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Abstract

The interactions between the update of model
parameters and the update of perturbation op-
erators complicate the dynamics of adversarial
training (AT). This paper reveals a surprising
behavior in AT, namely that the distribution
induced by adversarial perturbations during AT
becomes progressively more difficult to learn.
We derive a generalization bound to theoretically
attribute this behavior to the increasing of a
quantity associated with the perturbation operator,
namely, its local dispersion. We corroborate
this explanation with concrete experimental
validations and show that this deteriorating
behavior of the induced distributions is correlated
with robust overfitting of AT. Code is avail-
able at https://github.com/rzTian/
AT-Deteriorating-Distributions.

1 INTRODUCTION

Despite their outstanding performance, deep neural net-
works (DNNs) are known to be vulnerable to adversarial
attacks, where a carefully designed perturbation of input
may cause the network to make a wrong prediction [Szegedy
et al., 2014, Goodfellow et al., 2015]. Such perturbed inputs
are termed adversarial examples. The existence of adversar-
ial examples raises great concerns when DNNs are applied
to decision-critical tasks such as autonomous driving and
facial recognition [Eykholt et al., 2018, Sharif et al., 2016].
Many methods have been proposed to improve the robust-
ness of DNNs against adversarial perturbations [Madry et al.,
2019, Zhang et al., 2019, Croce et al., 2020], among which
the framework, known as adversarial training (AT) [Madry
et al., 2019], is arguably the most effective [Athalye et al.,
2018, Dong et al., 2020].

In a nutshell, AT may be regarded as stochastic gradient

descent (SGD) on an adversarially perturbed version of the
training set at each iteration. Specifically, at each gradient
descent iteration, each input instance in a training batch is
first perturbed to maximize the training loss with respect to
the current model parameter, and then gradient descent is
performed to update the model parameter. The maximization
of the training loss prior to gradient descent is constrained
on a maximum allowable perturbation radius; in other words,
this maximization is equivalent to an adversarial attack to
the model with current parameter setting. The most popular
method to solve this maximization problem is the Projected
Gradient Descent (PGD) [Madry et al., 2019].

Despite that AT have been shown to have greatly improved
the robustness of the learned model against adversarial at-
tacks on the training set, a recent work in Rice et al. [2020]
has however revealed that models trained by AT may still be
vulnerable to adversarial attacks on the unseen data. Specifi-
cally, after training, even though the robust error (i.e., error
probability in the predicted label for adversarially perturbed
instances) is nearly zero on the training set, it may remain
very high on the testing set. For example, on the testing
set of CIFAR-10 [Krizhevsky et al., 2009], the robust er-
ror of AT trained model can be as large as 44.19%. This
significantly contrasts the typical observations in standard
training: on CIFAR-10, when the standard error (i.e., the
error probability in the predicted label for non-perturbed
instances) is nearly zero on the training set, its value on the
testing set is only about 4%. This unexpected phenomenon
is often referred to as robust overfitting.

Since its discovery, a great deal of research effort has been
spent on understanding the cause of robust overfitting. Vari-
ous perspectives have been exploited in this research direc-
tion. For instance, Wu et al. [2020], Stutz et al. [2021], Chen
et al. [2021], Kanai et al. [2023] study the properties of the
landscape of the adversarial loss; the authors of Singla et al.
[2021] investigate the curvature of the activation functions
used in the neural networks; Dong et al. [2021] attempt
to relate robust overfitting to potential label noises in AT;
Xing et al. [2021], Xiao et al. [2022b] look into the training
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trajectories of AT through the lens of algorithmic stability.

Despite partial answers provided by these works, the cause
of robust overfitting remains largely elusive. Arguably this
is due to the significant challenges posed by the complex
dynamics of AT. In particular, this complexity arises from
the convoluted interaction between the update of model
parameter along AT iterations and the update of the adver-
sarial perturbations in the inner maximization step. More
concretely, when the model parameter gets updated, the
adversarial perturbation is updated to one that attacks the
updated model, and the updated adversarial perturbation
in turn governs the next update of the model parameter. It
is then conceivable that understanding the generalization
behavior of AT requires a deep understanding of the interac-
tion between the model updates and perturbation updates,
even “untangling” the convoluted interaction along the train-
ing trajectory. This philosophy is behind the motivation of
this work.

