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Abstract

Text-to-image diffusion models have been adopted into key commercial workflows,
such as art generation and image editing. Characterising the implicit social biases
they exhibit, such as gender and racial stereotypes, is a necessary first step in
avoiding discriminatory outcomes. While existing studies on social bias focus
on image generation, the biases exhibited in alternate applications of diffusion-
based foundation models remain under-explored. We propose methods that use
synthetic images to probe two applications of diffusion models, image editing and
classification, for social bias. Using our methodology, we uncover meaningful
and significant inter-sectional social biases in Stable Diffusion, a state-of-the-art
open-source text-to-image model. Our findings caution against the uninformed
adoption of text-to-image foundation models for downstream tasks and services.

Figure 1: Impact of social bias in diffusion-based foundation models on downstream tasks uncovered using synthetic test images. Task 1:
Diffusion-based editing of images for different intersectional groups results in stereotyped gender flips and skin tone changes (we depict average
faces using Facer [1], example individual images can be found in §7.1.2). Task 2: Zero-shot diffusion-based classification of intersectional
images may result in hallucinated associations with professions and biased classification. Here we depict a small representative subset in this
classification task, the full set of images can be found in §7.2.4. Aggregate results are shown in Figure 3 and details in Table 1 and 5.

1 Introduction
Recent advances in generative text-to-image models have been fueled by the application of denoising
diffusion probabilistic models [2]. Notably, DALL-E [3, 4], Imagen [5], and Stable Diffusion [6]
have emerged as prominent examples, showcasing their strong visio-linguistic understanding through
the production of high-resolution images across diverse contexts.

Generative models tackle the challenging task of modeling the underlying data distribution, which
often leads to an informative representation of the world that can be utilized for downstream tasks,
such as classification. In natural language processing, many successful pre-trained models are
generative (i.e., language models). Generative pre-training is also being increasingly adopted for
downstream vision tasks [7, 8], with recent works achieving competitive results against CLIP on
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Figure 2: Overview of our approach: Our method involves defining two sets of attribute concepts, X and Y , and using either a) synthetically
generated images or b) images from curated datasets to represent these concepts. We also define target concept sets, A and B, to evaluate model
behavior in image-based tasks. We use text prompts created by filling in predefined text templates in two downstream tasks: diffusion-based
image editing, and zero-shot classification. Our main goal is to analyze the biases of the foundation model across tested concepts and understand
their implications on downstream tasks through the analysis of classification and image editing results.

zero-shot image classification, using text-to-image foundation models with no additional training.
Other downstream tasks include segmentation [9], dense correspondence [10], image retrieval [11],
as well as generative tasks, such as text-guided image editing [12, 13] and in-painting.

Simultaneously, a growing concern has been raised by works such as [14] and [15], which under-
score the presence of various social biases—ranging from social and religious to sexual orienta-
tion—embedded within these models. These biases can be attributed to the contrastive pre-training of
CLIP (encoders of most text-to-image models) and generative training of the text-to-image models.
This is as the internet-scale datasets used in both these stages reflect and compound the biases in
society [16], though the tendency of models to amplify imbalances in training data has also been
audited [17]. As the utilization of text-to-image foundation models extends beyond generative
tasks, encompassing discriminative tasks like classification, the potential for these models to yield
discriminatory or harmful outputs, thereby reinforcing stereotypes, demands careful consideration.

Our Approach: In this work, we probe social bias in two applications of text-to-image foundation
models, image editing [18, 19] and zero-shot classification [7, 8], using bias testing methods designed
to resemble downstream workflows. We also revisit the use of synthetic images in bias testing, which
supports flexibility, over static and expensive human-curated datasets.

Prior work: Recent works predominantly assess bias in text-to-image models using two methods: 1)
comparisons in CLIP embedding space [20, 15], and 2) attribute (e.g. race, gender) classifiers [14] .
These approaches are confined to image generation and don’t extend to discriminative tasks or text-
guided image editing. Krojer et al. [11] present biases in image retrieval but rely on human-curated
datasets. Perera et al. [21] investigate the impact of training data on social bias in diffusion-based
face generation models. The utilization of synthetic image data as supplementary training data to
address fairness discrepancies across social groups in recognition tasks has been explored in previous
studies [22, 23, 24]. There has also been efforts to benchmark recognition models using synthetic
data by perturbing attributes, using GANs, to assess accuracy [25]. Our work develops flexible and
scalable bias testing workflows for two downstream applications, image editing and classification.

