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ABSTRACT

Due to the popularity of event-based data, causal inference from event datasets
has attracted increasing interest. However, inferring causalities from observational
event sequences is challenging because of the heterogeneous and irregular nature
of event-based data. Existing work on causal inference for temporal events disre-
gards the event durations, and is thus unable to capture their impact on the causal
relations. In the present paper, we overcome this limitation by proposing a new
modeling approach for temporal events that captures event durations. Based on
this new temporal model, we propose a set of novel Duration-based Event Causal-
ity (DEC) scores, including the Duration-based Necessity and Sufficiency Trade-
off score, and the Duration-based Conditional Intensity Rates scores that utilizes
event durations when inferring causal relations between temporal events. We show
that the proposed scores follow the causality hypothesis testing framework. We
conduct a comprehensive experimental evaluation using both synthetic datasets,
and two real-world event datasets in the medical and environmental domains to
evaluate our proposed scores, and compare them against the closest baseline. The
experimental results show that our proposed scores outperforms the baseline with
a large margin using the popular evaluation metric Hits@K.

1 INTRODUCTION

Discovering causal relationships in observational data is a fundamentally important yet very chal-
lenging task. Often, researchers are interested in understanding what causes a phenomenon, or how
the occurrence of one event can affect others. Such understandings are useful in many domains,
from economics to public health, social and natural sciences. For example, in the medical domain,
understanding what causes a certain reaction in a patient given a medical treatment can help doctors
create or change a treatment plan for better outcomes. In stock trading, knowing causal factors be-
hind the increase or decrease in stock prices can improve trading strategies. Research in causality
has been mainly driven by two tasks: causal discovery and causal inference Nogueira et al. (2022).
Starting with observational data, causal discovery tries to predict causal relations across variables
directly from the data, without assuming any relationships among the involved variables. In compar-
ison, causal inference assumes an existing relationship among tested variables, and tries to quantify
that specific relationship to assess how one variable impacts the others given the available data.
Causal discovery and inference have been applied to different types of data, from text documents to
understand causal implications between phrases Luo et al. (2016) to temporal data to infer causal
relations in time series Huang & Kleinberg (2015) and event sequences Bhattacharjya et al. (2021).
Specially, event sequences, a type of temporal data which consist of series of events occurring over a
timeline, have become increasingly popular and can be collected from a broad range of sources such
as computer logs, financial transactions, electronic health records, etc. Unlike time series data which
consist of observations sampled from real-valued variables at regular times (e.g., stock prices), event
sequences represent events that are typically generated at irregular and asynchronous time intervals
(e.g., medical records, meteorological phenomena). In an event sequence, the timestamp is associ-
ated with each generated event to denote its occurrence time, from which the duration of an event
can be deduced. Causal relations inferred from such temporal event sequences can provide impor-
tant insights into how the events progress, and how they impact and depend on each other so that
precise event forecasting or intervention can be made. For instance, knowing that a heavy rain event
lasting for more than two days will likely cause flooding will enable better preventive action and
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Figure 1: Temporal events over the time horizon T

preparation; predicting that certain drugs, e.g, benzodiazepine, can incur addiction or side-effects
after a certain use duration will enable doctors to make more informed choices about medication.

Inferring causal relationships in temporal data is commonly based on the theory of Granger causality
Granger (1969), where causal relations are defined based on two conditions: the temporal ordering
of events, and the conditional dependency between causes and effects. There has been extensive
research focusing on learning Granger causality in temporal data, e.g., based on graphical models
Lozano et al. (2009), Peters et al. (2013) and Hawkes processes Achab et al. (2017). Although
these techniques have demonstrated their reliability in identifying causal relations in time series
data, they still have limitations when applied to event datasets. As many of these techniques rely
on assumptions about the data distributions and regular arrival of data samples, they fail to capture
the irregular and asynchronous nature of event datasets. The most recent and notable existing work
for causal inference in event-based data is that of Bhattacharjya et al. (2021) which investigates
causal associations in structured event datasets. The authors propose a set of scores that can infer
causal associations between sequential events. Although shown to work well on event datasets, the
proposed scores in Bhattacharjya et al. (2021) are limited to only sequential events, which assumes
events occur in sequential order as a series of points in time. This assumption prevents the proposed
model in Bhattacharjya et al. (2021) from considering event durations and their roles in causality,
and thus, fail to capture causal relations such as between rain and flooding events mentioned above.

In this work, we overcome this limitation by proposing a new way to model event datasets that is
able to capture and utilize event durations when assessing causality. This improves the model in
Bhattacharjya et al. (2021) by providing a more accurate causal inference approach for real-world
data, especially in cases where causal relations strongly depend on whether a cause lasts long enough
for an effect to occur, as argued by Hicks et al. (1980).

Contributions. This paper presents our Duration-based Event Causality (DEC) model with several
key contributions. (1) First, we propose a new modeling approach for event datasets where events
have detailed temporal information, including occurrence time and duration. Using this model, we
can describe causal relations between events where both cause and effect span a finite period of time.
(2) Building on this temporal event model, we propose a set of novel Duration-based Event Causal-
ity (DEC) scores, including the Duration-based Necessity and Sufficiency Trade-off score, and the
Duration-based Conditional Intensity Rates scores to infer causalities between pairs of temporal
events, taking into consideration event durations when assessing their causal relations. (3) We prove
that the proposed duration-based scores follow the causality hypothesis testing framework. Finally
(4), we perform an extensive experimental evaluation on synthetic and real-world datasets which
show that our proposed causality model outperforms the state-of-the-art baseline in Bhattacharjya
et al. (2021) with a large margin, using the evaluation metric Hits@K. For reproducibility purpose,
we make code and data available at: https://github.com/causalityinf/causality.

2 PRELIMINARIES

Discrete time horizon: To represent the occurrence of cause and effect through time, we use a
discrete time horizon T where time is discretized into equal time steps, each representing a point in
time. The time steps in T adhere to an increasing order, which starts at the first time step t1 = 1,
and ends at the last time step tN = T , where T =|T | is the total time steps over T .

