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ABSTRACT

With the growing complexity and capability of large language models, a need to
understand model reasoning has emerged, often motivated by an underlying goal
of controlling and aligning models. While numerous interpretability and steering
methods have been proposed as solutions, they are typically designed either for
understanding or for control, seldom addressing both. Additionally, the lack of
standardized applications, motivations, and evaluation metrics makes it difficult
to assess methods’ practical utility and efficacy. To address the aforementioned
issues, we argue that intervention is a fundamental goal of interpretability and
introduce success criteria to evaluate how well methods can control model behav-
ior through interventions. To evaluate existing methods for this ability, we unify
and extend four popular interpretability methods—sparse autoencoders, logit lens,
tuned lens, and probing—into an abstract encoder-decoder framework, enabling
interventions on interpretable features that can be mapped back to latent repre-
sentations to control model outputs. We introduce two new evaluation metrics:
intervention success rate and coherence-intervention tradeoff, designed to mea-
sure the accuracy of explanations and their utility in controlling model behavior.
Our findings reveal that (1) while current methods allow for intervention, their
effectiveness is inconsistent across features and models, (2) lens-based methods
outperform SAEs and probes in achieving simple, concrete interventions, and (3)
mechanistic interventions often compromise model coherence, underperforming
simpler alternatives, such as prompting, and highlighting a critical shortcoming of
current interpretability approaches in applications requiring control.

1 INTRODUCTION

As large language models (LLMs) have become more capable and complex, there has emerged a
need to better understand and control these models to ensure their outputs are safe and human-
aligned. Many interpretability methods aim to address this problem by analyzing model represen-
tations, attempting to understand their underlying computational and reasoning processes in order
to ultimately control model behaviour. While many of these methods, and interpretability as a field
more broadly, claim control and intervention as abstract goals and present compelling qualitative
results demonstrating that intervention may be possible in certain cases (for example, Anthropic’s
Golden Gate Claude Anthropic; Templeton et al. (2024)), the link between interpretation and inter-
vention is tenuous in practice, and many methods are not explicitly tailored for both. Furthermore,
even fewer are thoroughly and systematically evaluated for the ability to control model outputs
beyond qualitative examples. We believe the reason for this is threefold. First, interpretability meth-
ods produce explanations in disparate feature spaces, such as token vocabulary, probe predictions,
or learned auto-interpreted features, hindering comparisons across methods. Second, there exists a
“predict/control discrepancy” (Wattenberg & Viégas, 2024), where the features identified by inter-
pretability methods for predicting behavior are not the same as those used for steering it. Third,
there do not exist standard systematic benchmarks to measure intervention success.

In this work, we view intervention as a fundamental goal of interpretability, and propose to mea-
sure both the correctness and the utility of interpretability methods by their ability to successfully
edit model behaviour. In particular, we focus on sparse autoencoders (Cunningham et al., 2023),
Logit Lens (nostalgebraist; Dar et al., 2023), Tuned Lens (Cunningham et al., 2023; Rajamanoha-
ran et al., 2024; Templeton et al., 2024; Bricken et al., 2023; Gao et al., 2024), and linear probing
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(Alain, 2016; Belinkov & Glass, 2019; Belinkov, 2022), and benchmark them with steering vectors
and prompting as baselines for intervention. In order to enable comparison across these various
methods, we first unify and extend the methods as instances of an abstract encoder-decoder frame-
work, where each method encodes uninterpretable latent representations of language models into
human-interpretable features and the decoder of the framework inverts this mapping, allowing us to
reconstruct a latent representation from the features. Under this abstract framework, we can inter-
vene on the interpretable feature activations generated by each method and decode them into latent
counterfactuals, which produce counterfactual outputs corresponding to the desired intervention.

Input: “My favorite 
color is”

Explanation encoder: Intervention: Explanation decoder:

Normal output:
“blue”

Intervened output: 
 “red”

Dxz

x x’

z z’ z’x’ D-1= =

ℓ ℓ+1

Method D D-1 Dictionary 
Size m

Interpretable 
Features zi

Data free?
Automatically 
interpretable 

features

Can
reconstruct 

x?

Logit Lens θunembed  θunembed
+ 32k-256k Token logit ✔ ✔ ✔

Tuned Lens A*θunembed  A*θunembed
+ 32k-256k Token logit ❌ ✔ ✔

SAEs θencoder θdecoder 16k-24k SAE feature 
activation ❌❌ ❌ ✔

Probing [θprobe I]
θ

I-θθT 1 Probe prediction ❌ ✔ –

Steering 
vectors – – – – ❌ – –

[ ]

Figure 1: Our proposed intervention framework, which
encodes model latent representations, x, into human-
interpretable features, z = xD, that can then be perturbed
to z′ and decoded back into counterfactual latent represen-
tations, x̂′.

The unifying feature interpretation
and intervention framework allows us
to propose two standard metrics for
evaluating mechanistic interpretabil-
ity methods: (1) intervention suc-
cess rate, which measures how well
intervening on an interpretable fea-
ture causally results in the desired
behavior in the model outputs, and
(2) coherence-intervention tradeoff,
which measures how well the causal
interventions succeed without dam-
aging the coherence of the model’s
outputs. We evaluate Logit Lens,
Tuned Lens, sparse autoencoders,
and linear probes for these metrics on
GPT2-small, Gemma2-2b, Llama2-
7b, and Llama3-8b, comparing them
to simpler but uninterpretable base-
lines of steering vectors and prompt-
ing. Our results show that while
existing methods allow for interven-
tion, their effectiveness is inconsis-
tent across features and models. Fur-
thermore, lens-based methods out-
perform all other methods, including sparse autoencoders, for simple, concrete features, likely due
to the spurious correlation learned by probes and steering vectors and the high error rate in SAE
feature labeling pipelines. We further show that intervention often comes at the cost of model output
coherence, underperforming simple prompting baselines, presenting a critical shortcoming of exist-
ing methods in real-world applications that require control and intervention. We conclude this work
with some case studies of intervention on complex and safety-relevant features, along with detailed
takeaways about the strengths and weaknesses of each method, including discussion of which meth-
ods are optimal for specific intervention topics, which are best to use out of the box, and which hold
the most promise for future development.

