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ABSTRACT

Online action detection aims at identifying the ongoing action in a streaming video
without seeing the future. Timely and accurate response is critical for real-world
applications. In this paper, we introduce Bayesian knowledge distillation (BKD),
an efficient and generalizable framework for online action detection. Specifically,
we adopt a teacher-student architecture. During the training, the teacher model
is built with a Bayesian neural network to output both the feature mutual infor-
mation that measures the informativeness of historical features to ongoing action
and the detection uncertainty. For efficient online detection, we also introduce a
student model based on the evidential neural network that learns the feature mu-
tual information and predictive uncertainties from the teacher model. In this way,
the student model can not only select important features and make fast inference,
but also efficiently quantify the prediction uncertainty by a single forward pass.
We evaluated our proposed method on three benchmark datasets including THU-
MOS’14, TVSeries, and HDD. Our method achieves competitive performance
with much better computational efficiency and much less model complexity. We
also demonstrate that BKD generalizes better and is more data-efficient by ex-
tensive ablation studies. Finally, we validate the uncertainty quantification of the
student model by performing abnormal action detection.

1 INTRODUCTION

Online action detection (OAD) De Geest et al. (2016) aims at identifying the ongoing action in a
streaming video based on the historical observations. Different from the offline setting Shou et al.
(2016); Zeng et al. (2019), it only has the past information and makes the prediction as soon as
the action takes place. It has many important applications such as autonomous driving Chen et al.
(2020), visual surveillance Sultani et al. (2018), and human-robot interaction Goodrich et al. (2008).
OAD is challenging due to the incomplete observations of actions and redundant information among
inputs such as background and irrelevant actions. Also, computational efficiency is a big concern for
development on edge devices with limited computing resources. In addition, capturing the predictive
uncertainty and generalizing to unseen environments are difficult, which are required by safety-
critical applications such as autonomous driving.

To address these challenges, we introduce Bayesian knowledge distillation (BKD) for efficient and
generalizable online action detection. We aim to learn a lightweight model that can make fast in-
ference and uncertainty quantification. Specifically, we adopt a teacher-student architecture Hinton
et al. (2015) for knowledge distillation. The teacher model is built in a Bayesian manner to model
the posterior distribution of model parameters. It employs the mutual information (MI) between
historical features and the ongoing action to select the most informative features for current action
detection. The teacher model also quantifies the epistemic uncertainty of the action detection. The
teacher model, however, is computationally expensive and is thus not suitable for online action de-
tection. To address this challenge and inspired by evidential deep learning Ulmer et al. (2023) for
uncertainty quantification, we proposed an evidential probabilistic student model. It is composed
of an attention network and an evidential probabilistic neural network. The mutual information and
distribution of the teacher model are distilled to these two components respectively. In this way,
the student model can generate spatial-temporal attention masks that select important features with
high mutual information. In the meantime, it can also quantify the predictive uncertainty by a single
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forward pass since it inherits the knowledge of the Bayesian teacher model. As the knowledge of
Bayesian teacher model is transferred, we name this process as Bayesian knowledge distillation.

We evaluate the performance and efficiency of BKD on benchmark datasets including THU-
MOS’14 Idrees et al. (2017), TVSeries De Geest et al. (2016), and HDD Ramanishka et al. (2018).
We also demonstrate the data-efficiency and generalization ability of BKD by experiments with
reduced training data and cross settings. In the end, we validate the uncertainty quantification of
student model by performing and abnormal action detection using the quantified uncertainties.

Contributions. 1) We introduce a Bayesian deep learning model for active online action detection
that selects the most informative features based on mutual information and quantifies the action de-
tection uncertainties. 2) we introduce an evidential deep learning model that quantifies its detection
uncertainties in a single forward pass. We further introduce a knowledge distillation procedure that
distills mutual information and predictive uncertainties from the Bayesian model to the evidential
model, allowing the evidential network to perform feature selection using mutual information and to
output Bayesian predictive uncertainties. After the distillation, the evidential model can efficiently
select the most informative features and to quantify predictive uncertainty. 3) Our proposed BKD
achieves competitive performance on benchmark datasets with faster inference speed and less model
complexity. We also demonstrate it generalizes better and is more data-efficient.

