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ABSTRACT

We propose to replace vector quantization (VQ) in the latent representation of
VQ-VAEs with a simple scheme termed finite scalar quantization (FSQ), where
we project the VAE representation down to a few dimensions (typically less than
10). Each dimension is quantized to a small set of fixed values, leading to an
(implicit) codebook given by the product of these sets. By appropriately choosing
the number of dimensions and values each dimension can take, we obtain the same
codebook size as in VQ. On top of such discrete representations, we can train the
same models that have been trained on VQ-VAE representations. For example,
autoregressive and masked transformer models for image generation, multimodal
generation, and dense prediction computer vision tasks. Concretely, we employ
FSQ with MaskGIT for image generation, and with UViM for depth estimation,
colorization, and panoptic segmentation. Despite the much simpler design of FSQ,
we obtain competitive performance in all these tasks. We emphasize that FSQ
does not suffer from codebook collapse and does not need the complex machinery
employed in VQ (commitment losses, codebook reseeding, code splitting, entropy
penalties, etc.) to learn expressive discrete representations. Colab on GitHub.

1 INTRODUCTION

Vector quantization (VQ), initially introduced by Gray (1984), has recently seen a renaissance in the
context of learning discrete representations with neural networks. Spurred by the success of VQ-
VAE (Van Den Oord et al., 2017), Esser et al. (2020) and Villegas et al. (2022) showed that training
an autoregressive transformer on the representations of a VQ-VAE trained with a GAN loss enables
powerful image and video generation models, respectively. At the same time, VQ has become
popular component in image (Bao et al., 2021; Li et al., 2023) and audio (Baevski et al., 2019)
representation learning, and is a promising building block for the next generation of multimodal
large language models (Aghajanyan et al., 2022; Kim et al., 2023; Aghajanyan et al., 2023).

When training VQ-VAE, the goal is to learn a codebook C whose elements induce a compressed,
semantic representation of the input data (typically images). In the forward pass, an image x is en-
coded into a representation z (typically a sequence of feature vectors), and each vector in z quantized
to (i.e., replaced with) the closest vector in C. The quantization operation is not differentiable. When
training a VAE with VQ in the latent representation, Van Den Oord et al. (2017) use the straight-
through estimator (STE) (Bengio et al., 2013), copying the gradients from the decoder input to the
encoder output, resulting in gradients to the encoder. Since this still does not produce gradients
for the codebook vectors, they further introduce two auxiliary losses to pull the codeword vectors
towards the (unquantized) representation vectors and vice-versa.

The above formulation is challenging to optimize, and leads to the well-documented problem of un-
derutilized codebooks (Łańcucki et al., 2020; Takida et al., 2022; Dhariwal et al., 2020; Huh et al.,
2023): as the size of C is increased, many codewords will be unused. Subsequent works aimed to im-
prove this with various tricks such as reinitializing the entire codebook or some codewords Dhariwal
et al. (2020); Łańcucki et al. (2020), stochastic formulations Takida et al. (2022), etc. (see Sec. 2).

◦Significant technical contributions.
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Figure 1: FSQ (left): the final encoder layer projects to d dimensions (d = 3 shown). We bound
each dimension of the encoder output z to L values (L = 3 shown), and then round to integers,
resulting in the quantized ẑ, the nearest point in this hypercube. VQ (right): The final encoder layer
projects to d dimensions (d = 7 shown, as d is typically much larger for VQ). The resulting vector
z is replaced with the closest vector from the codebook, ẑ, by nearest neighbor lookup.

Here, we are interested in simplifying the original VQ-VAE formulation (Van Den Oord et al., 2017)
with the following goals: i) remove auxiliary losses, ii) achieve high codebook utilization by design,
and iii) keep the functional setup the same to the extent that we obtain a drop-in replacement for VQ.

To this end, we draw inspiration from the neural compression literature, where discrete codes are
typically obtained with scalar quantization, following initial work (Ballé et al., 2016; Theis et al.,
2017): Each (scalar) entry in the representation z is independently quantized to the nearest integer
by rounding. The majority of the current compression literature uses unbounded scalar quantization,
where the range of integers is not limited by the encoder, only by constraining the entropy of the
representation. Other compression work relied on bounding the range of the quantizer (Mentzer
et al., 2018; Tschannen et al., 2018; Agustsson et al., 2019).