Our main contributions include:

• In Section 3.1, we present a unifying framework for four popular interpretability methods:
sparse autoencoders, logit lens, tuned lens, and probing. To faciliate this, we extend logit
lens and tuned lens methods with decoders to allow for intervention.

• In Section 3.2, we propose two evaluation metrics for encoder-decoder interpretability
methods, namely (1) intervention success rate and (2) the coherence-intervention trade-
off to evaluate the ability of interpretability methods to control model behavior, and design
an open-ended prompt dataset for benchmarking interpretability methods.

• In Section 4, we perform experimental analysis on GPT-2, Gemma2-2b, Llama2-7b, and
Llama3-8b, and present detailed takeaways comparing interpretability- and control-based
methods.

Overall, this paper takes a key step in establishing systematic benchmarks for mechanistic inter-
pretability methods, making progress towards a previously stated open problem for the field (Mueller
et al., 2024).1

1All code and data will be released upon acceptance.
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2 RELATED WORK

Mechanistic Interpretability. Existing work in mechanistic interpretability broadly falls into two
categories: activation patching and interpreting hidden representations. Activation patching utilizes
carefully constructed counterfactual representations to study which neurons or activations play key
roles in model computation, ideally localizing specific information to individual layers, token posi-
tions, and paths in the model (Geiger et al., 2021; Vig et al., 2020). However, recent work points to
key limitations of patching, particularly with respect to real-world utility in downstream applications
such as model editing (Hase et al., 2024; Zhang & Nanda, 2023). As such, we focus primarily on
methods for inspecting hidden representations, of which probes are the most commonly used (Alain,
2016; Belinkov & Glass, 2019; Belinkov, 2022). Other methods such as Logit lens (nostalgebraist;
Dar et al., 2023) project intermediate representation into the token vocabulary space, with Belrose
et al. (2023); Din et al. (2023); Geva et al. (2022) building and improving upon these early-decoding
strategies. Ghandeharioun et al. (2024a) unifies most of these methods into an abstracted frame-
work for inspecting model computation. More recently, sparse autoencoders and dictionary learning
have been explored as a solution to the uninterpretability of model neurons, particularly due to is-
sues with polysemanticity and superposition (Elhage et al.; Bricken et al., 2023; Cunningham et al.,
2023; Bhalla et al., 2024; Gao et al., 2024; Templeton et al., 2024; Karvonen et al., 2024).

Evaluation. Due to the recency of the field, standard evaluation metrics across interpretability
methods have not yet been established, and similar to the broader interpretability field, evaluation is
frequently ad-hoc and primarily qualitative in nature, with recent works pointing to the need for more
causal evaluation (Mueller et al., 2024; Saphra & Wiegreffe, 2024). With regards to quantitative
metrics, in (Gao et al., 2024; Templeton et al., 2024; Makelov et al., 2024), sparse autoencoders are
evaluated for reconstruction error, recovery of supervised or known features, activation precision,
and the effects of ablation; however, none of these metrics measure the correctness of explanations
or usefulness for control. Independent of our work, Wu et al. (2025) also propose a benchmark
for steering methods, AxBench, to assess whether steering is a viable alternative to existing model
control techniques, finding similar results to ours. Different from them, we consider additional
lens-based interpretability methods and explore the extent to which intervention is possible without
output degradation, for both simple and safety-relevant interventions.

Causal Intervention. Previous literature on probing frequently evaluates learned probes and fea-
tures through intervention to ensure causality and correctness, as done by Li et al. (2022); Chen
et al. (2024); Hernandez et al. (2023b;a); Marks & Tegmark (2023). The interventions performed
for measuring causality are similar to those used to perform model “steering” (Rimsky et al., 2023;
Panickssery et al., 2024; Ghandeharioun et al., 2024b) and should ideally produce the same effect but
with the added claim of interpretability. Geiger et al. (2024) unify many interpretability methods and
steering through causal abstraction but do not extend or evaluate these methods for control. Mueller
et al. (2024); Belrose et al. (2023); Chan et al. (2022); Olah et al. (2020) consider causal interven-
tion as a tool for assessing explanation faithfulness; however, these works often do not compare
between methods and do not consider intervention as a means for control, providing no exploration
of the quality of the intervened outputs or their utility in application. Templeton et al. (2024) on
the other hand provides a qualitative demonstration of intervention via their ‘Golden Gate Claude’
but do not systematically measure or compare against other interpretability methods. Different from
these works, our work aims to adapt and evaluate existing methods (notably, lens-based methods
and SAEs) originally proposed as model inspection tools, for intervention.

3 METHOD

In this section, we first introduce a unifying framework for four common mechanistic interpretability
methods: sparse autoencoders, Logit Lens, Tuned Lens, and probing, along with modifications to
these methods that permit principled intervention on representations. We then propose evaluation
metrics for (1) testing the correctness of explanations via intervention and (2) the usefulness of these
methods for steering and editing representations and model outputs.

3.1 UNIFYING INTERVENTION FRAMEWORK

Latent vectors to interpretable features. The central aspect of most interpretability work is the
ability to translate model computation into human-interpretable features, whether the computation
be latent directions, neurons, components, reasoning processes, etc. Many works aiming to explain
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LLMs focus particularly on hidden representations, where the mapping between high-dimensional
dense embeddings and human-interpretable features is modeled through a (mostly) linear dictionary
projection or affine function:

z = f(x) = σ(x ·D)

x̂ = g(z) ≈ f−1(z) = z ·D−1

z′ = Edit(z), x̂′ = g(z′)

where each zi is a feature activation, each i in D corresponds to a human-interpretable feature, and
σ is an activation function that is frequently the identity. In the case of sparse autoencoders, D is
a learned, overcomplete dictionary, with 16k - 65k features for small models (up to 16M for large
models), and σ is a ReLU, JumpReLU, or ReLU + top-k activation function. Given that SAE features
are learned, they are not immediately interpretable and must be labelled by humans or strong LLMs
after training. For Logit Lens, D is simply the language model’s unembedding matrix, meaning
each feature corresponds to a single token in the vocabulary. For Tuned Lens, D is the exact same
as Logit Lens but with a learned linear transformation applied. Linear probes can be thought of as
a learned dictionary with N = 1 where σ is a sigmoid or softmax activation and the data is labelled.
Of all these methods, Logit Lens is the only method that does not require any training data, and
sparse autoencoders are the only method that do not produce immediately interpretable features.
For a visual summary of this framework, see Figure 1.