A key observation of this paper is the recognition that in
each AT iteration, the perturbation operator effectively in-
duces a new data distribution and that the model update may
be viewed as the standard training on data drawn from this
induced distribution. Since perturbation in each AT iteration
has a small magnitude, the induced distribution is provably
close to the original data distribution. However, a surpris-
ing finding in this work is that these induced distributions
behave distinctively from the original distribution: as AT
progresses, they may become increasingly more difficult to
learn. The experiments supporting this finding were con-
ducted as follows: for a check point of AT, we extract the
perturbation operator and use it to perturb both the train-
ing set and test set; we then train a model from scratch on
the perturbed training set, using standard training, until the
(standard) training loss is effectively zero; we then evaluate
the learned model on the perturbed testing set to obtain its
classification error. We call such an experiment as an "in-
duced distribution experiment” or IDE. When conducting
IDE on datasets such as CIFAR-10, we usually observe large
testing errors, particularly when the check point is near the
end of AT. In fact, on such datasets, the generalization gap
for models learned from the induced distribution appears to
progressively increase as AT proceeds.

To understand the deteriorating behavior of the induced dis-
tribution along AT, we derive a uniform-convergence upper
bound of the generation gap for models learned on the in-
duced distributions. The key quantity in the bound is a term
we call “local dispersion” of the perturbation operator. Our
bound suggests that only when the perturbation operator has
small local dispersion, a good generalization guarantee can
be obtained for models learned on the distribution induced
by the operator. Through experiments, we show that local
dispersion is indeed indicative to the generalization gap of
models learned on the induced distribution and can be used
to explain the deteriorating behavior of the induced distri-

bution along the AT trajectories, as observed in our IDE
experiments.

In summary, in this work we discover an interesting phe-
nomenon in AT, namely, that the induced distributions by the
perturbation operator in AT are progressively more difficult
to learn. We prove a generalization bound as a theoretical
explanation for this phenomenon and corroborate it with
experimental validations. Our results shed new lights in un-
derstanding the complex AT dynamics and the interaction
therein between model updates and perturbation updates.
Although there have been previous works examining AT
trajectories, very few actually zoom into the properties of
the perturbation operator. The only work that we are aware
of in this direction is a recent paper of Tian and Mao [2025],
where a notion of expansiveness is introduced for the per-
turbation operator and subsequently used to analyze robust
generalization via algorithmic stability. Like that work, this
paper highlights the importance of investigations in this
angle in paving ways towards understanding robust gen-
eralization. This importance is further manifested by our
additional experimental observation presented at the end of
the paper, where we show that the deteriorating behavior of
the induced distributions correlates with robust overfitting.

2 RELATED WORKS

Adversarial examples Existing studies have uncovered
intriguing properties of adversarial examples, such as their
transferability across different models [Goodfellow et al.,
2015, Papernot et al., 2016, Tramèr et al., 2017] and their dis-
tinct geometric characteristics compared to clean examples
[Ma et al., 2018, Fawzi et al., 2018]. The work in Ilyas et al.
[2019] reveals that adversarial examples generated w.r.t a
model trained via standard training may still contain use-
ful features. Specifically, they demonstrate that a classifier
trained on mislabeled adversarial examples can achieve re-
markable generalization performance on unseen clean data.
Theoretical explanations for this finding are then provided
in Kumano et al. [2024, 2025]. Additionally, the work in
Zhang et al. [2022] presents another intriguing finding that
adversarial perturbations for two-layer neural networks with
random weights are linearly separable, suggesting structural
properties of adversarial perturbations exist.

Unlike Ilyas et al. [2019] and Zhang et al. [2022], who
focus on adversarial examples for models trained via stan-
dard training or with random weights, our work explores
adversarial examples along AT trajectories, providing new
insights into how features of adversarial examples evolve
throughout the training process.