We call this approach finite scalar quantization (FSQ). The important insight is that by care-
fully choosing how to bound each channel, we can get an implicit codebook of (almost) any de-
sired size: Consider a vector z with d channels. If we map each entry zi to L values (e.g.,
via zi 7→ bL/2ctanh(zi) followed by rounding to integers), we obtain a quantized ẑ, where ẑ
is one of Ld unique possible vectors. Fig. 1 shows FSQ for d=3, L=3, implying a codebook
C = {(−1,−1,−1), (−1,−1, 0), (−1,−1, 1), . . . , (1, 1, 1)}, where |C| = Ld = 27.

To get gradients through the rounding operation, we use the STE like VQ-VAE. Thus, using FSQ in-
side an autoencoder trained with a reconstruction loss, we get gradients to the encoder that force the
model to spread the information into multiple quantization bins, as that reduces the reconstruction
loss. As a result, we obtain a quantizer that uses all codewords without any auxiliary losses.

To the best of our knowledge, considering the (product) codebook obtained from FSQ has not been
done before, neither in neural compression nor in other tasks where VQ is dominant. We aim
to change this by revisiting FSQ in conjunction with powerful transformers/language models. In
summary, our contributions are:

1. We show that FSQ can serve as a drop-in replacement for VQ in various architectures, for dif-
ferent datasets and tasks, by applying it to MaskGIT (Chang et al., 2022) for image generation,
and in UViM (Kolesnikov et al., 2022) for depth estimation, colorization, and panoptic segmen-
tation. We observe a reduction of only 0.5 - 3% in the respective metrics, and correspondingly
get highly similar visual results. We emphasize that the two model families have very differ-
ent designs (convolutional vs. transformer-based autoencoders, masked vs. fully autoregressive
transformers, decoder-only vs. encoder-decoder transformers, etc.).

2. We analyze the trade-offs for VQ vs. FSQ, characterize the scaling behaviors w.r.t. codebook size
of the two models, and analyze the representation complexity from a compression angle. We find
that FSQ is able to leverage large codebooks for better reconstruction metrics, and better sample
quality. The codebook usage is very high for FSQ (≈100% for most models), without relying on
any auxiliary losses.

3. We show that the full generality of the VQ formulation gives little benefits over our simpler FSQ
method (VQ is actually worse for large codebooks C). This can be attributed to VQ being difficult
to optimize, whereas FSQ can be viewed as the standard VQ formulation changed such that a)
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Figure 2: Left: VQ made simple: comparing implementation and optimization of VQ vs. FSQ.
Right: Bounding z with f , and rounding the output, shown for a single channel with L = 5.

the encoder output is bounded and b) C is fixed. We note that the (implicit) FSQ C has much
smaller dimensionality vs. VQ (typically d < 10 for FSQ, vs. d ≥ 512 for VQ).

2 RELATED WORK

VQ-VAE and improvements Van Den Oord et al. (2017) introduced the initial formulation in
VQ-VAE, including a commitment loss and EMA for improved codebook learning. Roy et al. (2018)
use soft expectation maximization (EM) to train VQ-VAE. They also report success in tuning the
codebook size for the target tasks. Dhariwal et al. (2020) use VQ-VAE for audio generation. To
prevent codebook collapse, they use “random restarts”, where vectors are reset to encoder outputs
when their usage becomes low. They also introduce a multi-scale variant of VQ. Łańcucki et al.
(2020) aim to improve codebook learning by periodically reinitializing it using offline clustering
algorithms. Yu et al. (2021) introduce a vision transformer (ViT) based VQ-GAN. To improve
learning of the quantizer, they l2-normalize all vectors and map codes to a lower dimensional space
for lookup. Takida et al. (2022) propose a stochastic quantization approach to avoid codebook
collapse, adding Gaussian noise to the encoder output to imitate quantization, which is annealed
during training. Williams et al. (2020) also explore stochastic quantizers, in addition to a hierarchical
representation. Huh et al. (2023) examines challenges in training the vanilla VQ formulation. They
propose various improvements, including a re-parameterization, alternating optimization, and an
improved commitment loss.