2 RELATED WORK

Online action detection. For the model architecture, RNN-based designs Li et al. (2016); Gao
et al. (2017); De Geest & Tuytelaars (2018); Xu et al. (2019); Eun et al. (2020; 2021); Chen et al.
(2022); Han & Tan (2022); Kim et al. (2022b); Gao et al. (2021); Ye et al. (2022) are widely adopted
because of RNN’s temporal modeling capability. Typically, Xu Xu et al. (2019) proposed temporal
recurrent network (TRN) that leverages both the historical information and predicted future features
to detect the ongoing action. Thanks to the self-attention mechanism and the parallel computing
property, Transformer-based methods Wang et al. (2021); Xu et al. (2021); Yang et al. (2022); Kim
et al. (2022a); Zhao & Krähenbühl (2022); Rangrej et al. (2023); Hedegaard et al. (2022); Cao et al.
(2023); Wang et al. (2023) become the mainstream for online action detection. Wang Wang et al.
(2021) proposed OadTR that makes use of both historical information and future prediction. Xu
Wang et al. (2021) proposed long short-term Transformer (LSTR) that captures both the long-range
and short-term dependencies by two memory units. To overcome the latency of feature extraction,
Cao et al. (2023) proposed E2E-LOAD for end-to-end online action detection. Besides RNN and
Transformer, graph modeling is also studied for online action detection Elahi & Yang (2022). To
leverage the video-level annotations instead of the dense frame-level annotations, weakly-supervised
methods detection Gao et al. (2021); Ye et al. (2022) are also explored for OAD.

Knowledge distillation. Recently, deep neural networks have been widely applied for real-world
applications. However, the scale of the model and computation cost are increasing dramatically,
which raises challenges to devices with limited resources Gou et al. (2021). Thus, knowledge dis-
tillation (KD) has been introduced for model compression and acceleration. Here we review the
main KD techniques based on teacher-student architecture, which is adopted by our BKD. Firstly,
some approaches revise the teacher model with fewer layers and fewer channels in each layer Wang
et al. (2018); Zhu et al. (2018); Li et al. (2020). In another way, the quantized version of the teacher
model is saved to be used as the student model Polino et al. (2018); Mishra & Marr (2017); Wei
et al. (2018). Also, there are work building small networks with efficient basic operations Howard
et al. (2017); Zhang et al. (2018); Huang et al. (2017). Besides, global network structure can also be
optimized to build the student model Liu et al. (2020); Xie et al. (2020); Gu & Tresp (2020).

Evidential deep learning for uncertainty estimation. Different from existing Bayesian uncertainty
estimation methods Lakshminarayanan et al. (2017); Gal & Ghahramani (2016); Lakshminarayanan
et al. (2017) that use multiple parameter sets and forward passes, evidential deep learning aims
at using a factorization of the posterior predictive distribution to allow computing uncertainty in a
single forward pass and with a single set of weights Ulmer et al. (2023). Specifically, it postulate
that the target variable adheres to a conjugate distribution, whose parameters are treated as random
variables. Some approaches Malinin & Gales (2018; 2019); Nandy et al. (2020) acquire conjugate
distributions from out-of-distribution (OOD) data. Other methods Charpentier et al. (2020); Chen
et al. (2018); Sensoy et al. (2018) leverage ensemble knowledge to learn the conjugate distribution.
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Figure 1: Overall framework of Bayesian knowledge distillation (BKD). The input of model is
a streaming video. A pretrained backbone is used to extract the features of each frame. During
the training, the Bayesian teacher model generates the mutual information (MI) and multiple sets of
predictions. The student model is composed of an attention network and an evidential probabilistic
neural network, which learn the MI and distributions from the teacher model respectively. It can
actively select relevant features to perform fast inference and uncertainty quantification.