Fig. 1 shows an example of the discrete time horizon T that has T = 30 time steps in total. Over T ,
multiple events occur at different time steps. For example, the Wind event occurs at time step 2 and
ends at 5, while the Rain event occurs at time step 4 and ends at 8.
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Temporal event: A temporal event E is a tuple E = (ω, t) where ω is the event label, and t =
{[tsi , tei ]} is the set of time intervals during which E occurs. In each time interval ti = [tsi , tei ],
tsi is the start time step, and tei is the end time step of that interval.

Instance of a temporal event: Let E = (ω, t) be a temporal event, and ti = [tsi , tei ] ∈ t be a single
time interval in the set t. The tuple e = (ω, ti) is called an instance of the event E, representing a
single occurrence of E during [tsi , tei ].

Duration of an event instance: Given an event instance e = (ω, [tsi , tei ]), the duration of e is:
de = tei − tsi , denoting the number of time steps that e lasts.

Fig. 1 illustrates four different temporal events: r (Rain), w (Wind), t (Thunder), and f (Flood), and
their arrangement over the time horizon T . Event Wind has two instances: (w, [2, 5]), (w, [19, 24]),
Rain has two instances: (r, [4, 8]) and (r, [21, 26]), Thunder has two instances: (t, [12, 12]) and (t,
[20, 20]), and finally Flood has two instances: (f, [9, 11]) and (f, [27, 28]). The first instance of
Wind (w, [2, 5]) has a duration dw = 3, indicating that it lasted 3 time steps.

Temporal order: Let eA = (ωA, [tsi , tei ]) and eB = (ωB , [tsj , tej ]) be event instances of two
temporal events A and B, respectively. We say that eA and eB adhere to the temporal order if
tsi ≤ tsj and eA is ordered before eB in the time horizon T .

For example, in Fig. 1, two event instances Wind = (w, [2, 5]) and Rain = (r, [4, 8]) adhere to the
temporal order since tsw = 2 ≤ tsr = 4, and thus, w is ordered before r in T .

Temporal event dataset: A temporal event dataset D is an ordered list of temporal events where
every pair of instances adhere to the temporal order over T .

An example of a temporal event dataset can be seen in Fig. 1. Here, the time horizon T spans from
1 to 30, and we have a set of eight event instances of four temporal events where every instance pair
adheres to the temporal order.

Time window: Let D be a temporal event dataset over a time horizon T . A window w = [tl, tr]
where tl is the left time step marking the start of w, and tr is the right time step marking the end of
w, is a time window in T if [tl, tr] ⊆ T and w contains all event instances from tl to tr in D. The
window w has size n where n = tr − tl.

Preceding time window: Let D be a temporal event dataset over T , and ei = (ω, [tsi , tei ]) be an
instance of event E. A time window w = [tl, tr] of size n is called a preceding time window of E
w.r.t ei if tr + 1 = tsi , i.e., w precedes the start of ei.

Succeeding time window: Let D be a temporal event dataset over T , and ei = (ω, [tsi , tei ]) be an
instance of event E. A time window w = [tl, tr] of size n is called a succeeding time window of E
w.r.t ei if tei + 1 = tl, i.e., w follows the end of ei.

In Fig. 1, consider the window w1 = [2, 8] of size n = 6. Then, w1 contains two instances: Wind
= (w, [2, 5]) and Rain = (r, [4, 8]). Moreover, w1 is the preceding window of the Flood event w.r.t
the instance Flood = (f, [9, 11]). Instead, another time window w2 = [12, 18] of size n = 6 is the
succeeding window of Flood = (f, [9, 11]).

3 DURATION-BASED CAUSALITY SCORES

In this section, we propose a set of duration-based causality scores to assert causal relations between
pairs of temporal events. These scores utilize event durations to measure their impact on the strength
of causalities. The causality hypothesis testing framework from which the proposed scores rely
on, together with the necessity and sufficiency conditions and the temporal classification of causal
relations are discussed in the Appendix A.1.

3.1 DURATION-BASED NECESSITY-SUFFICIENCY SCORE

When asserting causal relations between pairwise temporal events, we utilize a window-based ap-
proach which is built on the assumption that causal effect occurs only within a limited time duration.
Below, we propose a novel adaptation of Bhattacharjya et al. (2021) where event durations are ex-
plicitly considered.
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Notation convention. In the following sections, we use uppercase letters to denote events, such as
X , Y , Z, and lowercase letters to denote event instances such as x, y, z.

Necessity causality of a pair of temporal events: Let w be a time window of size n, and (Y,X) be
a pair of temporal events with the causal relation Y is the cause of X . The window-based conditional
probability of observing X given Y , which we call the necessity causality, is computed as

pw(X|Y ) =
pw(Y ← X)

p(Y )
· D

w(Y )

D(Y )
(1)

In equation 1, pw(Y ← X) represents the probability of X occurring if Y has occurred in X’s
preceding time window, and p(Y ) is the probability of Y occurring over a time horizon T . These
two terms are respectively computed as

pw(Y ← X) =
Nw(Y ← X)

T
; p(Y ) =

N(Y )

T
(2)

where Nw(Y ← X) is the number of preceding time windows w of X that contains Y , N(Y ) is the
number of Y instances occurring over T , and T is the total time steps in T .

The two terms Dw(Y ) and D(Y ) in equation 1 are the total duration of Y in the preceding window
w of X , and the total duration of Y over T . They are respectively computed as

Dw(Y ) =
∑

y∈Nw(Y←X)

dy; D(Y ) =
∑
y∈T

dy (3)

In equation 1, pw(X|Y ) represents the window-based conditional probability of X (the effect) given
Y (the cause). The first term, pw(Y←X)

p(Y ) compares the frequency of cause Y and effect X co-
occurring with the condition of Y preceding X , to the frequency of Y alone. The second term,
Dw(Y )
D(Y ) compares the duration of cause Y when it co-occurs with effect X , to its total duration. If

the causal relation between Y and X hold only when cause Y lasts long enough, it will be captured
by this duration ratio since it strengthens the necessity causality.

