vector (MEAV),095

which is based on the concept of Task Arithmetic (Il-096

harco et al., 2023). AVs can be obtained by directly097

subtracting the base model parameters from the098

aligned model, and can be added in the inference099

time. Hence, our first research question (RQ1) Are100

alignment vectors valid representation of the pref-101

erence dimensions? To address this question, we102

systematically integrate the alignment vector into103

the base model with varying weights, both positive104

and negative, and analyze the resulting changes in105

model behavior. Our second research question is106

posed as (RQ2) Can we calibrate different align-107

ment vectors to achieve diverse multi-domain pref-108

erence? We address RQ2 through different domain-109

specific AV-integration strategy.110

The key contribution of this work are:111

• We frame LLM alignment in single and multi-112

ple domains as a model editing problem and113

introduce an inference-time tunable mecha-114

nism, which allows flexible adjustment of115

generation output along the preference dimen-116

sion.117

• We generate a synthetic dataset with a total of118

38k queries, each paired with responses cate-119

gorized into three levels of specialized subject120

matter proficiency across three specialized do-121

mains: Medical, Financial, and Legal. The122

dataset will be available through this link.123

• By adjusting the merging coefficients, we124

achieve diverse, multidomain behaviors effi-125

ciently, saving time and resources. Unlike126

joint training, which requires pD adjustments127

for D domains and p preference levels, our 128

method only requires D training runs, reduc- 129

ing resource usage by a factor of pD/D. 130

2 Related Works 131

Prompt engineering echniques, such as zero-shot, 132

few-shot, and Chain-of-Thought (COT) prompting 133

have proven effective in aligning language model 134

responses to user queries during inference time 135

(Radford et al., 2019; Sahoo et al., 2024; Wei et al., 136

2022). However, it comes with expensive inference 137

time and cost when scaled. Additionally, effective 138

prompt engineering assumes that the user is skilled 139

at interacting with LLMs (Meskó, 2023; Oppen- 140

laender et al., 2023). 141

Li et al. introduced Inference-Time Interven- 142

tion (ITI), which identifies a sparse set of attention 143

heads with high linear probing accuracy for a target 144

task and shifts their activation along task-correlated 145

directions during inference time (Li et al., 2024). A 146

similar approach was eplored to learning Safety Re- 147

lated Vectors (SRV), to steer harmful model outputs 148

towards safer alternatives (Wang et al., 2024). How- 149

ever, these methods were target domain-specific 150

and not controllable. Huang et al. introduced 151

DeAl, an alignment method that treats alignment 152

as a heuristic-guided search process (Huang et al., 153

2024). Liu et al. studied regularization strength 154

between aligned and unaligned models to have con- 155

trol over generation (Liu et al., 2024). Although 156

closely related to our work, their method lacks clar- 157

ity on whether fine-grained preference levels can 158

be achieved. Researchers controlled attributes of 159

generated contents by adding control token in the 160

prompt (Guo et al., 2024; Dong et al., 2023). De- 161

spite its effectiveness, this method requires training 162

LLMs with a particular data format, which restricts 163

the flexibility of control during inference. 164

Rame et al.’s work is closely related to our multi- 165

domain preference alignment (Rame et al., 2024). 166

However, their approach focuses on training-time 167

alignment by interpolating weights from models 168

fine-tuned on diverse rewards to achieve Pareto- 169

optimality. In contrast, our work introduces a 170

preference adjustment strategy that operates at 171

inference time, in addition to achieving multi- 172

dimensional alignment. Similarly, while Jang et 173

al. address personalized preference alignment and 174

post-hoc merging, our approach provides a unique 175

capability: preference level adjustment (Jang et al., 176

2023). 177
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3 Methodology178

MEAV starts with deriving the AVs, followed by179

the dynamic weighted integration of these AVs with180

the unaligned model.181

3.1 Obtaining Alignment Vector182

To obtain the AVs, we first perform alignment183

through the DPO algorithm, using an ‘ipo’ loss184

function to create a domain-specific aligned model185

(Rafailov et al., 2024; Azar et al., 2024). We get186

AVs by subtracting the weights of an unaligned187

model from the weights of the same model after188

