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Abstract
We investigate coresets for approximating the cost
with respect to median queries. In this problem,
we are given a set of points P ⊂ Rd and median
queries are

∑
p∈P ∥p− c∥ for any point c ∈ Rd.

Our goal is to compute a small weighted summary
S ⊂ P such that the cost of any median query
is approximated within a multiplicative (1 ± ε)
factor. We provide matching upper and lower
bounds on the number of points contained in S of
the order Θ̃

(
ε−d/(d+1)

)
.

1. Introduction
Large data sets pose a considerable challenge for the mod-
ern data analyst. Polynomial time algorithms are not au-
tomatically considered efficient and space requirements,
previously perhaps of secondary concern, have become
paramount. In addition, many novel computational mod-
els have emerged with the goal to design algorithms that
scale to even the most massive data sets. Examples include
streaming, where we read the data set once while storing
a very small fraction of the input, and distributed models
such as the MPC model, where scalability is achieved by
spreading out the computation over multiple servers.

In this backdrop, coresets have emerged as a preeminent
paradigm for big data analysis. Informally, given a set
of queries f ∈ F , a coreset of a data set P is a small
summary S such that f(P) ≈ε f(S) for all queries f , where
ε denotes the desired precision. If one has the option of
efficiently computing a coreset, all of the issues raised above
can be addressed. Algorithms, when run on the summary
S, become significantly faster, and the coreset by its very
nature has excellent space requirements.

Moreover, for many problems encountered in machine learn-
ing, a query f ∈ F corresponds to a composable loss func-
tion, that is f(S) :=

∑
p∈P L(f, p), where L(f, p) is the
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loss incurred for point p when evaluated with the query f .
In this case coresets are composable, that given coresets S1

of P1 and S2 of P2, S1 ∪ S2 is a coreset of P1 ∪ P2. This
immediately makes a coreset computation embarrassingly
parallel and also yields streaming algorithms with roughly
the space requirements proportional to the size of a coreset
via a reduction by way of the Merge-&-Reduce framework
(Bentley & Saxe, 1980).

Among the most studied coreset problems are coresets
for center-based clustering problems. For k-clustering
objectives such as Euclidean k-median, a coreset of size
Õ(k · ε−2 ·min( 3

√
k, ε−1)) have been recently discovered

(Cohen-Addad et al., 2022b) and this bound is tight up to
polylog factors for certain ranges of k and ε (Huang et al.,
2022). Notably, these coreset sizes are independent of the
number of input points.

The situation for k = 1, often referred to as the geometric
median and the Fermat-Weber problem, merits special con-
sideration. Here, P is a point set in Rd and a point set S is
an ε-coreset if for all points c ∈ Rd∣∣∣∣∣∣
∑
p∈P

∥p− c∥ −
∑
p∈S

wp∥p− c∥

∣∣∣∣∣∣ ≤ ε ·
∑
p∈P

∥p− c∥, (1)

where ∥.∥ denotes the Euclidean norm and wp is a non-
negative weight associated to p in S. The primary measure
of goodness for a coreset S is the distinct number of points
in S, henceforth called the coreset size.

Perhaps surprisingly, despite coreset research being very
active since their inception over 20 years ago, even the
basic geometric median problem is still not fully under-
stood. In high dimensions, a coreset size of Õ(ε−2) was
discovered before the extension to k centers was known
(Cohen-Addad et al., 2021). This bound is tight up to loga-
rithmic factors if the coreset points are a subset of the input
points (Cohen-Addad et al., 2021). Subsequently, (Braver-
man et al., 2022), showed that improvements are possible in
low dimensions. Specifically, they gave a coreset construc-
tion consisting of Õ(ε−2d/(d+1)) points. For the Euclidean
plane, the construction yielded a coreset of size Õ(ε−1.5).
This was further improved recently by (Huang et al., 2023)
to Õ(

√
d · ε−1). This result recovers the Õ(ε−2) bound

of (Cohen-Addad et al., 2021) in high dimensions, as us-
ing dimension reduction techniques one can always assume
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d ∈ O(ε−2 log ε−1), while being a significant improvement
in low dimensions. (Huang et al., 2023) also provided an
Õ(

√
ε−1) sized coreset for the line metric. The latter result

admits a tight lower bound (Baker et al., 2020) which is also
to date the best known lower bound in low dimensions.

1.1. Our Contribution

In this paper, we settle the coreset problem in low-
dimensional Euclidean space. Specifically, we prove the
following theorems.

