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Abstract
Intelligent agents are able to make decisions based
on different levels of granularity and duration. Re-
cent advances in skill learning enabled the agent
to solve complex, long-horizon tasks by effec-
tively guiding the agent in choosing appropriate
skills. However, the practice of using fixed-length
skills can easily result in skipping valuable de-
cision points, which ultimately limits the poten-
tial for further exploration and faster policy learn-
ing. In this work, we propose to learn a simple
and effective termination condition that identi-
fies decision points through a state-action novelty
module that leverages agent experience data. Our
approach, Novelty-based Decision Point Identifi-
cation (NBDI), outperforms previous baselines in
complex, long-horizon tasks, and remains effec-
tive even in the presence of significant variations
in the environment configurations of downstream
tasks, highlighting the importance of decision
point identification in skill learning.

1. Introduction
The ability to make decisions based on different levels of
granularity and duration is one of the key attributes of intelli-
gence. In reinforcement learning (RL), temporal abstraction
refers to the concept of an agent reasoning over a long
horizon, planning, and taking high-level actions. Each high-
level action corresponds to a sequence of primitive actions,
or low-level actions. For example, in order to accomplish a
task with a robot arm, it would be easier to utilize high-level
actions such as grasping and lifting, instead of controlling
every single joint of a robot arm. Temporal abstraction sim-
plifies complex tasks by reducing the number of decisions
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the agent has to make, thereby alleviating the challenges
that RL faces in long-horizon, sparse reward tasks.

Due to the advantages of temporal abstraction, there has
been active research on developing hierarchical RL algo-
rithms, which structure the agent’s policy into a hierarchy of
two policies: a high-level policy and a low level policy. The
option framework (Sutton, 1998) was proposed to achieve
temporal abstraction by learning options, which are high-
level actions that contain inner low level policy, initiation
set and termination conditions. Termination conditions are
used to figure out when to switch from one option to another,
enabling the agent to flexibly respond to changes in envi-
ronment or task requirements. While the option framework
can achieve temporal abstraction without any loss of perfor-
mance when the options are optimally learned, it is usually
computationally challenging to optimize for the ideal set of
options within complex domains.

In this case, the skill discovery framework, which aims
to discover meaningful skills (fixed-length executions of
low-level policy) from the dataset through unsupervised
learning techniques, has been used as an alternative. Re-
cently, notable progress has been made in skill-based deep
RL models, showing promising results in complex envi-
ronments and robot manipulations (Pertsch et al., 2021a;
Hakhamaneshi et al., 2021; Park et al., 2023). However,
the use of fixed-length skills and the absence of appropriate
termination conditions often restrict them from making de-
cisions at critical decision points (e.g., crossroads), which
can result in significant loss in performance. While there
have been some studies incorporating the option framework
into deep RL as is, the algorithmic complexity and unsta-
ble performance in large environments limit its widespread
adoption (Kulkarni et al., 2016; Hutsebaut-Buysse et al.,
2022).

In this paper, we present NBDI (Novelty-based Decision
Point Identification)1, a simple state-action novelty-based
decision point identification method that allows the agent to
learn terminated skills from task-agnostic demonstrations.
In this context, the term task-agnostic refers to the collec-
tion of trajectories from a diverse set of tasks, excluding the

1Code: https://github.com/ku-dmlab/NBDI
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one we are specifically interested in (see Appendix E for
visualizations). Identifying critical decision points promote
knowledge transfer between different tasks and stimulate
exploration by closely connecting different areas in the state
space (McGovern & Barto, 2001; Menache et al., 2002;
Şimşek & Barto, 2004). For example, detecting doorways
between rooms is useful regardless of the specific task at
hand. We demonstrate the straightforward applicability of
our method to the skill-based deep RL framework, and illus-
trate how it can lead to improvements in decision-making.
To summarize, our three main contributions are as follows:
(i) For the first time, we propose a skill termination condi-
tion for task-agnostic demonstrations that remains effective
even when the environment configuration of complex, long-
horizon downstream tasks undergo significant changes. (ii)
We present a novel method in reinforcement learning, which
is the identification of state-action novelty-based critical
decision points. Furthermore, we demonstrate that execut-
ing terminated skills, based on state-action novelty, can
substantially enhance policy learning in both robot manip-
ulation and navigation tasks. (iii) We conduct extensive
experiments, especially with other possible termination con-
ditions, to provide insights for future research in the field of
skill termination learning.

2. Related Works
Option Framework One major approach of discovering
good options is to focus on identifying good terminal states,
or sub-goal states. For example, landmark states (Kaelbling,
1993), reinforcement learning signals (Digney, 1998), graph
partitioning (Menache et al., 2002; Şimşek et al., 2005;
Machado et al., 2017a;b), and state clustering (Srinivas
et al., 2016) have been used to identify meaningful sub-goal
states. (Digney, 1998; Simsek et al., 2005) and (Kulkarni
et al., 2016) focused on detecting bottleneck states, which
are states that appear frequently within successful trajecto-
ries, but are less common in unsuccessful trajectories (e.g.,
a state with access door). (Şimşek & Barto, 2004) tried
to identify access states, which are similar to bottleneck
states, but determined based on the relative novelty score of
predecessor states and successor states. Access states are
found based on the intuition that sub-goals will exhibit a
relative novelty score distribution with scores that are fre-
quently higher than those of non sub-goals. These studies
motivated us to search for states with meaningful properties
to terminate skills. However, these methods frequently face
challenges in scaling to large or continuous state spaces.

Skill-based deep RL As extending the classic option
framework to high-dimensional state spaces through the
adoption of function approximation is not straightforward,
a number of practitioners have proposed acquiring skills,
which are fixed-length executions of low-level policies,

to achieve temporal abstraction. For example, skill dis-
covery (Gregor et al., 2016; Achiam et al., 2018; Mavor-
Parker et al., 2022; Park et al., 2023) and skill extraction
(Yang et al., 2021; Singh et al., 2020; Pertsch et al., 2021b;
Hakhamaneshi et al., 2021) frameworks have proven to be
successful in acquiring meaningful sets of skills. Especially,
Pertsch et al. (2021a) showed promising results in complex,
long-horizon tasks with sparse rewards by extracting skills
with data-driven behavior priors. The learned prior enables
the agent to explore the environment in a more structured
manner, which leads to better performance in downstream
tasks. However, we believe that their performances are
greatly constrained by the use of fixed-length skills, which
restricts them from making decisions at critical decision
points. There are prior works introducing variable-length
skill extraction methods. Salter et al. (2022) focus on learn-
ing an option-level transition model leveraging predictabil-
ity to compress offline behaviors into options that terminate
at bottleneck states. However, due to its model-based de-
sign, the extracted skills are not suitable for transferring to
downstream tasks with significantly different environment
configuration. Jiang et al. (2022) is an option framework
based model that learns both options and termination con-
dition from the task-agnostic demonstrations in terms of
minimum description length (Rissanen, 1978). As it serves
as a suitable benchmark for evaluating our approach, we
later compare our method to Jiang et al. (2022) in Section
6.4.

Novelty-based RL Novelty has been utilized in reinforce-
ment learning for various purposes. Depending on its design,
novelty can be used for curiosity-driven exploration (Burda
et al., 2018; Pathak et al., 2019; Sekar et al., 2020), or data
coverage maximization (Bellemare et al., 2016; Hazan et al.,
2019; Seo et al., 2021). It has been also used to identify
sub-goals in discrete environments (Goel, 2003; Şimşek &
Barto, 2004). However, to the best of our knowledge, there
has been no research that has utilized state-action novelty
for identifying decision points in the context of deep RL.