Findings: In our experiments, we use a neutral1 photo representing a social identity and prompt the
model to edit it into a specific profession, mimicking real-world applications such as professional
head-shot generation [26]. We observe higher rates of unintended gender alteration when editing
images of women into high-paid roles (78%), compared to men (6%) (Fig.3-Left). We further observe
a trend towards skin lightening when editing images of Black individuals to the same high-paid roles
(Fig.3-Middle), and to a lesser extent when editing to low-paid roles.

We also analyzed the use of Stable Diffusion as a classifier, following [8]. Our results reveal gender-
biased associations in classifying professions across profession-neutral images of different social
groups. For instance, in binary classification, between a male- and female-dominated profession, the
male-dominated profession was selected for synthetic images of Males 64% of the time compared
to 28% for images of Females (Fig. 3-Right). This indicates a strong learned relationship between

1A photo without any aspects revealing the tested attributes (e.g., clothing indicative of a particular profession)
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Figure 3: Left: Percentage of flips in gender (CLIP) from editing Male and Female images to high-paid roles in diffusion-based image editing.
Middle: Skin Color Changes (↑ change towards lighter skin color using an established methodology described in §3) from editing images of
White and Black individuals using high-paid prompts in diffusion-based image editing. Right: Percentage of diffusion-based classifier choices
towards male-dominated professions in binary classification tasks between a male- and female-dominated profession pair (at different numbers
of noise samples in the estimation of the classification objective).

visual cues concerning attributes, such as gender, and target concepts, such as professions. The bias
towards stereotyped professions also amplifies when the number of noise samples used to calculate
the classification objective is increased — a hyper-parameter linked to higher classification accuracy
[8, 7] (Fig. 3-Right). We therefore demonstrate that optimizing for accuracy can inadvertently
increase association bias. These learned correlations pose a potential harm to performance and
fairness in classification tasks that confront learned stereotypes.

Contributions: In this work we offer the following contributions:

• To our best knowledge, we are the first to define bias testing methods for two downstream applica-
tions of text-to-image foundation models: image-editing and zero-shot classification. We leverage
synthetic images to support flexibility and scalability.

• We run experiments on Stable Diffusion with these downstream tasks and show the presence of
severe social biases across professions for various intersectional groups.

• We show that increasing hyper-parameters that improve performance in downstream tasks, including
the number of noise samples (classification), also inadvertently amplifies social bias.

2 Preliminaries

Social Bias in ML: Intersectional social bias refers to the overlapping and inter-dependent forms of
discrimination that individuals face due to any combination of their race, gender, class, sexuality or
any other identity factors. Several works have studied how intersectionality affects the manifestation
of bias in ML, including in word embeddings ([27, 28], language ([29, 30, 31]) and image-generation
([15, 14] models. Another consideration is the distinction between extrinsic and intrinsic bias,
described in [32] as the biases that originate from pre-training and fine-tuning, respectively. As there
is no fine-tuning on task-specific data when re-purposing text-to-image models for the downstream
tasks presented, we refer to any biases present here as intrinsic.

Diffusion models: Details regarding Denoising Diffusion Models are found in [33, 2, 34, 35].

Diffusion-based Image Editing: In CLIP latent space models (e.g., [4, 6]), image generation
initializes diffusion from a random latent vector, whereas image editing initializes from an embedding
of the image to be edited [12, 13]. Often, the model is shared between image generation and editing
tasks, with differences being the starting point (the latent embedding) and hyper-parameters.

A crucial hyper-parameter, “strength”, defaulting to 0.8 (max: 1.0), controls noise addition to the
reference image. Higher values result in more noise and denoising iterations, yielding edits that better
match the edit prompt but are less consistent with the original image.

Diffusion-based Classification: The key idea in diffusion-based classification is that a diffusion
model’s ability to denoise a noised image, given a text description of a label, is a proxy for that label’s
likelihood [7, 8]. The classification objective, the evidence lower bound (ELBO), is defined as a
Monte-Carlo estimate of the expected noise reconstruction losses (ϵ-prediction loss), obtained by
repeatedly adding Gaussian random-noise, ϵ, to the image.
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Among various hyper-parameters in the design of the classifier, the most critical one is the number of
noise samples employed to compute the classification objective. For an input image x and class set
C, the text prompt ci that minimizes noise reconstruction loss is chosen:

arg min
ci∈C

Et,ϵ ∥ϵ− ϵθ(xt, ci)∥22 (1)

3 Methodology

Synthetic data generation: We use stable-diffusion-2-1 (SD v2.1) for synthetic dataset creation. The
number of denoising steps during image generation was set to 100 to produce high-fidelity images,
and the guidance scale was set to 8.5. We fixed the dataset generation prompt template as: “A color
photograph of a _____, headshot, high-quality.” based on [36].

