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Abstract

Autoformalization, the task of automatically translating natural language descrip-
tions into a formal language, poses a significant challenge across various domains,
especially in mathematics. Recent advancements in large language models (LLMs)
have unveiled their promising capabilities to formalize even competition-level math
problems. However, we observe a considerable discrepancy between pass@1 and
pass@k accuracies in LLM-generated formalizations. To address this gap, we
introduce a novel framework that scores and selects the best result from k auto-
formalization candidates based on two complementary self-consistency methods:
symbolic equivalence and semantic consistency. Elaborately, symbolic equivalence
identifies the logical homogeneity among autoformalization candidates using au-
tomated theorem provers, and semantic consistency evaluates the preservation of
the original meaning by informalizing the candidates and computing the similarity
between the embeddings of the original and informalized texts. Our extensive
experiments on the MATH and miniF2F datasets demonstrate that our approach
significantly enhances autoformalization accuracy, achieving up to 0.22-1.35x rela-
tive improvements across various LLMs and baseline methods. The data and code
are available at https://github.com/Miracle-Messi/Isa-AutoFormal

1 Introduction

Autoformalization is the automated process of translating from natural language expressions into a
formal language [1–4]. Successful autoformalization can alleviate the demand for extensive human
expertise and reduce the substantial manual formalization efforts [5–8], as well as fundamentally
bridging the gap between natural (or so-called “informal”) and formal languages [9], which potentially
catalyzes breakthroughs in many fields such as mathematical theorem proving, software/hardware
verification, and autonomous planning [10–14]. Despite decades of research, the practical application
of autoformalization remains limited because traditional methods often necessitate either predefined
domain-specific languages or hard-coded translation rules [15–18].

Recently, large language models (LLMs) have shown promising performance in autoformalization,
especially in formalizing mathematical statements [19–21]. For instance, using Codex [22] with few
shot examples can achieve a 25.3% success rate in formalizing high-school level problems from
the MATH [23] dataset. Nevertheless, the autoformalization capability of LLMs has not been fully
exploited. As shown in Figure 1, even advanced LLMs like GPT-4 [24] struggle with translating a
seemingly straightforward statement (i.e., calculating 0.6̇× 6), due to its unreliability of grounding a
recurring decimal to its exact fractional equivalent (0.6̇ → 2/3).
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Prompt:
Natural language version: "Find the product of 0.\\overline{6} and 6. The answer is 4."
Translate the natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes x y :: real
assumes "x = 0.66"
and "y = 6"
shows "x * y = 4"

GPT-4 output (No.2):
theorem
fixes a b :: real
assumes "a = 2/3"
and "b = 6"
shows "a * b = 4"

GPT-4 output (No.3):
theorem
fixes x y :: real
assumes "x = 2/3"
and "y = 6"
shows "x * y = 4"

GPT-4 output (No.4):
theorem
fixes x y :: real
assumes "x = 0.6666"
and "y = 6"
shows "x * y = 4"

Figure 1: An illustrative example of autoformlization. The mathematical statement from the MATH
dataset is translated into a formal version by GPT-4. Only two formalization results (No.2 and No.3)
are correct, while the others fail in the grounding (0.\\overline6 → 2/3).

Although the initial attempt at formalizing the previous example fails, we observe that multiple
generations of GPT-4 can often successfully cover the correct formalization. In other words, a
significant disparity exists between pass@1 (the top-1 generation is correct) and pass@k (one of the
top-k generations is correct) in autoformalization by LLMs. We further confirm this phenomenon
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Figure 2: Pass@k curves for GPT-4 autofor-
malization on the MATH (left) and miniF2F
(right) datasets. The results show that LLMs
can achieve higher coverage of correct formal
statements with an increasing number of gen-
erated candidates up to k = 10. Beyond this
point, the improvement gradually diminishes
as k continues to increase.

by checking the autoformalization accuracy on the
MATH and miniF2F [25] datasets. The curves de-
picted in Figure 2 demonstrate that pass@k accuracy
can be consistently improved with additional gen-
erations, resulting in an accuracy gap ranging from
19.5% to 26.5% between pass@1 and pass@10.

To bridge the performance gap between pass@1 and
pass@k, a natural approach is employing the idea
of self-consistency [26, 27] to rank the k autofor-
malization candidates and then selecting the most
consistent one. However, compared to the standard
self-consistency techniques used in mathematical rea-
soning and code generation with LLMs, applying this
method faces unique challenges. In mathematical
reasoning, self-consistency is always derived by com-
paring the final answers from different generations,
yet this approach struggles with inconsistencies in symbolic variable declarations ((a, b) vs (x, y)).
In code generation, while self-consistency relies on comparing execution behaviors across different
generations, this approach is less viable for formalized mathematical statements, which lack the
necessary test cases for such evaluations.

To address these challenges, we propose a novel framework that establishes the self-consistency of
autoformalization from two innovative and complementary dimensions: symbolic equivalence and
semantic consistency. Symbolic equivalence generalizes traditional comparisons like final answers
and execution behaviors to verify the logical equivalence among autoformalization candidates. This is
achieved by using automated theorem provers such as Sledgehammer [28], Z3 [29], and CVC5 [30].
On the other hand, semantic consistency rectifies unintended reasoning discrepancies that symbolic
equivalence might overlook by measuring the embedding similarity between the re-informalized
(back-translated [31]) result and the original natural language statement. This comparison helps
to ensure that the autoformalization process preserves the intended meaning and coherence of the
original statement. To harness the strengths of both consistency methods, we also develop three
strategies to combine the scores from these approaches.

We conduct extensive evaluations on two widely used mathematical datasets, MATH and miniF2F, to
validate the efficacy of our proposed methods. The experimental results demonstrate that symbolic
equivalence and semantic consistency are synergistic, and our combination strategy can achieve
final improvements up to 7.8% and 10.7% using GPT-4 compared with the baseline approaches.
The relative efficiency of our method, ranging from 8.4% to 21.9%, indicates that our approach
can significantly reduce the manual effort required for verifying or labeling formalization results,
efficiently minimizing human intervention in correcting and validating outputs. Additionally, we
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extend our experiments to five proprietary or open-source LLMs, showing the consistent effectiveness
of the proposed methods.

In summary, this paper makes the following main contributions: (1) identifying the performance
gap between pass@1 and pass@k for LLMs in autoformalization tasks; (2) introducing two self-
consistency methods, symbolic equivalence and semantic consistency, and three combination strate-
gies to enhance LLM autoformalization performance; (3) providing extensive experiments across
various model sizes on two popular datasets, confirming the efficacy of the proposed approach.