3. Background
Markov Decision Process (MDP) MDP is a mathemat-
ical framework to model decision making problems with
discrete-time control processes. It is defined by a tuple
{S,A, P,R, γ}, where S denotes a state space, A denotes
a set of actions the agent can execute, P (s′|s, a) denotes a
transition probability, R(s, a) is a reward function and γ is
a discount factor. In a MDP, the probability of transitioning
to a future state depends solely on the current state, which
is known as the Markov property. Given a MDP, we aim
to find an optimal policy π∗ that maximizes the expected
discounted sum of reward Eπ [

∑∞
t=0 γ

tR(s, a)]. The state
value function V π(s) and the action value functionQπ(s, a)
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Figure 1. Visualization of an example of critical decision points in the kitchen environment. High state-action novelty can be found in
states where a subtask has been completed, and multiple subsequent subtasks are accessible. If termination occurs at a high state-action
novelty point, the agent retains multiple plausible options. For example, after moving the kettle, it may choose to open the sliding cabinet
or turn the oven knob (Left). Similarly, after flipping the light switch, the agent may proceed to open either the sliding cabinet or the
left-hinged cabinet (Right).

denote the conditional expectation of discounted sum of re-
ward following policy π.

Option Framework The option framework (Sutton, 1998)
is one of the first studies to achieve temporal abstraction
in RL. The option framework is composed of two major
elements: a meta-control policy µ and a set of options O.
An option is defined as ⟨I, π, β⟩, where I ⊆ S defines an
initiation set, π : S × A → [0, 1] defines a policy, and
β : S → [0, 1] defines a termination condition. The policy
π chooses the next action, until the option is terminated
by the stochastic termination condition β. Once the option
terminates, the agent has an opportunity to switch to another
available option at the termination state. Options usually
refer to low-level polices that are promised to be good only
for a subset of the state space. Thus, the presence of an
appropriate initiation set I and termination condition β is
crucial for the agent’s overall performance.

Any MDP with a fixed set of options can be classified as
a Semi-Markov Decision Process (SMDP) (Sutton, 1998).
SMDP (Bradtke & Duff, 1994) is an extended version of
MDP for the situations where actions have different exe-
cution lengths. It serves as the foundational mathematical
framework for many hierarchical RL algorithms, including
the option framework.

4. Simple and Effective Identification of
Decision Points

The option framework aims to achieve temporal abstrac-
tion by learning good options, and good options can be
learned through the identification of meaningful sub-goal
states (Menache et al., 2002; Şimşek & Barto, 2004), i.e., the
critical decision points. In this work, we propose to use state-
action novelty to identify critical decision points for skill
termination, which leads to the execution of variable-length

skills. In particular, we use intrinsic curiosity module (ICM)
(Pathak et al., 2017) as our state-action novelty estimator
(more details in Section 6.1). However, any state-action nov-
elty estimation mechanism that measures the joint novelty
of state-action pairs can be used for our approach.

4.1. State-action Novelty-based Decision Point
Identification

Our proposed method classifies a state-action pair with high
joint state-action novelty as a decision point. A more insight-
ful perspective on this choice can be obtained by breaking
down the novelty estimator (Equation 1). By interpreting
joint novelty χ(s, a) as the reciprocal of joint visitation
count N(s, a)2, we can decompose a state-action joint nov-
elty χ into the product of a state novelty and a conditional
action novelty. The proposed method combines the strength
of both novelty estimates.

χ(s, a) =
1

N(s, a)
=

1

N(s)
· 1

N(a|s)
= χ(s)︸︷︷︸

state novelty

· χ(a|s)︸ ︷︷ ︸
conditional action novelty

(1)

The state novelty χ(s) will seek for a novel state, which
refers to a state that is either challenging to reach or rare in
the dataset of agent experiences. As the skills are derived
from the same pool of experiences that we use to estimate
novelty, a high state novelty implies a potential lack of di-
verse skills to explore neighboring states effectively. Thus,
increasing the frequency of decision-making in such unfa-
miliar states will lead to improved exploration and broader
coverage of the state space when solving downstream tasks.

A conditional action novelty χ(a|s) will seek for a novel

2Note that although the motivation is based on pseudo counts,
any novelty estimator based on s, a can be used for our method.
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(A) (B) (C)

(D) (E) (F)

(a) Prediction error in Maze

(A) (B) (C)

(D) (E) (F)

(b) Prediction error in Block Stacking

Figure 2. Visualization of prediction error of ICM in maze and block stacking environment. Note the same offline data that is used to train
ICM was used to compute this prediction error. (A), (B) and (C) are the state-action pairs with the highest prediction error, while (D), (E)
and (F) are the ones with the lowest. Critical decision points—such as crossroads or states involving block manipulation—are typically
associated with high prediction error. In contrast, low prediction errors are observed in states that are less important for decision-making.
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Figure 3. The relative frequency of termination improvement oc-
currences (left), conditional action novelty (middle), and state
novelty (right) in a small grid with three different goals. Higher
percentile colors indicate a relatively greater number of termina-
tion improvement occurrences, higher conditional action novelty,
and higher state novelty. Further details on the visualization proce-
dure are provided in Appendix I.1.

action. With the state conditioning, action novelty will
be high in a state where a multitude of actions have been
frequently executed. For example, unlike straight roads,
crossroads provide the agent with options to move in multi-
ple directions. In such states, the agent may need to perform
different actions to accomplish the current goal, rather than
solely depending on the current skill. This necessity arises
because the current skill may have been originally designed
for different goals, making it potentially less than ideal for
the current goal. Guiding the agent to make more decisions
in such states can increase the likelihood of solving the task
at hand, ultimately accelerating the policy learning.

In the kitchen environment, as shown in Figure 1, high
state-action novelty χ(s, a) tends to occur in states where
a subtask has been completed. For example, after moving
the kettle, the agent may choose to either open the sliding
cabinet or turn the oven knob. Similarly, after completing
the subtask of flipping the light switch, the agent has the
option to open either the left hinge cabinet or the right slide
cabinet.

In sequential manipulation tasks, such critical points are
valuable because completing one subtask grants access to
multiple other subtasks.

4.2. Termination Improvement from State-action
Novelty-based Terminations

We provide an alternative interpretation on the potential
benefits of identifying decision points based on state-action
novelty. While maximizing skill length is advantageous
in terms of temporal abstraction, extended skills can result
in suboptimal behavior, especially when the skills are de-
rived from task-agnostic trajectories. Such suboptimality of
extended skills (or options) can be theoretically quantified
using the termination improvement theorem (Sutton, 1998).

Theorem 4.1. [Termination Improvement, (Sutton, 1998),
informal] For any meta-control policy µ on set of options
O, define a new set of options O′, which is a set of options
that we can additionally choose to terminate whenever the
value of a state V µ(s) is larger than the value of a state
given that we keep the current option o, Qµ(s, o). With µ′,
which has the same option selection probability as µ but
over a new set of options O′, we have V µ

′
(s) ≥ V µ(s).

The termination improvement theorem implies that we
should terminate an option when there are much better alter-
natives available from the current state.

To identify the states where termination improvement oc-
curs, we plotted the relative frequency of termination im-
provement occurrences in a small 8 × 8 grid maze with
three different goal settings (Figure 3 (left)). It shows that
termination improvement frequently occurs in states where
diverse plausible actions exist. In states with a single avail-
able option, V µ(s) would be equal to Qµ(s, o). On the
other hand, as more actions/options are plausible, Qµ(s, o)
would exhibit a broader range of values, thereby increasing
the likelihood of satisfying Qµ(s, o) < V µ(s). When the
skills (or options) are discovered from diverse trajectories
(e.g., trajectories gathered from a diverse set of goals), termi-
nation improvement is typically observed in states where a
multitude of actions have been executed, such as crossroads.