Adversarial Robustness A growing body of work has
investigated the underlying causes of adversarial vulnera-
bility, especially in linear and high-dimensional settings.
Tanay and Griffin [2016] offered a geometric perspective,



suggesting that adversarial examples arise when the decision
boundary extends beyond the data manifold; in such regions,
the boundary may lie close to data points, even if it remains
distant within the manifold itself. Tanner et al. [2024] ana-
lyzed adversarial training for margin-based linear classifiers
in high dimensions, highlighting how the interplay between
data geometry and attack direction influences robustness.
Ribeiro et al. [2023] examined adversarial training in lin-
ear regression, showing that it induces different forms of
implicit regularization depending on whether the model is
overparameterized or underparameterized. Similarly, Javan-
mard et al. [2020] studied the trade-off between robustness
and standard accuracy using linear regression with Gaussian
features, providing precise theoretical characterizations in
the high-dimensional regime.

Robust generalization Different from standard general-
ization, robust generalization for deep neural networks —es-
pecially on high-dimensional data —appears significantly
more challenging. Various work have attempted to under-
stand the reason behind. Schmidt et al. [2018] proves that
in simple data models such as the Gaussian and Bernoulli
models, robust generalization requires significantly higher
sample complexity than standard generalization. The sam-
ple complexity of robust generalization has been further
analyzed using classical statistical learning tools, including
Rademacher complexity [Khim and Loh, 2019, Yin et al.,
2018, Awasthi et al., 2020, Xiao et al., 2022a, Attias et al.,
2018], VC dimension [Montasser et al., 2019] and algorith-
mic stability analysis [Xing et al., 2021, Xiao et al., 2022b],
as well as the PAC learning frameworks [Cullina et al., 2018,
Diochnos et al., 2019].

Beyond sample complexity, several theoretical perspectives
have been explored. The work of Li et al. [2022] analyze
robust generalization through the lens of neural network’s
expressive power, showing that practical models may lack
sufficient capacity to achieve low robust test error. The au-
thors in Li et al. [2019] investigate inductive bias of gradient
descent for AT, while another line of research connects AT
with distributionally robust optimization (DRO) [Kuhn et al.,
2019, Sinha et al., 2020] . The works of Staib and Jegelka
[2017] and Bui et al. [2022] demonstrate that different AT
schemes can be reformulated as special cases in DRO. Ben-
nouna et al. [2023] further show that, under a saddle-point
assumption, AT inevitably leads to a larger generalization
gap than directly solving empirical risk minimization us-
ing adversarially perturbed data. Numerous endeavors have
been undertaken to address the challenge of robust overfit-
ting with various empirical training algorithms proposed.
Bai et al. [2021] and Qian et al. [2022] provide a compre-
hensive overview of the latest developments in empirical
research in this field.

3 PRELIMINARIES AND PROBLEM
SETUP

We consider a classification setting with input space X ⊆
Rd and label space Y := {1, 2, · · · ,K}. We use D to de-
note a distribution on X ×Y and denote DX as the marginal
distribution of D on X . Let Θ be the parameter space of a
parameterized model of interest, and for each ϕ ∈ Θ, let
fϕ : X × Y → R+ denote a model which consists of a
loss function (e.g, the cross-entropy loss or 0-1 loss) and a
classifier hϕ with parameter ϕ.

