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Abstract

Causal discovery often serves as a precursor to
causal effect estimation, but it can be computation-
ally demanding due to the number of conditional
independence tests involved. If we are interested in
estimating only the causal effects on a small sub-
set of the measured variables, many of these tests
may be unnecessary. Existing methods addressing
this issue often have strong assumptions about the
causal relations between variables. In this paper,
we consider targeted causal effect estimation with
an unknown graph, a task that focuses on iden-
tifying the causal effect between multiple target
variables. This task combines causal discovery and
effect estimation, aligning the discovery objective
with the effects to be estimated. We show that the
non-ancestors of the target variables are unneces-
sary to estimate the causal effects between the tar-
gets. We sequentially identify and prune these non-
ancestors during the process of existing algorithms.
Our results show that our approach substantially
reduces the number of tests without compromising
the quality of causal effect estimations.

1 MOTIVATION

Causal inference [Pearl, 2009] is fundamental to our scien-
tific understanding and practical decision-making. In many
settings, we do not know the causal relations between the
variables, which we can learn with causal discovery meth-
ods [Glymour et al., 2019]. These methods can be com-
putationally demanding for large numbers of variables. In
many cases, we are only interested in estimating the causal
effects between a small subset of variables, which would
not require recovering the causal graph over all variables.

We formalize this setting as targeted causal effect estimation
with an unknown graph, a task that focuses on identifying

the causal effects P (Ti|do(Tj)) between pairs of target vari-
ables Ti, Tj ∈ T, where T is a small subset of all variables
V in a computationally efficient way. In this setting, we
assume that we do not have access to the true causal graph,
but to the joint observational distribution p over V that is
Markov and faithful to the true causal graph, and causally
sufficient, i.e., no unobserved confounders or selection bias.

Under these assumptions, we can use constraint-based
causal discovery algorithms [Spirtes et al., 2000] to iden-
tify the Markov equivalence class (MEC) of the causal
graph Verma and Pearl [1990], represented by a mixed
graph, called the complete partially directed acyclic graph
(CPDAG). The CPDAG can then be used to identify valid
adjustment sets for causal effect estimation [Perković et al.,
2015]. However, discovering the CPDAG over all variables
can scale poorly in terms of conditional independence (CI)
tests for large numbers of nodes [Mokhtarian et al., 2021].

Local causal discovery methods [Wang et al., 2014, Gupta
et al., 2023] aim to address this issue by identifying the par-
ent adjustment set of a single treatment-outcome pair. Thus,
these are not designed to handle more than two targets with
unknown causal relations. Watson and Silva [2022] devel-
oped an algorithm to discover the causal relations between
multiple targets, which they call foreground variables, but
assume that the other variables, the background variables,
are all non-descendants of the target variables.

To fill this gap, we propose Sequential Non-Ancestor Prun-
ing (SNAP), a principle to efficiently identify the causal
relations and valid adjustment sets between targets, without
requiring any assumptions about the causal graph.

2 METHOD

SNAP improves the computationally efficiency of causal
discovery by avoiding CI tests that do not contribute to es-
timating the causal effects on the target variables T. To do
this, we show that the non-ancestors of the targets N(T) do
not help in orienting paths between the targets and in their
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potential adjustment sets. Furthermore, they are not part
of statistically efficient adjustment sets, such as the parent,
canonical [Perković et al., 2015] or optimal [Henckel et al.,
2022] adjustment sets. Thus, performing causal discovery
only on V \ N(T) also enables the estimation, while po-
tentially requiring much fewer CI tests. While N(T) is not
available before causal discovery, we can often obtain par-
tial information about it during the process. Driven by this
insight, we aim to progressively identify and remove N(T)
throughout the process of a causal discovery algorithm.

We demonstrate this approach by modifying the PC algo-
rithm [Spirtes et al., 2000]. The original PC algorithm starts
with the skeleton search, which identifies the adjacencies of
the CPDAG by iteratively performing sets of CI tests with
increasing order i = 0, 1, ..., describing the size of the con-
ditioning set. This is followed by the orientation v-structures
and the exhaustive application of Meek rules [Meek, 1995].