Downstream tasks setup: We demonstrate our bias testing methods on downstream applications of
Stable Diffusion model stable-diffusion-2-1. For classification, we use the default set-up [8]. We vary
the number of noise samples in the calculation of the classification objective, ELBO (1, 10 and 100
samples). Zero-shot classification prompts follow the template: “A portrait of a _____.”

We use StableDiffusionImg2ImgPipeline from Hugging Face, which uses the diffusion-denoising
mechanism proposed in [37], for text-guided image editing. We vary edit strength and report results
for 0.6, 0.8 (default) and 1. We use default values for number of inference steps (50) and guidance
scale (7.5). We construct edit prompts using the template: “A color photograph of a _____, headshot,
high-quality.”, in line with synthetic dataset generation prompts.

Bias in Diffusion-based Image Editing: Bias testing in image generation focuses on determining
attributes of the images generated for a target concept prompt, while bias testing in editing must
examine changes in pre-existing visual attributes. We quantify changes during editing through
zero-shot gender classification using CLIP, between ‘man’ and ‘woman’, as in [38]. While this binary
classification oversimplifies gender, a complex, non-binary construct, it provides an initial framework
for bias analysis. We employ Facer [1], an open-source Python package, to compute the average face
of sets of original and edited images. Predicting race based on visual cues is challenging, especially
through CLIP [39]. Instead, we focus on skin color as a quantifiable metric, employing the Individual
Typology Angle (ITA) [40] as a proxy. We use the YCbCr algorithm [41] to determine skin pixels
from the average faces, and calculate the ITA, a statistical dermatology value, from their RGB values,
through the implementation used in [42, 43]. ITA is versatile as it is also commonly mapped to
discrete skin-tone classes, such as the Fitzpatrick Scale [44].

Bias in Diffusion-based Classification: We introduce attribute sets X and Y (e.g., terms for male
and female) and target sets A and B (e.g., professions dominated by each gender). We consider
image datasets DX and DY , which can be synthetic, generated by a generator G, or human-curated,
and assume neutrality concerning the concepts in A and B. By classifying images into profession
pairs from A and B and averaging the results, we gauge the attribute-to-target concept association.
We introduce an association measure, and a differential variant, to quantify the differences in the
associations of X and Y . Note that c is the decision of the classifier.

S(D,A,B) = avg
x∈D

avg
(a,b)∈A×B

p(c = a|{a, b}, x) (2)

S(DX ,DY ,A,B) = S(DX ,A,B)− S(DY ,A,B) ∈ [−1, 1] (3)

4 Datasets and Results
4.1 Datasets

Human-Curated Dataset: We run our analyses on the human-curated Chicago Face Dataset (CFD)
[45]. We conduct experiments on the images of the self-identified White and Black Males and Females.
We use the whole dataset for classification, and randomly sampled 25 neutral facial-expression images,
for each social group, for image-editing.

Synthetic Data: We also generate synthetic datasets containing 256 images for a range of inter-
sectional social identities (Caucasian and African-American men and women). We use the whole
dataset for classification, and randomly sampled 25 images, for each social group, for image-editing.
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Dataset Social Identity (X) Edit concepts ∆ Gender (CLIP) ∆ Skin-Color (ITA)
Edit strength 0.6 0.8 1.0 0.6 0.8 1.0

CFD White Female High-paid
professions

0.18 0.48 0.76 ↑0.32 ↓4.25 ↓1.65
White Male 0.20 0.20 0.08 ↓1.16 ↓6.04 ↓1.40
Black Female 0.20 0.42 0.72 ↑1.71 ↑8.60 ↑37.39
Black Male 0.10 0.04 0.08 ↑0.56 ↑6.08 ↑35.56

SD v2.1 Caucasian-Woman 0.04 0.24 0.84 ↑3.99 ↓4.30 ↓4.33
Caucasian-Man 0 0.02 0.06 ↑3.68 ↑1.51 ↑22.52
African-Amer. Woman 0.02 0.36 0.78 ↑6.62 ↓0.19 ↑19.18
African-Amer. Man 0 0 0.02 ↑12.31 ↓1.61 ↑20.22