VQ Alternatives Residual quantization (RVQ) has been used for image (Lee et al., 2022) and
audio (Zeghidour et al., 2021) generation. There, quantized codes are refined by additionally storing
(quantized) residuals. In Product quantization (PQ) (El-Nouby et al., 2022), the codebook is factored
into a product of smaller codebooks. In a similar spirit, there is a body of literature around reducing
the number of tokens output by VQ-VAEs for more efficient inference, see, e.g., Huang et al. (2023).

Neural compression Many works (Ballé et al., 2016; Minnen et al., 2018; Lu et al., 2019; Mentzer
et al., 2020; Cheng et al., 2020) rely on unbounded scalar quantization and constrain the entropy of
the quantized representation to prevent spreading to all integers. Bounded scalar quantization (i.e.,
FSQ), has been used to represent images with high fidelity (Mentzer et al. (2018) use d=16, L=5),
and for “extreme compression” (Agustsson et al. (2019) used d=5, L=5). To the best of our knowl-
edge, FSQ has not been used outside of compression. We note that the neural image compression
field generally targets “high bitrate” reconstructions, and the challenge is to reduce the entropy of
the complex representations, whereas in representation learning with VQ-VAE, the goal is usually
the opposite: increase the entropy of a heavily constrained representation to maximally use it.

3 METHOD

We start with some high-level intuition. VQ defines a learnable Voronoi partition in the high-
dimensional latent space of VQ-VAE, which leads to a complex non-linear partitioning of the VQ-
VAE input space (e.g., images). FSQ, by contrast, relies on a simple, fixed grid partition in a much
lower-dimensional space. Intuitively this is feasible because VAEs have a relatively high model ca-
pacity in typical applications (see Sec. 2), and thus the non-linearity of VQ can be “absorbed” into
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encoder and decoder, so that FSQ enables partitions of the VAE input space of similar complexity
as VQ. We note that like in VQ-VAE based approaches, we train FSQ models in two stages: We first
train a FSQ-VAE, and then a transformer on frozen FSQ-VAE representations.

3.1 FINITE SCALAR QUANTIZATION

Given a d-dimensional representation z ∈ Rd, our goal is to quantize z to a finite set of codewords.
To this end, we first apply a bounding function f , and then round to integers. We chose f such that
each channel/entry in ẑ = round(f(z)) takes one of L unique values (e.g., f : z 7→ bL/2ctanh(z)).
Thereby, we have ẑ ∈ C, where C is the implied codebook, given by the product of these per-channel
codebook sets, with |C| = Ld. The vectors in C can simply be enumerated leading to a bijection from
any ẑ to an integer in {1, . . . , Ld}. Therefore, VQ can be replaced with FSQ in any neural network-
related setup where VQ is commonly used, e.g., to train transformers, after appropriately adapting
the output and input dimension of the layers before and after VQ, respectively. We generalize the
above exposition to the case where the i-th channel is mapped to Li values and get |C| =

∏d
i=1 Li.

We visualize FSQ in Fig. 1 (left) and in Fig. 2. Since quantization is performed by round to integers,
supporting even L requires an asymmetric f . We show the general f used throughout this paper
as code in App. A.1. To propagate gradients throughout the round operation, we use the STE
throughout, replacing the gradients with 1. In ML frameworks, this can easily be implemented via
the “stop gradient” (sg) operation as round ste : x 7→ x+ sg(round(x)− x).

3.2 HYPERPARAMETERS

FSQ has the following hyper-parameters: the number of channels d and the number of levels per
channel, L = [L1, . . . , Ld]. In most of our experiments, to obtain fair comparisons, we will choose
target codebook sizes |C| based on the VQ codebooks we aim to replace with FSQ. However, various
configurations of d andLi can approximate a given |C| (i.e., anyLwhere

∏
i Li ≈ |C| is a candidate).

We explore various configurations in our study, and find that not all choices lead to optimal results.
However, we found a simple heuristic that performs well in all considered tasks: Use Li ≥ 5 ∀i. In
Table 1 we tabulate L for common target |C|.