2 Background and Related Work

Formal mathematics. Formal mathematics aims to establish a rigorous framework to express math-
ematical theorems and proofs in a format that can be verified by a computer through the application
of logical rules. Interactive theorem provers, such as Isabelle/HOL [32], Coq [33], and Lean [34],
provide environments for encoding and verifying mathematical proofs programmatically. For decades,
researchers have used these tools to manually formalize a range of challenging mathematical concepts
and theorems [7, 8, 35–37]. However, translating mathematics into a language that theorem provers
can interpret often requires a deep understanding of both the mathematics involved and the syntax of
the target formal language. Therefore, the formalization process is always labor-intensive even for
large groups of experts, creating a significant bottleneck in this field.

Autoformalization with LLMs. To mitigate the laborious process of manual formalization, recent
advances have explored the potential of LLMs in autoformalization [38]. A stream of research
focuses on autoformalizing mathematical statements [19–21, 39–42]. For instance, FIMO [41]
employs GPT-4 with reflection to formalize problems from the International Mathematical Olympiad.
ProofGPT [20] and MMA [21] train LLMs on large-scale datasets with both informal and formal
mathematical data to evaluate their performance on statement autoformalization. Concurrently,
another research direction investigates the autoformalization of mathematical proofs [10, 11, 43–48].
For example, DSP [10] utilizes LLMs to draft informal proofs and map them into formal sketches,
with automated theorem provers employed to fill in the missing details in the proof sketch. Besides
these efforts, several studies [19–21] explore the performance of LLMs for the inverse process of
formalization, i.e., informalization, which translates formal statements back into natural language.

Self-consistency for LLMs. Self-consistency was originally proposed to boost the mathematical
reasoning capability of LLMs [26, 49–52]. This approach aims to identify the homogeneity among
multiple generations, thereby bridging the performance disparity between pass@1 and pass@k. In
contrast to other techniques, such as training an additional verifier/re-ranker [53, 54], or directly
fine-tuning the model [55], self-consistency is entirely data-free, making it readily implementable
with off-the-shelf LLMs without incurring the so-called “alignment tax” associated with additional
computational costs [55]. Recently, self-consistency has been further adapted to code generation,
which closely resembles autoformalization since they both involve formalizing natural language
statements. However, in code generation, self-consistency for LLMs typically relies on the execution
information from test cases [27, 56–58], e.g., whether the two programs produce the same output for
identical test inputs. Therefore, this strategy is not applicable to autoformalization due to the absence
of test cases for mathematical statements.

3 Methodology

Our framework, as illustrated in Figure 3, comprises four steps to enhance the autoformalization
process of LLMs. Initially, LLMs generate k autoformalization candidates for a given mathematical
statement in natural language. Subsequently, our framework establishes the symbolic equivalence
among these candidates and assigns a symbolic score to each based on the derived equivalence classes.
Each formal statement is then re-informalized using LLMs, and the semantic score is computed
by comparing the embeddings of the re-informalized text and the original statement. Finally, our
framework normalizes and combines these scores to rank the autoformalization candidates and
determine the final formalization results.
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"Imagine x is 0.66 and y is 
6. We're gonna show that 
x times y comes out to 4."

6

"Let a be two-thirds and b 
be six. Prove that when 
you multiply a by b, it 
equals four."

theorem
fixes a b ::real
assumes “a = 2/3"
and “b = 6"
shows “a * b = 4" 5

"Find the product of 
0.\overline{6} and 6. 
The answer is 4." N

"Let x be two-thirds and y be 
six. Prove that when you
multiply x by y, it equals 
four." 1

theorem
fixes a b ::real
assumes “a = 2/3"
and “b = 6"
shows “a * b = 4"

theorem
fixes x y ::real
assumes "x = 2/3"
and "y = 6"
shows "x * y = 4" 1
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5

1

2 3

6
4

5

1

2 3

4N

6

Formalization Informalization

: Autoformalize
: Informalize
: Symbolic equivalence
: Semantic equivalence
: Scoring and output

theorem
fixes x y ::real
assumes "x = 2/3"
and "y = 6"
shows "x * y = 4" 1

theorem
fixes a b ::real
assumes “a = 2/3"
and “b = 6"
shows “a * b = 4" 3

Mathematical statement 
in natural language

Mathematical statement 
in formal language

Figure 3: The overview of our autoformalization framework. In the framework, symbolic equivalence
is constructed among formalized statements, and semantic consistency is computed between the
informalized statements and the original statement. The scores from these two evaluations are
combined to rank and select the final formalization results.

3.1 Symbolic Equivalence

We first instantiate self-consistency as symbolic equivalence among autoformalization candidates.
The rationale behind the symbolic equivalence is straightforward: correct formalizations are logically
equivalent, even when expressed with varied symbols. To establish symbolic equivalence, we
decompose formal statements into their premises and conclusions. Symbolic equivalence between
two statements is then defined by the logical equivalence of both their premises and conclusions.

The formal definition of symbolic equivalence is presented in the following. Within this definition,
we further assume that the premises are not intrinsically contradictory, ensuring that the two involved
mathematical statements are well-defined.

Definition 1 (Symbolic equivalence) Let two mathematical statements Ψ1 and Ψ2 in formal lan-
guage be expressed as P1 → Q1 and P2 → Q2, and suppose their premises P1 and P2 are
not tautologies. Then, the two statements are called symbolically equivalent if the two logical
equivalences, i.e., P1 ≡ P2 and Q1 ≡ Q2, both hold.

The two logical equivalences induced by the symbolic equivalence can be determined through existing
automated theorem provers (ATPs). Additionally, the validity of the premises can also be checked by
replacing the conclusion Q with a contradictory result (e.g., 0 = 1) and verifying P → Q. If this
vacuous form can be proved, then the corresponding premise P is a contradiction.

It is also worth noting that variable misalignment between two statements remains a challenge for
validating symbolic equivalence using ATPs. For instance, the examples in Figure 1 (No.2 and No.3)
can not be proved symbolically equivalent due to the inconsistent variable declarations. Therefore,
we should perform variable matching beforehand, ensuring that the symbolic equivalence can be well
recognized even in these cases.

