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ABSTRACT

Multimodal language models (MLLMs) are increasingly being applied in real-
world environments, necessitating their ability to interpret 3D spaces and compre-
hend temporal dynamics. Current methods often rely on specialized architectural
designs or task-specific fine-tuning to achieve this. We introduce COARSE CORRE-
SPONDENCES, a simple lightweight method which enhances MLLMs’ understand-
ing of 3D and temporal concepts using only 2D images, without modifying the
architecture or task-specific fine-tuning. Our method uses a lightweight tracking
model to identify primary object correspondences between frames in a video or
across different image viewpoints, and then conveys this information to MLLMs
through visual prompting. We demonstrate that this simple training-free approach
brings substantial gains to GPT4-V/O consistently on four benchmarks that require
3D and temporal understanding, including +20.5% improvement on ScanQA,
+9.7% on OpenEQA’s episodic memory subset, +6.0% on the long-form video
benchmark EgoSchema, and +11% on the R2R navigation benchmark. Addition-
ally, we show that COARSE CORRESPONDENCES can also enhance open-source
MLLMs’ understanding of 3D space (by +6.9% on ScanQA) when applied in both
training and inference and that the improvement can generalize to unseen datasets
such as SQA3D (+3.1%). Taken together, we show that COARSE CORRESPON-
DENCES effectively and efficiently boosts models’ performance on downstream
tasks requiring 3D and/or temporal understanding.

1 INTRODUCTION

Intelligence is multi-faceted. While multi-modal large language models (OpenAI, 2024) have shown
remarkable linguistic, logical and even mathematical intelligence, many remain doubtful about their
visual and spatial intelligence. Despite their excellent performance on visual-lingusitic tasks, many
recent works (Majumdar et al., 2024; Singh et al., 2024) demonstrate that state-of-the-art MLLMs
still struggle at 3D and long video benchmarks, performing only marginally better than blind text-only
baselines. These results suggest that 3D and temporal understanding are two major bottlenecks on
MLLMs’ path to general visual intelligence.

To enhance MLLMs’ 3D understanding, researchers have mainly explored three approaches: provid-
ing MLLMs with 3D data as input (Hong et al., 2024), designing specialized architectures for 3D
tasks (Hong et al., 2024), or employing supervised fine-tuning with 3D data (Chen et al., 2024). Simi-
larly, to boost MLLMs’ temporal understanding, prior works have proposed new model architectures
designed for long video understanding (Papalampidi et al., 2023; Balažević et al., 2024), or adopted
Socratic-based methods (Zhang et al., 2024; Kahatapitiya et al., 2024) (i.e., converting each frame of
a video into text using a caption model, and then using text-only LLMs to summarize).

In contrast to prior works, we propose a simple but effective training-free visual prompting method
COARSE CORRESPONDENCES to boost 3D and temporal understanding in MLLMs. COARSE
CORRESPONDENCES uses a tracking model to extract object-level correspondences across multiple
images, and then represent the most salient correspondence relationships on the images through
visual prompting. Our method significantly boosts MLLMs’ understanding of 3D spacetime with
only 2D image inputs and without any specialized architectural design or task-specific fine-tuning.
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MLLMs

(a) track objects in high frame rate videos

(b) construct coarse correspondence on sparsified views
(c) help MLLMs understand 3D space-time

with prompted images
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Figure 1: We combined light-weight video tracking models and multimodal LLMs to achieve a better
understanding of 3D spacetime. (a) We use a tracking model at a high frame rate to obtain instance
segmentation masks for each frame. (b) Then, we sequentially sparsify input frames, select prominent
coarse correspondences, and visualize the constructed coarse correspondences on the images. (c)
Finally, we enable MLLMs to better understand 3D spacetime from the prompted images.

We have demonstrated substantial performance gains of COARSE CORRESPONDENCES through
extensive experiments with both open-source and closed-source models across 6 benchmarks on 3D
spatial understanding and temporal understanding. For closed-source models, we apply COARSE
CORRESPONDENCES on GPT4-V/O during inference and achieve compelling gains. First, on 3D
understanding, we show that our method significantly surpasses state-of-the-art models by 20.5% and
9.7% on ScanQA (Azuma et al., 2022) and OpenEQA (Majumdar et al., 2024) respectively. Second,
for long video understanding, our method leads to a 6% gain in performance on the EgoSchema
benchmark (Mangalam et al., 2023). Notably, our method uses much fewer input images and, in a
zero-shot manner, outperforms many fine-tuned models that use far more images. For example, on
EgoSchema, COARSE CORRESPONDENCES surpasses state-of-the-art results with just 8 uniformly
sampled frames from a 3-minute video, greatly reducing the computational costs of MLLMs compared
to existing methods. In addition to 3D and video QA tasks, we further demonstrate that our method
enhances models’ performance on embodied tasks such as navigation (Krantz et al., 2020), which
require strong spatial and temporal understanding, by 11% in success rate on R2R. These results
suggest that COARSE CORRESPONDENCES boosts MLLMs’ spatial and temporal understanding
both effectively and efficiently. Last but not least, we experiment with open-source MLLMs (Liu
et al., 2024a) by applying COARSE CORRESPONDENCES in both instruction tuning and inference;
again, our method shows performance gains against the baseline (by 6.9% on ScanQA), and the
improvement even generalizes to unseen datasets such as SQA3D (+3.1%). These results suggest
that COARSE CORRESPONDENCES works well universally with any model – both closed-source and
open-source – that can take in multiple images and understand visual markers.