We propose the Sequential Non-Ancestor Pruning (SNAP)
algorithm in which we modify the skeleton search of PC by
orienting v-structures and applying Meek rules after each set
of CI tests at a given order i, identifying a subset of N(T)
with these orientations, and continuing the search only over
the remaining variables. We show that SNAP is sound at
every step of the skeleton search, i.e., it never removes any
ancestors of the targets. Thus, SNAP can be run up to any
order k to obtain a subset of N(T). SNAP is described in
Algorithm 1, where the extra steps are colored in blue, while
the other steps resemble the classical PC algorithm. Since
SNAP considers fewer and fewer variables with every order,
it uses fewer higher order CI tests.

Algorithm 1 Sequential Non-Ancestor Pruning - SNAP(k)

Require: Data D, Targets T ⊆ V, Maximum order k
1: Ĝ = (V̂, Ê)← fully connected undirected graph
2: for i ∈ 0..k do
3: for (X,Y ) ∈ Ê do
4: for S ⊆ AdjĜi(X) \ {Y } s.t. |S| = i do
5: if X ⊥⊥ Y |S in D then
6: Delete the edge X − Y from Ê
7: break
8: Ĝi ← Orient v-structures and Meek rules on Ĝ
9: Ĝi ← Remove edges from conflicting v-structures

10: Remove all V ∈ V̂ that do not have a possibly
directed path to any T ∈ T in Ĝi

11: return V̂ , Ĝk

SNAP can be used as a pre-filtering method for standard
causal discovery algorithms, which are then applied only on
the remaining variables V̂ that were not identified to be in
N(T). We denote this filtering process as SNAP(k), where
k is the maximum order of conditional independence tests
used by SNAP. Additionally, we can also run SNAP until
completion, i.e. k = |V|, by adding an extra step at the end
that orients the v-structures and uses the Meek rules on Ĝk

restricted to V̂ . We denote this method as SNAP(∞).

3 RESULTS

We evaluate SNAP(∞), PC [Spirtes et al., 2000], MARVEL
[Mokhtarian et al., 2021], MB-by-MB [Wang et al., 2014]
and LDECC [Gupta et al., 2023], and their combination with
SNAP(0). As local algorithms take as input a single target,
we apply them on all targets separately and aggregate the
results. Since they require oracle knowledge of the causal
relations between the targets, we provide this as input.

In Figure 1a, we report results for linear Gaussian data. We
sample 1000 data points according to 100 random causal
graphs with edge coefficients in [−3,−0.5] ∪ [0.5, 3] and
unit variance, expected degree of d = 3, maximum degree
of dmax = 6 and different numbers of nodes nV. We sample
nT = 4 identifiable targets, such that the causal effects are
identifiable pairwise between all pairs of targets from the
corresponding true CPDAG, and each target is an ancestor
or descendant of at least one other target.
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Figure 1: Number of CI tests performed (a) and intervention
distance (b) over graphs with different number of nodes.

Fig. 1a shows the number of partial correlation tests with
α = 0.05 over graphs with different numbers of nodes. Our
results show that the prefiltering with SNAP(0) (represented
by the dashed lines) reduces the number of tests for each
of the causal discovery methods, as can be seen by the
overlapping lines at the bottom of the graph. Fig. 1b shows
that in this setting prefiltering with SNAP(0) with canonical
adjustment also reduces the intervention distance, i.e. the
distance between the predicted and true P (Ti|do(Tj)). In
these experiments, to make the methods comparable across
all of the graphs, we consider P (Ti|Tj) as the causal effect,
when a method outputs that the effect is not identifiable.

In additional preliminary experiments, we find that vanilla
MARVEL performs on par with SNAP methods in terms of
CI tests when using oracle CI tests and binary tests. How-
ever, MARVEL fails on binary data from larger graphs due
to it using total conditioning [Pellet and Elisseeff, 2008].
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