alignment on a task. If θaligned denotes the model189

parameter after aligning on a preference dimension,190

then the AV can be obtained by the following:191

θAV = θaligned − θunaligned (1)192

3.2 Single Domain Alignment193

To enable preference tunability across different do-194

mains, we perform a weighted integration of the195

AVs into the base (or unaligned) model, where the196

weights can be both positive and negative. We hy-197

pothesize that this gradual integration will result in198

a corresponding gradual increase or decrease in the199

model’s proficiency. This process is governed by200

the following equation.201

θaligned = θunaligned + λ ∗ θAV (2)202

By adjusting the value of λ, we aim to control203

the proficiency of the model’s generated responses.204

Assuming when λ = 0, the model remains unal-205

tered and functions as the base, unaligned model. If206

the θAV encodes the expert behavior in a certain do-207

main, as λ increases towards 1, the model becomes208

increasingly aligned, achieving full proficiency at209

λ = 1.210

We further hypothesize that when λ takes on211

negative values, the model’s behavior tends to re-212

verse the preference ranking. For instance, if the213

base model typically generates generic responses214

and the aligned model is designed for expert-level215

responses, moving λ in the negative direction will216

shift the model towards avoidance behavior. There-217

fore, to control the proficiency of the responses,218

adjusting λ is sufficient, eliminating the need to219

train the model with a new preference configura-220

tion.221

3.3 Multidomain Alignment222

When dealing with multiple domains simultane-223

ously, the interaction between these domains can224

present a significant challenge. While individ- 225

ual preference vector encodes domain-specific at- 226

tributes, they also embed proficiency levels which 227

can easily generalize and negatively affect multido- 228

main diverse behavior. This complexity can make 229

it difficult to integrate multiple domains effectively. 230

Our goal is to achieve a diverse multidomain 231

preference, which we approach by using the fol- 232

lowing equation: 233

θmultidom_aligned = αθAV _dom1 + βθAV _dom2 234

+ γθAV _dom3 (3) 235

In this equation, α, β and γ represent the inte- 236

gration coefficients for the domains in question, 237

respectively. By identifying different sets of these 238

coefficients, we aim to achieve varying levels of 239

preference across the three domains. 240

4 Synthesizing Specialized Preference 241

Data 242

To gather data for preference tuning on response 243

proficiency levels, we employ two methods to col- 244

lect queries: “PersonaHub” (Chan et al., 2024) 245

and “CreatePersona.” Figure 1 provides a detailed 246

overview of the process. Notably, all generated 247

persona, queries, responses, and the prompts used 248

are in English. 249

4.1 Query Generation 250

We initiate the generation with a hierarchical pro- 251

cess called “CreatePersona.” We begin by ran- 252

domly generating a few persona-query pairs by 253

prompting Claude-3-Sonnet (Anthropic, 2024). To 254

preserve diversity, we limit the initial set to five 255

pairs, as we found generating too many at the out- 256

set reduces variation. From each initial persona, we 257

recursively generate additional persona-query pairs 258

that are relevant to the root persona. We randomize 259

this process three times. 260

To further diversify the dataset, we supplement 261

our generated personas by randomly sampling an 262

equal number from the PersonaHub dataset (Chan 263

et al., 2024), licensed as cc-by-nc-sa-4.0. Us- 264

ing these selected personas, we prompt Claude- 265

3-Sonnet (Anthropic, 2024) to generate specialized 266

domain queries. 267

We chose Claude-3-Sonnet over GPT-4 for two 268

main reasons: First, Claude-3-Sonnet has consis- 269

tently demonstrated performance on par with GPT- 270

4, often ranking among the best foundational mod- 271
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PersonaHub: 
Direct Query 
from Persona 

+
CreatePersona:

Persona to
Persona, and

query from the 
persona

LLM

Sorry, I
cannot…

In 
general,…

As an 
expert…

Instruction: 
Avoid

Instruction: 
Expert

Instruction:
Generic

Human 
Evaluation 

and IAA 
computation

Figure 1: The process of data collection. Personas are sourced from both the PersonaHub dataset and the
CreatePersona method. These personas are then fed to an LLM to generate queries. The LLM is prompted
with specific instructions to produce responses across three proficiency levels. Following this, human evaluation is
conducted to ensure the accuracy and quality of the generated response levels.