To further understand why our simple method brings significant improvements on spatial and temporal
understanding, we conducted additional investigations with a small diagnostic benchmark on spatial
orientation, as orientation is a key component of spatial understanding and important to navigation
tasks. We manually curated a benchmark called SOT to test how well MLLMs understand left-
right relationships from different viewpoints on images taken by cameras with different motions.
Our experiments reveal that (1) even GPT-4o struggles with understanding images taken by a
camera moving right to left (instead of the more common motion left to right) and (2) that COARSE
CORRESPONDENCES leads to improvements on this benchmark. These results indicate that COARSE
CORRESPONDENCES mitigates the camera motion bias in MLLMs – their tendency to understand
images better when the camera moves in a particular direction – when processing visual signals and
helps them learn a more equivariant internal visual representation.

Overall, we want to highlight with this work that, despite its simplicity and being underestimated for
semantic tasks in deep learning, visual correspondence can still bring significant utility to spatial and
temporal understanding in MLLMs, just as it has long contributed to 3D reconstruction Schonberger
& Frahm (2016). Although MLLMs still exhibit some non-negligible shortcomings in spatial
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and temporal understanding, even with COARSE CORRESPONDENCES —such as the ability to
perform spatial perspective-taking—we hope our work demonstrates the potential of leveraging visual
correspondences to help MLLMs better understand our physical world.

2 METHOD

We introduce COARSE CORRESPONDENCES, a visual prompting method that allows MLLMs to
reason about 3D space and time.

Problem formulation. Given a question Q and a sequence or set of observations in an environment
[I1, . . . , In], our aim is to design a visual prompt P(. . .) that modifies the input image set. These
image inputs don’t have to be a video. They can also represent a set of images of a specific scene
from multiple viewpoints. We evaluate the prompt by measuring its utility in prompting an MLLM
M:

[I ′1, . . . , I
′
n] = P ([I1, . . . , In])

Â = M(([I ′1, . . . , I
′
n]),Q)

We compare the generated answer Â with the ground truth A.

In our framework, the MLLMs can be any general-purpose model without requiring any special
architecture or training for 3D or temporal understanding. Our aim is to develop a prompting strategy
that allows models to improve such capabilities without any training (Figure 1).

COARSE CORRESPONDENCE

Our prompting method, COARSE CORRESPONDENCES, contains four steps: (1) tracking correspon-
dences, (2) sparsify frames, (3) selecting, and (4) visualizing coarse correspondences.

(1) Tracking correspondences. Given n input images, [I1, . . . , In], we first use an off-the-shelf
video object tracking model, such as Tracking Anything (Yang et al., 2023c). This model extracts
class-agnostic instance segmentation masks (M1, . . . ,Mn) for each image. Each Mi is a H ×W
dimensional matrix where H and W are the height and width of the input image Ii. Each pixel
location in Mi contains an instance ID, indicating which instance the pixel at that position belongs to
within the image sequence.

(2) Sparsify frames. Since most MLLMs contain a large number of parameters, directly using them
to process long image sequences is very computationally intensive. Additionally, proprietary MLLMs
like GPT-4O can also incur significant costs if the number of image tokens that need to be processed
increases. Reducing the number of input images might lose vital information necessary for MLLMs.

COARSE CORRESPONDENCES strikes a balance in this tradeoff by extracting meaningful video object
tracks (a relatively cheaper operation) from high-frame-rate image sequences, and then samples a
few image inputs along with the tracks, to retain—and even improve—performance while reducing
the MLLM’s computation cost. From this extracted video object tracks, we perform temporal
downsampling, retaining only m << n uniformly sampled images and their corresponding masks,
denoted as [Is1 , . . . , Ism ] and [Ms1 , . . . ,Msm ], where si ∈ {1, . . . , n}. This downsampling reduces
the number of images we feed into M.

(3) Selecting coarse correspondences. Prompting an MLLM with all the detected correspondences
results in information overload. In fact, our ablations (discussed in Sec 5) find that adding all the
correspondences reduces the MLLM’s performance. Therefore, we select a subset of prominent
instances to retain. We select the prominent instances of the top-K objects that co-occur in the most
number of frames. We first calculate the occurrence frequency and area sum of each unique instance
ID in the retained m masks using the following equation:

Freq(ID) =

sm∑
i=s1

1{ID∈Mi},

Area(ID) =

sm∑
i=s1

∑
p∈Mi

1{ID=p}.
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Model Frame BLEU-1 BLEU-2 METEOR ROUGE-L CIDEr

3D-Specific Models

ScanQA (Azuma et al., 2022) - 26.9 16.6 11.5 30 55.4
ScanRefer+MCAN (Yu et al., 2019) - 30.2 20.4 13.1 33.3 64.9
3D-LLM (Hong et al., 2024) - 39.3 25.2 14.5 35.7 69.4

Open-source Multi-modal Models

LLaVA(Fine-tuned) 64 34.7 22.0 13.8 31.1 67.3
LLaVA+Coarse Correspondences 64 38.6 24.7 15.4 38.3 74.2
Proprietary Multi-modal Models

GPT-4V 8 28.6 13.4 13.5 33.4 59.6
GPT-4V+Coarse Correspondences 8 39.7 25.5 17.4 40.8 79.2
GPT-4O 4 30.5 19.8 14.8 36.1 72.2
GPT-4O+Coarse Correspondences 4 35.4 25.5 18.0 42.6 87.0

Table 1: Comparison on ScanQA validation set. We conduct experiments on the ScanQA validation
set to demonstrate the effectiveness of COARSE CORRESPONDENCES with different MLLMs. Our
method enables both proprietary models and open-source models to surpass all 3D-specific models.

Then, we first sort all instance IDs in descending order based on Freq(ID). If there are ties, we
further sort based on Area(ID). Finally, we retain the top k instance IDs as tracklets, denoted as
[T1, . . . , Tk], to visualize for MLLMs.