Nevertheless, exhaustively checking all possible variable mappings is always impractical due to the
combinatorial explosion. For two statements expressed as P1(x1, . . . , xn) → Q1(x1, . . . , xn) and
P2(y1, . . . , yn) → Q2(y1, . . . , yn), each has n variables, there are n! possible bijective mappings to
be checked, which is excessively time-consuming when n is large. To address this issue, we propose
to standardize the formal statement P(x1, . . . , xn) → Q(x1, . . . , xn) by the following two cases:

(1) If the conclusion is in the form of a numerical relation, i.e., Q(x1, . . . , xn) := f(x1, . . . , xn) ▷◁ 0,
where f represents any function and ▷◁∈ {≤,≥, <,>,=, ̸=}, we introduce a new variable α and
derive the standard format P̃(α;x1, . . . , xn) → Q̃(α) with

P̃(α;x1, . . . , xn) := P(x1, . . . , xn) ∧ (α = f(x1, . . . , xn)), Q̃(α) := α ▷◁ 0.

The two statements are reduced to P̃1(α;x1, . . . , xn) → Q̃1(α) and P̃2(α; y1, . . . , yn) → Q̃2(α),
and thus the logical equivalences P̃1(α) ≡ P̃2(α) and Q̃1(α) ≡ Q̃2(α) can be checked through
leaving x1, . . . , xn and y1, . . . , yn as auxiliary variables.

(2) For non-numerical cases (e.g., Q(x) := is_even(x)), we have to conduct a variable alignment.
Instead of enumerating all variable mappings, we view the variables in each statement as a set of
graph vertices, and thus the variable alignment is transformed into a bipartite matching task (where
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(x1, . . . , xn) and (y1, . . . , yn) form two disjoint and independent vertex sets) [59, 60]. Furthermore,
we simply set the edge weight of the graph by the string edit distance [61, 62], and only partially
enumerate variable mappings corresponding top-k maximum bipartite matching.

To further clarify, we provide an example for each case in Appendix C. For evaluating symbolic equiv-
alence, we assign the symbolic score to each formalization using the proportion of its corresponding
equivalence class, which is also commonly used in mathematical reasoning and code generation.

3.2 Semantic Consistency

Next, the self-consistency is instantiated as the semantic consistency between the formalization
and its corresponding informal version. The rationale of the semantic consistency is also clear: An
autoformalization result is accurate if it can be re-informalized to a version consistent with the
original statement in natural language. By introducing the embedding similarity [63, 64] to measure
the consistency between the original text and the twice-processed (autoformalized then informalized)
version, we can define the τ -semantic consistency as follows.

Definition 2 (Semantic consistency) Let the original mathematical statement in natural language
and its formalization candidate be Φ and Ψ, and suppose that Ψ is further informalized into a new
natural language statement Ψ̃. Then, the formal statement Ψ is τ -semantically consistent with the
original statement Φ if the embedding similarity between Ψ̃ and Φ satisfies Sim(Ψ̃,Φ) ≥ τ .

Semantic consistency primarily measures the error incurred in both the formalization and informal-
ization processes. However, in most cases, it can be approximately reduced to measuring the error
in autoformalization. This is because informalization is much easier and accurate than formaliza-
tion [21]. For instance, considering the formalization of the statement “Determine the range of e2”,
LLMs should inference the type of the exponential e, determining whether to use powr or ^ as the
grounding of ‘power’. On the contrary, these two expressions are both translated back into the term
‘power’ during informalization.

Compared to symbolic equivalence, semantic consistency can avoid the unintended reasoning problem.
Elaborately, continuing the example in Figure 1, the correct formalization “(x = 2/3 ∧ y = 6) →
x ∗ y = 4” is identified as symbolically equivalent to the formalization “4 = 4”, while the latter is
trivial and unexpected. However, the difference between these formalizations can be successfully
recognized by semantic consistency since the latter ruins the semantics in the informal statement.

Following existing machine translation techniques [65–67], we employ the BERT model [68] to
generate embeddings for the informal statements. These embeddings are then compared using cosine
similarity to evaluate semantic consistency.

3.3 Combination of Two Scores

Given k autoformalization candidates, and denote their scores of symbolic equivalence and semantic
consistency by ssym1 , . . . , ssymk and ssem1 , . . . , ssemk , respectively. We first normalize them using the
softmax function, i.e., ŝsymi = ssymi /

∑k
j=1 s

sym
j and ŝsemi = ssemi /

∑k
j=1 s

sem
j for i = 1, . . . , k.

Then, we propose three strategies, i.e., log, linear, and quadratic, for the combination of two scores.
In particular, the final score ŝi of the i-th autoformalization candidate is computed by

Log combination: ŝi = α log ŝsymi + (1− α) log ŝsemi ,

Linear combination: ŝi = αŝsymi + (1− α)ŝsemi ,

Quadratic combination: ŝi = α(ŝsymi )2 + (1− α)(ŝsemi )2,

where α ∈ [0, 1] is the hyperparameter controlling the trade-off between the symbolic equivalence
and the semantic consistency, which practically can be tuned based on the validation set.

The overall procedure of our autoformalization framework is presented in Algorithm 1. The primary
efficiency bottleneck of the algorithm lies in verifying symbolic equivalence. In the worst case, where
no pair of autoformalization candidates are symbolically equivalent, and symbolic equivalence must
be exhaustively validated k(k − 1)/2 times. However, many verifications of symbolic equivalence
can be bypassed by leveraging the transitivity property of symbolic equivalence. Moreover, when
requested to provide n formalization results, we iteratively conduct the algorithm to rank the formal
statements, with the selected result and formal statements in its equivalence class removed.
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Algorithm 1 Autoformalization based on symbolic equivalence and semantic consistency

Input: A mathematical statement in natural language Φ,
transform function ρ (log, linear, or quadratic), hyperparameter α;

Output: the autoformalization result with the highest score.
1: Generate k autoformalization candidates Ψ1, . . . ,Ψk by prompting LLMs;
2: Compute scores of the symbolic equivalence
3: for i = 1, . . . , k do
4: for j = i+ 1, . . . , k do
5: Standardize Ψi and Ψj into Ψ̃i := P̃i → Q̃i and Ψ̃j := P̃j → Q̃j ;
6: Check the logical equivalence P̃i ≡ P̃j and Q̃i ≡ Q̃j using ATPs;
7: end for
8: Compute ssymi as the size of the derived equivalence class;
9: end for

10: Compute scores of the semantic consistency
11: for i = 1, . . . , k do
12: Obtain the twice-processed version Φ̃i by using LLMs to informalize Ψi;
13: Compute ssemi as the cosine similarity between the embeddings of Φ̃i and Φ;
14: end for
15: Combine the two scores
16: Normalize ssymi , i = 1, . . . , k and ssemi , i = 1, . . . , k using the softmax function;
17: for i = 1, . . . , k do
18: Compute the final score si by si = αρ(ssymi ) + (1− α)ρ(ssemi );
19: end for

4 Evaluation

In this section, we conduct a series of experiments to answer the following four research questions:

RQ1: Efficacy – Compared with baselines and alternatives, do our proposed methods (symbolic
equivalence and semantic consistency) achieve better autoformalization performance?