Interpretable features to counterfactual latent vectors. While producing explanations is straight-
forward for each method, intervening on model representations using the information provided by
explanations is not as simple. Doing so requires defining a reverse mapping from the explanations
to the latent representations of the model, which is only explicitly done by sparse autoencoders.

We extend lens-based methods and probing by defining inverse mappings for them as follows. To
map Logit Lens’s explanations back into the model’s latent space, we would ideally apply the in-
verse of the unembedding matrix to z; however, in practice this is often ill-conditioned due to the
dimensionality of D. As such, we instead use the low-rank pseudoinverse of the unembedding
matrix and right-multiply it to the explanation logits. Similarly, for Tuned Lens, we model the de-
coding process through the pseudo-inverse of the Tuned Lens projection applied to the unembedding
matrix. Notably, both of these methods only require a simple linear transformation to go back-and-
forth between latent vectors and explanations. For probing, an inverse mapping D−1 is not strictly
necessary, as all interventions can be performed directly on x instead of z, as done by Chen et al.
(2024); however, an inverse mapping can be designed to maximally recover x from z, as shown in
Figure 1. Sparse autoencoders have a well-defined backwards mapping through the SAE decoder,
which is frequently linear in practice and often the transpose of the encoder weights.

Intervening on interpretable features. Given the above framework, intervention is performed by
directly altering the feature activation zi corresponding to the desired feature i to be edited. While
the edited activation z′i can naively be set to some constant value α, the same constant may have
drastically varying effects for different tokens and different prompts. As such, to take into account
the context of z, for Logit Lens, Tuned Lens, and SAEs we set z′i = α ∗max(z). This ensures that
the feature i is the most dominant feature in the latent vector for α > 1. Decoding z′ yields the
altered latent representation x̂′ = g(z′), which accounts for both the error of the explanation method
as well as the intervention performed. For probing and steering vectors, x̂′ = x+ α ∗ v, where v is
the steering vector or the weights of the linear probe. Note that α is a hyperparameter that must be
tuned for each method and model, and thus cannot be used to compare the effects of interventions
across methods. In order to do so, we can instead measure the normalized difference between the
latent vectors x and x̂′, to characterize the strength of the intervention. We also note that x̂ and
x̂′ are not necessarily in-distribution for the language model, but due to the additive nature of the
residual stream and the linear representation hypothesis, we believe that such interventions may still
be principled in practice (see Park et al. (2023) for more on the linear representation hypothesis and
intervention).

3.2 EVALUATION ACROSS METHODS AND MODELS

Given the overall lack of standardized evaluation of mechanistic interpretability methods, we intend
for this work to serve as a starting point for systematic evaluation by testing methods in simple,
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Logit Lens Tuned Lens SAE ProbingSteeringReft-r1

Figure 2: Evaluation of the Intervention Success Rate with respect to edit distance for each method on four
models for the simple intervention topics. Note that normalized edit distance is a proxy for intervention strength
that is comparable across methods. Logit Lens generally outperforms all other methods.

easy-to-measure contexts. In particular, we think of our evaluations as measuring a kind of upper
bound for these methods: in the easiest of settings, how well do existing methods work?

Explanation Correctness. We first propose metrics to evaluate the correctness of explanations and
interventions. More specifically, to test whether a single feature of an explanation zi is correct, we
intervene on that feature to produce z′i and decode z′ to x̂′, which should generate text that matches
the intervention made to produce z′. For example, if feature i encodes the concept “references to
Paris,” increasing the value of zi should result in increases to references of Paris in the model’s
output. From this, we propose a metric of Intervention Success Rate, which measures if increasing
activation zi results in the appropriate increase of the feature i in the model’s output. To evaluate
a continuous relaxation of this, we can also similarly measure the probability assigned to tokens
relating to feature i. As such, even if the model’s output does not directly reflect interventions made
to z′i due to sampling, we can measure if increasing the activation of i results in any change to the
model’s output at all. We refer to this metric as Intervened Token Probability. Importantly, both
of these metrics can be thought of as measuring the causal fidelity of the features highlighted by
explanations.

Usefulness of Intervention Methods. While intervention is a useful method for evaluating the
correctness of explanations, it is also a desideratum of its own and a frequent motivation for many
explanation methods. For example, methods are often developed for the purpose of de-biasing model
outputs or increasing model safety, either by localizing bad behavior or identifying it at inference
time, thus allowing for targeted edits to be made. However, a lack of this direct connection between
interpretation and model intervention has led to illusory results in prior literature (Hase et al., 2024;
Wattenberg & Viégas, 2024). By directly and explicitly measuring how effective interpretability
methods are at allowing for targeted intervention or steering, we can avoid such failure cases. Im-
portantly, intervention is only useful if the language model retains its overall performance and still
satisfies the purpose of the query as well as the intervention. Thus, we want to evaluate whether
interpretability methods can steer model outputs towards feature i without damaging the model. We
define Coherence as the grammatical correctness, consistency, and relevance to the prompt of the
generated text, which can be measured by querying an appropriate oracle, such as a human or strong
LLM. Similarly, we can also measure the Perplexity of the intervened outputs with respect to a
strong language model. In practice, we use Llama3.1-8b for both of these metrics, as it is reasonable
sized, high-performing, and open source, allowing for the measurement of perplexity. We compare
coherence scores given by Llama3.1-8b to those generated by human raters as well as a rules-based
grammar checker to ensure efficacy of our LLM-as-a-judge setup in Table 1.