3.3 PARAMETER COUNT

We note that FSQ has fewer parameters than VQ, since in VQ, a codebook of size |C| · d is learned.
For example, for a typical |C|=212=4096 and d=512, this results in 2M parameters, which FSQ
lacks. Additionally, since for FSQ, d tends to be much smaller than for VQ (e.g., d=5 for FSQ
for this |C|, see Tab. 1), the final encoder layer also has fewer parameters when training FSQ. To
compensate for this, we explored adding more dense layers at the end of the VAE encoder, resp. at
the start of the decoder, but found no further gains from doing so. Thus, in all models in this paper,
FSQ with the same codebook size has fewer parameters.

4 EXPERIMENTS

4.1 REVIEW OF MASKGIT AND UVIM

We start with a brief review of MaskGIT (Chang et al., 2022) and UViM (?). In MaskGIT, the authors
first train a (convolutional) VQ-GAN autoencoder (Esser et al., 2020) for reconstruction (Stage I).
They then freeze the autoencoder, and train a masked transformer BERT-style (Devlin et al., 2018)
to predict the quantized representations (Stage II): Given a representation ẑ, a fraction of tokens
is randomly “masked out”, i.e., replaced with a special MASK token. The resulting sequence ẑM
is fed to a transformer in addition to a class token, and the transformer predicts a distribution for

Target Size |C| 28 210 212 214 216

Proposed L [8, 6, 5] [8, 5, 5, 5] [7, 5, 5, 5, 5] [8, 8, 8, 6, 5] [8, 8, 8, 5, 5, 5]

Table 1: Recommended sets of FSQ levels L to approximately match a given codebook size |C|.
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Figure 3: Characteristics and trade-offs for VQ and FSQ for 128 × 128 ImageNet. We see that
Reconstruction FID correlates with codebook size for FSQ, and improves as we scale the codebook
size. FSQ gets better Sampling FID and higher codebook usage for codebook size exceeding 210,
while the metrics start deteriorating for VQ.

each masked token. During inference, initially only MASK tokens along with the class token are fed
to the transformer. Then, some of the token locations are selected based on prediction confidence,
and corresponding tokens are sampled (see (Chang et al., 2022, Sec 3.2)). These tokens are used
to replace mask tokens at the input, and the model is ran again, until all input tokens have been
uncovered.

UViM (Kolesnikov et al., 2022) is a general architecture to tackle various (dense) prediction tasks in
computer vision. In the first stage a transformer-based VQ-VAE is trained to model the label space of
the target task. Optionally, both the VQ-VAE encoder and decoder can rely on the task input (RGB
image for depth estimation and segmentation, grayscale image for colorization) as side information
or “context”, which was found beneficial for some tasks. In the second stage, an encoder-decoder
transformer is trained to predict the dense label as quantized tokens produced by the VQ-VAE en-
coder, given the task input. For inference, a code is sampled autoregressively using the transformer
conditioned on the input and then fed to the VQ-VAE decoder. The architecture is shared for the
three tasks, but different weights are learned for each task.

4.2 CHARACTERISTICS AND TRADE-OFFS FOR VQ AND FSQ REPRESENTATIONS

We start with a study, where we train MaskGIT models on lower resolution 128 × 128 ImageNet
images and for shorter time compared to the paper Chang et al. (2022) (100 epochs for Stage I,
200 epochs for Stage II. Please see Appendix A.4.1 for more hyperparameters). This allows us to
sweep the codebook size and other hyperparameters. For VQ, we use the auxiliary entropy loss from
MaskGIT, that aims to increase the entropy of the codebook (to increase utilization). We only sweep
the codebook size. For FSQ, we explore various d and Li to match these codebook sizes.