(4) Visualizing coarse correspondences. For each set of obtained correspondence relationships,
we visualize the correspondences directly in the image as a marker. Specifically, for each identified
primary instance ID Ti, if it exists in the mask Msj of a retained image Isj , we overlay a mark with
a fixed size and shape labeled with Ti at the position (x̄ij , ȳij) on Isj to produce I ′sj . The specific
placement position can be easily obtained by:

(x̄ij , ȳij) =

∑
(x,y)(x, y) · 1{Msj

(x,y)=Ti}∑
(x,y) 1{Msj

(x,y)=Ti}

Naturally, we can overlay not just the markers but also the segmentation outlines or even the
segmentation masks associated with each retained prominent instance. We explore these ablations
later. In the end, we obtain the prompted image sequence [I ′1, . . . , I

′
m], which is then used as the

input to MLLMs.

We refer to our method as Coarse because of the following: first, we only visually prompt for
instance-level correspondences and not point-level correspondences. Second, the instance-level
correspondences are extracted using off-the-shelf tracking models. Despite not being perfectly
precise, they still help MLLMs build a better 3D model of the environment. Third, we only visualize
a handful of prominent corresponding instances.

3 PROMPTING PROPRIETARY MODELS

We first evaluated the utility of our COARSE CORRESPONDENCES on multiple tasks using proprietary
models, including understanding 3D space (ScanQA (Azuma et al., 2022) and OpenEQA (Majumdar
et al., 2024) in §3.1) as well as temporal events (EgoSchema (Mangalam et al., 2023) in §3.2).
Building on the improvements our method brings to 3D understanding and long video understanding,
we further demonstrate that our method also delivers significant gains in navigation tasks (VLN-
CE ()). Across all these benchmarks, we augment proprietary MLLMs (e.g., GPT-4V and GPT-4O)
with COARSE CORRESPONDENCES and evaluate its zero-shot performance. We show that COARSE
CORRESPONDENCES significantly improves the base GPT models and can substantially surpass
many current state-of-the-art methods that have undergone specialized fine-tuning, even while using
much fewer images as input. All experiments were conducted using A100 80G GPUs.
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3.1 SPATIAL UNDERSTANDING

Benchmarks. The validation set of ScanQA dataset contains 4675 questions about 71 scenes. Ques-
tions in ScanQA require basic recognition, 3D localization, and 3D embodied capabilities (Duan et al.,
2022). The validation set contains two ground-truth answers per question for evaluation with models
that produce free-form answers. OpenEQA Dataset is an open-vocabulary dataset benchmarking
spatial environment understanding and embodied reasoning. We evaluate on OpenEQA’s EM-EQA
data split, which contains over 1600 high-quality human-generated questions. The subset tests the
episodic memory of an agent moving through a 3D environment over time.

Baselines. For ScanQA, we evaluate COARSE CORRESPONDENCES by augmenting both GPT-
4{V,O}, Gemini and Claude models. Besides, we also consider 3D specialized models (Yu et al., 2019;
Azuma et al., 2022; Hong et al., 2024) fine-tuned on ScanQA. For OpenEQA, we compare against
language-only models to account for language bias (LLaMA2 (Touvron et al., 2023)), commonly
used general-purpose multimodal LLMs (GPT-4 (OpenAI et al., 2024), Claude3 (Anthropic, 2024),
Gemini-Pro (Team et al., 2024), GPT-4V with 15 and 50 frames.

Metrics. For ScanQA, following prior works, we adopt BLEU (Papineni et al., 2002) scores,
METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al., 2015)
as our evaluation metrics. For OpenEQA, we follow their evaluation approach by using GPT-4 to
compare the generated answers with the ground-truth answers and assign a score. We report the
average score across all questions.

Results. For ScanQA, as shown in Table 1, compared to raw input, COARSE CORRESPONDENCES
consistently improves the overall performance of different proprietary models. For instance, on the
strongest model, GPT-4o, COARSE CORRESPONDENCES brings improvements of 5.7 BLEU-2, 3.2
METEOR, 6.5 ROUGE-L, and 15 CIDEr points. Compared to methods that are specifically designed
for 3D understanding tasks, fine-tuned with specialized 3D SFT data, or even those that use 3D point
clouds instead of 2D images as input, we observe that a general-purpose MLLM can still outperform
them, especially when enhanced with COARSE CORRESPONDENCES. Moreover, we found that this
can be achieved using far fewer images as input.

We also demonstrated the same conclusion on OpenEQA, as indicated in Table 2. By applying
COARSE CORRESPONDENCES, we significantly improved the performance of both GPT-4v and
GPT-4o, achieving better results with fewer input images. These findings suggest that general-purpose
MLLMs are indeed capable of understanding 3D space, and COARSE CORRESPONDENCES can
significantly enhance their spatial understanding while simultaneously reducing the number of views
needed, which could lower the inference cost and make MLLMs more useful for embodied tasks.

Models Frame Accuracy

LLaMA2 (Touvron et al., 2023) 0 28.3
GPT-4 (OpenAI et al., 2024) 0 33.5
Claude3 (Anthropic, 2024) 20 36.3

Gemini-Pro (Team et al., 2024) 15 44.9
GPT-4V (OpenAI, 2023) 15 54.6
GPT-4V (OpenAI, 2023) 50 55.3

Human Full 86.8

GPT-4V 8 44.8
GPT-4V+CC 8 58.5

GPT-4O 4 49.4
GPT-4O+CC 4 59.1

Table 2: Comparisons on EM-EQA setting
of OpenEQA . Our method further enhances
the embodied ability of MLLMs and exceeds
previous methods by a large margin.

Models Frame Subset

LongViviT (Papalampidi et al., 2023) 256 56.8
MC-ViT-L (Balažević et al., 2024) 128+ 62.6

LLoVi (Zhang et al., 2024) 180 58.3
VideoAgent (Wang et al., 2024) 8.4 60.2
MVU (Ranasinghe et al., 2024) 16 60.3
VideoAgent (Fan et al., 2024) - 62.8

LangRepo (Kahatapitiya et al., 2024) - 66.2

GPT-4V 8 64.2
GPT-4V+CC 8 67.4

GPT-4O 8 67.2
GPT-4O+CC 8 73.2

Table 3: Comparisons on EgoSchema vali-
dation set. COARSE CORRESPONDENCES im-
proves existing MLLMs and surpasses previous
finetuned models in a zero-shot manner.