Sufficiency causality of pairwise temporal events: The window-based conditional probability of
cause Y , given that effect X has been observed is computed as

pw(Y |X) =
pw(Y → X)

p(X)
· D

w(X)

D(X)
(4)

where pw(Y → X), p(X), Dw(X) and D(X) are:

pw(Y → X) =
Nw(Y → X)

T
; pw(X) =

N(X)

T
; Dw(X) =

∑
x∈Nw(Y→X)

dx; D(X) =
∑
x∈T

dx (5)

In equation 4, pw(Y → X) is the probability of cause Y such that effect X occurs in Y ’s succeeding
window, p(X) is the probability of X over T , Dw(X) is the duration of X in Y ’s succeeding
window, and D(X) is the duration of X over T .

The probability pw(Y |X) represents the conditional probability of Y (the cause) given X (the ef-
fect). The second term Dw(X)

D(X) in equation 4 compares how long X lasts when Y occurs in its
preceding window, to the total duration of X over T . A causal relation between Y and X that de-
pends on the durations of cause and effect will be captured by this term, e.g., when an effect X lasts
longer in the presence of cause Y .

Duration-based Necessity-Sufficiency Trade-off Score: Using the proposed necessity and suf-
ficiency causalities in equation 1 and equation 4, we compute the Duration-based Necessity-
Sufficiency Trade-off Score (DNST), adapted from NST score in Bhattacharjya et al. (2021), to
consider event durations when measuring their causal association as

DNST (Y,X) =

[
pw(X|Y )

p(X)−α

]δ [
pw(Y |X)

p(Y )−α

]1−δ

=

[
pw(Y ← X)

p(X)−αp(Y )
· D

w(Y )

D(Y )

]δ [
pw(Y → X)

p(Y )−αp(X)
· D

w(X)

D(X)

]1−δ

(6)

The DNST score in equation 6 requires two additional parameters, a penalization parameter α ≥ 0
to penalize frequent events, and a trade-off parameter δ ∈ [0, 1] to weigh the importance between
necessity and sufficiency causalities. As frequent events have high probabilities and thus, can create
bias by making the causal association highly likely, a penalty is applied to reduce their impact on the
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causal association. The higher the α, the larger the penalty. Note that we use−α in the denominator
since p(X) and p(Y ) are ≤ 1.

Using equation 6, the higher the DNST score, the more confidence that pair of events exhibit
causal association. Furthermore, based on the trade-off parameter δ, we have the option to weigh
more necessity or more sufficiency: a high δ value will weigh more on the necessity, and vice versa.
Theorem 1. Let w be a time window of size n, and (Y,X) be a pair of temporal events with
the causal relation Y is the cause of X . Then DNST (Y,X) = 0 indicates independence, and
DNST (Y,X) > 0 indicates dependence of the pair (Y,X).

The proof is provided in Appendix A.2. From Theorem 1, the occurrence of effect X depends on
the occurrence of cause Y if DNST (Y,X) > 0. Hence, DNST follows the hypothesis testing
framework (equation 18, Appendix A.1), with the pair (Y,X) being tested for the causal relation.

3.2 DURATION-BASED CONDITIONAL INTENSITY SCORES

The DNST score introduced in Section 3.1 relies on p(X) and p(Y ) which measure the probabilities
of X and Y over T . This is a limitation since p(X) and p(Y ) can be computed only if T is finite, and
that X and Y have to occur at least once throughout the time horizon T . In the setting where time is
measured continuously and infinite, DNST score becomes impractical. Therefore, causality scores
for infinite time domains are needed. For this reason, we introduce the duration-based conditional
intensity rate scores that rely on event durations, thus free themselves from such limitations.

Duration-based Conditional Intensity Rate: When modeling an event dataset as marked point
processes, Didelez (2008) introduce the conditional intensity function λX(t | H) ≥ 0 to measure
the rate at which event X occurs at time t, given the available history H. Bhattacharjya et al.
(2021) propose conditional intensity rates that treat each event occurrence as a point in time. In
our adaptation with respect to Didelez (2008) and Bhattacharjya et al. (2021), we formulate the
duration-based conditional intensity rate using event durations as follows.

Let (Y,X) be a pair of temporal events with the causal relation that Y is the cause of X . To measure
the rate at which X occurs w.r.t Y , we define two conditional intensity rates: λX|Y , representing
the rate at which effect X occurs given the presence of cause Y , called the positive rate, and λX|Y
measuring the rate at which X occurs without Y occurring, and is called the negative rate.

Positive rate: the positive rate λX|Y is computed as

λX|Y =
Dw(Y )

D(Y )
(7)

where w ∈ Nw(Y ← X) is the preceding window of X that contains Y , Dw(Y ) is the duration of
Y in w, and D(Y ) is the duration of Y in T . In equation 7, λX|Y is computed as the ratio between
the duration of Y occurring in the preceding window of X , and the total duration of Y over T .
This implies that the rate of effect X occurring w.r.t Y is entirely dependent on the presence and the
duration of its cause Y . The longer the cause, the higher the occurring rate of the effect. The terms
Dw(Y ) and D(Y ) are respectively computed as

Dw(Y ) =
∑

w∈Nw(Y←X)

∫ tr

t=tl

dY (t)dt; D(Y ) =

∫ T

t=1

dY (t)dt (8)

where tl, tr are the left time step and the right time step of the preceding time window w of X ,
respectively, and dY (t) is the indication function of event Y at time t:

dY (t) =

{
1, if Y occurs at time t
0, otherwise

The integration in equation 8 integrates the occurrence of Y over T , i.e., entailing its duration.

Negative rate: the negative rate λX|Y is computed as

λX|Y =
Dw(X)

T −Dw(Y )
(9)

where w ∈ Nw(Y ← X) is the preceding window of X that contains Y , while w ∈ Nw(Y ← X) is
the preceding window of X that does not contain Y . The term Dw(Y ) is computed as in equation 8,
while Dw(X) is computed as
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Dw(X) =
∑

w∈Nw(Y←X)

∫ tr

t=tl

dX(t)dt; (10)

where dX(t) is the indication function of event X at time t:

dX(t) =

{
1, if X occurs at time t
0, otherwise

In equation 9, λX|Y is computed as the ratio between the duration of X during which Y has not
occurred in its preceding window, and the duration in T during which Y does not have an impact on
X . We note that T in equation 9 is the number of time steps in T , however, its meaning is different
from T used in DNST. More specifically, since the duration-based conditional intensity rates rely on
the available historyH, the value of T in equation 9 only reflects the time duration inH. In contrast,
T in DNST refers to the entire time dimension from which the probabilities of events are computed.