An Open-ended Evaluation Dataset. In order to evaluate these methods to the best of their capa-
bilities, we are interested in assessing their ability to intervene when intervention is straightforward
and possible given the prompt. Consider the question “What is

∫∫
sin(3 ∗ x) ∗ cos(y)dxdy?”. In-

tervening on the model’s output for this prompt with a feature related to unicorns is not necessarily
intuitive, as there is a correct answer to the prompt that is entirely unrelated to the intervention topic.
As such, we want to evaluate these methods on prompts that allow for steering towards a variety of
topics or features. To that end, we construct a dataset of 210 prompts related to poetry, travel, nature,
journaling prompts, science, the arts, and miscellaneous questions that could plausibly be answered
while satisfying a variety of intervention topics. All prompts are open-ended to allow for many
potential answers. Some example prompts include “In ten years, I hope to have accomplished”,
“Check out this haiku I wrote:”, and “What is your favorite dad joke?”.
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Intervention Success Rate
Reft-r1 Tuned Lens SAE ProbingSteering Clean Baseline PromptingLogit Lens

Figure 3: Intervened output coherence measured with respect to intervention success rate. The solid
horizontal line shows the mean of coherence scores for the clean model outputs, and the dashed lines
show ±1 standard deviation around the mean.

4 EXPERIMENTS

In this section, we evaluate the four interpretability methods on our proposed metrics and provide
case studies of intervention on more complex concepts. We also present an analysis of the empiri-
cal alignment between methods. Additional experiments relating to latent reconstruction error and
intervention efficacy across model layers are in Appendix B.1 and B.4.

4.1 IMPLEMENTATION DETAILS

Intervention Topics. We choose 10 intervention topics that all relate to references to specific words
or phrases: {‘beauty’, ‘chess’, ‘coffee’, ‘dogs’, ‘football’, ‘New York’, ‘pink’, ‘San Francisco’,
‘snow’, ‘yoga’}, generalizing ‘Golden gate Claude’-style interventions. These simple, low-level fea-
tures are ideal for evaluation through intervention for four key reasons: first, measuring the presence
of a word or phrase is much easier than measuring a high-level abstract concept such as sycophancy,
second, these features were present in the pretrained and labelled sparse autoencoders we studied,
third, the features necessarily exist in the Logit Lens unembedding dictionary, and finally, datasets
that are labelled for the presence of these features are very straightforward to collect for generating
steering vectors and probes. As such, we can easily compare interventions on these features across
all interpretability methods and measure intervention success by checking if the given word/phrase
exists in the model’s output.

Steering vectors and probing. We implement steering vectors with Contrastive Activation Addi-
tion (CAA) (Rimsky et al., 2023) with a few simple modifications. Where in CAA, the difference
between contrastive pairs is taken only at the last token, we find that averaging across the token
dimension and taking the difference between those averages yields much better results. This is due
to the fact that in CAA, the only difference between representations occurred in the token position
of the answer letter, or the last token; however, in our case the information related to the intervention
feature could be present at any token. Example contrastive data pairs were hand-generated by the
authors and then used to prompt ChatGPT to create a total of 200 pairs of sentences. All data was
verified by the authors and is made available in the accompanying codebase. These contrastive pairs
were also used to train the linear probes, using the implementation from Chen et al. (2024). All
probes reached train and test accuracies of 100% across all models and intervention topics.

Sparse autoencoders and supervised dictionaries. We focus specifically on sparse autoencoders
trained to interpret the residual stream of transformer models. We use the SAELens library from
Bloom (2024) for GPT2-small and Llama3-8b and the Gemma Scope SAEs (Lieberum et al., 2024)
for Gemma2-2b. SAE feature labels were found via Neuronpedia (Lin & Bloom, 2023), which
allows users to search through fully trained SAEs and their auto-interpretation labelled features. We
also evaluate the Rank-1 Representation Finetuning (ReFT-r1) supervised dictionaries released by
Wu et al. (2025), which have features that directly correspond to the SAE features for Gemma2-
2b. Note that dictionaries were only released for layer 20 of Gemma2-2b, so we cannot present
evaluation for other layers or models.

4.2 INTERVENTION SUCCESS ACROSS MODELS

As described in Section 3.2, in order to evaluate the correctness of explanations, we measure the
causal effects of intervening on specific features of each explanation. For a given feature or in-
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tervention topic i, we see if increasing the activation of that feature results in an increase of the
feature in the model’s output for the ten simple intervention topics. In order to compare across
methods, which all have different explanation feature spaces and scales, we measure the success
of interventions as a function of the norm of the distance between the edited latent representation
x̂′ = g(Edit(f(x))) and the original latent representation x: ||x̂′ − x||/||x||. Results for interven-
tion success rate are shown in Figure 2 and results for intervened token probability can be found in
Appendix B.5.

Across methods and models, we find that by increasing intervention strength, or the magnitude of
the edit to the latent representation, intervention success rate first improves and then levels out,
as expected. However, we unexpectedly find that Logit lens and Tuned lens generally have the
highest intervention success rate, regardless of the normalized edit distance, except when compared
to ReFT-r1 on Gemma2-2b. Furthermore, we find that SAEs, probes, and steering vectors require
significantly larger edits in order to achieve reasonable intervention success. Note that the minimal
edit distance for SAEs is nonzero, as SAE reconstruction incurs a significant error, as explored in
Appendix B.1. In general, we believe the lower performance of SAEs is due to heavy noise in the
labels of features. For example, a feature labelled ‘references to coffee’, is sometimes actually a
feature that encodes for references to ‘beans’ and ‘coffee beans’, and thus only sometimes increases
mentions of ‘coffee’. Probes and steering vectors also have suboptimal performance, often due to
learning of spurious correlations in the training data rather than the true intervention feature.

4.3 EFFECTS OF INTERVENTION ON OUTPUT QUALITY

Table 1: Correlation between human raters (left) and an
LLM rater (Llama3-8b) for coherence or a rules-based
grammar checker (right). All three raters are highly cor-
related with one another.