RQ2: Synergy – Are symbolic equivalence and semantic consistency mutually complementary?
Does the combination of them further boost the autoformalization performance?

RQ3: Labeling-efficiency – How much human effort in verifying or labeling the formalization
results can be saved using our proposed methods?

RQ4: Scalability – Can our proposed methods be further enhanced by using stronger LLMs or
ATPs?

4.1 Experimental Setup

Dataset. We evaluate the proposed methods on the MATH [23] and miniF2F [25] datasets, both of
which encompass a wide range of mathematical problems designed for different levels of complexity
and abstraction. The MATH dataset includes a variety of problem types, e.g., Algebra, Number
Theory, Geometry, and so on. We randomly select a subset of 400 problems from the dataset to
serve as our benchmark. The miniF2F dataset is specifically curated for evaluating LLM abilities
in autoformalization and mathematical reasoning. It contains 488 Olympiad-level mathematical
problems, each equipped with a formal statement as an oracle in Isabelle and Lean.

Model. We carry out the experiments on five proprietary and open-source models of varying parameter
sizes, including Mistral-7B [69], Llemma-34B [45], DeepSeek-v2 [70], Codex (completion api) [22],
and GPT-4 (version 0710) [71]. In addition, we employ few-shot prompting, and set the temperature
of the generation process to 0.7 for all LLMs. The eight examples used, along with detailed prompts
for autoformalization and informalization, are provided in Appendix F.

Metric. We use the unbiased n@k accuracy (with k generations) for performance evaluation, i.e.,
the percentage of problems for which the top-n formalizations of k generations can cover a correct
version [22]. We apply different policies to determine autoformalization correctness on the MATH
and miniF2F datasets, respectively. Specifically, the MATH dataset does not contain aligned formal
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Table 1: Performance (n@k) of our methods (SymEq and SemCo) and comparison methods (Baseline,
Naïve, and Cluster) on MATH and miniF2F datasets. The best performance of each n is in bold. The
results show that our proposed methods consistently achieves superior performance.

METHODS BASELINE NAÏVE CLUSTER SYMEQ SEMCO

n 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

MATH
Mistral-7B 18.1 30.6 37.2 15.7 15.7 15.7 21.8 30.3 37.5 26.7 33.1 37.9 22.0 32.2 38.8
Llemma-34B 33.4 43.1 48.0 26.5 27.0 27.0 35.4 43.9 50.4 41.1 46.1 52.6 36.5 46.1 50.6
DeepSeek-v2 37.3 42.4 44.4 24.7 26.6 27.0 34.9 41.7 45.6 42.4 44.9 46.9 38.6 43.6 45.8
Codex 43.8 48.7 52.4 22.4 22.9 23.1 42.6 48.0 51.2 46.1 50.8 54.3 44.9 49.6 52.9
GPT-4 37.5 47.7 53.5 24.5 25.7 26.5 39.7 48.0 53.5 42.0 50.7 54.5 39.5 47.2 54.5

MINIF2F
Mistral-7B 7.5 12.1 13.9 10.5 11.5 12.1 7.5 11.8 12.8 14.5 17.4 18.4 8.8 12.1 16.4
Llemma-34B 21.3 28.3 34.5 19.4 23.1 24.6 20.5 28.8 33.5 32.0 40.1 41.7 27.2 31.9 38.2
DeepSeek-v2 26.8 29.8 31.7 28.0 31.3 32.9 27.6 30.1 30.9 28.4 31.7 33.8 27.6 30.1 30.9
Codex 30.0 37.3 39.0 29.7 37.7 39.4 24.2 24.6 25.2 36.5 42.0 42.7 33.2 37.5 39.8
GPT-4 32.9 40.3 43.4 24.6 26.6 27.0 34.8 41.3 45.0 41.1 48.1 49.3 34.9 41.7 45.6

statements, we manually check each formalization result. For the miniF2F dataset, the correctness is
automatically derived by checking the symbolic equivalence between the formalization result and the
provided oracle using ATPs. In the experiments, the number of generations (k) is fixed at 10, as we
observe that improvements in pass@k (see Figure 2) become marginal with more generations.

Baseline. In our experiments, we compare our methods, symbolic equivalence (SymEq), semantic
consistency (SemCo), as well as combination strategy (log-comb, linear-comb, and quad-comb), with
one baseline and two alternatives. The baseline method uses the log-probability predicted by LLMs
to score the k autoformalization candidates. For Codex and GPT-4, which do not provide access to
log-probability, they are prompted to rank the candidates instead. We also introduce two additional
methods as the alternatives, i.e., a naïve strategy that filters the candidates by whether the ATPs can
prove the formalization, and a clustering method that applies the adaptive k-means algorithm [72] on
BERT embeddings of formal statements.

Implementation. For the SymEq method, we implement an equivalence checker as well as periph-
eral logic based on scala-isabelle [73]. Specifically, the equivalence checker integrates 12 tactics
(i.e., auto, simp, eval, smt, blast, fastforce, force, arith, linarith, presburger, (auto
simp:field_simps), and sledgehammer[timeout=300s]) provided in Isabelle/HOL [74], as
well as two SMT solvers Z3 [29] and CVC5 [30]. For the SemCo method, we use the pretrained
BERT [68] to compute the embedding of the informal statement.

4.2 Empirical Results

RQ1: Efficacy. We compute n@k results for n = 1, 2, 3 and five LLMs on the two datasets. As
shown in Table 1, SymEq demonstrates superior performance on all cases. For Codex and GPT-4,
SymEq achieves the best n@k accuracy with 46.1% (Codex) at n = 1 on the MATH dataset, and
41.1% (GPT-4) at n = 1 on the miniF2F dataset. For the two smaller LLMs Mistral-7B and Llemma-
34B, SymEq also exhibits a notable improvement in 1@k accuracy, surpassing the competitors by
at least 4.9%. As for the recently released LLM DeepSeek-v2, SymEq is still effective, resulting in
1@k improvements of 5.1% and 0.8% on the two datasets, respectively.