CFD White Female Low-paid
professions

0.02 0.08 0.30 ↓0.42 ↓4.47 ↓8.24
White Male 0.38 0.62 0.56 ↑1.32 ↓1.08 ↓9.04
Black Female 0.02 0.16 0.28 ↑1.71 ↑4.62 ↑24.06
Black Male 0.22 0.42 0.58 ↑0.54 ↑3.05 ↑20.36

SD v2.1 Caucasian Woman 0.06 0.20 0.48 ↑3.29 ↓3.86 ↓13.03
Caucasian Man 0.02 0.20 0.36 ↑8.55 ↑7.33 ↑17.05
African-Amer. Woman 0.06 0.38 0.50 ↑10.11 ↑3.69 ↑14.05
African-Amer. Man 0.22 0.32 0.44 ↑12.26 ↑8.97 ↑16.35

Table 1: For each row, we edit 25 original images into two professions. The high-paid professions are doctor and CEO. The low-paid professions
are ‘dishwasher’ and ‘fastfood-worker’. This results in 50 edited images, per edit strength, in each row. ‘Change in gender (CLIP)’ column:
Percentage of edited images that are different in gender from original image. We embolden results where more than half the edits alter the gender.
‘Change in skin-color (ITA)’ column: Change in ITA between the average face of the edited set and the original set of images (↓in ITA - skin
becomes darker, ↑in ITA - skin becomes lighter). We embolden changes over ± 15 points. Absolute ITA values are found in Appendix 7.1.4.

Biases: We focus on professions, common for testing social biases in generative models [46]. For
image editing, we focus on the two highest paid professions: ’doctors’ and ’CEOs’, and the two lowest
paid professions, ’dishwashers’ (‘dishwasher-worker’ used to avoid generations of the appliance)
and ’fast-food workers’, as per US Labour Statistics [47]. For classification, we pick the five top
male and female-dominated professions, according to US Labor Statistics [46]. Male-dominated
roles include ‘carpenters’, ‘plumbers’, ‘truck drivers’, ‘mechanics’, and ‘construction workers’ and
female-dominated include ‘babysitters’, ‘secretaries’, ‘housekeepers’, ‘nurses’, and ‘receptionists’.

4.2 Results

4.2.1 Social Bias in Text-guided Image Editing

We varied social groups, target concepts, and edit strengths (refer to Table 1).

Change in Gender: Editing images of women towards high-paying careers results in a higher rate of
gender alteration than in images of men, at all strengths and in both datasets. This is prominent at the
maximum edit strength, 1.0 (81% vs. 4% for synthetic and 74% vs. 8% for CFD). Editing towards
low-paying careers induces a lower rate of gender alteration in images of women and a higher rate
in images of men, compared to their respective rates for high-paying careers, at all strengths and in
both datasets. This difference is also most prominent at the maximum edit strength (49% vs. 40% for
synthetic and 57% vs 29% for CFD).

Change in Skin-Color: Positive changes in ITA value between the average face of the original and
edited set of images indicate a shift towards lighter tones, while negative changes the opposite. We
found an average trend towards skin lightening (M=6.85 for synthetic and M=4.51 for CFD), which
is particularly prominent for non-white individuals (M=10.16 for synthetic and M=12.02 for CFD).
The shift for non-white individuals is more pronounced at higher edit strengths (0.6: M=10.33, 1.0:
M=17.45 for synthetic and 0.6: M=1.13, 1.0: M=29.34 for CFD). High-paid edits have a notably
greater increase than low-paid edits at the max edit strength in both datasets (high-paid: M=14.40 ,
low-paid: M=8.61 for synthetic and high-paid: M=17.48, low-paid: M=6.04 for CFD). These trends
are qualitatively validated in the average faces in Appendix 7.1.3.

4.2.2 Social Bias in Diffusion-based Classification

In Table 5, we analyze gender bias in a stable-diffusion-2-1-based classifier, by measuring association
of profession-neutral intersectional female and male image datasets, towards male- and female-
dominated profession sets. Association values of 0.0, 0.50, and 1.0 indicate female-only, unbiased,
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and male-only classifications, respectively. The classifier shows lower-than-neutral association
(average across ELBO steps) towards male professions for images of women (0.36 for synthetic and
0.30 for CFD) and higher for images of men (0.65 for synthetic and 0.56 for CFD). The differential
association of the male and female datasets intensifies with increased ELBO samples. In the CFD
dataset, it changes from 0.16 to 0.36, and in the synthetic dataset, from 0.22 to 0.37, as the ELBO
samples is increased from 1 to 100. CFD images of Black females exhibit a less pronounced bias
(0.27) at 100 ELBO samples compared to images of White females (0.10), but this interestingly
coincides with a much lower gender identification accuracy, 52% vs. 96% (see Appendix 7.2.1).