LLM VS
HUMAN RATER

LLM VS
ERROR CHECKER

PEARSON R r2 PEARSON R r2

LLAMA3-8B 0.94 0.75 -0.96 0.92
LLAMA2-7B 0.80 0.68 -0.85 0.73
GEMMA2-2B 0.80 0.67 -0.78 0.75
GPT2-SM 0.71 0.67 -0.86 0.74

We next measure the coherence of the
intervened output text produced by
each method to ensure that interven-
tion through interpretability methods
is possible without damaging the util-
ity of the model. We measure coher-
ence as described in Section 3 as a
function of the intervention success
rate in Figure 3 to characterize the
tradeoff between intervention success
and output coherence. Results for co-
herence as a function of normalized
latent edit distance, ||x̂′ − x||/||x||,
are in Appendix B.3. We visualize
the mean of coherence scores for the
clean model outputs with solid black
horizontal lines, the same as those shown in Figure 7, with a buffer of ±1 around the mean in dashed
lines. We also consider a prompting baseline, where we simply prompt the language model to talk
about the intervention topic, to better understand the optimal coherence possible while satisfying the
intervention. This is shown by the teal stars in Figure3. Prompting was infeasible for GPT2-small
as it was not instruction tuned. Also, note that the intervention success rate approaches 100% with
prompting as the number of generated tokens increases; however, seeing as we only generate 30
tokens, the success rate may be lower than expected.

Our experiments reveal that while interpretability methods may seem to provide reasonable trade-
offs between intervention success and coherence at first glance, they all underperform the simplest
baseline of just prompting the model. Furthermore, Logit lens and Tuned lens significantly outper-
form all other methods when intervening on these simple topics, with intervention success rates of
around 0.5 and 0.6 respectively for outputs within one point of deviation from the mean coherence
score of the clean model. All other methods exhibit much less desirable Pareto curves, regardless of
model size or intervention feature.

Verifying Coherence. In order to validate the coherence scores generated through our LLM-as-a-
judge setup with Llama3-8b, we verify the coherence scores with human raters. Participants blindly
rated 100 outputs for each model, and we measured the correlation between these human ratings and
LLM ratings, as shown in Table 1. We find high consistency between both, with particularly high
correlation coefficients and r2 values for the larger models.
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Method Optimal Intervention Strength Excessive Intervention
Logit On my next vacation, I hope to visit the beautiful country of Costa Rica. 

I’ve been reading a lot about the country and I’m really excited about the 
yoga retreats I’

(Edit Distance: 0.6, Coherence: 7, Model: Gemma2)

My favorite song from the 21st century is “Yoga, Yoga, Yoga” by Yoga 
Yoga Yoga Yoga Yoga Yoga Yoga Yoga Yoga Yoga

(Edit Distance: 0.7, Coherence: 3, Model: Gemma2)

Probing Think about a time you felt truly at peace. Maybe you were sitting on a 
beach, or maybe you were sitting in a yoga studio. Maybe you were sitting 
in your own home, or maybe you

(Edit Distance: 0.7, Coherence: 5, Model: Gemma2)

My favorite fiction author is the one and only, the one and only, the one and 
only, the one and only, the one and only, the one and only, the one and only, 
the one and only,

(Edit Distance: 1.1, Coherence: 4, Model: Gemma2)

SAE The coolest wildlife I've ever spotted was a yoga class in a tree. I was in the 
jungle of Costa Rica, and I was doing a yoga class in a tree. I was in the 
jungle of Costa Rica, and I was doing a yoga 

(Edit Distance: 0.9, Coherence: 6, Model: Gemma2)

My favorite museum to visit is the Hat yoga practice sequence. It is a 
sequence that is a sequence that is a sequence that is a sequence that is a 
sequence that is a sequence that

(Edit Distance: 1.2, Coherence: 5, Model: Gemma2)

Steering My favorite scientist is Dr. Deepak Chopra. I have been practicing yoga for 
7 years and I have been practicing meditation for 4 years. I have been 
practicing yoga

(Edit Distance: 0.6, Coherence: 5, Model: Gemma2)

Last year, I went to a practice session for a beginner class I was initially 
initially initially initially initially initially initially initially initially initially 

(Edit Distance: 1.3, Coherence: 5, Model: Gemma2)

Figure 5: Examples of intervened model outputs for intervention feature ‘yoga’ at both the optimal
intervention strength (left) and the maximum intervention strength tested (left). Outputs degrade
into incoherent repetition at high intervention strength for all methods.

Logit Lens Tuned Lens SAE
Probing

Steering
Clean Baseline Prompting

Reft-r1

Figure 4: Relationship between intervention suc-
cess rate and coherence for three complex fea-
tures: religious references (top), gendered lan-
guage (middle), and French language (bottom) for
Gemma2-2b (left) and Llama3-8b (right).

We also check the validity of the coherence rat-
ings by comparing with an alternative metric
that measures the number of grammatical er-
rors in the intervened output via a rule-based
grammar checker. In particular, we use Lan-
guageTool to determine the number of errors in
each output, which has thousands of rules re-
lating to grammar, typos, capitalization errors,
and more. As expected, there is a high neg-
ative correlation between the two, indicating
that outputs with more errors are less coherent.
However, we note that the number of grammat-
ical errors is not an ideal metric, as it does not
assess whether the text generation pertains to
the prompt, which an LLM rater can do.

Qualitative Examples. We present examples
of intervention outputs in Figure 5 for the fea-
ture ‘yoga,’ with more examples in Appendix
B.7. We highlight outputs where intervention
succeeded with minimal degradation in coher-
ence in “Optimal Intervention Strength” (left
column) as well as generations from the high-
est intervention strength tested (right column)
“Excessive Intervention.” Note that interven-
tion results in repetition at very high interven-
tion strengths for all methods; however, only
Logit Lens and Tuned Lens result in repetition
of tokens related to ‘yoga.’

4.4 COMPLEX FEATURES CASE STUDIES

While the aforementioned simple features allow for rigorous evaluation across methods, in practice,
users often want to control or steer much more complex concepts. To investigate the feasibility of
interventions in more interesting and realistic settings, we present results for three more complex
concepts: (1) religious speech, with direct or implicit references to a given religion, (2) gendered-
language, or the ability to preferentially generate text related to a specific gender, and (3) the French
language, where the model should generate text in French even when given an English prompt.
These concepts were chosen from features known to exist in the pretrained and labeled SAEs we
evaluated, which had a female gendered-language concept and a Christianity- and Islam-related
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religion concept.2 Intervention success is measured with keyword detectors for the first two concepts
and the NLP-based language detector package polyglot (Al-Rfou, 2022) for the French concept.