However, terminating skills based on the termination im-
provement theorem can be challenging when the down-
stream task is unknown, as it requires Qµ(s, o) and V µ(s)
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Algorithm 1 Downstream RL with NBDI
Input: trained low-level policy π(a|z, s), trained novelty
module p(β|s, a), the maximum skill length H
Output: the high-level policy µθ

1: Initialize replay buffer D, parameters of high-level pol-
icy θ

2: t← 0
3: for each iteration do
4: zt ∼ µθ(zt|st)
5: for k = 0, 1, . . . do
6: at+k ∼ π(at+k|zt, st+k)
7: βt+k ∼ p(βt+k|st+k, at+k)
8: Take action at+k, observe rt+k, st+k+1

9: if βt+k = 1 or k = H then
10: Break
11: end if
12: end for
13: r̃t ←

∑t+k
i=t γ

i−tri
14: D ← D ∪ {st, zt, r̃t, st+k+1, k}
15: Update µθ(z|s) using RL with samples from D
16: end for

to be computed in advance with the skills extracted from
the downstream task trajectories. Thus, by leveraging the
data collected across a diverse set of tasks, we can use con-
ditional action novelty as a tool for pinpointing the states
where a multitude of plausible actions can be taken (Fig-
ure 3 (middle)). Through experiments, we also found state
novelty to be useful in terminating skills, as it encourages
the agent to sufficiently explore unfamiliar parts of the state
space (Figure 3 (right)). As a result, we propose to use
state-action novelty, which combines the strength of both
conditional action novelty and state novelty as in Equation
1, as our skill termination condition. In Section 6, we also
demonstrate how these different novelty measures, utilized
as termination conditions, lead to different performance
outcomes.

5. Learning Termination Conditions through
State-action Novelty Module

Our goal is to improve the learning of a new complex and
long-horizon task by identifying critical decision points
through a state-action novelty module. While fixed-length
skills have been mostly considered for temporal abstractions
in recent studies (Pertsch et al., 2021a; Hakhamaneshi et al.,
2021), utilizing fixed-length skills can easily skip valuable
decision points, ultimately reducing the opportunities for
further exploration.

In this work, we propose to use state-action novelty as a
termination condition to effectively capture critical decision
points and execute terminated skills. Our approach consists

of two major steps. First, we train the state-action novelty
module and then the low-level policy using task-agnostic
demonstrations for skill extraction. Next, we perform on-
line reinforcement learning with the learned variable-length
skills to solve an unseen task.

Problem Formulation For training the state-action nov-
elty module, we assume access to task-agnostic, expert-level
demonstrations of states and actions in the form of N tra-
jectories D =

{
τ i = {(st, at)}T−1

t=0

}N−1

i=0
. These trajecto-

ries are collected across a diverse set of tasks except for
the one we are specifically interested in (see Appendix E
for more details). Since we do not make any assumptions
about rewards or task labels, our model can leverage real-
world datasets that can be collected at a lower cost (e.g.,
autonomous driving and drones).

5.1. Unsupervised Learning of State-action Novelty
Module

In the process of unsupervised learning, our goal is to pre-
train the low-level policy π(a|z, s) and the state-action nov-
elty module p(β|s, a). We define a skill z ∈ Z as an em-
bedding of state-action pairs τ = {(si, ai)}t+H−1

i=t and ter-
mination conditions β = {βi}t+H−1

i=t . The termination
conditions β are Bernoulli random variables that decide
when to stop the current skill. Through the classification of
state-action pairs demonstrating significant novelty χ(s, a),
β are trained to predict the critical decision points. The
point at which novelty is considered significant varies de-
pending on the environment. In downstream tasks, the skill
being executed will be terminated either when β = 1 is
sampled or when the maximum skill length H is reached.
In all experiments, we set H = 30. The low-level pol-
icy is trained following standard practices (Pertsch et al.,
2021a; Hakhamaneshi et al., 2021). During the training of
the low-level policy, the deep latent variable model receives
a randomly sampled experience from the training dataset,
along with a termination condition vector provided by the
state-action novelty module. The model is trained to recon-
struct the corresponding action sequence and its length (i.e.,
the termination point) by maximizing the evidence lower
bound (ELBO) (see Appendix B for details).

5.2. Reinforcement Learning with Skill Termination
Conditions

In downstream learning, our objective is to learn a skill pol-
icy µθ(z|s) that maximizes the expected sum of discounted
rewards, parameterized by θ. The pre-trained low-level pol-
icy π(a|z, s) decodes a skill embedding z into a series of
actions, which persists until the skill is terminated by the
predicted termination condition β.

The downstream learning can be formulated as a SMDP
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ENVIRONMENT SAC SPIRL NBDI IMPROVEMENT OVER SPIRL(%)

MAZE 30X30 (Success rate) 0.04±0.03 0.13±0.03 0.24±0.01 84.62
MAZE 40X40 (Success rate) 0.01±0.01 0.09±0.02 0.25±0.02 177.78

SPARSE BLOCK STACKING (Stacked Blocks) 0.14±0.28 0.67±0.29 1.12±0.16 67.16

KITCHEN (Completed Subtasks) 0.0±0.0 3.0±0.0 3.67±0.43 22.33

Figure 5. Performances of our method and baselines in solving downstream tasks. The shaded region represents 95% confidence interval
across five different seeds. The last column of the table below illustrates the percentage improvement of our method over SPiRL.

which is an extended version of MDP that supports ac-
tions of different execution lengths. We aim to maxi-
mize discounted sum of rewards

∑
t∈T r̃(st, zt) where T

is set of time steps where we execute skills, i.e., T =
{0, k0, k0 + k1, k0 + k1 + k2, . . .} and ki is the variable
skill length of i-th executed skill. The RL learning loop is
described in Algorithm 1. In downstream RL tasks, we use
SAC (Haarnoja et al., 2018) to update the high-level policy.
More details of the learning procedure are in Appendix B.

6. Experiments
We design the experiments to address the following ques-
tions: (i) Does learning state-action novelty-based termina-
tion condition improve policy learning in unseen tasks? (ii)
How does each component of state-action novelty contribute
to the identification of critical decision points? (iii) Have
we successfully identified the decision points that match our
intuition? Additional studies are in Appendix A.

6.1. State-action Novelty Module

We utilize ICM (Pathak et al., 2017) to calculate state-action
novelty for both image-based and non-image-based obser-
vations. While ICM is typically recognized for providing
intrinsic motivation signals to drive exploration in online
RL, we found it to be an effective state-action novelty esti-
mator when it is pre-trained with offline trajectory datasets.
Since ICM takes in state-action pair to predict next state
representation, it would have high prediction error for sparse
state-action pairs in the offline dataset. Figure 2 illustrates
the prediction error of state-action pairs from 25 randomly
selected trajectories within the offline trajectory dataset used

for training ICM. We visualized the states of the state-action
pairs with high prediction error ((A), (B), (C)) and low pre-
diction error ((D), (E), (F)) in maze environment (Figure
2a). It can be seen that high prediction error can be typi-
cally seen in states where we have multitude of plausible
actions ((A), (C)) or rare state configuration (B). Note these
characteristics correspond to the conditional action novelty
and state novelty as illustrated in Figure 3, and leads to a
high state-action novelty as in Equation 1. On the other
hand, low prediction error can be seen in states where we
do not have any of these properties ((D), (E), (F)). When the
agent encounters a maze with an unseen goal, it would have
no way of knowing which direction would lead to the goal.
Therefore, encouraging the agent to make more decisions
at such crossroads would effectively connect different areas
within the maze, ultimately promoting exploration.