Theorem 1.1. Let P ⊂ Rd be a set of points, let ε > 0 a
and let η > 0 be an absolute constant. Then there exists
a deterministic algorithm computing an ε-median coreset
S ⊆ P of size Õ(2η·dε−d/(d+1)), that is Equation 1 holds
for all c ∈ Rd.

This bound recovers the optimal Õ(
√
ε−1) bound of (Huang

et al., 2023) for line metric and improves over all prior
constructions in the low-dimensional case. Notably, the
coreset size is always sublinear in ε−1. The weights are non-
negative, that is the weight is 0 if a point is contained in the
coreset and a positive number otherwise. We complement
this result via the following lower bound.

Theorem 1.2. There exists a set of points P ⊂ Rd such
that any ε-median coreset S ⊆ P must have size at least
Ω(ε−d/(d+1)).

The lower bound assumes that the coreset consists of input
points. Extending this to arbitrary coresets is an interesting
open question, see the discussion at the end of the paper.

1.2. Related Work

Corsets for clustering problems have been widely studied.
In the earliest days of coreset research, the low dimensional
case was the most widely studied setting for clustering prob-
lems (Har-Peled & Mazumdar, 2004; Har-Peled & Kushal,
2007). In particular, the result by (Har-Peled & Kushal,
2007) implied a coreset of size O(ε−1) for coresets on the
line. In a landmark result, Chen (Chen, 2009) showed that
techniques from learning theory could be used to obtain
coresets in a high dimensional setting. This connection
was subsequently further explored (Langberg & Schulman,
2010) and most notably the seminal paper by Feldman and
Langberg (Feldman & Langberg, 2011) who gave coresets
of size Õ(dε−2). Subsequently, most research has focussed
on dimension reduction techniques for the better part of a
decade (Becchetti et al., 2019; Cohen-Addad et al., 2021;
Feldman et al., 2013; Feng et al., 2021; Huang & Vishnoi,
2020; Sohler & Woodruff, 2018). Only recently did more
advanced techniques commonly encountered when bound-
ing Rademacher complexities for generalization bounds
enter the picture, resulting in the to-date best high dimen-
sional coreset bound of Õ(ε−2) (Cohen-Addad et al., 2021;

2022a).

A weaker notion of coresets has also received some at-
tention. In this relaxation, we only require that S pre-
serves the optimum, that is any sufficiently good solution
computed on S also yields a good solution for the entire
point set, see (Munteanu & Schwiegelshohn, 2018) for an
overview. Notable examples are coresets of size O(ε−1])
for the minmum enclosing ball problem (Badoiu & Clark-
son, 2008), which compares favourably to an exp(d) space
bound for the more general, stronger corset guarantee (Agar-
wal et al., 2005). Similar results yielding weak coresets of
size O(ε−2) are known for the geometric median (Cohen
et al., 2016), though these bounds no longer offer an im-
provement over the subsequently discovered coresets of size
Õ(ε−2) (Cohen-Addad et al., 2021).

1.3. Notations

We use d(p, q) = ∥p− q∥ to denote the Euclidean distance
between two points p, q in Rd. Also, in order to simplify the
presentation of the bounds, we will use the notation Od(·)
to ignore exponential factors of d, i.e., factors of the size
2O(d). To be precise, f = Od(g) implies the existence of a
constant c such that f ≤ 2cdg. The notation Ωd(·) is also
defined similarly. To be precise, f = Ωd(g) implies the
existence of a constant c such that f ≥ g

2cd
. We will use the

notation Õ(f) to ignore polylogarithmic factors, i.e., factors
of the size logO(1) f . The notations Õd(·), Ω̃d(·) are also
defined similarly.

1.4. Organization and a Summary of Our Techniques

In Section 2, we prove an integral lemma for our coreset
construction, based on a “polynomial technique”. Roughly
speaking, we show that given a point set P inside the cube
[−1, 1]d, if P contains sufficiently many points, one can
assign weights between −1 and 1 to the points of P such that
the weighted sum of the distances from any point q to the
pointset P drops very quickly as the function of ∥q∥ (to be
specific, as 1