As shown in Figure 4, we find that even for these more complex concepts, prompting generally
outperforms interpretability-based interventions, particularly for the French language concept. Fur-
thermore, no other method performs consistently across models or features, highlighting the unre-
liability of existing interpretability methods for controlling complex and safety-relevant concepts.
However, we generally found that interventions made by Logit lens were most successful in incor-
porating the intervention into a plausible completion of the prompt. For example, one intervened
output was “Whenever I’m outdoors and in nature, I always have a camera with me. I love tak-
ing pictures of God’s beautiful creation. I’m a big fan of Jesus and I love spending...”, where we
can see that the religion concept is integrated well with the response to the prompt. For most other
methods, such as SAEs, interventions either immediately degraded model performance by inducing
severe repetition (e.g. “I had a conversation recently about the last and final prophet of the last and
final of the last and the last and the last and”) or they were either unrelated to the prompt or simply
incorrect (e.g. “Tell me an interesting fact about a musical instrument. For example, did you know
that the piano is actually a Christian Muslim?”).

4.5 INTERVENTION SIMILARITY BETWEEN METHODS

Lo
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d
SAE

Stee
rin

g
Prob

ing
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git
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d
SAE
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ing

Lo
git

Reft
-r1

SAE
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rin

g

Prob
ing
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git

Reft
-r1

SAE
Stee

rin
g

Prob
ing

GPT2-sm Gemma2-2b

Figure 6: Cosine similarity between methods’ in-
tervention directions in model latent space across
methods.

Given that these methods all result in linear ed-
its that should correspond to the same feature,
ideally their interventions should all point in
the same direction in the model’s latent space.
We evaluate the empirical similarity between
methods by measuring the cosine similarity be-
tween edit directions, x̂′−x, for each interven-
tion topic. The average cosine similarity be-
tween these vectors for each intervention topic
is shown in Figure 6.

We find that Logit Lens and Tuned Lens are
highly similar, as expected. Similarly, steering
vectors and probe weights tend to lie in simi-
lar directions, likely due to the same underlying
data used to train both. Most interestingly, we
find that sparse autoencoders tend to intervene in somewhat similar directions to steering vectors and
probes and have near orthogonal directions to Logit Lens and Tuned Lens, even when interventions
succeed for all methods. We speculate that sparse autoencoders may be more similar to probes and
steering vectors because the three methods may have a bias toward representing past information
and tokens, due to their training and labelling algorithms, also noted by Gur-Arieh et al. (2025).
Logit lens and Tuned lens, on the other hand, are designed to reveal information about the next token
specifically, given that they are early-decoding strategies and thus may contain more information
about model outputs rather than inputs.

5 CONCLUSION

While interpretability methods show great promise in understanding large language models, the cor-
rectness of their explanations is less clear. Do these explanations reveal truth about model compu-
tation or simply fool human researchers? We believe that systematic benchmarking of explanations
is critical to answer this question. Our work makes progress towards this goal, and answers this
question somewhat negatively, showing that current explanations are less accurate than expected.
Our work also raises questions regarding the utility of such methods, as we find that prompting
outperforms current interpretability methods in its ability to steer models, without requiring any
training, data, or access to model weights. We hope future work can address these shortcomings of
current methods, paving way toward interpretability methods that are faithful and provide actionable
insights for improving and controlling models.

2ReFT-r1 did not have a feature that directly corresponded to French language, so we consider the closest
successful feature available: “French connective and referential pronouns.”
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A APPENDIX

B APPENDIX

B.1 ADDITIONAL EVALUATIONS: SANITY CHECKING EXPLANATION RECONSTRUCTIONS

Before testing these methods for their ability to intervene, we first want to evaluate the completeness
of the explanations and the effect of replacing x with x̂ without any intervention or editing. We
do so by measuring the normalized latent reconstruction error: Error = ||x̂ − x||/||x|| where
x̂ = g(f(x)) = g(z). This error is a key part of the loss function that sparse autoencoders are
trained on and measures the information loss incurred by mapping between the language model’s
latent space and the interpretable feature space. Given that steering vectors and linear probes do not
output complete explanations, we only measure this error for the other three methods, as shown in
Table 2, where we see that errors vary a lot across models but most methods are relatively consistent
in their error, with the exception of the GPT2-small sparse autoencoders.
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Table 2: Normalized latent reconstruction error without intervention.

Method Gemma2-2b Llama2-7b GPT2-small

LOGIT LENS 0.52 5e−5 0.22
TUNED LENS – 5e−3 0.32
SAES 0.38 – 1.64
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Figure 7: Histogram of coherence scores for clean model outputs (Clean) and for the models where
x is replaced by x̂ without any intervention for Logit Lens, Tuned Lens, and SAEs. Dashed lines
show the mean for each distribution.

B.2 ADDITIONAL EVALUATIONS: COHERENCE OF METHOD OUTPUTS WITHOUT
INTERVENTION

We measure the coherence of the outputs produced by replacing x with x̂, as shown in Appendix
Figure 7, which we can compare to the baseline of the clean model outputs (labelled ‘Clean’ and
shown in black). We find that the coherence of the outputs generated by the reconstructed latents
generally matches the coherence of the clean model outputs. We use a deviation of ±1 around the
mean of clean output coherence scores as a threshold for future evaluations, shown in the dashed
lines.

B.3 ADDITIONAL EVALUATION: COHERENCE OF INTERVENTION WITH RESPECT TO EDIT
DISTANCE

We measure the coherence of the intervened output text produced by each method to ensure that
intervention through interpretability methods is possible without damaging the utility of the model.
We measure coherence as described in Section 3 as a function of normalized latent edit distance,
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||x̂′ − x||/||x|| in Figure 8. We find that even the smallest interventions made with Logit lens and
Tuned lens result in significant degradation of model outputs, with a less noticeable dropoff for the
other methods. We also plot coherence as a function of the intervention success rate in Figure 3 to
characterize the tradeoff between intervention success and output coherence.
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Figure 8: Analysis of coherence of the intervened outputs, measured with Llama3.1-8b, as a measure
of the edit distance or magnitude of intervention made. Lens-based methods suffer drastic drops in
coherence with only small edits.