Figure 2b shows prediction error of state-action pairs in
sparse block stacking environment, which is a complex
robotic simulation environment that has no clearly defined
subtasks. In this environment, the agent needs to stack
blocks on top of each other. We can see that high predic-
tion error occurs in states where the agent has multitude of
plausible actions ((A), (B), (C)). When the robotic arm is po-
sitioned above a block, it must choose between descending
to lift that block or moving towards other blocks. Likewise,
when the robotic arm is holding a block, it needs to deter-
mine which block to stack it onto. This characteristic also
corresponds to the conditional action novelty as depicted
in Figure 3, and results in a high state-action novelty as in
Equation 1. Similar to the maze environment, low predic-
tion error occurs in states where we do not have multitude
of plausible actions, or rare configuration ((D), (E), (F)).

6



A Simple and Effective Termination Condition for Skill Extraction from Task-Agnostic Demonstrations

NBDI (Ours) NBDI- (s) NBDI- (a|s)

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0.0

0.5

1.0

1.5

St
ac

ke
d 

Bl
oc

ks

Sparse Block Stacking

0 1 2 3 4 5
Environment steps (1M)

0

1

2

3

4

Co
m

pl
et

ed
 S

ub
ta

sk
s

Kitchen Environment

NBDI (Ours) NBDI- (s) NBDI- (a|s)

(a) Comparison with other terminating criteria in sparse block
stacking (left) and kitchen (right) environments

NBDI (Ours) SPiRL Relative Novelty LOVE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Su
cc

es
s R

at
e

Maze 40 × 40 Navigation

0

1

2

3

4

Co
m

pl
et

ed
 S

ub
ta

sk
s

Kitchen
NBDI (Ours) SPiRL Relative Novelty LOVE

(b) Comparison with other variable skill length methods in 40×40
maze (left) and kitchen (right) environments

Figure 6. Performances of our method and baselines in solving downstream tasks. The shaded region and error bar represents 95%
confidence interval across five different seeds.

Thus, our findings validate that ICM can serve as an effec-
tive state-action novelty estimator when pre-trained with
offline trajectory datasets.

6.2. Environments

Two navigation tasks (Mazes sized 30×30 and 40×40) and
two simulated robot manipulation tasks (Kitchen, Sparse
block stacking) are used to evaluate the performance of
NBDI. All of these environments are challenging sparse
reward tasks, with continuous state space and continuous
action space.

A large set of task-agnostic agent experiences is collected
from each environment to pre-train the low-level policy and
the state-action novelty module. For downstream tasks with
significantly different environment configurations (maze,
sparse block stacking), we used agent-centered cropped im-
ages to extract consistent structural information from task-
agnostic demonstrations. We introduce the train/transfer
domain similarity for the environments used in our experi-
ments in Appendix E. To demonstrate the effectiveness of
our method on complex downstream tasks involving signif-
icant configuration changes, we evaluate the models on a
maze environment with an unseen layout and a large-scale
block stacking environment with a greater number of blocks
in randomized positions. Both settings differ significantly
from the task-agnostic offline datasets. Further details of
the environments and the task-agnostic data collection pro-
cedure are in Appendix H.

6.3. Results

We use the following models for comparison: Flat RL
(SAC): Soft Actor-Critic (Haarnoja et al., 2018) agent
that does not leverage prior experience. This compari-
son illustrates the effectiveness of temporal abstraction.
SAC+Novelty: Flat RL that uses state-action novelty as
intrinsic rewards. This comparison demonstrates the impor-
tance of incorporating state-action novelty in skill learn-

ing. Flat Offline Learning w/ Finetuning (BC+SAC,
IQL+SAC): The supervised behavioral cloning (BC) pol-
icy and Implicit Q-Learning (IQL) (Kostrikov et al., 2021)
policy that are trained on offline data and subsequently fine-
tuned for the downstream task using SAC. Fixed-length
Skill Policy (SPiRL): The agent that learns a fixed-length
skill policy (Pertsch et al., 2021a) by leveraging prior expe-
rience. This comparison demonstrates the benefit of critical
decision points identification through state-action novelty.
NBDI (Ours): The agent that learns a terminated skill policy
through state-action novelty χ(s, a). It learns a state-action
novelty based termination distribution p(β|z, s) to predict
skill termination at current step. State Novelty Decision
Point Identification (NBDI-χ(s)): The agent that learns a
terminated skill policy through state novelty. To exclusively
assess the influence of the novelty type, we distilled the
state-action novelty module used in NBDI into a separate
network, χ(s), which solely depends on the current state.
Conditional Action Novelty Decision Point Identification
(NBDI-χ(a|s)): The agent that learns a terminated skill pol-
icy through conditional action novelty χ(s,a)

χ(s) , where χ(s)
is the distilled state novelty module used for NBDI-χ(s).
Implementation details of the baselines are in Appendix I.

In both the robot manipulation tasks and the navigation
tasks, executing terminated skills through state-action nov-
elty (NBDI-χ(s, a)) facilitates convergence toward a more
effective policy (Figure 5). While NBDI manages to accom-
plish all four subtasks in the kitchen environment, others
never achieves the maximum return. Furthermore, as shown
the table in Figure 5, NBDI surpasses SPiRL even within a
challenging robotic simulation environment where there are
no clearly defined subtasks (Sparse block stacking). How-
ever, SAC, SAC+Novelty, BC+SAC and IQL+SAC show
poor performance due to their lack of temporal abstraction,
which limits their ability to explore unseen tasks effectively.

In alignment with our motivation for state-action novelty,
conditional action novelty (NBDI-χ(a|s)) appears to play
a crucial role in identifying decision points (Figure 6a).
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Figure 7. Visualization of decision points made by SPiRL and NBDI in the maze environment. We sampled 100 trajectories for each
trained policy to observe the points at which they make decisions. Higher percentile colors suggest a relatively greater number of visitation
frequencies and termination frequencies.

Table 1. Success rate of NBDI and SPiRL with offline trajecto-
ries generated by mediocre-level policy with weighted Gaussian
random noise in maze environment.

DATASET QUALITY NBDI SPIRL

STOCHASTIC BC (σ = 0.5) 28% 0%
STOCHASTIC BC (σ = 0.75) 22% 0%

While it appears that terminating skills solely based on state
novelty doesn’t lead to better performance, combining it
with conditional action novelty (resulting in state-action
novelty) leads to better exploration and better convergence.

Figure 7 compares decision points made by SPiRL and
NBDI in the maze environment. This result provides the
answer to our third question. While the SPiRL agent makes
decisions in random states, our model tends to make deci-
sions in crossroad states or states that are unfamiliar. For
instance, in the lower-right area of the maze, SPiRL shows
periodic skill terminations due to its fixed-length of skills,
whereas our approach tends to make decisions in states char-
acterized by high conditional action novelty or state novelty.

6.4. Comparison to Other Variable-length Skill
Extraction Methods

We compare the performance of NBDI, relative novelty
(Şimşek & Barto, 2004) and LOVE (Jiang et al., 2022) in the
maze and kitchen environment (Figure 6b). Relative novelty
identifies termination condition based on the assumption
that sub-goals typically show a relative novelty score dis-
tribution with higher scores than those of non-sub-goals.
LOVE is an option framework based model that learns both
options and termination condition from the task-agnostic
demonstrations in terms of minimum description length.
Since LOVE is designed for discrete action space, we used
an MLP layer as the action decoder to handle continuous
actions. Furthermore, since LOVE was only evaluated in
downstream tasks that has the same MDP as the data collec-
tion environment (except the reward function), we evaluated
whether it can transfer to downstream tasks with signifi-
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Figure 8. Illustration of the impact of varying the width and depth
configuration of hidden layer and dataset usage on state-action
novelty estimation. (Left) shows how varying hidden layer con-
figurations (depth and width) influences the estimated state-action
novelty (box plots) and the total number of parameters (blue line).
The x-axis lists different hidden layer setups. (Right) illustrates
how varying the proportion of dataset usage affects novelty esti-
mation.

cantly different environment configuration (Maze 40× 40).
Implementation details of baselines are in Appendix I.4.