∥q∥c for any fixed constant c; the constant c here
is an increasing function of |P | and a decreasing function
of d). In Section 3, we use this to build our coreset. We
observe that we can use a modified quad-tree construction
and exploit the “low-dimensional” nature of the problem.
We observe that a quad-tree will not be able to have too many
“large” cells close to any point q ∈ Rd, meaning, many of the
cells of the quad-tree will be far away. Consequently, they
will contribute very little to the error. Finally, in Section 4
we prove a lower bound that shows our construction is best
possible (up to small polylogarithmic factors of ε−1). This
is done by borrowing tools developed by (Alexander, 1990)
for his analytical discrepancy lower bound for halfspaces in
Rd.
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2. Minimizing Additive Error
In this section we will prove a lemma that later will be used
in the construction of the coreset. The input is a set P ⊂ Rd

of n points. We allow the points to have identical positions
which can be modelled by allowing a point p ∈ P to have
some multiplicity µ(p). For the most part, we will assume
µ(p) = 1 but all the arguments generalize effortlessly to the
case when points have larger multiplicities. Given a point
set P ⊂ Rd, a weight assignment W to P is a function
W : P → R. A δ-suitable weight assignment, for a constant
0 < δ < 1, is one such that at least δ|P | of the points are
assigned weight 1 and the remaining weights are real-values
between −1 and 1. Given a weight assignment W to P , and
a point q ∈ Rd, we define the additive error at q, denoted
by ErrP (q), as

ErrP (q) =
∑
p∈P

W (p)||q − p||. (2)

Here, we prove the following lemma which will be the main
tool used by our coreset. It enables us to build a coreset of
a point set inside a given cube such that the additive error
falls very rapidly as we move away from the pointset.
Lemma 2.1. For any given parameter c > 1, there exists an
integer t such that the following holds. For any given point
set P with |P | ≥ t, and such that P is contained inside the
cube Q = [−1, 1]d in Rd, there exists a 1

3 -suitable weight
assignment to P such that for any point q with |q| > 3, we
have |ErrP (q)| = Oc(|P | ∥q∥−c

).

Proof. First, we consider a single point pi ∈ P . The first
idea is to use the standard Taylor expansion to estimate the
distance between pi and q. Observe that as ∥q∥ > 3, and
∥pi∥ ≤ 1 for all pi ∈ P , it follows that ∥q∥2 > ∥pi∥2 −
2p⃗i · q⃗. Thus, we can use the Taylor expansion below.

d(pi, q) = ∥pi − q∥ =

√
∥q∥2 + ∥pi∥2 − 2p⃗i · q⃗

= ∥q∥

1 +

∞∑
j=1

αi

(
∥pi∥2 − 2p⃗i · q⃗

∥q∥2

)j
 (3)

where αi’s are constants that come from the Taylor expan-
sion of the function

√
1 + x. Their exact value is not impor-

tant but we simply note that αi = O(2O(i)) = Oi(1).

We split the terms in the Taylor expansion of d(pi, q) into
two parts; we consider those with j = 1 to j = r and then
those j > r, for some constant r. In other words, we write
(3) = Ai +Bi where

Ai = ∥q∥

1 +

r∑
j=1

αi

(
∥pi∥2 − 2p⃗i · q⃗

∥q∥2

)j


and by properties of Taylor series, we have

Bi = Or

(
∥q∥

(
| ∥pi∥2 − 2p⃗i · q⃗|

∥q∥2

)r)

= Or

(
∥q∥

(
1 + 2 ∥q∥
∥q∥2

)r)
= Or

(
∥q∥−r+1

)
. (4)

Let q = (q1, · · · , qd). Define Xi(q) = ∥pi∥2 − 2p⃗i · q⃗
and observe that Xi(q) is a d-variate polynomial over d
indeterminates q1, · · · , qd. Also, the coefficients of Xi(q)
depend on the coordinates of pi. Fix a constant c′ and define
the d-variate polynomial Qi(q) =

∑c′

j=0(Xi(q))
j . Observe

that Qi(q) is essentially Ai, after removing ∥q∥ factors.
Next, define the polynomial

Q(q) =
∑
pi∈P

W (pi)Qi(q). (5)

Observe that Q is defined on the d indeterminates q1, · · · , qd
and its coefficients depend on the coordinates (and multiplic-
ities) of the points in P and more crucially, also linearly on
the weight assignment. In addition, Q has degree r which
implies Q has at most F :=

(
d+r
r

)
coefficients.