We track the following metrics: Reconstruction FID, the FID obtained by the GAN-trained au-
toencoder when the 50k validation images are fed through the quantized autoencoder. This is the
FID that the Stage II transformer would achieve if it would perfectly model the data. We use the
well established ADM TensorFlow Suite (Dhariwal & Nichol, 2023), which computes FID from 50k
reconstructions w.r.t. the training set. Codebook Usage: The fraction of the codewords that are used
at least once when encoding the validation set.
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Model Source CFG Sampling FID†↓ Precision†↑ Recall†↑ Usage↑
MaskGIT (VQ) Ours 0.1 4.509 0.860 0.465 81%
MaskGIT (FSQ) Ours 0.2 4.534 0.864 0.453 100%

MaskGIT (VQ) GitHub - 4.916 0.836 0.489
ADM (Dhariwal & Nichol, 2021) 1.5 4.59 0.83 0.52
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Figure 4: MASKGIT results on ImageNet 256. Top: We show the best classifier-free guidance
(CFG) setting for each MaskGIT model. As a reference, we show the well established diffusion
based ADM model (Dhariwal & Nichol, 2021). Bottom Left: Precision vs. Recall for various CFG
weights. Bottom Right: Sampling FID for various CFG weights. We show ADM as a horizontal
line, because the CFG weight 1.5 used for ADM is not comparable with our α in absolute terms.
†We use the ADM TensorFlow Suite to evaluate all shown models, see text.

With the transformer trained in Stage II, we additionally report Sampling FID, the FID obtained
when decoding representations ẑ sampled (class-conditionally) with the transformer. We addition-
ally propose studying Compression Cost as a proxy for how hard it is to model the discrete distri-
bution underlying the representations (i.e., modelling complexity): Note that any transformer that
predicts a distribution over discrete codes can be used to losslessly compress the corresponding rep-
resentation. For masked transformers, the only requirement is a deterministic masking schedule,
that gradually uncovers the input. Using such a schedule, we can compress any ẑ to bits, by pairing
the transformer outputs with entropy coding. We use the deterministic masking schedule employed
in M2T (Mentzer et al., 2023) and refer to Section 1 in that work for further details on the theory.

4.3 MASKGIT

We train MaskGIT models on ImageNet 256 based on the public GitHub code, training Stage I for
1M steps with batch size 512, and Stage II for 2.5M steps with batch size 256. For inference, we
use 12 steps with the cosine to sample an image. Initial experiments with the public code showed a
slight instability in the Stage II transformer loss, which we were able to mitigate by lower bounding
the minimal masking ratio used during training. Please see Appendix A.4.3 for further details and
hyper parameters. We train VQ with codebook size 1024 (10 bits) and the entropy loss, as in the
published model. For FSQ, we use L = [8, 5, 5, 5] as suggested in Tab. 1.

Following the paper, we report Sampling FID as well as Precision and Recall (Sajjadi et al., 2018)
to assess the quality of the generative model. Additionally, we also report Codebook usage. We
again use the well-established ADM TensorFlow Suite, leading to an (ADM-)-FID-train of 4.916 for
the official checkpoint published in the MaskGIT GitHub, vs. 6.19 reported in the MaskGIT paper.

Early experiments showed that FSQ lands at a different Precision & Recall point compared to VQ
(FSQ had higher recall, lower precision). Inspired by the diffusion literature, we thus add classifier
free guidance (CFG) (Ho & Salimans, 2022) to MaskGIT: During training, we replace 10% of
the class labels with the MASK token to let the model learn the unconditional distribution. During
inference, we interpolate logits: Let lc be the logits obtained when conditioning on the class label
c, and l∅ be unconditional logits. During inference, we compute new logits l′ = lc + α(lc − l∅),
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Figure 5: Non-cherry-picked samples from our FSQ (top) and VQ (bottom) MaskGIT models for
4 imagenet classes (330, 320, 510, 454). We show two samples per model per category. Both
models get very comparable sample quality, as reflected by the metrics in Fig. 4.

where α is the CFG inference weight. Intuitively, this pulls the predicted distribution towards the
unconditional one. We emphasize that this has previously been explored in the context of masked
transformers, e.g., by (Chang et al., 2023, Sec. 2.7).

4.4 UVIM

We retrain the public UViM GitHub code for all three tasks (panoptic segmentation, depth estima-
tion, colorization). As in the paper, we train each Stage II transformer 3 times, and report averaged
metrics. For VQ, we use 4096 codewords (12 bits), and we use the codebook splitting (described
below), as in the published results. We obtain similar metrics to what is reported in the GitHub repo,
see Sec. 5. For FSQ, we use L = [7, 5, 5, 5, 5] from Tab. 1.