Duration-based Conditional Intensity Rate Causality Scores (DCIR): using the above positive rate
and negative rate, we adapt the conditional intensity rate scores in Bhattacharjya et al. (2021) to
compute two duration-based conditional intensity rate causality scores as

DCIRP =
λw
X|Y

λX
; DCIRN =

λw
X|Y

λw
X|Y

(11)

where λX is the rate of X occurring throughout the historyH, without considering any causes, and is
computed as: λX = D(X)

T . The subscripts P and N in DCIRP and DCIRN stand for positive and
negative score. The positive causality score DCIRP compares the rate of effect X occurring when
cause Y is present, to the rate of X throughout H. Instead, the negative causality score DCIRN

compares the rate of effect X occurring when cause Y is present, to the rate of X when Y is not
present. The higher the value of DCIRP (or DCIRN ), the more likely that Y causes X .
Theorem 2. Let DCIRP/N be either DCIRP or DCIRN . Let w be a time window of size n, and
(Y,X) be a pair of temporal events with the causal relation Y is the cause of X . Then DCIRP/N =
1 indicates independence, and DCIRP/N ̸= 1 indicates dependence of the pair (Y,X).

We provide the proof in Appendix A.2. Theorem 2 says that effect X depends on cause Y if
DCIRP/N ̸= 1. Hence, DCIRP/N follows the hypothesis testing framework (equation 18, Ap-
pendix A.1), with the pair (Y,X) being tested for the causal relation.

Multi-cause Duration-based Conditional Intensity Rate: When computing the DCIRP and
DCIRN scores for the causal pair (Y,X), we assume that event X has only one cause Y . This
assumption is not realistic, since in practice, it is more common that an effect X has multiple causes.
To generalize this causal scenario, we extend DCIRP and DCIRN to consider multiple causes for
an effect X as follows.

Consider an event pair (Y,X) with the causal relation Y is the cause of X . Further, let Z be the set
of all possible causes of X differing from Y . We call Z the parent set of X . The positive rate of
effect X in the presence of cause Y and other causes Z ∈ Z is computed as

λX|Y,Z =
Dw(Y )

D(Y )
(12)

where w ∈ Nw(Y, Z ← X) is the preceding window of X that contains both Y and Z, Dw(Y ) is
the duration of Y in w, and D(Y ) is the duration of Y throughoutH.

The negative rate of effect X occurring together with Z but without Y , is computed as

λX|Y ,Z =
Dw(X)

T −Dw(Y )
(13)

where w ∈ Nw(Y , Z ← X) is the preceding window of X that contains Z but does not contain Y ,
Dw(X) is the duration of X in w, while T −Dw(Y ) is the duration throughoutH during which Y
does not have an impact on X .

If X’s rate depends on whether or not cause Y and any of other parents Z ∈ Z have occurred in
the preceding window w, then there are 2|Z| conditional intensity rates. To take into account all the
different parents of X , we use an aggregation function g where g = {min, max, average} over all
possible combinations of Y and Z, and compute the causality score as

DCIRM (Y,X) = g

(
λw
X|Y,Z

λw
X|Y ,Z

)
(14)
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Table 1: Dataset summary statistics
Datasets #Samples #Features #Events Sampling
Syn.(× 3) 72217 2 676 5-minute
Air (× 12) 35065 17 42 hourly
Diab. (× 70) 29183 4 25 ≈6-hour

Table 2: Parameters
Params Value

α [0, 0.5, 1, 2, 4, 5]
δ [0, 0.25, 0.5, 0.75, 1]

Window [1, ..., 144] (Syn.), [1, ..., 24] (Air), [1, ...4] (Diab.)

Theorem 3. Let w be a time window of size n, (Y,X) be a pair of temporal events with the causal
relation Y is the cause of X , and Z be the set of all possible causes of X differing from Y . Then
for g ∈ {min,max, avg}, DCIRM = 1 indicates conditional independence, and DCIRM ̸= 1
indicates conditional dependence of the pair (Y,X).

From Theorem 3, the conditional independence between effect X and cause Y held if DCIRM = 1,
and the conditional dependence between X and Y held if DCIRM ̸= 1. Hence, DCIRM follows
the hypothesis testing framework (equation 18, Appendix A.1).

Finding the parent set Z of X: An event Z that occurs earlier than X and affects the probability of
X occurring is called a parent of X . We use the Proximal Graphical Event Model (PGEM) proposed
by Bhattacharjya et al. (2018) to discover the parent set Z of X . Given an event X , PGEM finds the
parent set Z such that Z maximizes the Bayesian Information Criterion (BIC) score. The BIC score
indicates the optimal structural dependencies between X and its parents. We provide the pseudo
code to compute Duration-based Causality Scores in Alg. 1, Appendix A.3.

Complexity: The time complexity of the DEC model is O(E2× T ), where E is the number of
temporal events and T =|T | is the number of time steps in T .

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Evaluation metric: We use Hits@K, a popular metric that has been widely adopted in other work
such as Bhattacharjya et al. (2021), Luo et al. (2016) to assert causal relations. Hits@K counts the
number of causal pairs that matches the ground truth.

Hits@K =| #Hits | in top-K (15)

where K is the number of top-K desired results, identified by selecting the K event pairs that have
highest scores, and #Hits is the number of truly causal pairs, based on the ground truth.

Baselines: To the best of our knowledge, the causality model proposed by Bhattacharjya et al.
(2021) which adopts the sequential event modeling is the closest to our work. We name this approach
Sequential Event Causality (SEC), and use SEC as the baseline to compare against our Duration-
based Event Causality (DEC) model.

Datasets: We generate three synthetic datasets with known ground truths, and use two real-world
datasets, Air Quality and Diabetes, in our evaluation. Table 1 summarizes the dataset statistics, with
data provided in the github link. Due to space limitations, we provide the detailed descriptions and
the ground truth of each dataset in Appendix A.4. Below, we discuss the obtained experimental
results.