We now set t = 3F and let p1, · · · , pm be the points of
P and thus by our assumptions m ≥ t. Observe that each
coefficient of Q can be seen as a linear combination of the
m weights, W (p1), · · · ,W (pm). As mentioned, there are
at most F coefficients but they might not all be linearly inde-
pendent. We would like to set all the F coefficients of Q(q)
to zero; setting them to zero defines some F ′-dimensional
linear subspace, h, of Rm, in the parameter space defined
by the weights W (p1), · · · ,W (pm), for some parameter
F ′ ≤ F . Next, consider the boundary ∆ of the cube
[−1, 1]m which is a convex polytope that contains the origin
and thus ∆ can be decomposed into j-dimensional faces,
for j = 0, · · · ,m − 1. Consider the m − F ′-dimensional
faces of ∆. It thus follows that h intersects at least some of
these m− F ′-dimensional faces. Observe that every point
on each such face has at least m − F ′ coordinates equal
to −1 or +1 and the magnitude of the other coordinates is
at most one. Thus, the intersection of h and the m − F ′-
dimensional faces of Q will also have this property. The
intersection point also gives us a weight assignement that
sets all the coefficients of polynomial Q to zero; also, note
that we can assume that at least m−F ′

2 ≥ m−m/3
2 ≥ m

3 of
the weights are equal to +1 since if not, we can just negate
all the values. Consequently, this implies that there exists
a 1

3 -suitable weight assignment that guarantees Q(q) ≡ 0.
From this, it follows that

∑
pi∈P wiAi ≡ 0. We now set

r = c+1 and the lemma follows from summing up eq 4 for
all the points pi ∈ P .
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3. Building the Coreset
We begin with a “base coreset” in which we are allowed to
take a large fraction of the input points as coreset points.
Then, we will bootstrap the construction to build a general
coreset.

3.1. A Base Coreset

We use our Lemma 2.1 in combination with a simple quad-
tree construction. In this subsection, we assume we are
given a pointset P ⊂ Rd containing n points and we are
allowed to take (1− δ)n coreset points for some parameter
0 < δ < 1 that we will choose later.

A modified quad-tree. In Lemma 2.1, we pick c = d+ 2
and in the rest of this subsection, let t be the constant that is
guaranteed to exist by the Lemma 2.1. We build a modified
quad-tree T as follows. Every node v of T is associated
with the subset of P , denoted by Pv and it is also enclosed
in the minimum enclosing cube Qv . v will be considered a
leaf in three cases: if the depth of v is larger than C log |P |
for a large enough constant C, then we treat v as a single
point with multiplicity |Pv| (i.e., we assume all the points of
Pv are on top of each other; we will later show that this will
only add a negligible amount of error to the final coreset).
In this case we call v a dense leaf. Thus, assume v has depth
less than C log |P |. In this case, if Pv contains fewer than
t points, then v is a sparse leaf, but if it contains between
t and C2d+2t log n points, then it is an ordinary leaf. If
none of these cases hold, then v is not a leaf and thus Qv is
divided into 2d congruent sub-cubes of half the side length
and the construction continues recursively with respect to
the points inside the sub-cubes.

Construction of the coreset. First, as the size of the core-
set is allowed to be almost as large as the input size, we
can assume that at most n

2 of the points of P are in dense
leaves. If this is not the case, we are done. Specifically, after
removing dense nodes, we might have o(n) nodes left in the
tree. But in this case, there must have been more than n/2
points removed from the dense nodes which means we can
just take all the remaining points as the coreset. Thus, in
the rest of the construction, we will assume that at least n

2
points are in sparse or ordinary leaves.

Consider a leaf v of T . If v is a sparse leaf, then all the
points of Pv are added to the coreset with weight 1. We
do the same thing when v is a dense leaf (note that in this
case Pv has only one point but it’s multiplicity is larger
than one). Finally, consider the case when v is an ordinary
leaf. Let us assume that there are m ordinary leaves. Sort
the orindary leaves by the size of their enclosugin cubes
in decreasing order. Thus, let v1, · · · , vm be the orindary
leaves with corresponding enclusing cubes with side lengths

ℓ1, · · · , ℓm sorted in decreasing order. We add all the points
Pvi for 1 ≤ i ≤ m/2 to the coreset. For any index i > m/2
we use Lemma 2.1; recall that Lemma 2.1 does a weight
assignment where a point p ∈ Pvi is assigned a weight
W (p) which is between −1 and 1 and at least a fraction of
the weights are guaranteed to be 1. In our coreset, we assign
the weight 1−W (p) to the point p. Crucially, if W (p) = 1,
then the point is not added to the coreset. By Lemma 2.1, at
most two third of the points in Pv are added to the coreset.

The next lemma shows that our construction ensures that
only a fraction of the points will be in the sparse or dense
leaves.

Lemma 3.1. If at least n
2 points are in sparse or ordinary

leaves, then at least n
4 points of T are in ordinary leaves.