B.4 ADDITIONAL EVALUATIONS: INTERVENTION EFFICACY ACROSS MODEL DEPTH

In order to ensure the generalizability of the above results across layer depths, we repeat all experi-
ments for each layer of GPT2-small, as shown in Figure 9. However, due to some sparse autoencoder
features only existing in some layers, we could only consider intervention topics { ‘beauty’, ‘coffee’,
‘dogs’}. We hold the hyperparameter α that controls for intervention “strength” constant across all
layers. Note that this is NOT equivalent to holding the normalized edit distance constant, as shown
in the rightmost plot.

We find that layer depth seems to have minimal effect for SAEs and probing, with the exception of
the first and last layers. For steering vectors, we observe a modest increase in intervention success
rate with increased layer depth and a much more drastic increase in the success rate at later layers
for Logit Lens and Tuned Lens. However, as we increase α significantly, we find that the curves for
all three methods on intervention rate shift left until the pass rate is approximately 1 at all layers.
Intuitively, this makes sense, as any edits to the residual stream at layer 0 will affect the residual
stream at later layers. We note that these results highlight the need to tune the intervention strength
for each method, each model, and each layer - limiting their ease of use.

B.5 ADDITIONAL METRICS: INTERVENED TOKEN PROBABILITY

Please see Section 3.2 for more details. We measure the probability assigned to tokens relating to
feature i when intervening on feature i. As such, even if a model’s output does not directly reflect
interventions made to z′i due to sampling, we can measure if increasing the activation of feature i
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Figure 9: Analysis of intervention pass rate (left), coherence (middle) and edit distance (right) across
all layers of GPT2-sm. We find that intervening at later layers is significantly more effective for Logit
and Tuned Lens than earlier interventions, but probes, steering vectors, and SAEs are relatively
invariant to the choice of layer.

results in any change to the model’s output at all. We refer to this metric as Intervened Token
Probability.

Results for Intervened Token Probability are shown in Figure 10, where we see that intervention
with all methods across all models increases the probability of intervention-related tokens, even if
the intervention does not succeed. We also note that there is a significant difference between the
order of magnitude of the intervened token probability for sparse autoencoders, around 10e−5 and
the rest of the methods, which range from 10e−4 to 0.5.

B.6 ADDITIONAL METRICS: PERPLEXITY

As described in Section 3.2, we evaluate the perplexity of the intervened generated text to measure
the utility of interpretability methods for targeted intervention in 11. We measure this perplexity
with respect to a stronger language model than the one studied, in this case with Llama3.1-8b.

We find that the results for perplexity are generally unintuitive and do not align with the results for
coherence. We hypothesize that perplexity is not a useful measure when text is extremely out-of-
distribution with respect to normal text, and in particular when the text is highly repetitive. For
example, if the same token is repeated 20 times, we (and other language models) might assume that
the next 20 tokens would also be the same, resulting in a low perplexity even if the quality of the
text is poor. As such, we do not consider these results to be particularly meaningful or significant.

B.7 ADDITIONAL EXAMPLE OUTPUTS

We present additional examples of the output text for all intervention methods in Figures 12 and 13
for qualitative evaluation of intervention on the feature ‘coffee’ and ‘San Francisco’. Examples for
the “Optimal intervention strength” (left column) were randomly chosen from the outputs where in-
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Figure 10: Evaluation of intervention success with respect to the probabilities of the tokens cor-
responding to the features intervened on for each method. Note that normalized edit distance is a
proxy for intervention intensity that is comparable across methods.
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Figure 11: Analysis of perplexity of the intervened outputs, measured with Llama3.1-8b, as an
alternative metric to Coherence. We find that perplexity does not align with Coherence, as highly
repetitive sequences may have low perplexity despite being incoherent answers to prompts.

tervention succeeded and coherence was still relatively high. Examples for “Excessive Intervention”
were randomly chosen from the outputs of the highest intervention strength tested (right column).
Please see Section 4.3 for more.

B.8 IMPLEMENTATION DETAILS: OPEN-ENDED GENERATION

In order to generate open-ended text after intervening on the explanation, we edit the corresponding
representations in place, as is common practice with prior steering methods. Formally, the repre-
sentation xt at token position t and layer l is edited to be x̂t

′, ensuring a causal effect on all ensuing
tokens xt+1, xt+2, ..., xT .

B.9 IMPLEMENTATION DETAILS: INTERVENTION HYPERPARAMETER α

When intervening on z to get z′ with Logit Lens, Tuned Lens, and SAEs, we set z′i = α ∗max(z).
For probing and steering vectors, x̂′ = x+α ∗ v, where v is the steering vector or the weights of the
linear probe. Note that α is a hyperparameter that must be tuned for each method and model, and
thus cannot be used to compare the effects of interventions across methods. We record the values of
α used in our experiments in Table 3.

B.10 IMPLEMENTATION DETAILS: SAE FEATURES

As described in Section 4.1, we use the sparse autoencoders hosted on SAELens and find the rel-
evant features with Neuronpedia’s exploration and search tools. We document all of the features
we consider for each intervention topic in Table 4. Note that for some specified intervention topics,
an exact feature match does not exist for the GPT or Gemma SAEs. As such, we either exclude
that topic or consider the closest-related topic (such as “instruction related to yoga poses and their
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Method Optimal Intervention Strength Excessive Intervention
Logit In my daydreams, I often find myself in a coffee shop, sipping a 

cup of coffee and reading a book. I love the smell of coffee and 
the taste of coffee.

(Edit Distance: 0.6, Coherence: 6, Model: Gemma2)

The joys and challenges of traveling alone include coffee shops, 
museums, coffee shops, coffee shops, coffee shops, coffee shops, 
coffee shops, coffee shops, coffee shops, coffee shops, coffee

(Edit Distance: 0.7, Coherence: 2, Model: Gemma2)

Probing I have travelled far and wide, and, I have seen many different 
types of coffee. I have had the pleasure of trying some of the best 
coffee in the world. I have also had the

(Edit Distance: 0.8, Coherence: 5, Model: Gemma2)

Whenever I'm outdoors and in nature, I 
'41111111111111111111111111111

(Edit Distance: 1.1, Coherence: 1, Model: Gemma2)

SAE I plan to write my Ph.D. dissertation on the topic of the 
relationship between the coffee and the coffee shop. I am 
interested in the history of the coffee shop, the history of the 
coffee shop

(Edit Distance: 0.9, Coherence: 5, Model: Gemma2)

In my previous life, I'm sure that I was a coffee shop barista. I' 
coffee is always fresh, the coffee is always fresh, and the coffee 
is always fresh. I's a great

(Edit Distance: 1.2, Coherence: 3, Model: Gemma2)

Steering List some fun facts to share with kids.
 * <strong>The first coffee shop in the world was in 1977 in the 
city of Seattle, in the state of Washington.