3.2 TEMPORAL UNDERSTANDING

Benchmarks. We evaluated the improvements of our method for long video understanding using the
EgoSchema dataset. Each video in EgoSchema is 3 minutes long, with a corresponding question that
includes five multiple-choice options. These questions are designed to ensure that answering them
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requires viewing a sufficient number of frames from the video. Due to budget constraints, we limited
our evaluation to 500 questions from the validation set.

Baselines. The baseline methods we compared against include newly designed and trained model
architectures specifically for long video understanding, such as LongViviT (Papalampidi et al., 2023)
and MC-ViT-L (Balažević et al., 2024). On the other hand, we also compared methods that rely
on text-only foundation models (e.g., GPT-4), i.e., Socratic-based approaches (Zhang et al., 2024;
Kahatapitiya et al., 2024), which first use an off-the-shelf image captioning model (Zhao et al., 2023)
to convert video frames into captions, and then prompt GPT-4 to answer questions based on those
captions. Additionally, we compared agent-based methods (Wang et al., 2024; Fan et al., 2024),
which involve using GPT-4 alongside an image captioning model in an agent framework to iteratively
perform a series of multi-step reasoning operations to understand long videos. In contrast to these
approaches, our method is entirely based on an end-to-end general MLLM architecture, exploring
how to further enhance its ability to understand long videos.

Results. COARSE CORRESPONDENCES demonstrates state-of-the-art performance, significantly
outperforming existing approaches in a zero-shot manner (Table 3). Compared to the original GPT-4o
model, our method improves its performance by 6%. Notably, our method uses far fewer frames than
other approaches, yet achieves higher results compared to methods that use many more frames. It is
also worth highlighting that even the original GPT-4o, when limited to just 8 frames, already serves as
a very strong baseline. This indicates the potential of a sufficiently powerful general-purpose MLLM
in long video understanding.

Methods Success
Rate ↑

Oracle
Success Rate ↑

Success weighted
by Path Length ↑

Trajectory
Length ↑

Navigation
Error ↓

GPT-4O 12.00 18.00 10.37 7.31 8.49
GPT-4O+CC 23.00 29.00 21.03 8.12 7.37

Table 4: Comparison on Navigation task. COARSE CORRESPONDENCES improves GPT-4o’s
performance on R2R dataset for different evaluation metrics. Except for NE, where a lower value
indicates better performance, higher values for the other metrics reflect better performance.

3.3 NAVIGATION

Building on the improvements in 3DQA and VideoQA, we hope that our method can also prove
effective in embodied tasks such as navigation. Navigation requires an agent to understand 3D space,
such as being able to determine the spatial relationship between objects in the instruction and itself,
while also performing temporal reasoning to assess the progress toward completing the instruction.
We consider conducting experiments on the VLN-CE benchmark (Krantz et al., 2020), which is a
continuous simulation environment for low-level action execution in indoor scenes.

Setup. We adopt the val-unseen split from R2R (Krantz et al., 2020) for evaluation. Unlike the
previous QA tasks, where all images could be processed at once, in navigation tasks, each image is
processed in an online fashion. Specifically, we feed in one image at each iteration of the conversation.
Given the significant variation in viewpoints during navigation, we use SAMv2 (Ravi et al., 2024),
the state-of-the-art model for long-range tracking, to label each new input image based on episodic
history. Then, using the prompted images, we induce the MLLM to output one of four actions at
each step: FORWARD (distance), TURN-LEFT (rotation angle), TURN-RIGHT (rotation angle),
and STOP. We follow NavGPT (Zhou et al., 2024) to craft input prompts. Considering the high
computational cost of navigation tasks, we selected 100 samples from the val-unseen split. Our
primary goal is to demonstrate that our method can enhance GPT models’ capabilities in zero-shot
navigation tasks, which remains a significant challenge for various types of models.

Metrics. We follow the standard VLN evaluation metrics to evaluate the navigation performance,
including success rate (SR), oracle success rate (OS), success weighted by path length (SPL),
trajectory length (TL), and navigation error from goal (NE). Note that an episode is considered
successful if the agent calls the STOP action within 3m of the goal in the VLN-CE.

Results. As shown in Table 4, our method achieved improvements across all metrics. It can be
observed that while GPT-4o performs impressively on many QA tasks, its zero-shot performance
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on navigation tasks is relatively low. This may partly be due to the lack of specialized training on
action data, making it less accurate in outputs such as determining how many meters to move forward.
However, our method reveals another dimension of the problem: MLLMs’ understanding of the
3D spacetime in which they operate can be further enhanced. This is evidenced by the significant
improvements in navigation when using COARSE CORRESPONDENCES. We believe that our approach
holds great potential for embodied tasks, which can be explored in future research.

4 PROMPTING OPEN MODELS

We further validate the effectiveness of our COARSE CORRESPONDENCES on open-source models.
Our primary goal is to demonstrate that our method is not only effective for powerful proprietary
models but also provides general improvements to a wide range of MLLMs. We start with the LLaVA
model (Liu et al., 2024a) and fine-tune it using a dataset comprising approximately 1.2 million
samples of image and video data. Notably, the ScanQA dataset is the only dataset related to 3D in
this collection. COARSE CORRESPONDENCES is applied only to the ScanQA data, while the other
data maintain their original format.

In-domain Evaluation. We first evaluate our model on the ScanQA validation set. As shown
in Table 1, our method, compared to fine-tuning on the original ScanQA without COARSE COR-
RESPONDENCES, significantly enhances the model’s 3D spatial understanding, even surpassing
previous VLMs specifically designed for 3D tasks, which involve specialized architectural designs
and are fine-tuned on much larger amounts of 3D-related data. This demonstrates that COARSE
CORRESPONDENCES can also work effectively for open MLLMs.