els. Second, we opted to use GPT-4 as an indepen-272

dent evaluator and sought to mitigate the known273

bias where evaluators tend to favor their own out-274

puts over those generated by other models (Zheng275

et al., 2024; Anthropic, 2024).276

After a thorough clean-up, involving truncation,277

and reformatting, we obtained 13,000 personas for278

the medical domain, 12,374 personas for the fi-279

nancial domain, and 12,867 personas for the legal280

domain. Each persona is accompanied by queries281

pertinent to their respective specialized domains.282

4.2 Response Generation283

We generate the response from the queries into284

three distinct levels: avoidance of response (Avd),285

generic response (Gen), and expert response (Exp).286

Detailed instructions are provided to the LLM to287

facilitate the generation of these responses (see288

Appendix C). Furthermore, we observe a progres-289

sive increase in response length from the avoidance290

level to the expert level. To mitigate potential bias291

associated with response length, we instructed the292

LLM to produce responses of random lengths.293

4.3 Human Evaluation of multi-level response294

generation295

To evaluate the quality of the generated responses,296

we conduct a small experiment involving three an-297

notators, and compute the Inter-Annotator Agree-298

ment (IAA). Each annotator is asked to categorize299

a set of LLM-generated responses into one of three300

categories: Avd, Gen, and Exp. We provide the an-301

notators with clear definitions of these categories.302

Each annotator reviews 30 queries along with their303

three-level responses, with at least 15 examples304

shared between every pair of annotators. This al- 305

lows us to compute the average Cohen’s kappa 306

score, which is found to be 0.84 (Cohen, 1960), 307

indicating substantial agreement among the anno- 308

tators. 309

We also calculate the average annotation agree- 310

ment for each annotator with the LLM genera- 311

tion. Responses generated with the Avoidance 312

instruction have the fewest disagreements or mis- 313

classifications. However, some Gen and Exp re- 314

sponses are occasionally misclassified from one an- 315

other. We observe that certain responses, although 316

aligned with the expert spectrum, are misidenti- 317

fied as generic due to their tone, and vice versa. 318

Additionally, a few avoidance responses provide 319

basic information, leading to their misclassification 320

as Gen responses. These findings suggest that the 321

levels may represent a continuous spectrum rather 322

than distinct categories, highlighting the need for 323

further research to more precisely define these pro- 324

ficiency levels. 325

5 Experiments 326

5.1 Evaluation Metric 327

To assess the performance after alignment, we use a 328

metric called preference accuracy (pref. acc). This 329

metric reports the accuracy at each alignment level. 330

To calculate it, we first compute the token-level 331

mean log-probability (MLP ) for each of the three 332

response levels across all queries for the aligned 333

model. Then, for each sample in the validation set, 334

we determine which alignment level has the high- 335

est log-probability. For example, in proficiency 336

level alignment, it can be among Exp, Gen, and 337

Avd. Finally, we report the percentage of sam- 338
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ples where each alignment level had the highest339

log-probability in the validation set. A higher pref-340

erence accuracy in an alignment spectrum indicate341

the dominant behavior of that level.342

To illustrate, for a query q ∈ Q, the mean log-343

probability for response r ∈ R, where R can be344

different alignment levels, is computed for model345

Mλ as:346

MLP(r, q,Mλ) =
1

Tr(q)

Tr(q)∑
i=1

logP (ti | ctx,Mλ)

(4)