3 PROPOSED APPROACH

In this section, we first give an overview of the proposed Bayesian knowledge distillation (§ 3.1).
Then we formulate the online action detection task (§3.2). Next, we introduce the Bayesian teacher
model (§3.3) and evidential probabilistic student model (§3.4). In the end, we give the training and
inference procedures (§3.5).

3.1 OVERVIEW

The overall framework is shown in Figure 1. The input is a streaming video, features are extracted
by a pretrained backbone. During the training, the Bayesian teacher model generates the mutual
information and action predictions, which are distilled to the evidential probabilistic student model
for feature selection and uncertainty quantification respectively. During the testing, only the student
model is kept to perform fast inference and efficient uncertainty quantification.

3.2 PROBLEM FORMULATION

Online action detection(OAD) aims at recognizing the ongoing action in a streaming video with
only the past and current observations. Denote the input video as V = [I1, I2, ..., IT ], where T
is the length of video and It denotes the frame at current time t. The online action detection is
formulated as a classification problem: y∗t = argmaxc p(ŷt = c|Vt), where ŷt is the prediction, c is
the class label, and Vt = {I1, ...It} is the available frame set at time t. A feature extractor is used
to process each frame and generate the corresponding feature vector. Denote the feature set at time
t as F t = {F t

1 , ..., F
t
t }. The feature at time i is F t

i ∈ RJ , where J is the feature dimension of each
frame.

3.3 BAYESIAN TEACHER MODEL

One of the objectives of the teacher model is to generate the mutual information (MI) between past
features and the ongoing action. The MI indicates the relevance of features so it can be used to su-
pervise the student model for feature selection. Denote a past feature as F t

ij , where i ∈ {1, ..., t} is
the time index, j ∈ {1, ..., J} is the feature index within each frame, and t denotes the current time.
We aim to obtain the mutual information between F t

ij and the ongoing action yt. An illustration is
shown in Figure 2. To compute mutual information, we build the teacher model in a Bayesian man-
ner. Different from point estimation, Bayesian method constructs a posterior distribution of model
parameters. By integrating predictions from multiple models, it is less likely to be overfitting and the
predictive uncertainty can be accurately quantified. Additionally, Bayesian method is more robust
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Figure 3: Illustration of distribution distillation by evidential
probabilistic neural network.

when training data is insufficient. We term the mutual information computed using the Bayesian
method Bayesian Mutual Information (BMI).

Denote the model parameters of the teacher model as θ and we treat them as probability distributions.
Then the BMI between a past feature F t

ij and the ongoing action yt can be written as:

I[yt;F t
ij |D] = H[yt|F t

−ij ,D]−H[yt|F t,D] (1)

where D denotes the training data, H denotes the entropy, and F t
−ij is the feature set at time t

excluding F t
ij , i.e. F t

−ij = F t/F t
ij . By definition, the entropy term is written as:

H[yt|F t,D] = −
∑
yt∈Y

p(yt|F t,D) log p(yt|F t,D) (2)

where Y = {0, 1, ..., C} is the action class set. 0 represents background class and C is the number
of action classes. The prediction distribution in Eq. (2) can be computed as:

p(yt|F t,D) =

∫
p(yt|F t, θ)p(θ|D)dθ ≈ 1

K
p(yt|F t, θk), where θk ∼ p(θ|D) (3)

In Eq. (3), we use the sample average to approximate it since it is impractical to integrate over all
the possible parameters. Similarly, we can compute H[yt|F t

−ij ,D].

To obtain the posterior distribution p(θ|D), we perform the Laplace approximation (LA). To re-
duce the computation cost, we adopt a last-layer Bayesian setting Kristiadi et al. (2020). Only the
posterior distribution of last-layer parameters is modeled, while keeping the remaining parameters
deterministic. Later, we will show this is efficient and effective. Specifically, we assume the last-
layer parameters follows a Gaussian distribution.