5 Discussion
Social Bias in Diffusion-based Image Editing: Frequent unintended alterations to gender and skin
color highlights the strong associations between social identities and professions, as reported by
prior works in the image generation context [15, 14]. When the editing prompt challenges prevailing
stereotypes associated with the image’s identity, “protected attributes”—characteristics like gender
or ethnicity legally safeguarded from discrimination—are frequently modified. The prevalent trend
towards lighter skin tones, pronounced in non-white individuals and when editing to high-paying
professions, align with prior works that suggest a “white default” in image generation models [48].
The presented biases are acute, as even with visual guidance on protected attributes in the embedding
of the original image, edits produce biased and stereotypical results concerning the target prompt.

Social Bias in Diffusion-based Classification: We observe strong differences in the association
of neutral images of different genders with particular professions. Increasing the number of ELBO
samples improves classification accuracy in [8, 7] and 7.2.1, but also escalates social bias. Enhanced
proficiency in recognizing protected attributes like gender (7.2.1) inadvertently intensifies biased
associations. This consistent but misleading correlation, in the absence of concrete profession
identifiers, raises questions regarding the robustness of the stable-diffusion-2-1-based classifiers.

Broader Impact and Deployment: The framework for evaluating the social impact of generative
AI systems presented in [49] suggests two modes of evaluation— 1) evaluating the technical ’base’
system and 2) the impact of context-specific deployment on people and society. Our work tackles
the former, albeit it through hypothetical in-context applications, and raises concerns across several
criteria used to evaluate the technical system including ’Bias, Stereotypes, and Representational
Harms’ and ’Disparate Performance’. Further, the differential ease of applying certain edits to
different groups, whilst preserving identity (gender, race but also facial features, for example) makes
these systems susceptible to misuse, including for the perpetuation of negative stereotypes. We defer
to [49] for further discussion on evaluation areas for potential impacts on people and society.

Limitations: One limitation is the potential for the generator text-to-image model to inject it’s own
social biases into the test images. We assume generated images are profession neutral and diverse.
For attribute concepts where this is not the case, prompt engineering should be explored [50]. We
inherit CLIP’s fairness and accuracy limitations, by using it for gender classification. However, CLIP
achieved a 100% accuracy on the unedited images, and similar performance is expected for the edited
images. Further, image based skin-tone calculation is susceptible to artefacts and low dynamic ranges
(note the low initial ITA value for synthetic Caucasian-man images from the occasionally murky
generated images). Future work could verify the data quality, by exerting tight control over synthetic
image generation (e.g. make attribute level changes to human-curated images) and post-generation
normalization (e.g. filter for well-lit images, center faces and normalize viewpoints).

6 Conclusion
Methods derived from Stable Diffusion showcased pronounced intersectional biases across gender
and skin-color indicating a pressing need for bias testing methods that are aligned with downstream
tasks, in order to facilitate ethical deployment. Our work serves as an initial foray into methodology
that supports flexible bias testing at scale in two such downstream tasks. In future work, the
effectiveness of refined editing or classification prompts [50] and the fairness of diffusion-based
classifiers, especially concerning a larger range of intersectional social groups, should be explored to
further understand and improve robustness and reliability.
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7 Appendix

7.1 Image Editing

We present the edits for a subset of the edit prompts tested, namely ’doctor’ (high-paid) and ’fast-
food worker’ (low-paid), across both the human-curated (CFD) and synthetic (SD v2.1) sets, for
White/Caucasian Men and Black/African-American Women. This provides a qualitative sense of
the differential shift of protected attributes, including gender and skin color, when the edit prompt
concerns a stereotype or an anti-stereotype concept.
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7.1.1 Human-curated (CFD) Image Edits

Figure 4: Edits of human-curated (CFD) images of ’White Male’ to doctor

Figure 5: Edits of human-curated (CFD) images of ’Black Female’ to doctor

Figure 6: Edits of human-curated (CFD) images of ’White Male’ to fastfood worker

Figure 7: Edits of human-curated (CFD) images of ’Black Female’ to fastfood worker
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7.1.2 Synthetic (SD v2.1) Image Edits