347

where Tr(q) is the response length, ti is the ith348

token and ctx is the previously processed context.349

The preferred alignment level is:350

r∗(q) = argmax
r∈R

MLP(r, q,Mλ).351

The preference accuracy for level r is:352

Pref. Acc(r) =
1

|Q|
∑
q∈Q

1[r∗(q) = r],353

where 1[r∗(q) = r] is the indicator function.354

Higher Pref. Acc(r) indicates the dominant behav-355

ior of the preference alignment level r. A similar356

approach was also used in pairwise preference ac-357

curacy computation in (Stiennon et al., 2020).358

Additionally, we use an auxiliary metric as359

“GPT-4 judged generation accuracy”, where we gen-360

erate the responses from queries in a sample, and361

ask GPT-4 to annotate it as one of the three levels362

(Zheng et al., 2024). After that, we simply report363

the percentage of each annotated alignment level.364

5.2 Baseline Approaches365

Since existing model-editing methods lack366

inference-time controlled alignment, we use367

‘prompting’ as a baseline, instructing the LLM368

to generate responses at predefined proficiency369

levels. Unlike model editing, this enables discrete370

levels rather than a spectrum. Our second baseline,371

‘Joint Training,’ combines multidomain data to372

align responses across proficiency levels, offering373

insights despite being a training-time method. We374

also report the model’s ‘default’ performance,375

where queries are prompted without additional376

instructions or edits.377

5.3 Model and Training Configuration 378

We define three main preference levels—“expert,” 379

“generic,” and “avoidance”—for specialized do- 380

main proficiency and use DPO training with a 381

fixed beta of 0.1, where “expert” is preferred 382

over “generic,” and “generic” over “avoidance.” 383

To demonstrate preference tunability, we vary λ 384

in increments of 0.1, capturing significant behav- 385

ioral shifts. As a base model, we use Mistral-7B- 386

Instruct-v0.3 (Jiang et al., 2023) (licensed apache- 387

2.0), training on NVIDIA A100 GPUs with an 388

80/20 train/test split, and 3% for validation. We 389

run one epoch at a batch size of 4 and stop training 390

when validation loss converges. 391

Apart from the special domain dataset, we also 392

use the PKU-SafeRLHF dataset (licensed cc-by-nc- 393

4.0) for safety and helpfulness alignment experi- 394

ments (Ji et al., 2024). 395

6 Results and Discussion 396

6.1 Single Domain Preference Tuning 397

We use the AV derived by aligning the model to gen- 398

erate responses at an expert-level within a given do- 399

main. It facilitates model editing which introduces 400

a tunable parameter, allowing the user to control 401

the proficiency level of the generated responses in a 402

continuum. Consequently, one alignment vector is 403

established for each domain, enabling the model to 404

navigate and produce output across varying spectra 405

of proficiency. This, in turn, also addresses RQ1. 406

Table 1 shows that simply adding instructions for 407

specific expertise (i.e., prompting) does not signifi- 408

cantly improve preference accuracy, while nearly 409

doubles inference cost. Notably, the base model 410

achieves high expert-level accuracy even with 411

prompts from a different LLM (Claude-3-Sonnet), 412

though it performs poorly in generic (0.31) and 413

avoidance (0.15) categories. For MEAV, adding the 414

AV at different λ values shifts the model’s likeli- 415

hood of generating expert responses: negative λ 416

reduces expertise (with avoidance at λ = −1.2), 417

while in the medical domain, λ = −0.7 yields 418

generic behavior and λ = 0.5 produces full exper- 419

tise. 420

Figure 2 illustrates the tunable nature of the pref- 421

erence expertise spectrum across all three domains. 422

Notably, at λ = 0, the model predominantly gener- 423

ates expert responses in all domains. In the medical 424

domain, the model reaches the higher end of the 425

expertise spectrum when λ exceeds 0.3. Between 426

λ = −0.4 and λ = −0.8, the model exhibits vary- 427
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(a) (b) (c)

Figure 2: By changing the λ parameter in the MEAV process, we achieve different alignment objectives. In (a),
when λ > 0.3, we find the model aligning with expert answers to medical queries by prefering expert responses
over the others. However, when λ < −0.8, we see the model prefers avoidance of responses. In between these
points, we observe the model answering generically to medical queries. (b) and (c) demonstrates this behavior
for financial and legal domains respectively. Here λ acts as a “tunable knob”, through which users can adjust the
behavior of the model, and have the expertise level at any spectrum they want

Domain Technique Target
behavior Pref. Acc. GPT-4 judged

gen. acc
Exp Gen Avd Exp Gen Avd

Default .75 .25 0 .90 .05 .05

M
ed

ic
al

Prompting
Exp .78 .22 0 .90 .05 .05
Gen .69 .31 0 .50 .50 0
Avd .60 .25 .15 .15 .55 .30

Exp (.5) .95 0 .05 1.0 0 0
Ours: MEAV Gen (-.7) .26 .44 .30 0 .60 .40

Avd (-1.2) .03 .13 .84 .05 .20 .75
Default .81 .19 0 .85 .15 0

Fi
na

nc
ia

l

Prompting
Exp .84 .16 0 .95 .05 0
Gen .57 .43 0 .75 .25 0
Avd .35 .49 .16 .20 .60 .20

Exp (.3) .85 .15 0 1.0 0 0
Ours: MEAV Gen (-.4) .30 .42 .28 .35 .50 .15

Avd (-1.4) .07 .20 .73 0 .15 .85
Default .78 .22 0 .85 .15 0

Fi
na

nc
ia

l

Prompting
Exp .79 .21 0 1.0 0 0
Gen .59 .41 0 .65 .35 0
Avd .41 .30 .29 .15 .40 .45

Exp (.3) 1.0 0 0 1.0 0 0
Ours: MEAV Gen (-.7) .23 .39 .38 o .65 .35

Avd (-1.4) 0 .20 .80 0 .05 .95

Table 1: How MEAV performs to steer different domain expertise response level. The Default behavior indicates
λ = 0, i.e., the model with no alignment. Tuning Lambda to different values with our MEAV approach leads to
varying levels of proficiency responses. As such, we observe Exp, Gen, and Avd behavior just by aligning one
model.