Firstly, we train the teacher model under the deterministic setting by a cross entropy loss:

θ∗ = argmin
θ

L(D; θ) = argmin
θ

( N∑
n=1

l(xn, yn; θ) + r(θ)
)

= argmin
θ

( N∑
n=1

− log p
(
yn|fθ(xn)

)
− log p(θ)

) (4)

where D = {xn, yn}Nn=1 is the training set and r(θ) is a regularizer such as weigh regularizer (a.k.a.
weight decay). So θ∗ is indeed a maximum a posteriori (MAP) estimate.

The Laplace approximation uses a second-order Taylor expansion of L(D; θ) around θ∗ to construct
a Gaussian approximation to p(θ|D):

L(D; θ) ≈ L(D; θ∗) +
1

2
(θ − θ∗)T (∇2

θL(D; θ)|θ∗)(θ − θ∗) (5)

where the first-order term vanishes at θ∗. So the Laplace posterior approximation can be obtained
as:

p(θ|D) ≈ N (θ∗,Σ), with Σ := (∇2
θL(D; θ)|θ∗)−1 (6)

After the LA, we sample K times from p(θ|D) to obtain K sets of parameters {θ1, ..., θK}. Then
we approximate the prediction distribution in Eq. (3) and further compute the mutual information
of each feature. The BMI we computed are based on multiple models from the teacher model. We
use BMI to supervise the attention network of student model.
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3.4 EVIDENTIAL PROBABILISTIC STUDENT MODEL

While the teacher model can perform accurate feature selection, uncertainty quantification, and ac-
tion detection, it is computationally expensive and hence is unsuitable for online action detection. To
address this issue, we introduce a student model. The student model should be efficient and simul-
taneously inherits the Bayesian formalism in the teacher model. To achieve this goal, we propose
to implement the student model using an evidential probabilistic neural network. Compared with
teacher model, the student model is much smaller and can achieve real-time inference, while simul-
taneously employing mutual information to select features and to produce the predictive uncertainty.

Attention network. The attention network actively selects high mutual information features from
the inputs by generating a spatial-temporal attention mask At using a fully-connected network and
applying to the original features by element-wise product. In this way, irrelevant features are masked
out since they have low mutual information to the ongoing action. The training of the attention
network is supervised by the BMI It from the teacher model. By minimizing the mean squared error
(MSE) loss Latt between At and It, the attention network can generate the BMI-aware attention
mask without computing the BMI. Latt can be written as below:

Latt = MSE(At, σ(It)) =
1

tJ

∑
i,j

||At
ij − σ(I[yt;F t

ij |D])||2 (7)

where σ(·) is the sigmoid function.

Evidential probabilistic neural network (EPNN) and distribution distillation. To distill the
knowledge and enable the student model to efficiently quantify predictive uncertainty, we introduce
EPNN. We aim to transfer the distribution of the Bayesian teacher model to the student model,
namely the distribution distillation. By doing so, the student model can capture the predictive un-
certainty since it inherits the knowledge of Bayesian teacher model.

Under the classification setting, the target output of student model y follows a categorical distribution
with parameter λ, y ∼ p(y|λ) = Cat(λ). For example, λ represents the probability after the final
softmax layer. We treat λ as a random variable and assume it follows Dirichlet distribution, i.e.
λ ∼ p(λ|α(x, ψ)) = Dir(α(x, θ)), where α denotes the parameters of the Dirichlet distribution
and ψ denotes student model parameters. Similarly, the teacher model has posterior distribution
p(λ|x,D) =

∫
p(λ|x, θ)p(θ|D)dθ. During the distillation, we transfer teacher posterior distribution

p(λ|x,D) to the student posterior distribution p(λ|α(x, ψ)). An illustration is shown in Figure 3.
Specifically, we minimize the KL-divergence between these two distributions as below:

Ldis = KL(p(λ|x,D)||p(λ|α(x, ψ)))

∝ −
C∑

c=1

log(Γ(αc)) + log Γ(

C∑
c=1

αc)− Ep(θ|D)[

C∑
c=1

(αc − 1) log λc(x, θ)]
(8)

where C is the number of action classes. Detailed derivation of Ldis can be found in Appendix.
Since the different predictions of the teacher model. The complete distribution distillation proce-
dures are summarized in Algorithm 1 in the Appendix.