As shown in Figure 6b, LOVE performs comparably to
SPiRL in the maze environment, demonstrating its applica-
bility to continuous action spaces. However, its underperfor-
mance compared to our method suggests that the variable
skills learned by LOVE do not effectively generalize to
downstream tasks with significantly different environment
configuration. Moreover, we observed that LOVE’s per-
formance significantly declines as the complexity of the
action space increases (kitchen). NBDI’s high performance
compared to these baseline methods illustrates the need for
a more effective termination condition for skill models in
solving such challenging tasks.

6.5. Critical Decision Points with Suboptimal Data

We investigate how the quality of offline data affects the
performance of our approach. We trained a behavior cloning
(BC) policy on expert-level trajectories to generate mediocre
quality demonstrations. We additionally added weighted
Gaussian random noise (σ) to actions of BC policy to add
stochasticity to the generated dataset. Table 1 shows that
even in a less challenging goal setting compared to Figure
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Figure 9. Comparison of success rates in the maze environment
during the skill-based meta-training phase of SiMPL across 10
meta-training tasks (10 random goal locations). The shaded regions
indicate standard errors over three random seeds.

7, SPiRL fails to reach the goal, while NBDI achieves a
success rate of 28% and 22%. However, as the policy gen-
erating the trajectory becomes more stochastic (Table 1),
it gathers data primarily around the initial state, leading to
an overall reduction in the scale of prediction errors. Thus,
we can see that the level of stochasticity in the dataset in-
fluences critical decision point detection, which remains a
limitation of our work. Visualizations of decision points and
prediction error with suboptimal dataset are in Appendix C.

6.6. Model Capacity and Critical Decision Point
Detection

To assess how the model capacity and dataset utilization
influence critical point detection, we varied the width and
depth of the neural network across different settings. Figure
8 (left) shows that the estimated state-action novelty by ICM
is not affected by the number of parameters used to train
the model. Figure 8 (right) demonstrates that the scale of
the estimated state-action novelty remains consistent even
as the dataset size decreases. We can see that our proposed
approach for detecting critical decision points is robust to
various number of parameters or size of datasets.

7. Applying NBDI to Skill-based Meta
Reinforcement Learning

To explore the broader applicability of our approach, we
investigated its compatibility with a skill-based approach,
SiMPL (Nam et al., 2022) that leverages task-agnostic
demonstrations to solve challenging long-horizon, sparse-
reward meta-RL tasks. Specifically, we apply our method
during the skill extraction phase to learn variable-length
skills in place of fixed-length skills. In the maze environ-
ment, we randomly sampled 10 goal locations for meta-
training. The table below compares the success rate of meta-
policies trained with SiMPL (fixed-length skills) and our
method during the meta-training phase across episodes. In

ep20 ep100 ep300 ep500

SiMPL 0.143±0.063 0.593±0.191 0.667±0.193 0.990±0.006
SiMPL+NBDI 0.560±0.121 0.960±0.021 0.980±0.011 0.993±0.003

Table 2. Comparison of success rates in the maze environment
during the target task learning phase of SiMPL with standard
errors over three random seeds.

Figure 9, the result shows that the extracted variable-length
skills allows the meta-policy to better promote knowledge
transfer between different tasks, helping the meta-policy in
combining the skills to complete complex tasks. We report
mean success rates on the 10 meta-training tasks across 3
different seeds with standard errors. Furthermore, during the
target task learning phase, the meta-policy learned through
our approach leads to significantly better sample efficiency
on the unseen target task. Results in Table 2 indicate that our
approach can be effectively integrated with a broader class
of skill-based methods that leverage task-agnostic demon-
strations.

8. Conclusion
We present NBDI, an approach for learning terminated skills
through a state-action novelty module that leverages of-
fline, task-agnostic datasets. Our approach significantly
outperforms previous baselines in solving complex, long-
horizon tasks and shows effectiveness even under signifi-
cant changes in environment configuration of downstream
tasks. A promising direction for future work is to use
novelty-based decision point identification to learn variable-
length skills in offline skill execution (Ajay et al., 2020;
Hakhamaneshi et al., 2021).
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Figure 10. Ablation in variable-length skills (a), no termination distribution (b), and criteria to determine decision points (c). The shaded
region represents 95% confidence interval across five different seeds.

A.1. Ablation in NBDI

Figure 10a compares the performance of our model (NBDI-th0.3) in the kitchen environment with different state-action
novelty threshold values. We can see that there is no significant improvement in performance compared to SPiRL when the
threshold value is not appropriately chosen. For example, as illustrated in Figure 11, termination distributions learned with
low threshold values can disturb the policy learning by terminating skills in states that lack significance. It illustrates that
threshold value needs to be appropriately chosen to capture meaningful decision points.

A.2. Ablation in No Termination Distribution

Figure 10b shows the performance drop when we do not learn the termination distribution in advance (see Appendix B
for more details). NBDI-NoTermDistr directly uses the state-action novelty module in the downstream learning phase to
terminate skills. The performance gap indicates that the skill embedding space in offline skill extraction learning needs to be
learned with terminated skills to effectively guide the agent in choosing variable-length skills. Thus, it is necessary to jointly
optimize the termination distribution, skill embedding space, and skill prior using the deep latent variable model in offline
skill extraction.

A.3. Ablation in Criteria to Determine Decision Points

Figure 10c shows the performance difference when we use cumulative sum of state-action novelties to learn decision points.
NBDI-CumulativeSum terminates skills once the cumulative sum of state-action novelty reaches or surpasses a predefined
threshold. This comparison implies that accumulating novelties does not lead to the identification of significant termination
points.

Figure 11. A bad example of decision point in the maze environment.
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Figure 12. Performances of our method and baselines in solving downstream tasks. The shaded region represents 95% confidence interval
across five different seeds.

A.4. Comparison to SPiRL with Fixed Average Skill Length of NBDI

Figure 12 shows whether NBDI still outperforms SPiRL when SPiRL uses average skill length of NBDI (SPiRL (avg-fixed)).
The average lengths of skills of NBDI was 26 in the maze environment, 22 in the sparse block stacking environment, and
25 in the kitchen environment. We found NBDI still outperforms SPiRL with those fixed average skill lengths. We also
observed that SPiRL, when set to those average skill lengths, performs worse than SPiRL configured with a fixed skill length
of 10 in the block stacking environment, and better in the maze environment. However, across any fixed skill length ranging
from 10 to 30, there was no instance where SPiRL outperformed NBDI. This demonstrates that our model can effectively
leverage critical decision points in the environment compared to fixed length approaches.

To investigate how frequently the maximum skill length gets reached, we tracked the skill lengths of high-level policy for
each environment during the downstream reinforcement learning process. The percentages of executed skill lengths shorter
than H are as follows: 19.8% in the maze environment, 30.8% in the sparse block stacking environment, and 17.4% in the
kitchen environment. When categorizing the skill lengths into intervals of 1–10, 11–20, and 21–30, the distributions are as
follows: 13.2%, 2.8%, and 84% for the maze environment; 28.6%, 1.6%, and 69.8% for the sparse block stacking; and
16.8%, 0%, and 83.2% for the kitchen.

It can be observed that, for the majority of the time, our high-level policy maximizes temporal abstraction by executing
longer skills (ranging from 21 to 30). However, our method also allows the high-level policy to capture important decision
points through shorter skills (ranging from 1 to 10), promoting more efficient exploration of the state space and enhancing
the transfer of knowledge across various tasks.