Figure 8: Edits of synthetic (SD v2.1) images of ’Caucasian Man’ to doctor

Figure 9: Edits of synthetic (SD v2.1) images of ’African-American Woman’ to doctor

Figure 10: Edits of synthetic (SD v2.1) images of ’Caucasian Man’ to fastfood worker

Figure 11: Edits of synthetic (SD v2.1) images of ’African-American Woman’ to fastfood worker

7.1.3 Average Faces

We present the average faces of the original images, of those edited, and the edits, of different edit
strengths and concepts, for all social groups, for both human-curated (CFD) and synthetic data.
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Figure 12: Average faces of the images that were edited (Original) - Human-curated (CFD)

Figure 13: Average faces of the images that were edited (Original) - Synthetic (SD v2.1)

Figure 14: Average faces of edited sets of images, for human-curated (CFD) images, when edited towards high- and low-paying careers. Note
that each average face is comprised of 50 images, 25 edits towards each profession (low-paying: dishwasher-worker and fastfood-worker,
high-paying: doctor and CEO).
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Figure 15: Average faces of edited sets of images, for synthetic (SD v2.1) images, when edited towards high- and low-paying careers. Note
that each average face is comprised of 50 images, 25 edits towards each profession (low-paying: dishwasher-worker and fastfood-worker,
high-paying: doctor and CEO).

7.1.4 Average Faces - Skin-color (ITA) Values

Dataset Social group ITA
CFD Black Male -17.73

White Male 41.91
Black Female -15.66
White Female 39.39

SD v2.1 Caucasian-woman 26.63
Caucasian-man 2.52
African-American-man -10.29
African-American-woman -3.81

"

Table 2: We report the absolute ITA values for the average face of the original images that were edited, for each social group, for both
human-curated (CFD) and synthetic (SD v2.1) datasets (averages faces shown in 12 and 13).

Dataset Social group Edit Concept ITA (0.6) ITA (0.8) ITA (1.0)

CFD BM low-paid -17.18 -14.68 2.63
high-paid -17.16 -11.64 17.84

BF low-paid -13.94 -11.03 8.4
high-paid -13.94 -7.06 21.74

WM low-paid 43.23 40.83 32.87
high-paid 40.76 35.87 40.51

WF low-paid 38.97 34.91 31.15
high-paid 39.71 35.14 37.74

SD v2.1 African-American-man low-paid 1.97 -1.32 6.06
high-paid 2.02 -11.9 9.93

African-American-woman low-paid 6.29 -0.12 10.24
high-paid 2.81 -4.01 15.36

Caucasian-man low-paid 11.07 9.85 19.57
high-paid 6.2 4.03 25.04

Caucasian-woman low-paid 29.93 22.78 13.61
high-paid 30.62 22.33 22.31

Table 3: We report the absolute ITA values for the average face of the edited sets of images, for both human-curated (CFD) and synthetic (SD
v2.1) datasets, at all edit strengths, for low and high-paid professions (average faces shown in 14 and 15).
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7.2 Classification

7.2.1 Gender Classification

Dataset Social group Accuracy
Number of noise samples in ELBO estimation 1 10 100

CFD White Female 0.54 0.65 0.96
White Male 0.75 0.93 0.95
Black Female 0.35 0.35 0.52
Black Male 0.93 0.98 1.00

SD v2.1 Caucasian-Woman 0.68 0.87 0.96
Caucasian-Man 0.83 0.86 0.97
African-American-Woman 0.71 0.87 0.97
African-American-Man 0.69 0.80 0.97

Table 4: We report accuracy in gender classification, into ’A portrait of a man.’ and ’A portrait of a woman.’, as a reference of the classification
fidelity of the SD v2.1-based classifier. We report results for 1, 10 and 100 noise samples in the estimation of the classification objective (ELBO).
Accuracy increases across the board as the number of the noise samples is increased.
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7.2.2 Profession Associations with Intersectional Social Identities

Dataset Social Identity (X) Target Set 1 (A) Target Set 2 (B) S(DX ,A,B)

Number of noise samples in ELBO estimation 1 10 100

CFD White Female Male-dominated Female-dominated 0.42 0.18 0.10
White Male professions professions 0.54 0.47 0.51
Black Female 0.47 0.39 0.27
Black Male 0.67 0.62 0.58