Joint training. The student model is jointly trained for online action detection, attention distillation,
and distribution distillation. The total loss function L is below:

L = Lce + λ1Latt + λ2Ldis (9)

where Lce is the cross-entropy loss for online action detection. λ1 and λ2 are hyper-parameters that
emphasize the attention network and distribution distillation. Although the distribution distillation
can make the student model perform online action detection, we still perform joint training because
the Bayesian teacher model is not perfect and its posterior distribution is approximated, which may
introduce error to the student model. The joint training brings two benefits: 1) the online action can
be improved with the supervision of ground-truth label; 2) the negative log-likelihood Lce makes
the training faster and more stable as indicated in Fathullah et al. (2023).

Uncertainty quantification. After training the EPNN, the Dirichlet distribution of the student
model obtained the knowledge of the Bayesian teacher model. The uncertainties can be computed
by a single forward pass with closed-form solutions. Apart from the total predictive uncertainty, the
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student model can also output the epistemic uncertainty, which indicates the limited knowledge in
the modeling process.

Specifically, the total uncertainty and epistemic uncertainty can be quantified as:

H[p(y|x, θ)] =
C∑

c=1

αc

α0
log

αc

α0
, where α0 =

C∑
c=1

αc

I[y;λ|α] = −
C∑

c=1

αc

α0

(
ln
αc

α0
Ψ(αc + 1) + Ψ(α0 + 1)

) (10)

where Ψ(·) is the dgamma function. Details derivations can be found in Appendix.

3.5 TRAINING AND INFERENCE

To better train the student model, we adopt a two-stage training strategy. After obtain the mutual
information from the teacher model, we first train the attention network of the student model with
the attention loss Latt in Eq. 7. Then we jointly train the student model with the total loss L in Eq. 9.
We demonstrate this works better in Sec. 4.5. During the inference, the student model only needs a
forward pass to obtain the prediction and uncertainty quantification by Eq. 10.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

THUMOS’14 Idrees et al. (2017) is a dataset for video-based temporal action localization. We use
the validation set with 200 videos for training and test set with 213 videos for evaluation. There are
20 action classes and a background class. We ignore the frames with ambiguous labels. Following
the settings in Gao et al. (2017); Xu et al. (2019), we adopt the mean Average Precision (mAP) as
the evaluation metric.

TVSeries De Geest et al. (2016) is a dataset collected from real TV series. It contains 27 episodes
with 30 daily actions. It is a challenging dataset due to the viewpoints changing and occlusions in the
videos. To counter the imbalanced data distribution, we adopt the mean calibrated Average Precision
(mcAP) De Geest et al. (2016) as the evaluation metric. It is computed as cAP =

∑
k cPrec(k)×

1(k)/P , where cPrec = TP/(TP + FP/ω), P is the total number of positive frames and 1(k)
is an indicator function that is equal to 1 if frame k is a true positive. The mcAP is the mean of
calibrated average precision of all action classes.

HDD Ramanishka et al. (2018). HRI Driving Dataset (HDD) is a dataset for learning driver behavior
in real-life environments. It contains 104 hours of real human driving in the San Francisco Bay Area
collected by an instrumented vehicle with different sensors. There are 11 goal-oriented driving
actions. Following the settings in Ramanishka et al. (2018), we use 100 sessions for training and 37
sessions for testing. And only the sensor data is used as the input. mAP is used as the evaluation
metric for this dataset.