4.2 SYNTHETIC DATASETS

We compute the Hits@K with K = [1, ..., 30] for the synthetic datasets across all window sizes
and hyper-parameters values as in Table 2, using the DEC and SEC scores. We then use a boxplot
to visualize the Hits@K distributions, and compare the performance of two models. Fig. 2a shows
the performance of the DEC and SEC scores on the synthetic data. The DEC scores are appended
with letter (D), and the SEC scores with letter (S).

From Fig. 2a, our DEC model obtains higher Hits@K than SEC over all scores on the synthetic
datasets. Specifically, across all window sizes, DEC achieves 56.2% higher Hits@K than SEC on
average in all scores. We also report in Table 3 the average Hits@K across window sizes for each
DEC and SEC score. Due to space limitations, we only include the results of K = [10, 15, 25]. From
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Figure 2: Hits@K distribution comparison between DEC (D) and SEC (S) scores

Table 3: Hits@K comparison per score

Score

Dataset
Synthetic Air Quality Diabetes

K=10 K=15 K=25 K=10 K=15 K=25 K=10 K=15 K=25
DEC SEC DEC SEC DEC SEC DEC SEC DEC SEC DEC SEC DEC SEC DEC SEC DEC SEC

DNST 10 9.93 15 14.87 25 24.7 4.1 2.9 5.1 3.57 8.03 5.27 7.5 7.4 10.6 10 14.8 14.2
DCIRP 9.9 7.73 14.87 10.57 24.6 17.13 6.87 3.43 9.87 3.97 12.73 5.53 5.2 5.2 8.8 8.8 15.4 14.4
DCIRN 9.9 7.8 14.87 10.9 24.47 17.1 5.47 3.3 6.6 4.1 10.77 5.37 7.2 5.8 11 9.2 16.2 15

DCIRMavg 1.77 0.1 2.9 0.1 4.83 0.17 5.43 3.27 6.23 3.47 10.67 6.33 5.8 5.6 9.6 7.6 14.8 11.6
DCIRMmax 2.5 0.17 4.43 0.43 8.13 0.53 5.47 3.17 6.5 3.33 10.83 5.23 5.6 4.8 9.2 6.6 14.2 11.6
DCIRMmin 0.8 0.03 1.33 0.03 2.1 0.03 5.53 3.37 6.13 4.03 10.73 6.8 5.6 5.4 8.6 7.4 12.8 11.4

Table 4: Window size evaluation

Dataset Best window size Hits@K
DNST DCIRP DCIRN DCIRMavg DCIRMmax DCIRMmin

Synthetic 2 26 26 26 26 23 26
Air Quality 1 10 18 17 17 17 17

Diabetes 1 18 18 18 18 18 18

Table 3, our DEC scores improve the Hits@K by: 1% (DNST ), 27% (DCIRP ), 26% (DCIRN ),
95.8% (DCIRMavg

), 92.3% (DCIRMmax
), and 97.3% (DCIRMmin

) compared to SEC.

When comparing the DEC scores against each other as in Fig. 2a, we observe that the single-cause
scores DNST , DCIRP , and DCIRN perform better than the multi-cause score DCIRM (avg,
max, and min) on the tested datasets. This is because there are more single-cause causal pairs than
multi-cause causal pairs in the DAGs of the synthetic datasets. When analyzing the performance
of DEC w.r.t the window sizes, we see that DEC achieves the highest Hits@K with window size
w = 2, as reported in Table 4. This is due to the defined DAGs, where the parent and child pairs are
often placed one or two time steps apart, meaning that windows of size two can capture them.

4.3 AIR QUALITY DATASET

We visualize the Hits@K distributions, with K = [1, ..., 30], obtained from the Air Quality dataset
in Fig. 2b. It is seen that, our DEC model obtains significantly higher Hits@K than SEC for
all scores in this dataset. On average across all window sizes, DEC scores provide 41.3% higher
Hits@K than SEC scores. Table 3 reports the average Hits@K (K = [10, 15, 25]) of each score in
DEC and SEC models for the Air Quality dataset. Compared to SEC, our DEC scores improve the
Hits@K by: 31.2% (DNST ), 55.4% (DCIRP ), 42.5% (DCIRN ), 41.6% (DCIRMavg

), 47.5%
(DCIRMmax ), and 36.7% (DCIRMmin ).

Comparing DEC scores against each other, we observe that the conditional intensity rate scores
DCIRP , DCIRN , and DCIRM perform better than DNST . This implies that the conditional
intensity scores are more robust than DNST on the tested datasets. Among the conditional intensity
scores, DCIRP has the best performance, while DCIRN performance is close to DCIRM . This
suggests two things: (1) a cause Y has strong impact on an effect X in this dataset (shown by
DCIRP performance), and (2) multiple causes do not impact strongly on the effect as compared to
a single cause (shown by DCIRM performance). When analyzing the performance of DEC w.r.t
the window sizes, we see that our DEC model achieves highest Hits@K with window size w = 1
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in the Air Quality datasets, as reported in Table 4. This implies that the impact of weather conditions
on air quality can clearly be seen within 1-hour window.

4.4 DIABETES DATASET

Fig. 2c visualizes the Hits@K (K = [1, ..., 30]) distributions obtained from the Diabetes dataset,
showing that our DEC model outperforms SEC. Specifically, our DEC scores achieve 10.3% higher
Hits@K than SEC scores on average. Table 3 also reports the average Hits@K (K = [10, 15, 25])
of each DEC and SEC score on this dataset. Compared to SEC, our DEC scores improve the
Hits@K by: 3.7% (DNST ), 2.1% (DCIRP ), 14.4% (DCIRN ), 15.3% (DCIRMavg ), 20.3%
(DCIRMmax ), and 9.5% (DCIRMmin ). Comparing the DEC scores against each other (Fig. 2c),
we observe that DNST has similar performance with DCIRP , DCIRN , and DCIRM . Further-
more, as DCIRM performance is similar to, or slightly worse than the rest, we conclude that in this
dataset, multiple causes also do not have strong impact on the effect as compared to a single cause.
When analyzing DEC performance w.r.t the window sizes, we also see that the window size of one
(w = 1) provides the best results, as reported in Table 4.