Table 3. Truncated skill lengths generated by our method across various tasks with a maximum skill length of H = 30.

SKILL LENGTH h MAZE SPARSE BLOCK STACKING KITCHEN

h < H 19.8% 30.8% 17.4%
1 ≤ h ≤ 10 13.2% 28.6% 16.8%
11 ≤ h ≤ 20 2.8% 1.6% 0%
21 ≤ h ≤ H 84% 69.8% 83.2%
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B. Skill Extraction from Demonstration in NBDI
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Figure 13. Novelty-based Decision Point Identification (NBDI), has two main procedures: (i) novelty learning and skill extraction:
training the state-action novelty model and learning the skill prior, skill embedding space and termination distribution with the pre-trained
novelty model. (ii) skill execution: performing reinforcement learning with termianted skills to solve an unseen task.

B.1. Learning the Skill Prior, Skill Embedding Space and Termination Distribution

To learn the skill embedding space Z , we train a latent variable model consisting of a Long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997) encoder qϕ(z|τ,β) and a decoder pψ(at, βt|z, st). To learn model parameters ϕ and ψ,
the latent variable model receives a randomly sampled experience τ from the training dataset D along with a termination
condition vector β from the state-action novelty module, and tries to reconstruct the corresponding action sequence and its
length (i.e., point of termination) by maximizing the evidence lower bound (ELBO):

log p(at, βt|st) ≥ Ez∼qϕ(z|τ,β),τ∼D[log pψ(at, βt|z, st)︸ ︷︷ ︸
Lrec(ϕ,ψ)

+α (log p(z)− log qϕ(z|τ,β)︸ ︷︷ ︸
Lreg(ϕ)

] (2)

where α is used as the weight of the regularization term (Higgins et al., 2016). The Kullback-Leibler (KL) divergence
between the unit Gaussian prior p(z) = N (0, I) and the posterior log qϕ(z|τ,β) makes smoother representation of skills.

To offer effective guidance in selecting skills for the current state, the skill prior pη(z|st), parameterized by η, is trained by
minimizing its KL divergence from the predicted posterior qϕ(z|τ,β). In the context of the option framework, it can also be
viewed as the process of obtaining an appropriate initiation set I for options/skills. This will lead to the minimization of the
prior loss:

Lprior(η) = Eτ∼D [DKL(qϕ(z|τ,β)∥pη(z|st))] (3)

The basic architecture for skill extraction and skill prior follows prior works (Pertsch et al., 2021a; Hakhamaneshi et al.,
2021), which have proven to be successful. In summary, termination distribution, skill embedding space, and skill prior are
jointly optimized with the following loss:

Ltotal = Lrec(ϕ, ψ) + αLreg(ϕ) + Lprior(η) (4)
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Algorithm 2 Reinforcement learning with NBDI
Input: trained skill decoder pψ(a, β|z, s), discount factor γ, target divergence δ, learning rates λπ, λQ, λω, target update
rate ϵ

1: Initialize replay buffer D, high-level policy πθ(z|s), critic Qξ(s, z), target network ξ̄ = ξ
2: for each iteration do
3: for each environment step do
4: zt ∼ πθ(zt|st)
5: for k = 0, 1, . . . do
6: at+k, βt+k ∼ pψ(at+k, βt+k|zt, st+k)
7: st+k+1 ∼ p(st+k+1|st+k, at+k)
8: if βt+k = 1 or k = H then
9: Break

10: end if
11: end for
12: r̃t ←

∑t+k
i=t γ

i−tR(si, ai)
13: D ← D ∪ {st, zt, r̃t, st+k+1, k}
14: end for
15: for each gradient step do
16: zt+k+1 ∼ πθ(zt+k+1|st+k+1)
17: Q̄ = r̃t + γk

[
Qξ̄(st+k+1, zt+k+1)− ωDKL(πθ(zt+k+1|st+k+1)∥pη(zt+k+1|st+k+1))

]
18: θ ← θ − λπ∇θ [Qξ(st, zt)− ωDKL(πθ(zt|st)∥pη(zt|st))]
19: ϕ← ξ − λQ∇ξ

[
1
2 (Qξ(st, zt)− Q̄)2

]
20: ω ← ω − λω∇ω [ω · (DKL(πθ(zt|st)∥pη(zt|st))− δ)]
21: ξ̄ ← ϵξ + (1− ϵ)ξ̄
22: end for
23: end for
24: return trained policy πθ(zt|st)

Table 4. Skill Prior Hyperparameters

HYPERAPARAMETER VALUE

BATCH SIZE 16
OPTIMIZER RADAM(β1 = 0.9, β2 = 0.999, lr = 1e− 3)
REGULARIZATION WEIGHT α 1.0

SKILL ENCODER
DIM-Z IN VAE 32
HIDDEN DIM 128
# LSTM LAYERS 1

SKILL PRIOR (KITCHEN)
HIDDEN DIM 128
# FC LAYERS 6

SKILL PRIOR (MAZE, BLOCK STACKING)
KERNEL SIZE (4, 4)
CHANNELS 8, 16, 32
# CONVOLUTION LAYERS 3

SKILL DECODER
HIDDEN DIM 128
# HIDDEN LAYERS 6
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B.2. Reinforcement Learning with NBDI

In downstream learning, our objective is to learn a skill policy πθ(z|st) that maximizes the expected sum of discounted
rewards, parameterized by θ. The pre-trained decoder pψ(at, βt|z, st) decodes a skill embedding z into a series of actions,
which persists until the skill is terminated by the predicted termination condition βt. The downstream learning can be
formulated as a SMDP which is an extended version of MDP that supports actions of different execution lengths.

Adapted from Soft Actor-Critic (SAC) (Haarnoja et al., 2018), we aim to maximize discounted sum of rewards while
minimizing its KL divergence from the pre-trained skill prior on SMDP. The regularization weighted by ω effectively
reduces the size of the skill latent space the agent needs to explore.

J(θ) = Eπ
[∑
t∈T

r̃(st, zt)− ωDKL

(
π(zt|st), pη(zt|st)

)]
(5)

where T is set of time steps where we execute skills, i.e., T = {0, k0, k0 + k1, k0 + k1 + k2, . . .} where ki is the variable
skill length of i-th executed skill.

To handle actions of different execution lengths, the following Q-function objective is used:

JQ(ξ) = E(st,zt,r̃t,st+k+1,k)∼D,zt+k+1∼πθ(·|st+k+1)

[
1

2
(Qξ(st, zt)− Q̄)2

]
,

where Q̄ = r̃t+γ
k[Qξ̄(st+k+1, zt+k+1)− ωDKL(πθ(zt+k+1|st+k+1)∥pη(zt+k+1|st+k+1))]

ω represents the temperature for KL-regularization, k denotes the number of time steps elapsed from the start state st to the
termination state st+k+1, and r̃ represents the cumulative discounted reward over the k time steps. The detailed RL learning
loop is described in Algorithm 2 and Figure 13.

B.3. Threshold for environments

In practice, the thresholds we tuned through experiments (see Appendix A.1) approximately correspond to the 97th percentile
of the novelty values computed over task-agnostic demonstrations—e.g., kitchen = 0.3 (97.47th percentile), maze = 50
(96.86th percentile), and block stacking = 40 (96.12th percentile). We hope the percentile-based guidance would help the
readers more easily apply our method across new environments.