4.2 SETTINGS

Feature extraction. Following the settings in Eun et al. (2020); Xu et al. (2019; 2021), we use
TSN Wang et al. (2016) to extract the features for THUMOS’14 and TVSeries. Video frames are
extracted at 24 fps and the chunk size is set to 6. To better capture the spatial-temporal dependencies,
we adopt the multi-scale vision Transformer Fan et al. (2021) to extract RGB features. The optical
flow features are extracted with BN-Inception Ioffe & Szegedy (2015). The backbone is pretrained
on ActivityNet Heilbron et al. (2015) and Kinetics-400 Carreira & Zisserman (2017) separately for
evaluation. For HDD dataset, the sensor data is used as the input.

Implementation details. The BKD framework is implemented in PyTorch Paszke et al. (2017).
The model is trained by the Adam optimizer Kingma & Ba (2014) with a learning rate of 10−4 and
a weight decay of 5 × 10−5. The batch size is set to 32. The experiments were conducted on two
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Table 1: Experiment results on THUMOS’14, TVSeries and HDD. The results on THUMOS’14
and HDD are reported as mAP (%). The results on TVSeries are reported as mcAP (%). For HDD,
⋆ indicates RGB data is used as the input.

Method Architecture THUMOS’14 TVSeries HDD
ANet Kinetics ANet Kinetics Sensor

RED Gao et al. (2017)

RNN

45.3 - 79.2 - 27.4
FATS Kim et al. (2021) - 59.0 81.7 84.6 -
TRN Xu et al. (2019) 47.2 62.1 83.7 86.2 29.2
IDN Eun et al. (2020) 50.0 60.3 84.7 86.1 -
PKD Zhao et al. (2020) - 64.5 - 86.4 -
WOAD Gao et al. (2021) - 67.1 - - -
OadTR Wang et al. (2021)

Transformer

58.3 65.2 85.4 87.2 29.8
CoOadTR Hedegaard et al. (2022) 56.1 64.2 87.6 87.7 30.6
Colar Yang et al. (2022) 59.4 66.9 86.0 88.1 30.6
LSTR Xu et al. (2021) 65.3 69.5 88.1 89.1 -
Uncertainty-OAD Guo et al. (2022) 66.0 69.9 88.3 89.3 30.1
TeSTra Zhao & Krähenbühl (2022) 68.2 71.2 - - -
GateHUB Chen et al. (2022) 69.1 70.7 88.4 89.6 32.1
MAT Wang et al. (2023) 70.4 71.6 88.6 89.7 32.7
E2E-LOAD Cao et al. (2023) - 72.4 - 90.3 48.1⋆

BKD (ours) Transformer 69.6 71.3 88.4 89.9 32.5

Nvidia RTX 3090 Ti GPUs. The number of epochs is set to 25. Ablation studies on existing methods
are based on their officially released codes.

4.3 MAIN EXPERIMENT RESULTS AND COMPARISONS

We evaluate BKD on benchmark datasets and make a comprison with other methods in Table 1. The
performance of BKD student model is reported. Our BKD achieves 71.3% mAP on THUMOS’14,
which is slightly lower than the 72.4% from E2E-LOAD. On TVSeris, BKD achieves 89.9% mcAP,
which is 0.4% lower than the state-of-the-art. On HDD, BKD achieves 32.5% mAP with sensor in-
put, which is 0.2% lower than the MAT. In general, our BKD achieves very competitive performance
for OAD. In the following parts, we show the other superior properties of BKD while keeping high
detection accuracy.

Table 2: Comparison of computation efficiency and model complexity. The mAP is reported on
THUMOS’14 with Kinetics-pretrained features. Our proposed BKD has less model complexity and
much computational cost. And the inference speed is much faster than other methods.