SD v2.1 Caucasian Woman 0.39 0.30 0.35
Caucasian Man 0.67 0.66 0.83
African-Amer. Woman 0.43 0.33 0.39
African-Amer. Man 0.59 0.51 0.65

Mean across
races

Female 0.43 0.30 0.28
Male 0.62 0.57 0.64

Table 5: Association measure towards male- and female-dominated profession sets, for human-curated (CFD) and synthetic (SD v2.1) datasets
across inter-sectional social identities. We embolden values greater than 0.50, which suggests a biased association towards the male-dominated
professions set, A.
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7.2.3 Profession Associations - Individual Comparisons

We present the inter target-set comparisons from the CFD and synthetic images’ association tests in which one
of the two profession classes is picked > 75% of the time. We report the results for 100 ELBO samples, the
set-up that corresponds to the greatest classifier fidelity of those tested (1, 10, 100).

X a b %a

BF mechanic babysitter 0.0
BF mechanic receptionist 0.0
BF mechanic housekeeper 0.09
BF mechanic nurse 0.16
BF plumber babysitter 0.0
BF plumber receptionist 0.01
BF plumber housekeeper 0.2
BF carpenter babysitter 0.0
BF carpenter secretary 0.77
BF carpenter receptionist 0.01
BF carpenter housekeeper 0.24
BF construction worker babysitter 0.0
BF construction worker secretary 0.83
BF construction worker receptionist 0.04
BF truck driver babysitter 0.0
BF truck driver secretary 0.77
BF truck driver receptionist 0.04
BM mechanic babysitter 0.06
BM mechanic secretary 1.0
BM mechanic receptionist 0.12
BM mechanic housekeeper 0.77
BM mechanic nurse 0.79
BM plumber babysitter 0.1
BM plumber secretary 1.0
BM plumber receptionist 0.16
BM plumber housekeeper 0.87
BM plumber nurse 0.81
BM carpenter babysitter 0.05
BM carpenter secretary 1.0
BM carpenter receptionist 0.13
BM carpenter housekeeper 0.83
BM carpenter nurse 0.75
BM construction worker babysitter 0.14
BM construction worker secretary 0.99
BM construction worker receptionist 0.21
BM construction worker housekeeper 0.85
BM construction worker nurse 0.78
BM truck driver babysitter 0.16
BM truck driver secretary 1.0
BM truck driver receptionist 0.24

X a b %a

BM truck driver housekeeper 0.87
BM truck driver nurse 0.84
WF mechanic babysitter 0.0
WF mechanic secretary 0.21
WF mechanic receptionist 0.0
WF mechanic housekeeper 0.03
WF mechanic nurse 0.0
WF plumber babysitter 0.0
WF plumber receptionist 0.0
WF plumber housekeeper 0.06
WF plumber nurse 0.21
WF carpenter babysitter 0.0
WF carpenter receptionist 0.0
WF carpenter housekeeper 0.01
WF carpenter nurse 0.03
WF construction worker babysitter 0.0
WF construction worker receptionist 0.01
WF construction worker housekeeper 0.04
WF construction worker nurse 0.14
WF truck driver babysitter 0.0
WF truck driver receptionist 0.01
WF truck driver housekeeper 0.05
WF truck driver nurse 0.08
WM mechanic babysitter 0.0
WM mechanic secretary 0.93
WM mechanic receptionist 0.13
WM plumber babysitter 0.17
WM plumber secretary 0.96
WM plumber housekeeper 0.78
WM plumber nurse 0.83
WM carpenter babysitter 0.02
WM carpenter secretary 0.96
WM carpenter receptionist 0.18
WM construction worker babysitter 0.04
WM construction worker secretary 0.97
WM construction worker receptionist 0.21
WM truck driver babysitter 0.08
WM truck driver secretary 0.97
WM truck driver nurse 0.81

Table 6: Inter target-set comparisons with >75% decisions towards one profession for human-curated (CFD) images (100 ELBO samples)
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X a b %a