Proof. Consider a dense or sparse leaf v and let u be its par-
ent. By construction, Pu contains more than C2d+2t log n
points and its depth is at most C log n. We charge the points
of Pv to the points of Pu, meaning, we distribute a total
charge of |Pv| among the points in Pu and thus each point
of Pu receives a charge of |Pv|

|Pu| <
t

C2d+2t logn
.

We now look at how many charges a point can receive.
The points of Pu can receive charges from all of its 2d

children. In addition, the points of Pu can also appear in the
descendants of u to receive additional charges; however, the
maximum depth of u is at most C log n and thus the average
charge each point can receive is at most

t

C2d+2t log n
· 2d · C log n <

1

4
. (6)

Let n′ be the number of points in sparse leaves. In our
charging scheme, we are discharging n′ charges from such
points. As there are n points in total, and each point receives
an average charge of 1

4 , it follows that n′ < n. Thus, there
are at least 3n

4 points that are either in ordinary leaves or
dense leaves but the number of latter types of points is n

2
which proves the lemma.

Corollary 3.2. The size of the coreset is at most(
1− Ωd

(
1

logn

))
n.

Proof. If more than n/2 points are in dense leaves, then the
size of the coreset is upper bounded by n

2 plus the number of
dense nodes which is at most n

C2d+2t logn
< n

4 , meaning, in
this case, the lemma trivially holds. Thus, assume otherwise.
By Lemma 3.1, at least n

4 points are in ordinary leaves. As
the number of ordinary leaves is m and each ordinary leaf
contains between t and C2d+2t log n points, it follows that
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the ordinary leaves vm/2+1, · · · , vm have at least

t

C2d+2t log n
n = Ωd

(
n

log n

)
(7)

points. The lemma then follows from Lemma 2.1 which
guarantees the existence of 1

3 -suitable weight assignment;
each weight that is assigned 1 is not placed in the coreset
and thus Eq. 7 asymptotically bounds the number of points
we are “saving”, i.e., not placing in the coreset, proving the
lemma.

3.1.1. BOUNDING THE ADDITIVE ERROR

Next, we bound the additive error of our coreset. To fa-
cilitate this, we adopt the following notation. We use the
notation U to refer to the multiset of the input points to-
gether with the coreset points. The input points are included
with a positive weight that is equal to their multiplicity and
the coreset points are included with a negative weight that
is the product of their multiplicity by their weight in the
coreset. Given a point q ∈ Rd, the additive error at q is
ErrU (q) and where the notion is defined by Eq. 2.

First we consider the dense leaves. Observe that if C
is chosen large enough, then each dense leaf v is associ-
ated with a bounding cube which has side length at most
ℓh2

−C logn ≤ ℓh
n2 . Consider a dense leaf v. Changing the

multiplicity of one point of Pv to |Pv| and treating it as a
single point corresonds to moving the points of Pv to lie on
top of the chosen point (and thus increasing its multiplicity).
By triangle inequality and since the weights assigned to
the points are withint [−1, 1], each movement of a point
changes the additive error by at most ℓh

n2 and thus the total
increase in the additive error is bounded by ℓh

n which will be
asymptotically absorbed in the final additive error. In addi-
tion, observe that the points in sparse leaves also contribute
nothing to the additive error as they are fully incluced in the
coreset (i.e., they have been included twice in U , once with
weight +1 and another time with weight −1).

W.l.o.g, assume that the unit cube is the smallest bounding
cube of the input points P . It remains to consider the or-
dinary leaves. Recall that we have assumed that there are
m ordinary leaves with side lengths ℓ1, · · · , ℓm sorted in
decreasing order. Let h = m

2 and consider ℓh. By construc-
tion, the points ℓ1, · · · , ℓh do not contribute to the additive
error. To bound the contributions of the rest of the points to
additive error we will need the following simple lemmas.

Lemma 3.3. The number of ordinary leaves v such that (i)
the smallest distance between Qv and q is at most f , for a
parameter f , and (ii) the side-length of Qv is between ℓ and

2ℓ is bounded by Od

((
O(f+ℓ)

ℓ

)d)
.

Proof. The proof follows from a simple packing argument

and the observation that for two different ordinary leaves
v and u, their minimum enclosing cubes Qv and Qu are
disjoint; in particular, we simply need to divide the volume
of a sphere of radius O(f + ℓ) by the volume of a sphere of
radius f .

Lemma 3.4. The total contribution of the ordinary points
to the additive error is upper bounded by Od(ℓht log n).