5 RELATED WORK

Causal inference for event dataset: Most of the work on causal inference in temporal data has
been on time series Runge et al. (2019), Moraffah et al. (2021). However, causal models applied
on time series often have limitations for event datasets, as they cannot capture the irregular and
asynchronous nature of events. Existing work that considers pairwise causal associations between
events has been conducted in the field of natural language processing and computational linguistics
to discover implicit causal connections between text phrases Luo et al. (2016). For example, Luo
et al. (2016) try to find syntax structure such as ‘if A then B’, together with statistical co-occurrence-
based scores for discovering cause effect pairs in text. Generally, inferring causality between events
is often based on the fundamental principle that causes change the probabilities of their effects. For
a pair of events (y, x), y could potentially be a cause of effect x if x happens more frequently when
y happens, compared to when x happens alone, i.e. p(x | y) > p(x). Bhattacharjya et al. (2020) rely
on this principle to propose a set of causality scores to infer causal associations between pairwise
events. Their model works on temporal event datasets where events are modeled as points in time
with sequential order. However, the model in Bhattacharjya et al. (2020) does not consider event
durations, and thus, cannot capture causal relations where the causality strongly depends on how
long the cause has lasted. In this present paper, we extend Bhattacharjya et al. (2020) by considering
event durations in our causality model. Specifically, we adopt contemporaneous causality where the
occurrences of cause and effect are modeled with time intervals, and use this new model to propose
a set of duration-based causality scores to infer causal relations between events. The experimental
results show that our duration-based model outperforms the sequential model in Bhattacharjya et al.
(2020) using the popular evaluation metric Hits@K.

6 CONCLUSION AND FUTURE WORK

In the present paper, we propose the Duration-based Event Causality (DEC) model to infer causal
relations between temporal events. Specifically, we propose a new approach to model event datasets
using event time intervals, from which event durations are deduced. Based on this new event model,
we propose a set of novel duration-based causality scores, including Duration-based Necessity
Sufficiency Trade-off (DNST) and Duration-based Conditional Intensity Rate (DCIRP , DCIRN ,
DCIRM ), to infer causal relations from pairs of events in event datasets. The proposed scores utilize
event durations to capture the impact of temporal duration on event causal relations. We prove that
the proposed duration-based scores are sound and follow the hypothesis testing framework. Finally,
we conduct an extensive experimental evaluation using synthetic and real-world datasets from the
medical and environmental domains, showing that our DEC model significantly outperforms the
baseline at a large margin using the popular evaluation metric Hits@K. For future work, we will
extend the DEC model to quantify and estimate the treatment effect in domains such as healthcare.
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A APPENDIX

A.1 BACKGROUND

We discuss in this section the causality hypothesis testing framework, the necessity and sufficiency
conditions, and the temporal classification of causal relations.

A.1.1 CAUSAL INFERENCE

Granger Causality: Causal inference is a broad subject that has not yet reached the consensus of
its definite definition. The earliest concept of causality was suggested by Granger (1969), building
on a notion of Wiener (1956). The idea behind Granger causality is that a stochastic process Y
causes another stochastic process X if Y contains some unique information about X which is not
available in X’s past as well as all other information in the universe. To assert this condition, Granger
causality compares the ability to predict X using all the information in the universe, denoted as U , to
the ability of predicting X using all information in U except for Y , denoted as U \ Y . If discarding
Y reduces the predictive power regarding X , then Y contains some unique information of X , and
we thus say that Y Granger-causes X . Granger causality is based on two axioms when applying to
data that have the time dimension such as time series Granger (1980):

Axiom A: The past and present may affect the future, but the future cannot affect the past.

Axiom B: In order for Y to be a cause of X , Y must have some unique information about X .

Based on these, Granger causality is formally defined as:

Yt is said to be a cause of Xt+1 iff: P (Xt+1 ∈ A|Ωt) ̸= P (Xt+1 ∈ A|Ωt − Yt) (16)

where A is a non-empty set of random variables, Yt denotes the occurrence of Y at time t, Xt+1

denotes the occurrence of X at time t+ 1, Ωt denotes the information available in the universe at t.

Hypothesis Testing: Another popular approach to model causality is based on the conditional inde-
pendence test proposed by Judea Pearl Pearl et al. (2000). In this statistical model, Pearl measures
the conditional independence as

P (x | y, z) = P (x | z) whenever P (y, z) > 0 (17)

where x ∈ X , y ∈ Y , z ∈ Z are the elements of the sets X , Y , Z, respectively. If Eq. equa-
tion 17 hold, then the sets X and Y are said to be conditionally independent given Z. This indicates
that learning the value of Y does not provide additional information about X , once we know Z.
Metaphorically, Z ”screens off” X from Y Pearl et al. (2000).

Adopting the conditional independence test paradigm of Judea Pearl, Bhattacharjya et al. (2021)
propose a general hypothesis testing framework to assert causal association between pairwise events
as

H0 : P (X | Y,Z) = P (X | Z)
H1 : P (X | Y,Z) > P (X | Z) (18)

where X , Y , Z are events occurring in an event dataset. The pair (Y,X) is the event pair to be
tested for the causal association, with the condition that Y has occurred before X , and Z is another
random variable indicating whether the events in the set Z have occurred or not in the dataset.

11
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The null hypothesis H0 asserts whether P (X | Y,Z) and P (X | Z) are from the same distribution,
which indicates that the presence of Y has no impact on X , conditioned on Z, and hence cannot
be a cause of X . The alternative hypothesis H1 indicates that given both Y and Z, X has higher
probability than when only Z is present, implying the impact of Y on X .

In this paper, we extend the hypothesis testing framework of Bhattacharjya et al. to assert the causal
association between pairwise temporal events, taking into consideration the impact of temporal du-
ration on the strength of the causal association.