For SemCo, it successfully achieves the best performance in three cases (3@k of Mistral-7B, 2@k
of Llemma-34B, and 3@k of GPT-4) on the MATH dataset. Compared to the baseline, SemCo
also performs an improvement, ranging from 0.8% to 3.9% in 1@k accuracy. Compared with the
alternatives, SemCo is still slightly more effective, wining 4 out of 5 cases (except for GPT-4) in 1@k
accuracy. On the miniF2F dataset, although the improvement of SemCo is narrower, it still wins the
alternatives 4 out of 5 cases, and achieves equal results for the rest (DeepSeek-v2) in 1@k accuracy.
However, SemCo is much less effective than SymEq in most cases, as it does not grasp the logical
nature of formal statements.

RQ2: Synergy. We first conduct a detailed analysis of the performance of SymEq and SemCo across
different categories of the MATH dataset. The results presented in Table 2 reveal an interesting
finding: SymEq and SemCo demonstrate distinctly different performances for each category. This
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Table 2: Performance (1@k) of our methods
(SymEq and SemCo) across various categories
from MATH dataset. The formalization results are
generated by GPT-4, and the best performance is
in bold. The results show that SymEq and SemCo
exhibit different behaviors on various categories.

CATEGORY #PROBS SYMEQ SEMCO

Algebra 102 57.8 59.8
Counting and Probability 46 36.9 30.3
Geometry 32 28.1 25.1
Intermediate Algebra 77 31.1 25.9
Number Theory 42 33.3 38.0
Prealgebra 62 51.6 40.3
Precalculus 39 33.3 35.8

Figure 4: Performance curve of log-comb for
different values of α. The formalization results
are generated by GPT-4. The results show that
the combination can further improve the auto-
formalization accuracy with a large sweet spot.
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Figure 5: The performance of our proposed combination strategy (log-comb) on the MATH (left)
and miniF2F (right) datasets. The results show that the log-comb further boost the autoformalization
performance across various LLMs on the two datasets.

variation likely stems from the differing nature and requirements of autoformalizing problems in
different categories. For example, geometry problems are more sensitive to semantic consistency
since they often involve the translation of visual images, while number theory problems pose greater
challenges for checking symbolic equivalence.

Therefore, combining SymEq and SemCo (i.e., log-, linear-, and quad-comb) to further improve
autoformalization accuracy is reasonable. We explore the optimal setting for the hyperparameter α.
In particular, we compute the 1@k results of log-comb for various values of α on the MATH dataset,
and plot the performance curve in Figure 4. The results demonstrate that the combination strategy
can further improve autoformalization accuracy, with a large sweet spot for α (0.32− 0.6).

The performance curves for the other two combination strategies (linear-comb and quad-comb) are
provided in Appendix D. We observe that log-comb is more effective and stable than the other two
strategies. Furthermore, we fix α = 0.5 based on the performance curve and present the overall
performance (n@k) of log-comb in Figure 5. The results show that log-comb consistently improves
autoformalization accuracy across various LLMs on the two datasets, by ranging from 2.3% to 22.6%.
Particularly, compared to SymEq, even for the most powerful model GPT-4, log-comb can still further
boost the 1@k accuracy by 3.3% on the MATH dataset and by 2.5% on the miniF2F dataset. For the
Mistral-7B, log-comb presents significant improvements, i.e., 22.6% and 10.5%, respectively.

RQ3: Labeling-efficiency. We define average labeling cost for given k autoformalization candidates:
σ =

(∑k−1
n=2 n · (n@k − (n − 1)@k)

)
+ (1 − k@k). Based on the average labeling cost σ, for N

mathematical problems, the total number of formal statements to be labeled can be computed by σN .
Subsequently, we introduce the relative efficiency of two methods as E = 1 − σ/σ̃. By using the
baseline as a reference (σ̃), we compute the relative efficiency of each method in Table 3.

It can be observed that our methods, especially log-comb, achieve higher labeling-efficiency compared
to the alternatives. On the MATH dataset, log-comb achieves the relative efficiency ranging from
17.7% to 21.6%, with up to three times improvement (on Mistral-7B) than the Cluster method. On
the miniF2F dataset, log-comb is still very efficient, by using GPT-4, the relative efficiency achieves
21.9%, outperforming Cluster by 9.2%, SymEq by 3.6%, and SemCo by 5.4%, respectively.
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Table 3: Relative efficiency (%) of our methods (SymEq, SemCo, and Log-comb) and alternatives
(Naïve, and Cluster) on MATH and miniF2F datasets. The best performance is in bold. Note that the
negative results achieved by Naïve are reasonable since it is less effective compared to the baseline.
The results show that our proposed methods exhibit higher efficiency enhancement.

METHODS NAÏVE CLUSTER SYMEQ SEMCO LOG-COMB

Dataset MATH miniF2F MATH miniF2F MATH miniF2F MATH miniF2F MATH miniF2F

Mistral-7B -14.2 1.5 5.6 2.6 12.9 6.9 12.6 4.6 21.6 8.4
Llemma-34B -14.2 -4.1 10.4 4.6 15.2 15.8 14.3 8.4 18.9 19.5
DeepSeek-v2 -30.9 -6.9 17.2 8.3 18.7 8.0 16.3 6.8 20.5 10.0
Codex -31.4 -5.1 13.7 10.4 15.3 9.6 13.5 13.6 19.9 15.3
GPT-4 -16.9 -7.0 15.6 12.7 16.3 18.3 14.7 16.5 17.7 21.9

Table 4: Performance (1@k) across various diffi-
culty levels from the MATH dataset, with formal-
ization results generated by GPT-4. The results
show that autoformalization accuracy is signifi-
cantly influenced by the difficulty of the problem.

DIFF.† BASELINE SYMEQ SEMCO LOG-COMB

1 (37) 64.8 67.5 64.8 75.6
2 (70) 44.2 47.1 47.1 52.8
3 (91) 48.3 57.1 47.2 53.8
4 (91) 26.3 34.0 31.8 40.6
5 (111) 24.3 24.3 26.1 27.0
† a(b) refers to the difficulty level (# problems).