ing degrees of generic behavior and beyond that,428

the model starts behaving with topic avoidance.429

Next, we investigate if the gradual model edit-430

ing method also impacts the performance in the431

other domains. Our findings indicate that the spe-432

cialized behavior is indeed reflected across various433

domains, even when the AV is extracted for a spe- 434

cific domain. For instance, Table 2 demonstrates 435

that the addition of a medical AV with λ = 0.5 also 436

enhances the model’s expertise in the financial do- 437

main. Similarly, we observed that with λ = -1.2 the 438

model exhibits avoidance behavior in both the legal 439
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Lambda
Fin pref. Acc Leg pref. Acc General Pref. Acc

Safety Helpfulness
Exp Gen Avd Exp Gen Avd Safe Unsafe Helpful Unhelpful

0 .81 19 0 .78 .22 0 .58 .42 .60 .40
0.5 1.0 0 0 1.0 0 0 .58 .42 .66 .34
-0.7 .59 .40 .01 .58 .32 .10 .57 .43 .58 .42
-1.2 .03 .20 .77 .08 .18 .74 .57 .43 .49 .51

Table 2: Out of Domain (special and general) preference accuracy for Medical domain responses. Here, we gradually
add the in-domain AV with the base model, and observe the performance for out-of-domain proficiency levels. We
find that steering the proficiency levels in one domain also generalizes across other domains.

and financial domains. This pattern is consistent440

when using other specialized domain vectors as441

well (see Appendix D).442

Effect on General Alignment We also examine443

whether MEAV for controllable proficiency lev-444

els influences the general domain preference (i.e.,445

‘helpfulness’ and ‘safety’). Notably, we do not ob-446

serve any regression in the safety domain; however,447

the model becomes increasingly helpful as λ in-448

creases. With the rise in λ, the model provides449

more detailed and specific guidance, which aligns450

with human preferences for helpfulness. Con-451

versely, decreasing λ causes the model to avoid an-452

swering, which is perceived as unhelpful. Notably,453

the range of change in general domain preference454

accuracy is ±11% for helpfulness and ±1% for455

safety, indicating that MEAV does not lead to sig-456

nificant regression in general domain performance.457

6.2 Multi Domain Preference Tuning458

We observe distinct behaviors across different do-459

mains by adjusting specific configurations. Since,460

we have three proficiency levels, accuracy higher461

than 33% and the highest among the three levels462

can be considered as the “dominant” proficiency463

level. For example, as shown in Table 3, we find464

that an AV-based editing coefficient of -1, -1, and465

0.6 for the Medical, Financial, and Legal domains,466

respectively, results in avoidance being the dom-467

inant behavior in the Medical and Financial do-468

mains, with accuracies of 0.46 and 0.42, respec-469

tively, and expertise being dominant in the Legal470

domain, with an accuracy of 0.78. Therefore, it471

indicates multi-level expertise across domains, and472

we address RQ2 as well.473

There are 27 possible domain–behavior combi-474

nations (three domains × three spectrums), and a475

grid search reveals 22 where the desired behavior476

is dominant. Joint training achieves near-perfect477

accuracy but requires 27 separate trainings—nine 478

times more than the three needed for single-domain 479

DPO runs. Each training job takes about 72 hours 480

on an A100 GPU, totaling 1,944 hours for all 27. 481

By contrast, a grid search of 21 coefficient values 482

per domain (9,261 evaluations at roughly 60 sec- 483

onds each) takes about 155 hours—12 times faster. 484

However, continuous multi-domain tunability re- 485

mains challenging, as single-domain edits often 486

over-generalize and compromise domain-specific 487

precision. 488

Figure 3: Controlling safety by MEAV

6.3 Can AV be extensible for General 489

Domain? 490

To explore the generalizability of MEAV across 491

various domains, we focus on the safety alignment 492

as a test case. We start by aligning our base model 493

towards the safe dimension by obtaining the safety 494

AV and gradually integrating it with the base model. 495

For the safety alignment, we sample the examples 496

where chosen response is labeled safe, and the re- 497

jected response is labeled unsafe (Ji et al., 2024). 498

We compute the pref. acc in the same way de- 499

scribed in 5.1, where R = {safe, unsafe}. 500

Figure 3 illustrates that the model exhibits mixed 501

safety accuracy initially when λ = 0 with a safety 502

preference accuracy of 0.53 and an unsafe prefer- 503

ence of 0.47. As λ increases, the model progres- 504

sively aligns more with safety, achieving a safety 505

preference accuracy of 0.93 at λ=1. However, 506

when λ is adjusted negatively, the safety scores 507
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Baseline: Joint training Ours: MEAV editing coefMed Fin Leg Med Fin Leg
Avd (100%) Avd (99%) Exp (98%) Avd (46%) Avd (42%) Exp (78%) [-1, -1, .6]
Avd (100%) Exp (91%) Exp (94%) Avd (43%) Exp (44%) Exp (80%) [-1, .8, .6]
Avd (100%) Exp (90%) Avd (90%) Avd (57%) Exp (56%) Avd (36%) [-.4, .4, -.8]
Exp (99%) Avd (100%) Exp (97%) Exp (88%) Avd (44%) Exp (87%) [.2, -.8, -.2]