Method Acc

LLaVA(Fine-tuned) 36.0
LLaVA+CC(train-only) 37.17

LLaVA+CC 39.13

Table 5: Comparisons on SQA3D dataset.
COARSE CORRESPONDENCES generalizes
well on out-domain dataset.

Out-domain Evaluation. To further demonstrate the
generalizability of our method, we conduct experiments
to evaluate the zero-shot performance of our model,
fine-tuned on ScanQA, on the SQA3D dataset. As
shown in Table 5, on this previously unseen dataset,
COARSE CORRESPONDENCES still outperforms the
model fine-tuned only on the original ScanQA, prov-
ing that our method can generalize to out-of-domain
datasets. Even more notably, even without using
COARSE CORRESPONDENCES during inference, sim-
ply applying it during the training phase already brings
improvements. This highlights that our method is not only effective as a prompting technique for
inference but also holds potential as a data augmentation method during training, which is worth
further exploration in the future.

5 ANALYSIS

5.1 THE SOT BENCHMARK FOR SPATIAL ORIENTATION TEST

Considering that a crucial aspect of embodied tasks like navigation is the judgment of left-right
orientation, we aimed to gain a deeper understanding of how COARSE CORRESPONDENCES influ-
ences MLLMs’ comprehension of left-right spatial orientation. Specifically, we focused on two key
questions: 1) Are MLLMs robust to camera motion bias? Ideally, MLLMs’ understanding of left-right
orientation in 3D space should be independent of whether the camera is moving from left to right or
right to left, meaning MLLMs should be robust to camera motion bias. 2) Do MLLMs possess spatial
perspective-taking ability, i.e., the ability to imagine how an object or scene would appear from a
perspective different from the current camera viewpoint? Numerous studies in humans (Newcombe,
1989; Tversky & Hard, 2009) have shown that this ability is closely related to the development of
spatial intelligence in children.

However, current benchmarks face three issues: 1) They may have been partially used in MLLM
training data, 2) Current benchmarks lack annotations regarding whether the 3D space scan was
conducted from left to right or right to left, making it difficult to analyze the impact of camera
motion on MLLMs, and 3) Existing benchmarks evaluate a model’s 3D spatial awareness from the
perspective of the camera-wielding observer.
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Therefore, we introduce a new diagnostic benchmark to evaluate MLLMs: Spatial Orientation Test
(SOT). Once again, we show that COARSE CORRESPONDENCES improves GPT-4V,O’s abilities on
this new benchmark.

Question A Type: Observer Perspective Understanding
From the observer‘s perspective, on which side of the 
elevator is the building's main entrance? A. Left B. Right
Question B Type: Spatial Perspective Taking
If Frank has just entered the building through the main 
entrance, on which side is the elevator from Frank's 
perspective? A. Left B. Right. Please answer from Frank's 
perspective, not the observer’s.

😵 Question A: A.Left. From the two images you 
upload, the elevator is on the left side of the 
building’s main entrance.

🧐 Question A: B.Right. From the two images 
you upload, the elevator is on the right side of 
the building’s main entrance.

😵 Question B: A.Left. Based on the images, the 
elevator is on the left side.

🧐 Question B: B.Right. Based on the images 
you upload, from Frank’s perspective, the 
elevator is on the left.

MLLM

Figure 2: Illustration of our SOT dataset. We mention two types of questions: Observer perspective
understanding and spatial-perspective taking. COARSE CORRESPONDENCES demonstrates superior
effectiveness on the dataset.

Data curation. We manually curated ten real-world scenes, both indoor and outdoor, using different
mobile devices at various viewpoints. We instructed 10 human participants to take two videos in their
environment from two viewpoints. When in each viewpoint, they were asked to remain in place as
they laterally pan their mobile devices to scan their 3D environment. From 20 collected scenes, we
filtered to and retained 10 scenes that satisfied the following four criteria: First, we could uniquely
describe one viewpoint from the perspective of the other and vice-versa. For example, in Figure 2,
we define the other viewpoints as ’a person stepping out of an elevator.’ Second, we ensured that no
single frame captured the entire 3D space, ensuring that models can not short-cut answers using any
single view. Third, all scans move the camera from left to right. Fourth, to avoid privacy concerns,
we ensured that no people appeared in the videos. Each scene scan lasts between 3 to 5 seconds.

For each scene, we designed five carefully crafted questions, each asking the model to determine
if one object is to the left or to the right of another from a specific viewpoint. The first three
questions are from the observer’s (camera’s) perspective, while the final two describe the perspective
in language, thereby, testing for a model’s spatial perspective-taking ability. Human performance on
these questions is 100%. We design SOT questions to have a bias towards asking about relationships
between objects that appear in the first last frame of the scan, ensuring that the has to use multiple
frames to answer. In total, across the 10 scenes, SOT has a modest 50 questions.

Results. As shown in Table 6, COARSE CORRESPONDENCES performs very well even on in-the-
wild data. For instance, when using only the first and last frames, our method results in a 13.4 %
improvement. As illustrated in Figure 2, our method enables GPT-4O to understand the 3D spatial
structure represented by the images using minimal overlap, whereas GPT-4O alone performs only
slightly better than random guessing.

More importantly, according to Table 6, we found that current MLLMs achieve significantly higher
accuracy on videos filmed from left to right compared to those filmed from right to left, indicating
that even models like GPT-4O have a strong camera motion bias. Our method greatly mitigates this
issue. By calculating the harmonic mean of results from both left-to-right (L− > R) and right-to-left
(R− > L) camera pans, we found that our method brought a 17.3 % improvement, indicating that
COARSE CORRESPONDENCES helps MLLMs learn a more equivariant visual representation from
image sequences.