Table 5. Downstream RL Hyperparameters

HYPERAPARAMETER VALUE

DOWNSTREAM REINFORCEMENT LEARNING

BATCH SIZE 256
OPTIMIZER ADAM(β1 = 0.9, β2 = 0.999, lr = 3e− 4)
REPLAY BUFFER SIZE 1E6
DISCOUNT FACTOR γ 0.99

1
10

TARGET NETWORK UPDATE RATE ϵ 5e− 3
TARGET DIVERGENCE δ 5 (KITCHEN), 1 (MAZE, SPARSE BLOCK STACKING),

VARIABLE LENGTH SKILL

THRESHOLD OF NOVELTY 0.3 (KITCHEN), 50 (MAZE), 40 (SPARSE BLOCK STACKING)
MAXIMUM SKILL LENGTH H 30
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C. Visualization of Critical Decision Points with Suboptimal Data
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Figure 14. Visualization of visitations and decision points made by SPiRL and NBDI in the maze environment (top: trained with stochastic
BC (σ = 0.5) dataset, bottom: trained with stochastic BC (σ = 0.75) dataset). We sampled 100 trajectories for each trained policy to
observe the points at which they make decisions. Higher percentile colors suggest a relatively greater number of visitation frequencies and
termination frequencies. Note that the termination frequencies are normalized by the overall visitation frequencies for better visualization.

Figure 14 and Figure 15 (top, middle) show that with suboptimal dataset, NBDI is still able to learn termination points
characterized by high conditional action novelty or state novelty. Figure 14a and Figure 14e shows that SPiRL can
only navigate around the initial state using fixed-length skills extracted from the suboptimal dataset, whereas NBDI can
successfully reach the goal efficiently (Figure 14b and Figure 14f).

However, with dataset generated by random walk (Figure 15 (bottom)), it becomes challenging to learn meaningful decision
points. As the policy generating the trajectory becomes more stochastic, it gathers data primarily around the initial state,
leading to an overall reduction in the scale of prediction errors. Thus, we can see that the level of stochasticity in the dataset
influences critical decision point detection.
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Figure 15. Visualization of prediction error of ICM in maze environment (top: trained with stochastic BC (σ = 0.5) dataset, middle:
trained with stochastic BC (σ = 0.75) dataset, bottom: trained with random walk dataset). Note the same offline data that is used to train
ICM was used to compute this prediction error. (A), (B) and (C) are the state-action pairs with the highest prediction error, while (D), (E)
and (F) are the ones with the lowest.
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D. Visualization of Critical Decision Points in Complex Physics Simulation Tasks
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Figure 16. Visualization of critical decision points in MuJoCo (Todorov et al., 2012) environment (top-left: halfcheetah-medium-expert,
top-right: halfcheetah-medium-replay, bottom-left: ant-medium-expert, bottom-right: ant-medium-replay)

We investigated whether meaningful decision points can be found in complex physics simulation tasks. We trained ICM
using different offline datasets provided by D4RL (Fu et al., 2021) (halfcheetah-medium-expert, halfcheetah-medium-replay,
ant-medium-expert, ant-medium-replay) to assess its ability to detect critical decision points. Figure 16 illustrates the
presence of critical decision points in complex physics simulation tasks. For instance, the cheetah has the option of spreading
its hind legs or lowering them to the ground, and the ant has the choice of flipping to the right or lowering themselves
to the ground. However in completely random datasets (halfcheetah-random, ant-random), we were not able to find any
meaningful decision points. Similar to Appendix C, it shows that the degree of stochasticity present in the offline dataset can
influence critical decision point detection.
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E. Train/transfer Domain Similarity
To apply our method to downstream environments with significantly different overall layouts (e.g., a maze with a completely
new structure or a larger-scale block stacking environment with more blocks in random positions), it is necessary to collect
cropped image centered around the agent from task-agnostic demonstrations (visualizations of cropped images are available
in Figure 2). This way, we can extract consistent structural information that can be extracted across multiple task-agnostic
trajectories, which then can be used to detect state-action novelty based decision points even in downstream tasks with
significantly different environment configurations. On the other hand, for environments where the overall layout remains
consistent (e.g. the positions of manipulatable objects in the kitchen environment do not change during downstream task),
we can use any state information that sufficiently describes the environment to apply our method (see Appendix H for
environment details).

Training Data Downstream Tasks

Figure 17. Examples of maze layouts used for training (left) and downstream task (right). The agent starts at the white point and aims to
reach the red point.

F. Task-Agnostic Dataset Size and Coverage
The number of task-agnostic trajectories collected for each environment were as follows: maze (85,000 trajectories), block
stacking (37,000 trajectories), and kitchen (400 trajectories). Since we used image-based observations in the maze and block
stacking environments, and the downstream tasks involve significant configuration changes (e.g., entirely new maze layouts
or a larger-scale block stacking environment with more blocks in random positions), we require a larger set of task-agnostic
demonstrations compared to the kitchen environment, where the overall layout remains consistent across tasks.

Since our goal in maze and block stacking environment is to solve downstream tasks with significantly different environment
configuration, we do not assume that task-agnostic demonstrations fully cover the state space of the downstream tasks.
However, it is important that they provide a good coverage of the observation space. Note we are using cropped image
centered around the agent from task-agnostic demonstrations as observations. This way, we can extract consistent structural
information that can be extracted across multiple task-agnostic trajectories, which then can be used to detect state-action
novelty based decision points even in downstream tasks with significantly different environment configurations.
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G. Comparison to baseline methods on discrete state/action space
To provide an intuitive comparison between NBDI, Relative Novelty (Şimşek & Barto, 2004), and LOVE (Jiang et al., 2022)
in discrete settings, we conducted a case study using a grid-based maze environment (Figure 18). This allowed us to directly
visualize and compare termination points across methods in a controlled, discrete domain. To align with our task-agnostic
setup, we collected diverse expert-level demonstrations from random start and goal positions, and used these datasets to
extract skills and termination points.

Relative Novelty defines novelty at a given state as the ratio between the average novelty of future and past states, measured
within a fixed-size sliding window (n lag). A high value indicates that the agent transitions from a familiar region to a less
familiar one. Following the original formulation, we only evaluated states with sufficient trajectory context on both sides of
the window. As shown in the visualization, Relative Novelty is highly dependent on transition history, often identifying only
a subset of bottleneck states.

LOVE uses a variational inference framework to extract skills based on the Minimum Description Length (MDL) principle
in that its objective is to ”effectively compress a sequence of data by factoring out common structure”. While LOVE employs
a variational inference framework to implement the MDL principle, we used Byte Pair Encoding (BPE) to extract skills
in discrete setting as BPE is a specific formulation of MDL (Gallé, 2019) and it offers a more intuitive and interpretable
formulation of compression. Termination points were visualized based on where the segmented skills terminated during 100
goal-reaching tasks. The results show that terminations vary significantly with the number of trajectories used to extract
skills, as LOVE focuses on capturing common structure rather than consistent bottlenecks.

NBDI terminates skills based on both conditional action novelty and state novelty (Section 4.1). The visualization
demonstrates that NBDI consistently identifies key bottleneck states and exhibits robustness to the number of trajectories
collected in contrast to other methods. Moreover, states with high state novelty often correspond to regions that are rare
or hard to reach within the task-agnostic dataset. By increasing the decision frequency in such unfamiliar states, NBDI
promotes more effective exploration of the state space.

21



A Simple and Effective Termination Condition for Skill Extraction from Task-Agnostic Demonstrations

Figure 18. Visualization of skill termination points in a grid-based maze environment using NBDI (Conditional action novelty, State
novelty), Relative Novelty, and LOVE (Minimum Description Length). Darker shades represent states with a relatively higher frequency
of termination occurrences. Black cells are impassable wall regions in the environment. Top: termination points computed from 100
trajectories. Bottom: results from 10,000 trajectories.
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H. Data and Environment Details
We evaluate NBDI on three environments: one simulated navigation task (Maze navigation) and two simulated robotic
manipulation tasks (Kitchen and Sparse block stacking). We employ the environment configuration and dataset provided by
(Pertsch et al., 2021a) (Maze navigation and Sparse block stacking) and (Fu et al., 2021) (Kitchen) (CC BY 4.0). Note that
task and environment setup differ between the training data and the downstream task, demonstrating the model’s capacity to
handle unseen downstream tasks.