Table 3: Multidomain expertise can be achieved by MEAV. In the baseline joint training approach, we find
near-perfect performance, however, we need to perform separate training for each specific configuration. On the
contrary, once trained on domain specific expertise, we can perform inference time adjustment and obtain specific
configuration to behave in different way in each of the domain.

(a) (b) (c)

Figure 4: Visualizing the transferability of the MEAV process. We observe the effect of proficiency-level-encoded
AV integration with a safety-aligned model in the (a) Medical domain (b) Financial Domain (c) Legal Domain
proficiency control. For all domains within the range of -1 to 0.7, we donot see any regression of safety, indicating
the robustness of MEAV.

become inconsistent and mixed. Notably, even at508

large negative λ values, beyond -0.25, the model509

does not become fully “unsafe”.510

In constructing the response proficiency levels,511

we intentionally maintain three distinct spectrums.512

In contrast, the PKU-SafeRLHF dataset does not513

follow this structure, as it lacks any specific grada-514

tion in safety levels.515

6.4 Analyzing the Transferability of516

Alignment Vector517

Next, we explore whether AVs derived from a spe-518

cific alignment objective can be effectively applied519

to a pre-aligned model. As a case study, we select a520

safety-aligned version of the base model, to assess521

the transferability of these alignment vectors. Us-522

ing a similar approach to single-domain MEAV, we523

gradually integrate the AVs into our target model,524

which is safety-aligned.525

Figure 4 presents the model’s performance as λ526

is varied. Our findings indicate that when λ is ad-527

justed from -1 to +1, the model’s behavior related to528

safety—its primary control objective—remains rel-529

atively stable. For instance, in the medical domain530

(Figure 4(a)), varying λ within this range results531

in a minimal change in safety preference accuracy,532

with a difference of only 0.11 between the lowest533

and highest accuracy points. In contrast, the ac-534

curacy of medical expert response preferences im- 535

proves significantly, with an increase of 0.81—over 536

seven times greater than the change in safety pref- 537

erence accuracy. Hence, we can conclude that, the 538

AV obtained by our method is trasferable to models 539

aligned on other orthogonally aligned objectives as 540

well, proving the transferability of MEAV. 541

7 Conclusion 542

We address inference-time preference alignment 543

tunability through a novel model editing technique 544

called MEAV. We build a synthetic dataset designed 545

to represent three levels of response proficiency 546

across three specialized domains. Our approach 547

enables single-domain preference tunability at in- 548

ference time without incurring additional costs or 549

resource usage. This allows users to select differ- 550

ent response proficiency levels without the need 551

for extra training. Furthermore, our method offers 552

tailored configurations for diverse multidomain be- 553

haviors, significantly reducing both training time 554

and resource demands. In future work, we will 555

explore preference tunability in more open-source 556

models like Llama and Qwen (Touvron et al., 2023; 557

Bai et al., 2023). Furthermore, we want to explore 558

the transferability of alignment vectors across dif- 559

ferent LLMs. 560
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Limitations561