Figure 6: Performance of SymEq using differ-
ent ATP settings, with formalization results gen-
erated by GPT-4. The results indicate that the
performance improvement is very narrow by
increasing the capability of ATPs.
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RQ4: Scalability. As illustrated by our experimental results in Table 1 and Figure 5, a more powerful
LLM, such as GPT-4, often exhibits better autoformalization performance. We provide an additional
evidence by examining the performance differences across various difficulty levels in the MATH
dataset. The results shown in Table 4 reveal a significant gap in autoformalization performance
between Levels 1-3 and Levels 4-5. Hence, the difficulty of the problem is highly correlated with
the autoformalizaiton performance, suggesting that an LLM with stronger mathematical reasoning
capabilities is more effective in this task.

To investigate the impact of ATP capability, we conduct an additional ablation study. Specifically, we
build a limited equivalence checker, in which only two tactics in Isabelle/HOL (auto and simp) are
reserved and the other tactics and SMT solvers are removed. The results are shown in Figure 6, which
illustrate that the performance improvement of SymEq is minimal when using ATPs with stronger
capability. One possible reason is that, although normal ATPs can prove more symbolic equivalences
(2.13 vs. 2.33 per problem on average) than the limited version, this is still not enough to have a
major impact on the final symbolic equivalence score.

5 Conclusion

In this paper, we present a new framework for improving the autoformalization performance of LLMs.
Our techniques address the inherent challenges in autoformalization by overcoming the limitations
of traditional self-consistency methods, which struggle to cope with the variance in LLM outputs.
Specifically, our framework achieves this goal by combining symbolic equivalence, which grasps
the logical nature among formal statements, with semantic consistency, which inspects the semantic
coherence between the re-informalization result and the original text. Empirical evaluation on the
MATH and miniF2F datasets demonstrates a new level of autoformalization accuracy. Furthermore,
our quantitative and case analysis elaborates on the limitations of current LLMs and automatic
theorem provers in the task of autoformalization, shedding light on directions for future optimization.

The future directions for our proposed framework could include: (1) Method Adaptation: Extending
the framework to support additional theorem provers, such as Lean 4; (2) Model Enhancement:
Integrating more advanced or specifically fine-tuned LLMs like ProofGPT [20] and MMA [21] to
further enhance the framework’s performance; (3) Data Synthesis: Generating higher-quality, aligned
informal and formal datasets using the framework. A detailed discussion of the limitations and
broader impacts can be found in Appendix A and Appendix B.
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A Boarder Impact

The paper focuses on the formalization of mathematical theorems through large langauge models.
There are many potential societal consequences of our work, and we firmly believe that the majority
of these impacts are positive and none which we feel must be specifically highlighted here.

B Limitations of this work

Though achieving a considerable improvement in the autoformalization task, we also find some
remaining challenges either rooted in current LLMs, ATPs, semantic embedding or evaluation metrics:

LLMs lack the knowledge of formal library. As shown in Figure 2, even with a sufficiently large k,
the LLMs may still not generate one correct formalization for some problems due to not knowing the
existing functions or definitions in formal library for the concepts, which necessitate the need for
advanced retrieval mechanism or more translation pairs with finetuning.

Autoformalization is more than translation. Except for the exact mapping from natural language
concepts to existing formal language functions, some math problems require the combination or the
variants of certain standard definitions or functions in the formal library, which further necessitate
LLMs to be capable of some basic reasoning or modeling. This again exceeds the capability of
current LLMs, as indicated by Table 4.

ATPs are not strong enough for automation. According to McCarthy’s classical idea [1], an
automatic process to evaluate the correctness of formalization can be to prove the formalization
with ATPs. If proved, it is with high possibility the formalization is correct. However, As shown
in Table 1, current ATPs are far from the capability to prove the math problems of the high school
level. Furthermore, ATPs are even incapable to generate the proof of symbolic equivalence for some
problems, which is often much easier than the proof of the original problems.

Embeddings may neglect the nuances in natural language. When using embeddings to check
semantic consistency, we assume embeddings can reflect the differences between the informalized
statement and the original. However, there are many nuances in math statements that even a single
notation change can result in totally different semantics. Current embeddings may not differentiate
the minor but significant change.

Evaluation still requires the grounding effort of humans. Even with an ideal ATP and an ideal
embedding mapping, the evaluation of the formalization still requires the finalization of humans. As
shown in Example 13, from any perspective (either symbolically or semantically), the formalization
can be marked as correct. But from the perspective of humans, the formalization oversimplifies the
problem or models the problem based on an abstraction level uncommon for humans. Therefore,
human preferences are still essential for evaluating the formalizations.

C Two examples of variable matching

In Example 1, we show how to standardize the formal statement whose proof goal is represented
as the numerical equality. We introduce a new variable α, transforming two formal statements into
(x = 2/3∧ y = 6∧ α = x ∗ y− 4) → (α = 0) and (a = 2/3∧ b = 6∧ α = a ∗ b− 4) → (α = 0).
Next, by viewing x, y, a, b as auxiliary variables, the symbolic equivalence (x = 2/3 ∧ y = 6 ∧ α =
x ∗ y − 4) ≡ (a = 2/3 ∧ b = 6 ∧ α = a ∗ b− 4) and (α = 0) ≡ (α = 0) can be easily proved.

In Example 2, since the proof goal is not numerical inequality, we have to build the bipartite graph
with nodes (n, a, b, c, d, e, x, y, z, u, v). The edge weights are computed by string edit distance and
we can derive the final variable mapping a ↔ x, b ↔ y, c ↔ z, d ↔ u, e ↔ v, using the maximum
bipartite matching. Finally, we finish the standardization by refreshing the variable notations.

D Performance curves of various combination strategies

We provide performance curves of linear-comb and quad-comb in Figure 7. Compared with log-comb,
we observe that linear-comb and quad-comb have smaller effective range of α. Therefore, we select
the log-comb strategy and fix α = 0.5 in subsequent experiments.
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Example 1: An Illustrative Example of Variable Matching

Prompt:
Natural language version: “Find the product of 0.\\overline6 and 6. The answer is 4”.
Translate the natural language version to an Isabelle version.