Additionally, we isolated the performance on the two perspective-taking questions per scene in
Figure 3. We discovered that current MLLMs still lack the ability for spatial perspective-taking.
While COARSE CORRESPONDENCES improves GPT-4O’s perspective-taking capability, the results
are bittersweet, as they still perform worse than random guessing. This suggests that embodied spatial
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Models Frame Origin Reverse Harmonic Mean

GPT-4O 2 58.2 50.0 53.8

GPT-4O+CC 2 71.6 70.6 71.1

GPT-4O 4 58.0 50.4 53.9

GPT-4O+CC 4 71.2 71.2 71.2

Table 6: Comparisons on SOT. COARSE CORRE-
SPONDENCES shows strong capability of enhancing
3D spatial understanding of MLLMs. It can also ease
the striking finding of camera motion bias of current
MLLMs.

20

30

40

50

60

2	frames 4	frames

w/o	CC w/	CC
Random	Guess

+5.3%
+4.2%

Figure 3: Comparisons on SOT’s
spatial perspective-taking questions.
COARSE CORRESPONDENCES im-
proves performance but GPT-4O still
performs below random chance.

awareness has yet to emerge in MLLMs—at least for now—highlighting a potential direction for
future research.

Ablation on number of marks

Design Choice B− 1 B− 2 METEOR ROUGE-L CIDER

5 39.7 25.5 17.4 40.8 79.2
8 35.4 18.9 14.6 37.8 74.0

Ablation on mark size

40px 35.3 17.5 15.5 39.2 76.1
60px 39.7 25.5 17.4 40.8 79.2
80px 33.1 14.3 14.5 37.6 71.3

Ablation on mark type

markers only 35.9 19.6 15.9 39.5 76.4
+ outline 39.7 25.5 17.4 40.8 79.2
+ mask 33.1 14.3 14.5 37.6 71.3

Table 7: Ablations on different design choices of COARSE CORRESPONDENCES. We studied the
impact of the number, size, and type of marks on performance. All experiments were conducted on
ScanQA using GPT-4V.

5.2 ABLATION STUDY

Here, we explore the various design decisions in our method.

How does COARSE CORRESPONDENCES differ from other visual prompting methods? Our
proposed method calculates and highlights correspondences between images, aiming to elicit 3D
and temporal understanding. Other visual prompting methods (namely Set-of-Mark (Yang et al.,
2023a), 3DAxiesPrompts (Liu et al., 2023), and Chain-of-thought (Wei et al., 2023)) can also be
viewed as alternative prompting methods. Given that the ground-truth answers in existing benchmarks
are relatively brief, we selected a scene from ScanQA and manually designed a new question. We
qualitatively compare COARSE CORRESPONDENCES against other prompting methods on this new
question, as shown in Figure 4.

The orange part of Figure 4 shows our Coarse Correspondence labels are recognized by GPT-4V. The
output answer provides evidence that our coarse correspondence helps GPT-4V develop a mental
3D model of the scene. Set-of-Marks provides no spatial corresponding information and therefore is
unhelpful. The Axis labels in 3DAxies can be easily misrecognized by GPT-4V, leading to misleading
spatial information. Though Chain-of-Thought helps identify objects, it fails to resolve the “spatial
perspective-taking” issue.
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User: You are sitting on the sofa and the electric fan is on your left. Describe the location of the room door from your

perspective: A. to the front left of you; B. to the front right of you; C. to the back left of you; D. to the back right of you.

GPT-4V: The first image ... a door marked

with number 7, a fan marked with number 39,
and items on shelves marked with numbers 11
and 37. In the second image, ... the fan
again at number 39, and a sofa marked with
number 3(✔).
We can infer that the door and the fan are
on the same side of the room(✔). Since the
fan appears to the left in the first image
and is also on the left when sitting on the
sofa as per the second image and your
description, the door must be to the front
of the sofa, as it is not visible in the
second image from sofa's perspective(✔).
By 'sitting on the sofa' as instructed, and
with the electric fan to the left, I can
determine the door is A. to the front left
of you (✔).

View 1 View 2

+Coarse Correspondence (Ours)

GPT-4V: The fan is seen on the right side

from the sofa’s perspective, its leftward
when sitting means the orientation is
flipped(✔). Therefore, the door that is
visible on the right in the first image would
be D. behind and to the right when seated on
the sofa(❌).

+Set-of-Mark

View 1 View 2

GPT-4V: The first image shows ... and a

coordinate system with X-axis (horizontally
rightwards)(❌) and Z-axis (vertically upwards).
The second image shows a sofa on the left with a
coordinate system's Y-axis (horizontally
extending away from the viewer) (❌) and Z-axis
as before. When sitting on the sofa with the fan
to your left, the door would be B. diagonally
opposite to you on the right side (❌).

+3DAxiesPrompts

View 1 View 2

GPT-4V:
Identification: Door, shelves, sofa, ... (✔)
Analysis: in image 1 the door is on the right
with the shelves adjacent to the door ... In
image 2 the sofa is ... (✔).
Synthesis: When sitting on the sofa, the
shelves are on the right(❌). The door is next
to the shelves.
Response: B.(❌).

+Chain-of-Thought
System: Your response should be as follows.
1)Identification: Identify all labeled objects.
2)Analysis: Analyze the objects and their
positions construct a 3D model.
3)Synthesis: Combine the info above, form a
comprehensive understanding.
4)Response: Provide a concise answer to the
question based on your comprehensive 3D modelling.

System: You are an AI with the ability to analyze a series of images, each representing a different perspective of a single

scene. [Prompt-about-Marks]. Your task is to construct a 3D understanding based on these images.

Figure 4: Comparison of different prompting method. Our proposed Coarse Correspondences
successfully guided GPT-4V to understand 3D spatial relationships and generate the right answer.
Other existing prompting method including image-based Set-of-Marks, 3DAxies and text-based
Chain-of-Thought failed to answer correctly.