Our work has several limitations and areas for fu-562

ture exploration.563

• We did not evaluate the correctness of the564

specialized domain responses. While the au-565

thors manually fact-checked a subset of the566

responses, we do not recommend using these567

synthetic LLM-generated responses without568

expert validation. Researchers found a 4.6%569

rate of hallucinations in Claude-generated re-570

sponse (Vectara, 2025). However, how the571

hallucinations might impact the special do-572

main responses, is left for future research.573

• We used a basic approach (AV) for obtaining574

alignment vectors, which was simple and ef-575

fective for our use-case. However, whether576

the AVs are also capturing noise outside the577

preference dimension, is not explored in our578

work. To that end, more advanced techniques579

like parameter thresholding, zeroing, or SVD-580

based separation will be explored (Yadav et al.,581

2024; Gao et al., 2024) in our future work.582

• Our method is currently applicable only to583

LLMs with the same architecture and parame-584

ter count. As new models with diverse archi-585

tectures and varying parameter sizes continue586

to emerge, this constraint may limit the gener-587

alizability of our approach. We aim to extend588

our methodology to support cross-architecture589

and cross-parameter adaptation in future.590

• We tested our approach only on Mistral-7b, so591

validation with other open-source LLMs and592

SLMs is necessary.593

• We relied on an extensive grid search for mul-594

tidomain alignment, which, while more ef-595

ficient than full retraining, remains compu-596

tationally intensive. A more optimized or597

strategic search approach could significantly598

reduce the parameter search space and further599

enhance efficiency.600

Ethical Implication and Broader Impact601

The introduction of MEAV offers a transformative602

approach to LLM alignment, enabling dynamic,603

inference-time preference adjustments while sig-604

nificantly reducing computational costs. This flex-605

ibility allows LLMs to be more adaptable across606

different speciality domains—such as medical, le- 607

gal, and financial—without the need for retraining. 608

However, there are also some concerns with this, 609

and we discuss this below: 610

• A model originally fine-tuned for safety- 611

aligned behavior could be easily modified at 612

inference time using adversarially crafted AVs 613

to produce harmful, deceptive, or unsafe out- 614

puts. 615

• The expert responses may encode cultural bias 616

in all medical, legal, and financial domains. 617

• The ability to dynamically adjust model be- 618

havior raises concerns about accountability, 619

as users can shift LLM responses in ways that 620

deviate from the ethical constraints originally 621

intended. 622
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A Data generation and Annotation details774

Table 4 shows the breakdown of the total amount775

of data collected.776

Table 5 shows the annotation accuracy for the777

human volunteers.778

B Synthetic Data Generation: How did779

we arrive at the reported numbers of780

generated data?781

We evaluated the validity of persona-query pairs782

by manually reviewing a sample of 50 entries. Our783

analysis confirmed that Claude-3-sonnet reliably784

adhered to the instructions outlined in our prompt.785

To determine the dataset size, we initially generated786

15,000 queries across all domains, as described in787

Section 4.1.788

During preprocessing, we identified and re-789

moved 1–3% of the queries and responses that were790

truncated due to timeout or quota limit issues. Ad-791

ditionally, queries in non-English languages were792

excluded to ensure linguistic uniformity. We fur-793

ther filtered for completeness, retaining only those794

entries that contained a full set of persona-query795

responses across the three proficiency levels. Con-796

sequently, a small number of incomplete entries797

were discarded.798

Next, we examined the dataset for query repe-799

tition. Although some personas were repetitive,800

we found no significant repetition in the queries801

themselves. Following this rigorous cleaning and802

filtering process, we finalized the dataset with the803

following distributions: 13,000 personas for the804

medical domain, 12,374 personas for the financial805

domain, and 12,867 personas for the legal domain.806

C Persona and Query Generation807

Prompts808

The following prompts are used to generate Per-809

sonas and Queries:810

C.1 CreatePersona811

In the CreatePersona method, we generate a ran-812

dom root persona, and from that other persona are813

generated. Here is the prompt used:814

Prompt: Based on the given persona, generate 815

5 persona, that can be closely or remotely related 816

to the given persona...generate a one-paragraph fi- 817

nancial query in first person... 818

Given Persona: A patient coordinator with ex- 819

cellent interpersonal skills and a knack for digital 820

scheduling systems 821

Claude-3-Sonnet generated query: 822

"persona1": "A recent college graduate with stu- 823

dent loans and a entry-level job" 824

"query1": "Hello, I’m Alex, a 22-year-old who 825

just graduated ...marketing position at a local firm, 826

earning $45,000 per year. However, I have accumu- 827

lated $32,000 in student loans ...financial situation 828

and long-term objectives?" 829

"persona2": "A single mother juggling multiple 830

part-time jobs and struggling to make ends meet" 831

"query2": "My name is Emily, and I’m a 32- 832

year-old single mom working two part-time jobs 833

to support my 6-year-old son....have accumulated 834

over $15,000 in credit card debt...increase my in- 835

come or reduce expenses?" 836

C.2 PersonaHub 837

We generate queries directly from a given persona: 838

Prompt: Based on the persona described below, 839

generate a one-paragraph medical query in first per- 840

son, that the person fitting the persona can ask to an 841

online medical/health portal. Make sure the query 842

is clear and very specific with nitty-gritty details 843

like names, numbers etc, but brief. It should also in- 844

clude relevant context, concerns, and other details 845

to help the advisor or expert answer properly. 846

Persona: A retired coach known for their strate- 847

gic approach to training and injury prevention 848

Claude-3-Sonnet generated query: As a re- 849

tired coach ...I have a concerning issue that requires 850

professional medical guidance. Over the past few 851

weeks, I’ve been experiencing persistent discom- 852

fort and stiffness in my left knee, particularly ... 853

to regain full mobility and continue enjoying an 854

active retirement without compromising my long- 855

term joint health. 856

D Out-of-domain performance 857

We report the Out-of-domain performance for all 858

three domains, i.e., medical, financial and legal. 859

E Experimental details 860

• We used python3.11 861

• All experiments are done using pytorch 2.0 862
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Domain Method of Curation TotalPersonaHub CreatePersona
Medical 5904 6096 13,000
Financial 6909 5465 12,374