GPT-4 output (No.2):
theorem
fixes x y :: real
assumes "x = 2/3"
and "y = 6"
shows "x * y = 4"

Standardized GPT-4 output (No.2):
theorem
fixes x y alpha :: real
assumes "x = 2/3"
and "y = 6"
and "alpha = x * y - 4"
shows "alpha = 0"

GPT-4 output (No.3):
theorem
fixes a b :: real
assumes "a = 2/3"
and "b = 6"
shows "a * b = 4"

Standardized GPT-4 output (No.3):
theorem
fixes a b alpha :: real
assumes "a = 2/3"
and "b = 6"
and "alpha = a * b - 4"
shows "alpha = 0"

Example 2: An Illustrative Example of Variable Matching

Prompt:
Natural language version: “Prove that 4 raised to the power of the sum of five positive integers
is divisible by 2”. Translate the natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes n a b c d e :: nat
assumes "n =

a + b + c + d + e"
shows "2 dvd (4^(n))"

Standardized GPT-4 output (No.1):
theorem
fixes n v1 v2 v3 v4 v5 :: nat
assumes "n =

v1 + v2 + v3 + v4 + v5"
shows "2 dvd (4^(n))"

GPT-4 output (No.2):
theorem
fixes x y z u v :: nat
shows "2 dvd
(4 ^ (x + y + z + u + v))"

Standardized GPT-4 output (No.2):
theorem
fixes v1 v2 v3 v4 v5 :: nat
shows "2 dvd
(4 ^ (v1 + v2 + v3 + v4 + v5))"

E Some motivation examples

We demonstrate some typical errors when using GPT-4 to formalize the mathematical statement. In
particular, Example 3 illustrates that GPT-4’s hallucination leads to the generation of a non-existent
concept (reflection_matrix). In Example 4, GPT-4 formalizes the condition “r, s, and t be the
roots of the equation 4x3 − 59x2 + 32x− 32 = 0. ” by using Vieta’s formulas, but the formulation
is incorrect (r ∗ s ∗ t = 8) and a condition (r ∗ s+ r ∗ t+ t ∗ s = 8) is ignored. As to Example 5,
GPT-4 should determine whether to use powr or ^. In Isabelle language, ^ is only applicable to
natural number exponents, but it is a real number in the example.

We also highlight some cases (i.e., Example 6 to Example 13) when reviewing the autoformalization
results, e.g., incorrect formalization oracle, incorrect label, strange failure in checking symbolic
equivalence, and so on, which shed light on the following messages:
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Figure 7: Performance curves of linear- (left) and quad- (right) comb across various values of α.
The formalization results are generated by GPT-4. The results show that both combination strategies
successfully improve autoformalization accuracy, while the effective range of quad-comb is smaller.

The difficulty of human labeling. We find people even experts are prone to flaws in writing or
labeling formalizations. As shown in Example 6, humans may overlook the potential correct candidate
while our framework can discover this via symbolic equivalence. As shown in Example 7, the oracle
in miniF2F is wrong because when n equals 0, f n = 0 , which makes one assumption of the oracle
false. Example 8 also shows another error in miniF2F oracles. In fact, the miniF2F dataset has been
revised and checked by groups of experts [19, 10]. Therefore, it is challenging to guarantee the
correctness of formalized statements without the scrutinized validations of experts or any assistance
from frameworks like ours.

The difficulty of symbol grounding. The symbol grounding problem is hard not only for LLMs but
also for humans. As shown in Example 9 and Example 10, humans would simply regard ∧ and powr
or log and ln as identical while their underlying symbolic implementations are much different. The
most interesting case is Example 11 where spaces around 4 will make the original Isabelle system
behave differently with the type inference, leading to a failure of proving equivalence.

The (over)simplification with reasoning. We find that LLMs tend to make one or more steps’
reasoning during autoformalization, which would simplify and misalign with the original statement.
As shown in Example 12, LLM may implicitly consolidate assumptions. And for concepts not
frequently touched in formal language (e.g., geometry), LLM may directly oversimplify the problem
as arithmetic, as shown in Example 13.

F Prompt examples for autoformalizations

We set up instructions and eight gold examples with both symbolic and semantic correctness to
improve the generation performance of GPT-4. Our detailed prompts are shown in Prompt 1 and 2.

Prompt 1: Autoformalization Prompt

As a mathematician familiar with Isabelle, your task is to translate the natural language
problem into an Isabelle language version. \n\n Natural language version:\n{instruction}\n\n
Translate the natural language version to an Isabelle version:\n

Prompt 2: Informalization Prompt

As a mathematician familiar with Isabelle, your task is to the Isabelle language problem back
to a natural language version. \n\n Isabelle language version:\n{instruction}\n\n Translate the
Isabelle language problem back to a natural langauge version:\n

17



Example 3: mathd precalculus 1033

Prompt:

Natural language version: “Let R be the matrix for reflecting over the vector
(
1
5

)
. Find

detR.” Translate the natural language version to an Isabelle version.

GPT-4 output:
theorem
fixes R :: "real ^2^2"
assumes h0 : "R = reflection_matrix (vector [1, 5])"
shows "determinant R = -1"

Cause: GPT-4 introduces a non-existent concept (reflection_matrix).

Example 4: mathd intermediate 745

Prompt:
Natural language version: “Let r, s, and t be the roots of the equation 4x3−59x2+32x−32 =
0. Find the value of f(r) + f(s) + f(t), where f(x) = 4x3 − 59x2”. Translate the natural
language version to an Isabelle version.

GPT-4 output:
theorem
fixes x r s t :: real

and f :: "real \<Rightarrow > real"
assumes h0 : "r * s * t = 32"
and h1 : "r + s + t = 59/4"
and h2 : "\<forall > x. f x = 4 * x powr 3 - 59 * x powr 2"
shows "f(r) + f(s) + f(t) = -376"

Cause: GPT-4 ignores a condition (r ∗ s+ r ∗ t+ t ∗ s = 8) when using Vieta’s formulas.

Example 5: aime 1984 p5

Prompt:
Natural language version: “Determine the value of ab if log8a + log4b

2 = 5 and log8b +
log4a

2 = 7. Show that it is 512.”. Translate the natural language version to an Isabelle
version.

GPT-4 output:
theorem
fixes a b :: real
assumes h0 : "log 8 a + log 4 (b^2) = 5"
and h1 : "log 8 b + log 4 (a^2) = 7"
shows "a * b = 512"

Cause: GPT-4 incorrectly uses ^ to real numbers a and b.
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Example 6: mathd algebra 2471

Prompt:
Natural language version: “For how many positive integers x is x2 + 4x+ 4 between 10 and
50? The final answer is 4.”. Translate the natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes x :: nat and f :: "nat \<Rightarrow > nat"
assumes h0 : "\<forall > x. f x = x^2 + 4*x + 4"
and h1 : "\<forall > x. (10 \<le > f x \<and > f x \<le> 50) = (A x)"
shows "card {x. A x} = 4"

GPT-4 output (No.2):
theorem
fixes x :: nat and f :: "nat \<Rightarrow > nat"
assumes h0 : "\<forall > x. f x = x^2 + 4 * x + 4"
and h1 : "\<forall > x. 10 \<le > f x
\<and > f x \<le> 50 \<longrightarrow > (\<exists > n. x = n)"
shows "card {x. 10 \<le> f x \<and > f x \<le > 50} = 4"

Cause: GPT-4 outputs are symbolically equivalent, but human expert only labeled No.1 as
correct, and incorrectly overlook No.2.