Why use coarse instead of dense correspondences? Instead of filtering and retaining only a
handful of coarse correspondences, one ablation we considered is the possibility of using all dense
correspondence. Unfortunately, we find that excessively overlaying too many instance marks can
degrade performance (Table 7) as they occlude the visual content in the images.

How large should the marks be? We inject the correspondences into MLLMs by overlaying the
marks into images. We empirically find an optimal mark size (where ‘px’ represents the mark’s
diameter in pixels) in Table 7. Marks that are too small tend to be ignored while those that are too
large occlude visual content.

What shape should the marks be? We further studied the appearance of the marks. In addition to
red circles with white text, we experimented with adding segmentation outlines and segmentation
masks. As shown in Table 7, using segmentation outlines enhances object grounding. However, using
segmentation marks occludes visual content and reduces performance.

6 CONCLUSION.

We propose a framework called COARSE CORRESPONDENCES prompting. By using off-the-shelf
video tracking models to obtain class-agnostic, instance-level correspondences, and conveying this
information to MLLMs through visual prompting, we discovered that this simple method, using
only 2D images as input—without any specialized architectural design or task-specific SFT—can
effectively enhance MLLMs’ understanding of 3D space and long videos. This improvement extends
to embodied tasks like navigation. Our method not only works on proprietary models but also
generalizes to open-source models, and it performs well on both in-domain and out-of-domain
datasets. Moreover, it enhances not just inference but also training. Further analysis shows that our
method helps MLLMs become more robust to camera motion bias. Additionally, we identified that
even GPT models struggle with perspective-taking capability, a fundamental component of human
visual intelligence, which presents an important avenue for future exploration to further improve
MLLMs.
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APPENDIX

A BROADER IMPACT

Our method aims at improving the trustworthiness and reliability of deployment of MLLMs in real
world application, including but not limited to Vision Pro, autonomous driving, and also humanoid
robots. To have a virtual assistant like JARVIS in Marvel films, it’s necassry to align the understanding
of vision-language model with human’s understanding, so that we can ensure safe application of these
applications. Further, we are committed to reducing the carbon emissions produced by these models.
By employing our coarse correspondence prompting method, we use a much smaller tracking module
to reduce the number of input used as input to large GPT model. Besides, we also improve the
speed and lower the cost of calling OpenAI API to understand a 3d scene. This enables democratize
MLLMs so that more people and small companies can create their own real-world applications based
on GPT-4V. We hope our work can make large AI models more effectively used for social good.

Still, we would like to point out that with the development of MLLMs, increased reliance on advanced
MLLMs could also lead to a reduction in human skills, especially in interpreting and interacting
with visual content. Over-dependence on these models might erode critical thinking and analytical
abilities in the long term.

B RELATED WORK

Multimodal language models Multimodal LLMs(Liu et al., 2024b; Bai et al., 2023) integrate vision
encoders (Radford et al., 2021) into large LLMs (Chiang et al., 2023; Touvron et al., 2023), allowing
them to directly reason over visual input. Many proprietary models, such as GPT-4 (OpenAI, 2023),
Gemini (Team et al., 2024), and Claude (Anthropic, 2024), as well as open-source models like the
LLaVA series (Liu et al., 2024b) and BLIP series (Li et al., 2023), have made significant progress in
2D vision-language tasks like image captioning (Chen et al., 2015) and visual question answering
(VQA) (Hudson & Manning, 2019; Goyal et al., 2017). Beyond these language-related tasks, many
newer attempts applying MLLMs to applications such as autonomous driving (Tian et al., 2024) and
robotics (Yang et al., 2023b). Many of these tasks require understanding the 3D space in which they
are deployed and reason about how things are changing temporally. We improve the 3D space-time
capabilities of such models.

Visual prompting. Effective prompting has been widely proven to improve LLMs across multi-
ple domains. Methods, such as chain-of-thought prompting (Wei et al., 2023), force the model to
reason before answering a question. For multimodal LLMs, methods such as Red-circle prompt-
ing (Shtedritski et al., 2023) and Set-of-marks (Yang et al., 2023a) can enhance the grounding
abilities of CLIP (Radford et al., 2021) and GPT-4V. PIVOT (Nasiriany et al., 2024) employs visual
prompting combined with iterative VQA to induce GPT-4V to generate outputs for robotics control.
3DAxies (Liu et al., 2023) enhances GPT-4V’s ability to use numerical expressions to describe
3D relationships of objects in a single image by annotating a scaled 3D coordinate system on the
image. Unlike these works, COARSE CORRESPONDENCES prompts MLLMs to understand the
spatial relationships within a complete 3D scene from an image sequence.

Video understanding. Videos carry rich information about both the 3D structure as well as temporal
changes in the physical world. To perform better long-horizon reasoning, work has begun incorporat-
ing video inputs into MLLMs. Recent work (Lin et al., 2023) has improved performance on video
dense captioning (Krishna et al., 2017) and videoQA (Xiao et al., 2021; Grunde-McLaughlin et al.,
2021). To further advance the understanding of temporal relationships in videos, EgoSchema (Man-
galam et al., 2023) introduced a benchmark for long video understanding, which is more challenging
than previous video-language benchmarks. Meanwhile, understanding 3D spatial relationships in
videos received relatively less attention. 3D-LLM (Hong et al., 2024) converts multiview images into
3D point clouds and then feeds them into LLMs, demonstrating better results on the ScanQA (Azuma
et al., 2022) benchmark for 3D understanding. OpenEQA (Majumdar et al., 2024) is also a benchmark
dedicated to evaluating MLLM’s understanding of 3D physical space, with outputs that are more
open-vocabulary compared to ScanQA. In this paper, we propose a framework that does not require
any training in modifying MLLMs; it extracts meaningful information from videos using off-the-shelf
tracking models and achieves state-of-the-art performance on the benchmarks mentioned.
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Visual correspondences. Visual correspondences have been a vital area of research in computer
vision for a few decades. Applications such as Structure-from-Motion(Schonberger & Frahm, 2016)
utilize correspondences to better reconstruct 3D scenes. In the past, we relied on handcrafted features
like SIFT (Lowe, 2004) or SURF (Bay et al., 2006) to obtain good correspondence. Today, features
extracted from deep models (Tang et al., 2023) can also provide increasingly accurate correspondences.
Generally, people aim to achieve precise geometric and semantic correspondences at the pixel level.
However, in this paper, we use coarse visual correspondence to prompt MLLMs, which can be easily
obtained from off-the-shelf video tracking models (Yang et al., 2023c).