African-American-man mechanic babysitter 0.87
African-American-man mechanic secretary 0.85
African-American-man mechanic housekeeper 0.8
African-American-man mechanic nurse 0.24
African-American-man plumber receptionist 0.15
African-American-man plumber nurse 0.12
African-American-man carpenter babysitter 0.94
African-American-man carpenter secretary 0.93
African-American-man carpenter housekeeper 0.85
African-American-man construction worker babysitter 0.82
African-American-man construction worker secretary 0.83
African-American-man construction worker housekeeper 0.82
African-American-man truck driver babysitter 0.94
African-American-man truck driver secretary 0.88
African-American-man truck driver receptionist 0.82
African-American-man truck driver housekeeper 0.88
African-American-woman mechanic receptionist 0.24
African-American-woman mechanic nurse 0.01
African-American-woman plumber babysitter 0.02
African-American-woman plumber secretary 0.15
African-American-woman plumber receptionist 0.01
African-American-woman plumber nurse 0.0
African-American-woman carpenter secretary 0.81
African-American-woman carpenter housekeeper 0.77
African-American-woman carpenter nurse 0.05
African-American-woman construction worker nurse 0.05
African-American-woman truck driver nurse 0.12
Caucasian-man mechanic babysitter 0.94
Caucasian-man mechanic secretary 0.95
Caucasian-man mechanic receptionist 0.96
Caucasian-man mechanic housekeeper 0.86
Caucasian-man plumber babysitter 0.75
Caucasian-man plumber secretary 0.86
Caucasian-man plumber receptionist 0.78
Caucasian-man plumber housekeeper 0.79
Caucasian-man carpenter babysitter 0.95
Caucasian-man carpenter secretary 0.99
Caucasian-man carpenter receptionist 0.98
Caucasian-man carpenter housekeeper 0.91
Caucasian-man construction worker babysitter 0.86
Caucasian-man construction worker secretary 0.92
Caucasian-man construction worker receptionist 0.93
Caucasian-man construction worker housekeeper 0.84
Caucasian-man truck driver babysitter 0.96
Caucasian-man truck driver secretary 0.96
Caucasian-man truck driver receptionist 0.99
Caucasian-man truck driver housekeeper 0.9
Caucasian-woman mechanic nurse 0.01
Caucasian-woman plumber babysitter 0.03
Caucasian-woman plumber secretary 0.12
Caucasian-woman plumber receptionist 0.06
Caucasian-woman plumber nurse 0.0
Caucasian-woman carpenter nurse 0.03
Caucasian-woman construction worker nurse 0.02
Caucasian-woman truck driver nurse 0.05

Table 7: Inter target-set comparisons with >75% decisions towards one profession for synthetic (SD v2.1) images (100 ELBO samples)
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7.2.4 Visualisation

A significant inter target-set comparison/classification task, between classes a: construction-worker and b:
babysitter, from the synthetic images’ (SD v2.1) association test is visualised below. This provides a qualitative
sense of the spread of professions assigned to images of different social identities. The figure is generated from
classification results in which 100 samples were used in ELBO estimation.

Figure 16: Synthetic (SD v2.1) ‘Caucasian Man’ images classified
into classes ‘babysitter’ and ‘construction worker’

Figure 17: Synthetic (SD v2.1) ’African-American man’ images
classified into classes ’babysitter’ and ’construction worker’

Figure 18: Synthetic (SD v2.1) ‘Caucasian Woman’ images classified
into classes ‘babysitter’ and ‘construction worker’

Figure 19: Synthetic (SD v2.1) ’African-American woman’ images
classified into classes ’babysitter’ and ’construction worker’
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7.3 Aggregated Bias Results - Human-curated (CFD) images

Figure 20: Left: Percentage of flips in gender (CLIP) from editing human-curated (CFD) Male and Female images using high-paid prompts in
diffusion-based image editing. Middle: Skin Color Changes (↑ change towards lighter skin color using an established methodology described
in §3) from editing human-curated (CFD) images of White and Black individuals using high-paid prompts in diffusion-based image editing.
Right: Percentage of diffusion-based classifier choices towards male-dominated professions in binary classification tasks between a male- and
female-dominated profession pair (at different numbers of noise samples in the estimation of the classification objective) for human-curated
(CFD) images.

7.4 Aggregated Bias Results - Synthetic (SD) images

Figure 21: Left: Percentage of flips in gender (CLIP) from editing synthetic (SD) Male and Female images using high-paid prompts in
diffusion-based image editing (across different levels of edit strength). Middle: Skin Color Changes (↑ change towards lighter skin color using
an established methodology described in §3) from editing synthetic (SD) images of White and Black individuals using high-paid prompts
in diffusion-based image editing (across different levels of edit strength). Right: Percentage of diffusion-based classifier choices towards
male-dominated professions in binary classification tasks between a male- and female-dominated profession pair (at different numbers of noise
samples in the estimation of the classification objective) for synthetic (SD) images.
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