(Edit Distance: 0.6, Coherence: 7, Model: Gemma2)

My favorite national park to visit is:  the <strong><em>National 
Park:</em></strong> <strong><em>The</em></strong> 
<strong><em><strong><em><strong><em><strong><em>

(Edit Distance: 1.3, Coherence: 1, Model: Gemma2)

Tuned Check out this haiku I wrote:
coffee, my dear friend
warming my hands and heart
in this cold world

(Edit Distance: 0.4, Coherence: 6, Model: Llama2)

The coolest wildlife I've ever spotted was a black coffee coffee 
coffee coffee coffee coffee coffee coffee coffee coffee coffee 
coffee coffee coffee coffee coffee coffee coffee coffee coffee 
coffee coffee coffee coffee coffee coffee coffee coffee

(Edit Distance: 0.5, Coherence: 2, Model: Llama2)

Figure 12: Example outputs with intervention on “coffee” feature.

Method Optimal Intervention Strength Excessive Intervention
Logit One dramatic impact of climate change on wildlife will be the 

spread of disease. The San Francisco Zoo is taking steps to 
prepare for the arrival of the first cases of disease in the San 
Francisco Bay Area.

(Edit Distance: 0.6, Coherence: 8, Model: Gemma2)

A book on art history that I found fascinating is Francisco Goya, 
Francisco Goya Francisco Goya Francisco Goya Francisco Goya 
Francisco Francisco Francisco Francisco Francisco Francisco 
Francisco Francisco Francisco Francisco Francisco Francisco 

(Edit Distance: 0.7, Coherence: 2, Model: Gemma2)

Probing Next month, I plan to travel to the United States to attend the 
2016 International Conference on the History of the Book. The 
conference will be held in San Francisco, California

(Edit Distance: 0.7, Coherence: 8, Model: Gemma2)

A book on art history that I found fascinating is <em>The 
Modern Art Show: The 1932/33 Art/Alfar/Alfar/Alfar/Alfar/

(Edit Distance: 1.1, Coherence: 1, Model: Gemma2)

SAE During my last work trip, I was able to visit the San Francisco 
Museum of Modern, and I was able to see the new exhibit, “The 
Last Resistance.” The exhibit is a

(Edit Distance: 0.9, Coherence: 8, Model: Gemma2)

Some examples of eco-friendly destinations and tips for 
minimizing your travel footprint are <strong>San 
Marin</strong> <strong>Island</strong>, <strong>Tib</strong> 
<strong>Travel</strong>, <strong>The</strong> 
<strong>Golden Emb Emb Emb</strong>

(Edit Distance: 1.2, Coherence: 1, Model: Gemma2)

Steering My favorite childhood memory is of my parents taking me to the 
San Francisco Exploratorium. I remember being amazed by the 
Exploratorium's Exploratory Playroom, which was a

(Edit Distance: 0.6, Coherence: ,8 Model: Gemma2)

In my daydreams, I like to imagine that I'm a 19th-sf Francisco 
Francisco Francisco Francisco Francisco Francisco Francisco 
Francisco Francisco Francisco Francisco Francisco Francisco 

(Edit Distance: 1.3, Coherence: 2, Model: Gemma2)

Tuned Check out this haiku I wrote: 
 San Francisco's hills
Steep and winding, a challenge
To walkers, bikers too

(Edit Distance: 0.4, Coherence: 7, Model: Gemma2)

My favorite song from the 21st century is "Ho Hey" by San 
Francisco-based indie rock band The San Francisco Francisco 
Francisco Francisco Francisco Francisco Francisco Francisco 

(Edit Distance: 0.5, Coherence: 3, Model: Llama2)

Figure 13: Example outputs with intervention on “San Francisco” feature.

benefits” when what we would like is “references to yoga”). Many of these imperfect features still
yield reasonable intervention success rates.
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Table 3: Values for hyperparameter α used to control intervention edit distance for each method and
model.

Method GPT2-small
Layer 9

Gemma2-2b
Layer 20

Llama2-7b
Layer 18

Logit Lens [50, 70, 90, 110, 130] [100, 130, 160, 200, 230] [0.5, 3, 7, 11, 15, 19]
Tuned Lens [20, 25, 30, 35, 40] – [1, 7, 11, 15, 19, 23]
SAEs [3, 4, 5, 6] [1, 2, 3, 4, 5] –
Probing [150, 200, 250, 300, 350] [200, 250, 300, 350] [10, 90, 110, 130, 150]
Steering Vectors [2, 4, 6, 8, 10] [3, 4, 5, 6] [0.5, 3, 4, 5, 6]

Table 4: Specific SAE features used for intervention on GPT2-sm and Gemma2-2b. The feature ids
and their according Neuronpedia labels are provided.

Intervention
Feature

GPT2-small
Layer 9
Feature

GPT2-small SAE
Layer 9 Name

Gemma2-2b
Layer 20
Feature

Gemma2-2b SAE
Layer 20 Feature Label

San Francisco 11233 “mentions of the city
of San Francisco” 3124 “references to San Francisco

and related locations”

New York 5831 “references to the city
of New York” 3761 “specific place names and

geographical locations in New York”

beauty 1805 “words related to beauty
or aesthetic appreciation” 485 “instances of the word

“beauty” in various contexts”

football – – 11252 “references to football
and baseball contexts”

pink 2415 “mentions of the
word “Pink.”” 13703 “references to the color

pink and its various associations”

dogs 12435 “mentions of dogs or
dog-related terms” 12082 “references to dog behavior

and interactions”

yoga – – 6310 “instructions related to
yoga poses and their benefits”

chess 21685 “mentions of the
game of chess” 13419 “elements within

the context of chess”

snow 5053 “references to
snow-related terms” 13267 “references to snow and

related terms”

coffee 23472 “references to
coffee-related words” 15907 “references to coffee and

related cafés or establishments”
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