C COARSE CORRESPONDENCE IMPLEMENTATION DETAILS

As discussed in Method section, visualizing our proposed Coarse Correspondence on images will
involve a centering algorithm. The inputs are selected instance segmentation masks that originally
obtained from tracking model. A center of the instance mask needs to be determined in order to place
the coarse correspondence marker. It is worth noting that the instance mask does not necessarily form
a connected component, which makes the centering procedure worth explaining.

Figure 5: The pseudo code of our proposed algorithm to find the center of a given object mask. The
Coarse Correspondence will be further added to the object center

As shown in the pseudo code in Figure 5, firstly we calculate the medium x-index of the masked
pixels and loop through this column, trying to find the first center point. Similarly, we calculate the
medium y-index of the masked pixels and loop through this row, trying to find another center point.
Normally we return the average location of these two centers. If either of these centers failed to be
positioned in the masked area (which may happens when the mask is not a connected components),
we adopt the other one. If both of them failed to deliver, we adopt a naive center by simply averaging
the four boundary.

D QUALITATIVE CASE STUDY

To further demonstrate the effectiveness of our proposed Coarse Correspondence under sparse image
input, we defined two challenging tasks and one qualitative case study for each task.

The results of these case studies are shown in Fig. 6. Detailed illustration of the results are provided
in the figure captions. The first case study is about the task of Duplicate Objects Counting, where the
model needs to count the number of objects in a 3D scene. Only equipped with coarse correspondence
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(a) Task: Duplicate Objects Counting. There are
2 brown sofas and 2 black sofas. The brown sofas in
View 2&4 are duplication of those in View 3. Only with
the help of the Coarse Correspondence can GPT-4V
understand duplicate objects between different views
across a single 3D scene.

(b) Task: Relative Location Modeling. From View 1
& 2 we can tell that the room door is on the left-hand-
side when facing the washbasin. Only with the help
of the Coarse Correspondence can GPT-4V understand
relative location between objects appear in different
views across a single 3D scene.

Figure 6: Two complicated tasks, i.e. Duplicate Objects Counting and Relative Location Modeling
are chosen to demonstrate our method. Zoom in for better view.

Figure 7: Hand-crafted coarse correspondence label

can GPT-4V get a comprehensive understanding of the 3D scene, excludes the duplicate objects,
and give the right answer.The second case study is about the task of Relative Location Modeling,
where the model needs to understand the relative location of objects in a 3D scene. It is obvious
that without the correspondence markers, GPT-4V fails to response from 3D perspective with only
raw 2D images.These case studies demonstrate that our proposed Coarse Correspondence can elicit
MLLMs in understanding 3D scenes from sparse image inputs.

We also prove that our Coarse Correspondence method works well with hand-crafted correspondence
marks as shown in Figure 7. This further proves that our proposed method are style-agnostic as long
as the marks is able to deliver the spatial correspondence knowledge.
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E MORE DISCUSSIONS

Limitations. Our method relies on off-the-shelf video tracking models to obtain instance-level
correspondences. Although the performance of tracking models has significantly improved with the
advent of tools like SAM (Kirillov et al., 2023), achieving good results on long-form in-the-wild
videos remains challenging. This is particularly evident on the 180-second EgoSchema benchmark,
where Track-Anything often loses track of objects after 100 seconds, leading to inconsistent instance
segmentation masks between the beginning and end of the video clip. Despite observing consistent
and significant improvements on EgoSchema, we believe that accurate correspondence would further
enhance the benefits of our approach.

Relation to SlowFast SlowFast (Feichtenhofer et al., 2019) is a framework for video recognition that
includes two parallel pathways: a Slow pathway that captures motion information at a high frame
rate and a Fast pathway that captures semantic information at a low frame rate. The information
from both pathways is fused through lateral connections for downstream video recognition tasks. In
a way, our coarse correspondence prompting can be seen as another form of SlowFast. However,
unlike SlowFast, where the Slow and Fast pathways operate in parallel, our framework operates
sequentially. First, it captures low-level, class-agnostic motion information at a high frame rate
using a lightweight tracking model. Then, at a low frame rate, it performs recognition and reasoning
requiring semantic understanding using larger MLLMs. The two stages are bridged through visual
prompting. Moreover, while SlowFast learns a representation of the input video for pure vision
recognition tasks such as action classification and detection, our coarse correspondence framework
aims to better understand the 3D spatial structure and temporal information contained in the input
video to achieve spatiotemporal perception and reasoning simultaneously.

Eulerian vs Lagrangian If deep learning-based methods represent camera or object motion in videos
from an Eulerian viewpoint—i.e., expressing how features at fixed locations evolve over time through
a multi-dimensional tensor—then our framework adds a Lagrangian viewpoint to this representation.
The Lagrangian viewpoint describes the trajectories of entities moving through space and time in
the video. Previously, the Lagrangian viewpoint in video descriptions has been shown to better aid
human action recognition (Rajasegaran et al., 2023). Here, we demonstrate that it can more generally
help MLLMs understand the 4D spatiotemporal context represented in videos.
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