Following the UViM paper, we report panoptic quality (PQ) for panoptic segmentation, RMSE for
depth estimation, and FID-5k for colorization. For all tasks, we use the evaluation suite provided
by the UViM github repository. We refer to (Kolesnikov et al., 2022) for more details on these tasks
and corresponding data sets.

We ablate the effect of VAE context input (i.e., the RGB image, see above) on the performance
of VQ and FSQ in the panoptic segmentation task. Further, we investigate the codebook splitting
employed by UViM to avoid unused codewords in VQ-VAE. Specifically, they adopt the algorithm
from Linde et al. (1980), where throughout training, unused vectors are detected. These are then
replaced by splitting most frequently used embeddings into two new embeddings, adding noise to
each. Since we observe training instabilities when deactivating codebook splitting in the panoptic
segmentation task, we use the depth estimation task for this ablation.

5 RESULTS

5.1 TRADEOFF STUDY

In Fig. 3 we show the results for the trade-off study. On the x-axis, we always show the codebook
size |C|, representing the maximal amount of information the codebook can store. We observe the
following:

Codebook size correlates with Reconstruction FID for FSQ In Fig. 3 a), we see that as we
increase the codebook size, the reconstruction FID for FSQ keeps improving. This is what one
would expect from a compression perspective: as we have more bits to store information, we should
get better reconstruction metrics. However, we see that VQ struggles with utilizing large codebooks
(despite entropy regularization of the codes), and reconstruction FID achieves a minimum at 211
codes, co-inciding with the point where the codebook usage starts decreasing (cf. Fig. 3 c)). We
note that for low codebook sizes (Fig. 3 a), left), VQ marginally outperforms FSQ, likely owning to
the its more expressive nature (see Contribution 3 in the Section 1).

FSQ gets better Sampling FID A similar picture emerges in Fig. 3 b), where we see that the
better Stage I behavior of FSQ translates to better Sampling FID as we scale the codebook.
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NYU Depth v2 Source RMSE† ↓ Codebook Usage

UViM (VQ) Ours 0.468± 0.012 99%
UViM (FSQ) Ours 0.473± 0.012 99%
UViM (VQ without splitting) Ours 0.490± 0.0037 0.78%

UViM (VQ) GitHub 0.463
DenseDepth (Alhashim & Wonka, 2018) 0.465

COCO Panoptic Source PQ† ↑ Codebook Usage

UViM (VQ) Ours 43.4± 0.0008 100%
UViM (FSQ) Ours 43.2± 0.0014 100%
UViM (VQ without context) Ours 39.0± 0.0023 99%
UViM (FSQ without context) Ours 40.2± 0.0019 99%

UViM (VQ) GitHub 43.1
DETR-R101 (Carion et al., 2020) 45.1

ImageNet Colorization Source FID-5k† ↓ Codebook Usage

UViM (VQ) Ours 16.90± 0.056 100%
UViM (FSQ) Ours 17.55± 0.057 100%

UViM (VQ) Github 16.99± 0.057
ColTran (Kumar et al., 2021) 19.37

Table 2: UVIM results for the three tasks. For each, we show results in the corresponding metric
averaged over three runs with std. dev. (as in UViM). We show the numbers reported by the reference
GitHub repository, as well as one well established baseline per task. For our models, we show
Codebook usage. For Depth Estimation, we train an ablation where we do not employ the codebook
splitting in VQ. Overall, FSQ obtains competitive but marginally worse results on all tasks. †We use
the UViM GitHub evaluation suite.

FSQ gets high codebook usage In Fig. 3 c) we see that FSQ uses almost all codewords for a
codebook size of 214=16k, without employing any tricks. At the same time, VQ starts dropping
below 50% usage for codebooks larger than 211 and is not able to utilize more than 210 codewords
for larger codebooks. In contrast, for FSQ usage continues growing with more than 215 codewords
utilized for a codebook of size 216.

Diminishing gains from codebook scaling One might wonder whether just scaling the codebook
size more would lead to ever lower sampling FID. However, as shown in Fig. 3 d), the compression
cost of the representation keeps increasing. This indicates that the quantized representations get
more complex to model for the transformer. Indeed, we see in Fig. 3 b) that the Sampling FID
saturates for FSQ starting when using about 212 codewords. We note that in general, for this task,
the discrete distribution underlying the FSQ representations are slightly harder to model (as seen by
the higher Compression Cost when training the same transformer on different VAEs, Fig. 3 d)). We
also note how the Compression Cost for VQ correlates with the codebook usage: when the usage
drops, the code becomes easier to model again. Similarly, within a model group (i.e., considering
only FSQ or VQ models), the compression cost is anti-correlated with sampling FID.