Example 7: imo 1977 p6

Prompt:
Natural language version: “Let f(n) be a function f : N+ → N+. Prove that if f(n+ 1) >
f(f(n)) for each positive integer n, then f(n) = n”. Translate the natural language version
to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes f :: "nat \<Rightarrow > nat"
assumes h0 : "\<forall > n > 0. f (n + 1) > f (f n)"
shows "f n = n"

Oracle:
theorem
fixes f :: "nat \<Rightarrow > nat"
assumes "\<forall > n. f (f n) < f (n + 1)"
and "\<forall > n. f n >0"
shows "\<forall > n. f n = n"

Cause: the provided oracle is incorrect
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Example 8: mathd 1485

Prompt:
Natural language version: “Find the value of x that satisfies 1

3x−1 = 2
x+1”. Translate the

natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes x :: real
assumes h0 : "3 * x - 1 \<noteq > 0"
and h1 : "x + 1 \<noteq > 0"
and h2 : "1 / (3 * x - 1) = 2 / (x + 1)"
shows "x = 3 / 5"

Oracle:
theorem
fixes x :: real
assumes h0 : "(1 / (3 * x - 1)) = (2 / (x + 1))"
shows "x = 3 / 5"

Cause: implicit condition of division: dividend is not equal to zero

Example 9: aime 1984 p5

Prompt:
Natural language version: “Determine the value of ab if log8a + log4b

2 = 5 and log8b +
log4a

2 = 7. Show that it is 512.”. Translate the natural language version to an Isabelle
version.

GPT-4 output (No.1):
theorem
fixes a b :: real
assumes h0 : "log 8 a + log 4 (b powr 2) = 5"
and h1 : "log 8 b + log 4 (a powr 2) = 7"
shows "a * b = 512"

GPT-4 output (No.2):
theorem
fixes a b :: real
assumes h0 : "log 8 a + log 4 (b^2) = 5"
and h1 : "log 8 b + log 4 (a^2) = 7"
shows "a * b = 512"

Cause: fail to prove equivalence powr with ^
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Example 10: aime 1984 p5

Prompt:
Natural language version: “Determine the value of ab if log8a + log4b

2 = 5 and log8b +
log4a

2 = 7. Show that it is 512.”. Translate the natural language version to an Isabelle
version.

GPT-4 output (No.1):
theorem
fixes a b :: real
assumes h0 : "log 8 a + log 4 (b powr 2) = 5"
and h1 : "log 8 b + log 4 (a powr 2) = 7"
shows "a * b = 512"

Oracle:
theorem
fixes a b ::real
assumes h0: "(ln a) / (ln 8) + (ln (b^2)) / (ln 4) = 5"
and h1: "(ln b) / (ln 8) + (ln (a^2)) / (ln 4) = 7"
shows "a * b = 512"

Cause: fail to prove equivalence powr with ^ and log with ln

Example 11: numbertheory 2dvd4expn

Prompt:
Natural language version: “Show that for any positive integer n, 2 divides 4n”. Translate the
natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes n :: nat
shows "2 dvd (4^n)"

GPT-4 output (No.2):
theorem
fixes n :: nat
shows "2 dvd (4 ^ n)"

Checking the equivalence of GPT-4 outputs (by simp):
theorem
fixes var_0 :: nat
shows "{( var_0 ). (2 dvd ((4:: nat)^var_0 ))}

= {( var_0). (2 dvd ((4:: nat) ^ var_0 ))}"

Cause: the symbolic equivalence is trivial for human, but cannot be proved by ATP. The data
types of two "4" cannot be inferred to be identical.
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Example 12: mathd algebra 392

Prompt:
Natural language version: “The sum of the squares of three consecutive positive even
numbers is 12296. Find the product of the three numbers divided by 8. Show that it is
32736.”. Translate the natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes n :: real
assumes h0 : "n > 0"
and h1 : "n mod 2 = 0"
and h2 : "n powr 2 + (n + 2) powr 2 + (n + 4) powr 2 = 12296"
shows "(n * (n + 2) * (n + 4)) / 8 = 32736"

GPT-4 output (No.2):
theorem
fixes n :: real
assumes h0 : "n > 0"
and h1 : "(2 * n) powr 2 + (2 * n + 2) powr 2

+ (2 * n + 4) powr 2 = 12296"
shows "((2 * n) * (2 * n + 2) * (2 * n + 4)) / 8 = 32736"

Cause: fail to prove the equivalence with n mod 2 and 2 ∗ n

Example 13: mathd geometry 710

Prompt:
Natural language version: “For triangle ABC, points D and E are the midpoints of sides
AB and AC, respectively. Side BC measures six inches. What is the measure of segment
DE in inches?
[asy] draw((-5,-5)–(10,3)–(0,10)–cycle); draw((-2.5,2.5)–(2.5,-1)); label("A",(-5,-5),SW);
label("B",(0,10),N); label("C",(10,3),SE); label("D",(-2.5,2.5),NW); label("E",(2.5,-1),SE);
[/asy] The final answer is 3.”. Translate the natural language version to an Isabelle version.

GPT-4 output (No.1):
theorem
fixes A B C D E :: "real*real"
and dist :: "(real*real) \<Rightarrow > (real*real)

\<Rightarrow > real"
assumes h0 : "dist B C = 6"
and h1 : "D = midpoint A B"
and h2 : "E = midpoint A C"
shows "dist D E = 3"

GPT-4 output (No.2):
theorem
fixes DE BC :: real
assumes h0 : "BC = 6"
and h1 : "DE = BC / 2"
shows "DE = 3"

Cause: fail to formalize geometry problems
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is thoroughly discussed in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]
Guidelines: N/A

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details of data generation are discussed in Section 4.1 and Appendix F. We
will public the code and data for the reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code for our data generation framework, as well as a small part
of the generated data, in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The method does not involve training process, and inference details are in
Section 4.1 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We cannot provide statistical significance of the experiments due to the
extensive evaluation cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of computer resources are in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Social impacts are discussed in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code packages and datasets are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets up to now.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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