For any data distribution D and any model fϕ, we define the
model’s standard population risk RD(ϕ) as

RD(ϕ) := E(x,y)∼D [fϕ(x, y)] (1)

For a set of m samples S := {(xi, yi)}mi=1 drawn i.i.d. from
D, we define the model’s standard empirical risk RS(ϕ) as

RS(ϕ) :=
1

m

m∑
i=1

fϕ(xi, yi) (2)

The standard generalization performance of the model fϕ is
then measured by the standard generalization gap:

GGm(ϕ, S;D) := |RD(ϕ)−RS(ϕ)| (3)

Adversarial perturbations Let B∞(x, ϵ) denote a ∞-
norm ball centered at x with radius ϵ, or B∞(x, ϵ) := {t ∈
Rd : ∥t−x∥∞ ≤ ϵ}. Given any instance-label pair (x, y) ∈
X ×Y and a target model fϕ parameterized by ϕ, we define
the ϵ-adversarial perturbation of x with respect to fϕ as

Qϕ(x, y) := arg max
v∈B∞(x,ϵ)

fϕ(v, y) (4)

Clearly the operator Qϕ also depends on the allowable per-
turbation magnitude ϵ, but we suppress such dependency in
our notations throughout the paper for simplicity.

Adversarial risks Given a data distribution D and its
i.i.d samples S, we define the adversarial population risk
Radv

D (ϕ) and the adversarial empirical risk Radv
S (ϕ) of a

model fϕ respectively as

Radv
D (ϕ) := E(x,y)∼Dfϕ(Qϕ(x, y), y) (5)

and

Radv
S (ϕ) :=

1

m

m∑
i=1

fϕ(Qϕ(xi, yi), yi) (6)

Adversarial training Given a training set S, at the tth

iteration of adversarial training (AT), where the model pa-
rameter is ϕt, the model parameter is updated, with learning
rate η, by

ϕt+1 = ϕt − η∇ϕt

[
1

n

n∑
i=1

fϕt
(Qϕt

(xi, yi), yi)

]
(7)



We note that when optimizing fϕ(Qϕ(x, y), y) using gradi-
ent descent, despite Q is also a function of ϕ, the gradient
does not propagate through the perturbation operator Q, an
option consistent with the standard AT implementation as
in Madry et al. [2019], Rice et al. [2020].

Notably, the update equation (7) of AT results in a complex
dynamics, namely, the update of ϕ causes the update of
the perturbation operator Qϕ, and the update of Qϕ in turn
influences the next update of ϕ. This complex interaction
between the model parameter and the perturbation operator
makes analyzing AT trajectories very difficult.

One key perspective of this work is recognizing that at
training iteration t, the perturbation operator Qϕt essentially
induces a different distribution and that the AT step in (7)
may be seen as a one-step gradient descent on the standard
empirical risk of training data drawn from this induced
distribution. We next make this precise.

Perturbation induced distribution Let (X,Y ) be drawn
from D. Given an adversarial perturbation Qϕ, the pertur-
bation induced distribution (or simply induced distribution)
is defined as the joint distribution of (Qϕ(X,Y ), Y ) and is
denoted by D̃ϕ. For a given training set S = {(xi, yi)}mi=1,
denote S̃ϕ := {(vi, yi)}mi=1, where vi := Qϕ(xi, yi). It
is clear that the samples S̃ϕ are drawn from the induced
distribution D̃ϕ.

Since each perturbed instances Qϕ(x, y) lies within a small
neighborhood of x (i.e., ∥Qϕ(x, y)− x∥∞ ≤ ϵ), it follows
immediately that for any ϕ, the Wasserstein p-distance (de-
noted by Wp(·, ·)) between D and D̃ϕ satisfies

Wp(D̃ϕ,D) ≤ ϵ (8)

for any p ∈ [1,+∞]. Here the metric, say d, on X × Y by
which the Wasserstein distance is defined, is

d((x, y), (x′, y′)) := ∥x− x′∥∞ + dY(y, y
′)

where dY is an arbitrary metric on Y .

Notably, in the context of adversarial training, the maximum
perturbation magnitude ϵ is usually small. Then by equation
(8), the distribution D̃ϕ induced by the perturbation operator
Qϕ during AT is very close to the original data distribution
D. However, a surprising observation in this work is that
models trained (via standard training) on D and on D̃ϕ may
have very different behaviors.

It is also worth noting that Radv
D (ϕ) = RD̃ϕ

(ϕ) and
Radv

S (ϕ) = RS̃ϕ
(ϕ) —the adversarial risks of ϕ can be

treated as the standard population (resp. empirical) risk of
ϕ measured on the induced distribution (resp. the samples
drawn from the induced distribution) generated by ϕ.