Legal 5952 6915 12,867
Total curated data 38,241

Table 4: Full curated data amount

GT Prediction
Exp Gen Avd

Exp 82.96% 17.04% 0%
Gen 17.04% 81.70% 1.26%
Avd 0% 1.26% 98.73%

Table 5: Average annotation accuracy for three annota-
tors

• Transformers version 4.43.0 was used863

F How Annotators were recruited864

We asked our authors (except for the first author)865

to volunteer as annotators. Each annotators were866

given detailed instructions with definitions of each867

response proficiency levels. The task was to select868

the responses for their respective levels.869

F.1 How instructions are provided to the870

Annotators871

Human Evaluation of Generated872

Text873

We have provided you with the following special-874

ized domain query-response pairs. Your tasks are875

as follows:876

877

Task: Rank the generated responses in the878

expertise level according to the level definitions.879

880

We generated three levels of re-881

sponses—Avoidance, Generic, and Expert—for882

each query, by providing instructions based on the883

definitions below.884

885

Definitions:886

(Level 1) Avoidance: The response completely887

avoids providing any advice, information, or sug-888

gestions. It does not answer the question directly889

or indirectly. Instead, it politely informs to be890

unable to assist with the inquiries and recommends 891

consulting an expert professional. Furthermore, the 892

responder refrains from engaging in any discussion 893

or providing any related resources or opinions 894

regarding the issues specific to the domain in 895

question. 896

897

(Level 2) Generic: The response represents 898

general, non-specific information that can help 899

guide the user but does not offer detailed advice. It 900

offers general knowledge that is commonly known 901

and easily accessible. The response is informative 902

yet cautious. It emphasizes the importance of 903

consulting an expert professional for accurate 904

information and help and encourages users to seek 905

advice from a qualified professional or institution 906

for specific concerns. 907

908

(Level 3) Expert: The response is detailed, with 909

expert-level advice and information. It thoroughly 910

assesses the situations or context described and 911

offers precise explanations and guidance tailored 912

to the specific situation. The response reflects 913

the depth and accuracy expected from an expert 914

professional, and also the advice is not overly 915

generic. Instead, it is comprehensive and nuanced, 916

addressing the user’s specific circumstances. 917

Finally, it offers clear, evidence-based recommen- 918

dations and ensures the guidance is actionable and 919

comprehensive. 920

921

Instruction: You will be given three responses 922

for each query. You need to provide the ranking of 923

each response separated by commas. For example, 924

if you think Response 1 is Generic (level 2), 925

Response 2 is Expert (level 3), and Response 3 is 926

Avoidance (level 1), you should only answer: 2,3,1. 927

928

You can also add a note if you want to notify us 929

of something. 930
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Lambda Med pref. acc Leg pref. acc Gen pref. acc
Safety Helpfulness

Exp Gen Avd Exp Gen Avd Safe Unsafe Helpful Unhelpful
0 .75 .25 0 .78 .22 0 .58 .42 .60 .40

.30 .97 .02 .01 .98 .02 0 .57 .43 .59 .41
-.40 .61 .37 .02 .57 .35 .08 .59 .41 .57 .43
-1.4 .18 .40 .42 .19 .52 .29 .55 .45 .51 .49

(b) Out of Domain (special and general) preference accuracy for Financial domain responses

Lambda Med pref. acc Fin pref. acc Gen pref. acc
Safety Helpfulness

Exp Gen Avd Exp Gen Avd Safe Unsafe Helpful Unhelpful
0 .75 .25 0 .81 .19 0 .58 .42 .60 .40

.30 1.0 0 0 1.0 0 0 .53 .47 .59 .41
-.70 .30 .57 .13 .32 .56 .12 .56 .44 .53 .47
-1.4 .20 .58 .22 .13 .50 .37 .49 .51 .51 .49

(c) Out of Domain (special and general) preference accuracy for Legal domain responses

931

You will be provided with a spreadsheet with all932

these columns.933
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