A.1.2 NECESSITY AND SUFFICIENCY CAUSALITIES

When asserting causality, necessity and sufficiency are two distinct cases of a causal association.
Consider a causal pair (Y , X) with Y being the cause of X . Granger (1969) formally defines the
two cases as:

Necessity: if cause Y occurs, then the probability of effect X occurring increases.

Sufficiency: if effect X is observed, then cause Y likely has occurred.

The necessity causality encoded by the pair (Y , X) represents the case where the presence of the
cause Y is the condition for the effect X to take place. On the other hand, the sufficiency causality
encoded by (Y , X) demonstrates the case where the presence of the effect X provides the evidence
for the presence of the cause Y .

By distinguishing the two cases of necessity and sufficiency, we can assert the roles of cause and
effect in a causal association separately. Intuitively, the stronger the necessity causality is, the larger
the probability p(X | Y ) should be; and the stronger the sufficiency causality is, the larger the
probability p(Y | X) should be. For example, the causal pair (rainfall, flooding) with rainfall being
the cause of flooding encodes more necessity causality than sufficiency causality, since in most
situations the effect flooding cannot happen if rainfall did not happen as its cause. Similarly, the
causal pair (storm, thunder) encodes more sufficiency causality.

In this paper, we adopt the notions of necessity and sufficiency causalities to assert the roles of cause
and effect in a causal association between two temporal events.

A.1.3 TEMPORAL CLASSIFICATION OF CAUSAL RELATIONS

When studying causality in economics, British economist John Hicks proposed a taxonomy of causal
relationships based on temporal representation of events Hicks et al. (1980). Specifically, based on
the time dimension of the cause and the temporal relationship between cause and effect, Hicks
defined three causal relations: static, contemporaneous, and sequential which correspond to three
perspectives on time: eternity, a period of time, and a point in time.

Static causality describes causal relations in which both cause and effect are eternal, resulting in
causal relations that are permanent through time. Examples of static causality are astronomical
phenomena, which from the human perspective appear indefinite.

Contemporaneous causality describes causal relations where both cause and effect span a finite pe-
riod of time, resulting in causal relations that are hold only through some time periods. An example
of contemporaneous causality is the causal pair (rainfall, flooding) where rainfall and flooding are
measured in time periods, and last within their respective time intervals.

Finally, sequential causality is defined when cause and effect are measured as points in time, and
thus, cause has to precede effect for the causality to be hold.

In Bhattacharjya et al. (2021), Bhattacharjya et al. adopt the sequential causality to represent events
as points in time, and assert their causal relations accordingly. In this paper, we instead adopt
the contemporaneous causality to represent cause and effect over time intervals. This event model
enables us to study the impact of temporal duration on the strength of causal relations between
temporal events.

A.2 DETAIL PROOFS OF THEOREMS

We provide in this section the detail proofs of all theorems.

12
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Theorem 1. Let w be a time window of size n, and (Y,X) be a pair of temporal events with
the causal relation Y is the cause of X . Then DNST (Y,X) = 0 indicates independence, and
DNST (Y,X) > 0 indicates dependence of the pair (Y,X).

Proof. If DNST (Y,X) = 0, it follows from Eq. equation 6 that pw(Y ← X) = 0, or Dw(Y ) = 0,
or pw(Y → X) = 0, or Dw(X) = 0. In the first two cases, there are no preceding time windows w
of X that contain Y ; while in the last two cases, there are no succeeding time windows w of Y that
contain X . This indicates the independence of the pair (Y,X). Similarly, if DNST (Y,X) > 0, all
quantities pw(X|Y ), Dw(Y ), pw(Y ← X) and Dw(X) are positive, indicating the dependence of
the pair (Y,X).

Theorem 2. Let DCIRP/N be either DCIRP or DCIRN . Let w be a time window of size
n, and (Y,X) be a pair of temporal events with the causal relation Y is the cause of X . Then
DCIRP/N = 1 indicates independence, and DCIRP/N ̸= 1 indicates dependence of the pair
(Y,X).

Proof. First, we provide the proof for the positive score DCIRP . Let us assume p(X | Y,Z) =
pdt(X | Y ) = λX|Y dt, and p(X | Z) = pdt(X) = λXdt, where Z is a random variable. In this

setting, if p(X | Y,Z) = p(X | Z), then λX|Y dt = λXdt, implying that
λX|Y

λX
= 1. Hence,

DCIRP = 1 indicates independence. Else, if p(X | Y,Z) ̸= p(X | Z), then
λX|Y

λX
̸= 1. Hence,

DCIRP ̸= 1 indicates dependence.

The proof for the negative score is similar by considering the relation between two conditional
probabilities p(X | Y,Z) and p(X | Y , Z).

Theorem 3. Let w be a time window of size n, (Y,X) be a pair of temporal events with the causal
relation Y is the cause of X , and Z be the set of all possible causes of X differing from Y . Then
for g ∈ {min,max, avg}, DCIRM = 1 indicates conditional independence, and DCIRM ̸= 1
indicates conditional dependence of the pair (Y,X).

Proof. For any Z ∈ Z , assume p(X | Y, Z) = pdt(X | Y,Z) = λX|Y,Zdt, and p(X | Z) = pdt(X |
Z) = λX|Zdt. In this setting, if p(X | Y,Z) = p(X | Z), then p(X | Y,Z) = p(X | Z) = p(X |

Y , Z), i.e. λX|Y,Zdt = λX|Zdt = λX|Y ,Zdt, implying
λX|Y,Z

λX|Y ,Z

= 1. It follows that g
(

λX|Y,Z

λX|Y ,Z

)
=

1 for g ∈ {min,max, avg}. Hence DCIRM = 1 indicates conditional independence. Else, if

p(X | Y,Z) ̸= p(X | Z), then
λX|Y,Z

λX|Y ,Z

̸= 1. It follows that g
(

λX|Y,Z

λX|Y ,Z

)
̸= 1. Hence, DCIRM ̸= 1

indicates conditional dependence.