Kitchen Environment The kitchen environment is provided by the D4RL benchmark (Fu et al., 2021), featuring seven
manipulable objects. The training trajectories consist of sequences of object manipulations. The downstream task of the
agent involves performing an unseen sequence of four object manipulations.

The agent is tested by its ability to reassemble the skills learned from the training dataset to solve the downstream task.

• State space: 30-dimensional vector of the agent’s joint velocities and the positions of the manipulatable objects

• Action space: 7-dimensional set for controlling robot joint velocities and a 2-dimensional set for gripper opening/closing
degree

• Reward: one-time reward upon successfully completing any of the subtasks

Maze Navigation The maze navigation environment is derived from the D4RL benchmark (Fu et al., 2021). During the
collection of training data, a maze is generated randomly, and both the starting and goal positions are selected at random as
well. The agent successfully reaches its goal in all of the collected trajectories.

In the downstream task, the maze layout is four times bigger than the one employed during training.

• State space: (x, y)-velocities and an image of local top-down view centered around the agent

• Action space: (x, y)-directions

• Reward: binary reward when the agent’s position is close to the goal (computed using Euclidean distance)

Sparse Block Stacking The sparse block stacking environment is created using the Mujoco physics engine. To gather
training data, a hand-coded data collection policy interacts with a smaller environment with five blocks to stack as many
blocks as possible.

In the downstream task, the agent’s objective is to stack as many blocks as possible in a larger version of the environment
with eleven blocks.

• State space: (x, z)-displacements for the robot and an image of local view centered around the agent

• Action space: 10-dimensional continuous symmetric gripper movements

• Reward: only rewarded for the height of the highest stacked blocks

Differences to (Pertsch et al., 2021a). While (Pertsch et al., 2021a) employed a block stacking environment with dense
rewards (the agent is rewarded based on the height of the stacked tower and for actions like picking up or lifting blocks), we
evaluated our model and the baselines in a sparse block stacking environment, leading to different performance outcomes.
In this setting, the agent is rewarded solely for the height of the tower it constructs, which increases the task complexity.
Furthermore, there have been consistent reports indicating that performance in large maze environments displays a high
level of sensitivity to random seeds, primarily due to the high stochasticity of the task. For the five different seeds that we
used to compare the algorithms, we found the performance to be generally lower than what was previously reported, mainly
due to the sensitivity to seeds.
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I. Implementation Details
Our codebase builds upon the released code of SPiRL (Pertsch et al., 2021a). Our code is available at:
https://github.com/ku-dmlab/NBDI.

I.1. Termination Improvement and Novelty

We present termination improvement and conditional action novelty in a simple 8× 8 grid maze domain. As we mentioned
in Appendix H, training data for the state-action novelty module is collected with diverse tasks. Thus, we set up the
environment as follows: We randomly select one starting location and three goal locations to generate three trajectories
for each goal location. The goal-reaching data collection policy randomly executes a discrete action, moving towards four
different directions (left, right, forward, backward) while avoiding moving toward walls. The agent receives a binary reward
when reaching the goal state.

We define an option o = ⟨I, π, β⟩ where a deterministic policy π follows the given trajectory, an initiation set I ⊆ S defines
all states that the policy visits, and a termination condition β defines states where the option terminates (every option has a
length of three). Each set of options, denoted as Og for each goal g = 1, 2, 3, contains distinguishable options for each goal
location. The frequencies of termination improvement occurrences in each state for each goal setting have been aggregated
to generate Figure 3.

Using the trajectories collected from different goals, state novelty and conditional action novelty are simply computed as
1

N(s) and N(s)
N(s,a) respectively. N(s) represents the number of times a discrete state s has been visited and N(s, a) represents

the number of times a discrete state-action pair has been used.

I.2. State-Action Novelty Module

We use Intrinsic Curiosity Module (ICM) to calculate state-action novelty for both image-based and non-image-based
observations. The feature encoder ϕ, responsible for encoding a state st into its corresponding features ϕ(st), is implemented
differently for each environment. In the kitchen environment, it consists of a single fully-connected layer with a hidden
dimension of 120. The both maze and sparse block stacking environments have three convolution layers with (4, 4) kernel
sizes and (8, 16, 32) channels.

The forward dynamic model f takes at and ϕ(st) as inputs to predict the feature encoding of the state at time step t+ 1. In
the kitchen environment, the structure of the dynamic model is the same as its feature encoder. In the maze and sparse block
stacking environment, a single fully-connected layer with hidden dimension 52 and 70 have been used, respectively.

The state-action novelty χ(s, a) is computed as the squared L2 distance between ϕ̂(ϕ(st), at) and ϕ(st+1), representing the
prediction error in the feature space. We employed the Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning rate of
1e− 3 to train the ICM. We found that state-actions within the top 1% prediction error percentile serve well as a critical
decision points, and used the corresponding threshold to learn the termination distribution.

I.3. BC+SAC and IQL+SAC

We trained flat offline learning methods, including Behavior Cloning (BC) and Implicit Q-Learning (IQL) (Kostrikov et al.,
2021), using an offline dataset. In the downstream RL step, the trained policy p(a|s) imposes a KL-divergence penalty on
the SAC agent. In IQL, we set the expectile hyperparameter τ to 0.7 and the inverse temperature hyperparameter β to 0.5
across all tasks.

J(θ) = Eπ

[∑
t∈T

r(st, at)− αDKL (π(at|st), p(at|st))

]
(6)

I.4. LOVE and Relative novelty

Since LOVE (Jiang et al., 2022) requires a discrete action space for option learning, we implemented some modifications.
In maze environment, we discretized the continous action space into 8 discrete actions. In the kitchen environment, we
modified the action decoder to handle continuous distribution.
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Table 6. State-Action Novelty Module Hyperparameters

HYPERAPARAMETER VALUE

BATCH SIZE 150
OPTIMIZER ADAM(β1 = 0.9, β2 = 0.999, lr = 1e− 3)
LOSS WEIGHT β 0.2
SCALING FACTOR η 1.0

KITCHEN
FEATURE ENCODER

HIDDEN DIM 120
FORWARD DYNAMIC MODEL

HIDDEN DIM 120

MAZE
FEATURE ENCODER

KERNEL SIZE (4, 4)
CHANNELS 8, 16, 32

FORWARD DYNAMIC MODEL
HIDDEN DIM 52

SPARSE BLOCK STACKING
FEATURE ENCODER

KERNEL SIZE (4, 4)
CHANNELS 8, 16, 32

FORWARD DYNAMIC MODEL
HIDDEN DIM 70

Since relative novelty (Şimşek & Barto, 2004) used pseudo counts to measure state novelty in discrete environments, we
could not apply this method to continuous environments straightforwardly. Furthermore, since this technique requires
environments that support backward transitions for computing the relative novelty score, its direct application in general
environments seems challenging. Thus, to align with the author’s intuition that target states should exhibit higher novelty
scores compared to non-target states, we utilized our state novelty module χ(s) to measure the state novelty, and trained a
neural network with offline datasets to estimate the relative novelty score of states.

I.5. Experiments Compute Resources

Each experiment was conducted on a single CPU (Intel Xeon Gold 6330) with 256GB of RAM and a single GPU (NVIDIA
RTX 3090). Each training session took about 36 hours (12 hours for prior learning, 24 hours for downstream learning),
utilizing approximately 30% of the RAM and 25% of the GPU memory. We implemented all RL algorithms using PyTorch
v1.3 and executed them on Ubuntu 22.04.04 LTS.
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