Selecting the number of levels per channel L In Appendix A.4.1 we also show the effect of
different L on the Sampling FID. We find that Li < 5 leads to subpar performance.

5.2 MASKGIT

In Fig. 4 we show the metrics for MaskGIT on 256×256 ImageNet. We sweep the CFG weight for
both VQ and FSQ. The following can be observed:

FSQ and VQ achieve comparable metrics and visual results Fig. 4 shows that both quantizers
achieve very comparable FID, as well as precision and recall. To put the numbers in context, we
show the well established diffusion-based ADM model (Dhariwal & Nichol, 2021). When inspect-
ing the visual results in Fig. 5, we see that both quantizers lead to qualitatively similar samples.
Motivated by the tradeoff study (sec. 5.1), we explored a larger codebook for these models, but did
not observe further gains.
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Input Ground Truth FSQ VQ w/o code splittingVQ

Figure 6: Samples from UViM for the depth estimation task. Other tasks in Appendix A.2. We
observe that VQ and FSQ lead to comparable samples. VQ without splitting leads to jagged edges.

Semantics It is commonly argued in the literature that the codebook in VQ-VAEs and VQ-GANs
learns semantically meaningful codes. Yet, we see that we get similar samples from both VQ and
FSQ, even though FSQ does not learn an explicit codebook (and thus has less parameters). We
performed a small study to see whether either representation is more semantically meaningful than
the other, shown in Appendix A.3. We found no evidence that a particular code represents a fixed
visual concept in either quantizer. Indeed, both behave very similary in that study.

Precision-Recall trade-offs Note that precision is a measure for the “quality” of the samples,
while recall measures the proportion of the true distribution that is covered by the samples (Sajjadi
et al., 2018). When we sweep the CFG weight α during inference, we obtain models that cover a
very similar space in Precision & Recall (bottom, left), and that obtain very similar minimal FID
(bottom, right).

5.3 UVIM

Table 2 shows the results for the three tasks trained with UViM along with some baselines from the
literature.

FSQ is competitive with VQ on all tasks We can see that across all tasks, FSQ obtains compet-
itive metrics compared to VQ. This is also reflected in the visual results shown in Fig. 6 (for depth
estimation) and App. A.2 (for panoptic segementation and colorization).

FSQ performs better in absence of side information (context) Table 2 also shows removing the
VAE context in UViM (panoptic segmentation), i.e., removing the original RGB image input to the
VAE encoder and decoder (see Sec. 4.1). In this setting, both the FSQ and VQ-based models obtain
lower PQ numbers than with context, but the performance of the FSQ-based model degrades less.

FSQ does not rely on codebook splitting We explore disabling the codebook splitting on the
NYU Depth task, and we observe signficantly worse RMSE, while Codebook usage drops by more
than two orders of magnitude to 0.78%. In the predictions, we observe jagged edges, see Fig. 6
(right most column). At the same time, FSQ does not rely on any auxiliary algorithms to obtain
99% codebook usage.

6 CONCLUSION

In this work, we showed that we can replace the vector quantizer in VQ-VAEs with a simple
scalar quantization scheme, where the representation is projected to very few dimensions which
are bounded and rounded. We studied and compared the behavior of FSQ and VQ as a function of
the codebook size and observed that FSQ achieves much better codebook utilization for large code-
book sizes. Despite the much more constrained setup, we were able to obtain comparable metrics
on image generation with MaskGIT, and dense computer vision tasks with UViM. We hope future
work will explore FSQ in even more applications.
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Reproducibility We refer to Section A.1 for reference code.

Ethics Statement This work proposes a drop-in replacement for VQ, and can thus be applied
in all domains where VQ is used. A domain where care w.r.t. biases has to be taken is generative
models. However, no new ethical concern arises from our method that would not be a concern for
VQ-based methods.
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