A.3 PSEUDO CODE TO COMPUTE DURATION-BASED CAUSALITY SCORES

We provide the pseudo code to compute Duration-based Causality Scores in Algorithm 1. First, we
obtain the list of windows of size n (line 1). Next, we apply PGEM to find the parent set Z of X
(line 2). We iterate through the window list to calculate window-based statistics (lines 3-6). The
event statistics are computed in line 7. Finally, we compute the DEC scores in lines 8-11. We note
that for each event pair (Y,X), the window-based statistics, e.g., Dw(X), Dw(Y ), and the event
statistics, e.g., P (X), P (Y ) can be computed in a one-pass scan of the event dataset D.
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Algorithm 1 Duration-based Causality Scores
Input: D: temporal event dataset

(Y,X): pair of temporal events
Params: α: penalization parameter,

δ: trade-off parameter,
n: window size

Output: <, , ,>: tuple of four duration-based causality scores for (Y,X)
1: W ← getWindows(n, D) ▷ get a list of windows of size n
2: Z ← PGEM(X,D) \ {Y } ▷ find parents of X
3: for w ∈W do
4: pw(Y ← X), pw(Y → X), Dw(Y ), Dw(X), Dw(X)

← calcSingleCauseScoreStatistics((Y,X), n, D)
5: pwz (Y ← X), pwz (Y → X), Dw

z (Y ), Dw
z (X), Dw

z (X)
← calcMultiCauseScoreStatistics((Y,X), Z , n, D)

6: end for
7: D(Y ), p(Y ), D(X), p(X), λX ← calcEventStatistics((Y,X), D)
8: DNST← calcDNST(α, δ, pw(Y ← X), pw(Y → X),

Dw(Y ), Dw(X), p(X), p(Y )) ▷ Eq. equation 6
9: DCIRP ← calcDCIRP (D

w(Y ), D(Y ), λX) ▷ Eq. equation 11
10: DCIRN ← calcDCIRN (Dw(Y ), D(Y ), Dw(Y ), Dw(X)) ▷ Eq. equation 11
11: DCIRM ← calcDCIRM (Dw

z (Y ), D(Y ), Dw
z (Y ),Dw

z (X)) ▷ Eq. equation 14
12: return <DNST, DCIRP , DCIRN , DCIRM>

A.4 DATASET DESCRIPTION AND GROUND TRUTH

A.4.1 SYNTHETIC DATASET

Data generation: We generate three synthetic datasets, each has 26 known causal event pairs. To
define the ground truths, we use a Directed Acyclic Graph (DAG) to encode the causal relations
between events. In a DAG G(V,E), V is the set of nodes representing event labels, and E is the
set of weighted edges connecting two nodes. A truly causal pair between two events is encoded
as a parent-child relation, represented by an edge where the weight is the conditional probability
p(child | parent), indicating how likely a child is generated given the parent. Fig. 3 shows an
example of a DAG representing the ground truths. Given a DAG, our synthetic data generator
iterates through a predefined number of samples to generate the event datasets. During the process,
each time a parent occurs, we will generate a child if its accumulated conditional probability from
previous iterations reaches a predefined threshold θ. Other events that are not included in the DAG
will be generated randomly.

A

S

T

L E

B

X

D

0.6

0.3

0.55

0.45

0.3 0.8

0.65

Figure 3: Example of ground truths defined in a DAG

A.4.2 AIR QUALITY

Dataset description: The Beijing Multi-Site Air-Quality Dataset Zhang et al. (2017) collects air
pollution data from 12 different sites in Beijing, China, including air quality indicators such as
Particulate Matter, PM10 and PM2.5 concentration, and meteorological data such as temperature,
humidity, air pressure. Each dataset consists of 17 features, and ≈ 35000 records.

Ground truth. We base the ground truth on expert opinions, in particular, the work of You et al.
(2018) and Liu et al. (2020) which study the impact of meteorological events on air quality indicators
in Dongsi, China, the area covered by the dataset we used. The quantitative impact is presented in
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Table 5, showing how each meteorological variable increases or decreases the concentration of air
quality indicators.

To identify the ground truth, we follow the procedure described in Liu et al. (2020) as follows.
For each (air quality, weather) event pair, we compute the predicted value of air quality using the
weather coefficients in Table 5. If the predicted value is within the event range, the causal pair is
deemed true. For example, using the average PM10 intensity, the low wind speed value and the wind
coefficient, we compute a predicted PM10 value. If this value belongs to high PM10 concentration
range, then the pair (High PM10, Low Wind Speed) is a truly causal pair. We obtain 18 truly causal
pairs from this dataset.

Table 5: Quantifiable data for Air Quality dataset

Variable PM2.5 PM10 CO NO2 O3 SO2

WS –0.155 –0.220 –0.002 –0.122 0.365 –0.116
Pre –0.083 –0.097 0.000 –0.049 –0.089 0.042
AP 0.053 0.139 –0.001 0.138 –0.289 –0.056

Temp –1.429 –1.486 –0.023 –0.519 2.626 –0.849
RH 0.087 –0.587 0.003 –0.001 –0.813 –0.181

**Notes: WS: Wind speed, Pre: Precipitation, AP: Atmosphere pressure,
Temp: Temperature, RH: Relatively humidity

A.4.3 DIABETES

Dataset description: Finally, we evaluate our scores on a clinical dataset which describes the basic
physiology and patho-physiology of diabetes mellitus and its treatment Kahn. The dataset contains
data of 70 diabetic patients with measurements done at recurring daily events like meals, insulin
injection doses, etc.

Ground truth. This dataset is provided with a description document, written by medical experts
to provide the ground truth for treatment of diabetic patients. We rely on this expert knowledge,
reported in Table 6 to evaluate our scores.

Table 6: Expert knowledge for Diabetes dataset

Treatment & Activity Blood glucose (BG)
Regular Insulin O (15-45 M), P (1-3 H), D (4-6 H)
NPH Insulin O (1-3 H), P (4-6 H), D (10-14 H)
Ultralente O (2-5 H), P (NA), D (24-30 H)
Moderate exercise Reduce BG
Strenuous exercise/ mild dehydrate Transient increase in BG
Large meal High BG
Missing or smaller meals Low BG
Hypoglycemic symptoms Low BG

**Notes: O: Onset effect, P: Time of peak action, D: Effective duration,
M: Minute, H: Hour, NA: not much of a peak
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