Proof. Consider an ordinary leaf v with its bounding cube
Qv of side length ℓ and let f be the minimum distance
of q to Qv (f will be zero if q inside Qv). To estimate
the contribution of Pv to the additive error, we consider
two cases. The first case is when f ≤ 3ℓ. In this case,
we trivially upper bound the error by C2d+2t log nf =
O(ℓ2d+1t log n) = Od(ℓht log n). Also, by Lemma 3.3,
the number of such cells if Od(1). The second and the more
interesting case is when f > 3ℓ. Here, we use Lemma 2.1.
To use the lemma though, we need to scale by a factor ℓ,
apply the lemma and then rescale. This yields the bound

O

(
ℓ · C2d+2t log n

(
ℓ
f

)d+2
)

. By Lemma 3.3, we bound

the number of cells that have side-lengths between ℓ and 2ℓ
and lie at distance between f and 2f of q. Combining these,
we get that the total contribution such cells v is

Od

(
ℓt log n

(
ℓ

f

)d+2

·

((
O(f + ℓ)

ℓ

)d
))

= Od

(
ℓt log n ·

(
ℓ

f

)2
)
. (8)

Observe that summing the above expression over f ranging
from 3ℓ and increasing powers of two will yield a geometric
series and thus the sum is bounded by the largest term which
is obtained by setting f = 3ℓ. Then, we can do the same
thing with respect to ℓ and observe that ℓ ≤ ℓh by our
construction. This concludes the proof of the lemma.

Combining the above lemma with the other cases covered
earlier we get that ErrU (q) = Od(ℓht log n).

Finally, to briefly remark on removing negative weights:
We may increase all wi’s by 1 to get the 1 median with
a small error: In other words,

∑
pi∈P (1 + wi) d(pi, q) =

E +
∑

pi∈P d(pi, q) so 1 + wi can be taken as the weights
of the points in the coreset.

3.1.2. THE MULTIPLICATIVE ERROR

To be able to estimate the multiplicative error, we need to
have an estimate of sum of total distances of q to the points
of P . Luckily, this is relatively simple using Lemma 3.3. Ob-
serve that t = Od(1) and C2d+2t log n = Õd(1) and thus
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h = Ω̃d(n). By Lemma 3.3, it follows that at least h
4 of the

ordinary leaf nodes v1, · · · , vh lie at distance Ωd

(
ℓhn

1
d

)
away from h. Thus, sum of distances from q to the points in
T is at least Ω̃d

(
ℓhn

d+1
d

)
. Combining this with the additive

distance yields that the resulting coreset has multiplicative
error of 1 + Õd

(
n− d+1

d

)
.

3.2. A General Coreset

In this section, we generalize the construction from the
previous subsection to be able to produce coresets with
multiplicative 1+ε approximation for an arbitrary parameter
ε > 0. To that, we first set ε′ = ε2 and then build a coreset
S of size Õ(ε′−2). There exist several examples in literature
that do so, as mentioned in related work above. It is not
important which one we use and it will be simple to modify
the calculations even when using a coreset of size poly(ε−1).
In what follows, we assume that the initial size of the point
set is n = Õ(ε′−2).

Next, we apply the construction from the previous sec-
tion repeatedly to create increasingly finer coresets. Sup-
pose, we wish to compute a coreset of size n/2. We in-
voke the construction from the last section i times. In
each iteration, we reduce the number of points by a mul-
tiplicative factor 1 − Ωd

(
1

logn

)
as per Corollary 3.2.

Thus, setting i = Od

(
log n · log ε−1

)
, the coreset has size(

1− Ωd

(
1

logn

))i
· n ≤ n/2. The error after each coreset

construction is
(
1 + Õd

(
n− d+1

d

))
as per the discussion in

Section 3.1.2. Thus, the accumulated error is(
1 + Õd

(
n− d+1

d

))i
≤ exp

(
ln
(
1 + Õd

(
n− d+1

d

))
· i
)

≤ exp
(
i · Õd

(
n− d+1

d

))
≤ exp

(
ln
(
1 + 2i · Õd

(
n− d+1

d

)))
≤
(
1 + 2i · Õd

(
n− d+1

d

))
,

where we used the inequalities x/2 ≤ ln(1 + x) ≤ x for
x ≤ 1 that immediately follow from the Mercator series.
Observe that the error after this sequence of reductions is
still

(
1 + Õd

(
n− d+1

d

))
, as i gets absorbed by the higher

order terms.