Method Modality
Model Inference Speed (FPS)

mAP (%)Parameter GFLOPs Optical Flow RGB Feature Flow Feature ModelCount Computation Extraction Extraction
TRN

RGB + Flow

402.9M 1.46 8.1 70.5 14.6 123.3 62.1
OadTR 75.8M 2.54 8.1 70.5 14.6 110.0 65.2
LSTR 58.0M 7.53 8.1 70.5 14.6 91.6 69.5
GateHUB 45.2M 6.98 8.1 70.5 14.6 71.2 70.7
MAT 94.6M - 8.1 70.5 14.6 72.6 71.6
BKD (ours) 18.7M 0.46 8.1 70.5 14.6 169.6 71.3

4.4 COMPUTATIONAL EFFICIENCY AND MODEL COMPLEXITY

We build the Bayesian knowledge distillation in order to make it more practical for real-time appli-
cations. A comparison of computation efficiency and model complexity is shown in Table 2. While
keeping a high detection accuracy, our proposed BKD has much less model complexity and com-
putational cost. And the inference speed of the model is much higher compared to other methods.
Recently, Cao et al. (2023) proposed an end-to-end OAD framework to avoid the latency from the
frame and feature extraction parts, which leads to higher overall inference speed. Here, we mainly
compare the model inference speed instead of the pre-processing part.

7



Under review as a conference paper at ICLR 2024

(a) THUMOS’14-ANet (b) THUMOS’14-K400 (c) TVSeries-ANet (d) TVSeries-K400
Figure 4: Experiment results of training with small-scale data. We reduce the training data from
100% to 10% and compared with TRN Xu et al. (2019), OadTR Wang et al. (2021), and LSTR Xu
et al. (2021). The results are plotted for THUMOS’14 and TVSeries with both ActivityNet and
Kinetics pretrained features. Our proposed BKD outperforms all others when training data is limited.

4.5 ABLATION STUDIES

Training strategies. To demonstrate the effectiveness of two-stage training strategy, we compared
it with two more training strategies. One is jointly training the attention network and EPNN by the
total loss in Eq. 9. The other is firstly training the attention network by the attention loss. Then we
freeze the weights of attention network and train the EPNN by the Latt and Lce. We refer the first
one as joint training and the second one as separate training. The performance comparison is shown
in Table 3. The results show that the two-stage training outperforms the other two strategies on both
THUMOS-14 and TVSeries with different features, which demonstrates its effectiveness.

Training with small-scale data. By applying the mutual information based feature selection mech-
anism, we expect BKD to be more data-efficient when the amount of training data is limited. We
reduce the training data from 100% to 10% and compare with other methods. The results on THU-
MOS’14 and TVSeries are plotted in Figure 4. When training data is reduced, BKD has less perfor-
mance decay and outperforms other methods, which demonstrates that BKD is more data-efficient.

Number of historical frames. At time t, BKD takes a certain number of past frames to predict the
ongoing action. To study the long-range and short-term modeling capability of BKD, we vary the
number of past frames as the input. The experiment results are shown in Table 4. THUMOS’14 and
TVSeries are extracted at 6 fps. HDD is extracted at 3fps. So the optimal number of frames on HDD
is 32.

Table 3: Ablation study of different training
strategies. The two-stage training gives the
best performance.

Training THUMOS’14 TVSeries
ActivityNet Kinetics AcivityNet Kinetics

Joint 68.0 70.5 84.6 87.9
Separate 63.0 66.9 80.2 83.4
Two-stage 69.6 71.3 88.4 89.9

Table 4: Ablation study of different number of
past frames

Dataset Feature Number of past frames
8 16 32 64 128

THUMOS’14 ANet 37.3 57.3 68.0 69.6 65.9
Kinetics 46.1 59.0 70.4 71.3 69.2

TVSeries ANet 62.5 76.6 87.3 88.4 84.1
Kinetics 66.5 78.9 88.4 89.9 87.9

HDD Sensor 29.9 31.4 32.5 31.8 30.0

Generalization. To test the generalization capability of the model, we perform the Cross-View and
under occlusion experiments on TVSeries dataset. Following the settings in Guo et al. (2022), the
training set and test set are from different view angles. For the occlusion, the training data does
not contain occlusion and the testing data is occluded. The experiment results and comparison are
shown in Table 5. The results show that BKD generalizes better under different conditions.