Subsequently, repeating this series of compressions that
reduce the coreset size by a factor of 1/2 roughly log 1/ε
times, each time and invoking the same calculations as
above. At the end and after rearranging terms, we have
an error of

(
1 + Õd (ε)

)
, with a corresponding size of

Õ
(
ε−d/(d+1)

)
. Obtaining the desired (1 + ε) error is now

merely a matter of rescaling.

4. Lower Bound
In this section we prove an optimal lower bound for the
size of coresets for 1-medians, under some assumptions; the
assumptions can be weakened but we have avoided this to
keep proof simple. We assume the coreset S is allowed to
pick half of the original input points with weight 2 assigned
to them. To prove the lower bound, we use the analytic
techniques first employed by (Alexander, 1990) to lower
bound the discrepancy of the set system defined by n points
in Rd and the set of halfspaces.

Let us try to establish an intuitive relationship between a
coreset lower bound and discrepancy theory. We would
like to show that there exists a point in Rd that has high
additive error, and in particular, at least one input will have
high additive error. This will show a lower bound on the
error which can be translated to a lower bound on the size.
However, this view of a coreset lower bound relates naturally
to the discrepancy theory. Below, we will quickly overview
this and also give a very rough sketch of Alexander’s proof.

4.1. An Overview of Alexander’s Technique

The main result proven by Alexander is a discrepancy lower
bound. Let P be a set of n points in Rd. For a function f :
P → {−1,+1} that assigns −1 or +1 to each point of P ,
the discrepancy of a halfspace h is defined as Discf (h, P ) =
|
∑

p∈h∩P f(p)| and the discrepancy of f is defined as the
Discf (P ) = maxh∈H Discf (h, P ) where H is the set of all
halfspaces. Finally, Disc(P ) = minf∈F Discf (P ) where
F is the set of all functions that assign +1 and −1 to P .
To show a lower bound for discrepancy, one often needs to
construct a special point set P and then show that for every
function f ∈ F , there exists at least one halfspace with high
discrepancy.

In Alexander’s proof (Alexander, 1990), the starting point
for proving the lower bound is a known result from measure
theory that shows the existence of a translation invariant
measure µ on hyperplanes. For two points p, q ∈ Rd, let
h(p, q) be the set of hyperplanes that intersect the line seg-
ment pq. With proper normalization, we get that

µ (h(p, q)) =
d(p, q)

2
. (9)

Next, the concept of +1 and −1 coloring are generalized to
signed mass distributions; let ν be a signed mass distribution
in Rd with total mass of 0 (i.e., the magnitude of the negative
masses and the positives masses are equal); we call such
a mass distribution suitable. Note that any function f :
P → {−1,+1} can be turned to such a mass distribution
by just adding Discf (Rd, P ) dummy points and assigning

6
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them −1 or +1 appropriately; this changes the discrepancy
of any other halfspace by the same amount and thus at most
doubles the discrepancy of the entire coloring.

For a hyperplane h, let h+ and h− be the halfspaces above
and below h, respectively. For a suitable mass distribution,
observe that ν(h+) = −ν(h−) but also observe that if ν is
obtained from a function f ∈ F , then |ν(h+)| = |ν(h−)| =
Discf (h, P ), meaning, ν(h+)ν(h−) = −Disc2f (h, P ). The
foundational mathematical property that Alexander uses for
his discrepancy lower bound the following observation, that
follows from Eq. 9. Define I(P ) :=

∫ ∫
d(p, q)dν(p)dν(q).

Then

I(P ) = −
∫

Disc2f (h, P )dµ(h). (10)

The above equivalence has significant implications for the
method used by Alexander and in particular, it enables him
to prove certain “convexity” properties for the left hand side
of Eq. 10. As we shall see soon, the left hand side will
enable us to prove our lower bound for the coresets.

Nonetheless, the right hand side of Eq. 10 in some sense is
the “average” discrepancy of a hyperplane, however, this
needs normalization since both sides of the above equality
are scale dependent. To figure out that scaling factor, one
needs to consider the hyperplanes that contribute to the right
hand side. Observe that any hyperplane h that does not
intersect the convex hull of P , contributes zero to the right
hand side. Next, note that if P is a point set with diameter
D, then it can be enclosed in a square Q of side length
2D and thus any hyperplane h that intersects P must also
intersect one of the sides of Q. Each side of Q has length
2D and thus by Eq. 9, the total mass of the hyperplanes
that intersect it is D and the total mass of hyperplanes that
intersect Q is O(d2dD), as Q has O(d2d) edges. Thus,

−I(P ) =

∫
Disc2f (h, P )dµ(h) = O(d2dDDisc2f (P )).