Balance of the loss function. In the second training stage of BKD, the total loss in Eq. 9 is composed
of three terms. λ1 and λ2 are the weights for attention loss and distribution distillation loss. To study
the balance of all three terms, we train the model with different λs on THUMOS-14 and TVSeries.
the comparisons are plotted in Figure 5. We empirically choose λ1 = 0.4 and λ2 = 6 since they
give the best performance.
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Figure 5: Ablation study of λ1 and λ2 on THU-
MOS’14 with ActivityNet and K400 features.

Table 5: Cross-view and occlusion experi-
ments results on TVSeries.

Method CV (%) Occ. (%)
TRN Xu et al. (2019) 65.8 85.2
OadTR Wang et al. (2021) 66.2 87.7
Uncertainty-OAD Guo et al. (2022) 67.3 89.5
Colar Yang et al. (2022) 66.7 88.3
LSTR Xu et al. (2021) 69.5 89.4
TeSTra Zhao & Krähenbühl (2022) 70.2 89.9
BKD (ours) 74.1 91.5

Effectiveness of Bayesian mutual information. To verify the effectiveness Bayesian mutual infor-
mation, we first compare with the model without BMI. Specifically, we trained the student model
with the same evidential probabilistic neural network without the attention network. The total loss
function is L = Lce +λ2Ldis and we grid-searched λ2 to obtain the best accuracy. In addiction, we
compute the mutual information based on a single prediction instead of BMI and trained the model
by the same loss function in Eq.9. The results are shown in Table 6. From the results, the BKD with
BMI outperforms other two methods, which demonstrates the effectiveness of the BMI.

Table 6: Effectiveness of BMI. BKD-No-BMI de-
notes the model without attention network and
BKD-MI denotes the model with normal MI.

Model THUMOS’14 TVSeries
ActivityNet Kinetics AcivityNet Kinetics

BKD-No-BMI 63.1 64.8 86.5 87.4
BKD-MI 67.2 68.0 87.9 88.5
BKD 69.6 71.3 88.4 89.9

Table 7: Experiment results of abnormal action
detection on THUMOS’14 and TVSeries.

Uncertainty THUMOS’14 (%) TVSeries (%)
Total 80.49 65.10
Epistemic 86.26 69.02
Aleatoric 62.51 39.83

4.6 VERIFICATION OF UNCERTAINTY QUANTIFICATION

Abnormal action detection. To verify the uncertainty quantification, we conduct experiments for
abnormal action detection. In THUMOS’14, there are twenty action classes, a background class,
and an “ambiguous” class. The ambiguous class refers to frames that are difficult to identify during
the labeling process. We consider them as the outlier data or abnormal action. We utilize the
quantified uncertainties in Eq. 10 as well as the aleatoric uncertainty to detect abnormal action.
Specifically, if the predictive uncertainty is above a certain threshold, we declare it as an outlier.
The experiment results on THUMOS’14 and TVSeries are shown in Table 7. From the results, the
epistemic uncertainty leads to best detection accuracy and aleatoric uncertainty is the worst. This is
because epistemic uncertainty captures the lack of knowledge and it is inversely proportional to the
data density. And Aleatoric uncertainty captures the noise or randomness in the data. This verifies
the effectiveness of the uncertainty quantification of the evidential probabilistic student model.

LongJumpLongJump BackgroundBG

(a) a

Background BackgroundBackground BPBP

(b) b
Figure 6: Qualitative results. The curves are the prediction confidence of the ground-truth actions.

5 CONCLUSION

We introduce Bayesian knowledge distillation for efficient and generalizable online action detection.
By distilling the mutual information and distributions of a Bayesian teacher model to an evidential
probabilistic student model. The student model can not only make fast and accurate inference, but
also efficiently quantify the prediction uncertainty. The experiment results on benchmark datasets
demonstrate the effectiveness of our proposed method for both OAD and uncertainty quantification.
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