(11)

Using a number of additional properties, Alexander proves
a lower bound for the left hand side. In particular, if the
minimum distance between every two points in P is 1, he
shows that the left hand side is lower bounded by Ω(n).
Assuming d is a constant, when P is a grid of side length
n1/d, we have D = O(n1/d) and thus one obtains a lower
bound of Discf (P ) = Ω

(
n

1
2−

1
2d

)
.

4.2. A Lower Bound for Coresets

Consider a point set P of n points and consider a 1-median
coreset S of size n

2 . As discussed, we assume the coreset

S is allowed to pick half of the original input points with
weight 2 assigned to them. We would like to get a lower
bound for the error assuming such a coreset. We can turn
S and P into a mass distribution f . Each point pi ∈ P is
assigned the weight +1 and each point qi ∈ S is assigned
the weight −1. This gives us a weight assignment. For a
point q ∈ P , define

MedianDiscS(q, P ) = |ErrP (q)| = |
∑
p∈P

W (p) d(q, p)|.

The crucial observation that ties our problem to the tech-
niques developed by Alexander is the following:

−
∑
q∈P

ErrP (q)W (q) = −I(P ). (12)

Using the convexity properties of Eq. 10 in combination
with operations such as convolution, Alexander proves the
following main theorem in Rd; here, we have slightly al-
tered the presentation to ignore constant values that depend
exponentially on the dimension.

Theorem 4.1. (Alexander, 1990) Let ν be an atomic mea-
sure of total mass 0 concentrated on a pointset X ⊂ Rd. If
the minimum distance between any two points of X is at
least one, then

∑
p,q∈X

ν(p)ν(q) = Ωd

∑
p∈X

(ν(p))2

 .

We consider a point set P obtained via grid of side length
n1/d, composed of n grid cells of side length one. Under
our weight assignment, and using Theorem 4.1 it follows
that

∑
p,q∈X ν(p)ν(q) = Ωd(n). By Eq. 12, we get that∑

q∈P ErrP (q)W (q) = Ωd(n). Observe that for each point
q ∈ P , we have |W (q)| = 1. Let p1, · · · , pn be the points in
P . Thus, we get that the sum of n values, ErrP (p1)W (p1)+
· · · + ErrP (pn)W (pn) = Ωd(n). As there are n terms
in the sum, it thus follows that the absolute value of one
of them must be Ωd(1) (in fact, we get that this holds on
average). This gives a lower bound on the additive error of
the coreset. To calculate the multiplicative error, observe
that the total sum of distances from any point q ∈ P in
our grid construction is lower bounded by

∑
p∈P d(q, p) =

O(n1+1/d). This consequently implies that the coreset S
has multiplicative error of 1 + Ωd(n

−1−1/d).

To remove the assumption that the weights sum up to n,
consider the case the weights sum up to some value n′. If
|I(P )| ∈ Ω(n), the proof still goes through, so we assume
that I(P ) ≤ η · n for some sufficiently small constant η.
In this case, we add another point D with weight equal to
n − n′ inside the grid, with the requirement that it is well
separated from the remaining points, yielding a point set

7
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P ′ = P ∪ {D}. By the Theorem 4.1 I(P ′) ∈ Ω(n) which
implies W (D) · ErrP (Dn) ∈ Ω(n), which implies that D
Ωd(1) additive error. The remaining steps are the same.

5. Conclusion and Open Problems
We presented a coreset construction for the geometric me-
dian problem consisting of Õd(ε

−d/(d+1)) points. This
bound is sublinear in ε−1 which was previously only known
for the line metric.

The dependency on d is substantial in our construction for
high dimensions. We did not attempt to optimize with re-
spect to this dependency, but using the quad-tree based
approach, we will always incur a factor 2d in the coreset
size. It is not clear whether this is avoidable, as for some
(large) value of d, a coreset using input points is required
to consist of ε−2 many points. Obtaining a best of both
worlds dependency between the previous high dimensional
constructions of (Cohen-Addad et al., 2021; Huang et al.,
2023) is an interesting open problem.

Another open problem is to remove the lower bound require-
ment that points must be selected from the input. All coreset
construction we are aware of for the geometric median have
this property or can be modified to have this property. While
we presented the results for the geometric median, most of
the results also work for powers of distance and in particular
for squared distances. For squared distances, there exist a
0-coreset consisting of O(1) points, if the coreset points are
not required to be part of the input. Showing that one can
improve our upper bounds using non-input points, or that
this is not possible is interesting and likely challenging.
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