Following the definition of generalization gap in (3), the
notations GGm(ϕ, S̃ϕ; D̃ϕ) and GGm(θ, S̃ϕ; D̃ϕ) are both

well defined, where the former is the robust generalization
gap of an arbitrary model fϕ and the latter is the standard
generalization gap of an arbitrary model fθ measured with
respect to a given induced distribution D̃ϕ and its samples
S̃ϕ.

4 LEARNING ON THE INDUCED
DISTRIBUTIONS

In this section, we experimentally study the problem of
learning on the induced distribution D̃ϕ, where ϕ is the
parameter of a model being trained during AT.

Induced distribution experiment Let S and T be the
training set and testing set of a classification task. We per-
form AT for a neural network model using S. Let AT(t)
denote that model’s parameter obtained by performing AT
for t epochs. For some choice of t, we obtain model param-
eter ϕ = AT(t). We then perturb S and T using Qϕ, and
obtain the perturbed training and testing datasets S̃ϕ and T̃ϕ

respectively. A new model (with the same architecture) is
then trained from scratch (namely, starting from random ini-
tialization of its parameters) on S̃ϕ using standard training
and denote the learned model parameter by θ. This model θ
is evaluated on T̃ϕ. For the ease of reference we call such
an experiment the “induced distribution experiment" (IDE).

In our IDE experiments, Qϕ is taken as the Projected Gra-
dient Descend (PGD) attack [Madry et al., 2019], which is
used both for AT and for generating the perturbed datasets.
Other details of the experiments are given below.

Datasets The experiments are conducted on CIFAR10
and CIFAR100 [Krizhevsky et al., 2009]. We also conduct
experiments on a "scaled-down" version of the ImageNet
dataset [Russakovsky et al., 2015], which we call Reduced
ImageNet, drawing inspiration from a similar approach in
Tsipras et al. [2019] for reduced training complexity. Re-
duced ImageNet aggregates several subsets of the original
ImageNet and comprises 10 classes, each containing 5000
training samples and approximately 1000 testing samples
per class. More details concerning this dataset are given in
Appendix A.

Settings for AT and PGD On CIFAR-10 and Reduced
ImageNet we perform AT to train the pre-activation ResNet
(PRN) model [He et al., 2016] with 18 and 50 layers respec-
tively. On CIFAR-100 we train the Wide ResNet (WRN)
model with 34 layers [Zagoruyko and Komodakis, 2016].
We use 5-step PGD with ϵ = 4/255 for Reduced ImageNet
and 10-step PGD with ϵ = 8/255 for CIFAR-10 and CIFAR-
100 according to Rice et al. [2020]. We set λ = 2/255 on
CIFAR10 and CIFAR100, λ = 0.9/255 on Reduced Ima-
geNet. More details concerning the hyper-parameter settings
are given in Appendix A.
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(d) ϕ=AT(200)

Figure 1: Learning curves of standard training on the clean CIFAR-10 dataset and IDEs w.r.t various ϕ. In each training, the
learning rate is decayed at the 100th epoch.

Experimental results Let ϕ = AT(0) denote a randomly
initialized model. Figure 1(b)-(d) presents the learning
curves of IDEs conducted on the CIFAR-10 datasets for
ϕ obtained after AT for different numbers of epochs, while
Figure 1(a) shows the learning curves of standard training
on the clean CIFAR-10 dataset for comparison. The green
and red curves respectively represent the training and testing
error recorded along the training process. In all cases, the
model is trained to achieve zero training error. However,
the testing error varies significantly in different IDEs. On
the clean dataset, the model attains a testing error as low as
4.13%; A similar performance is observed on the IDE with
ϕ = AT(0), where the testing error reaches around 6.06%.
In contrast, for ϕ = AT(80), the learned model shows a
reduced generalization performance, with the testing error
increasing to 11.38%. A more significant rise on the test-
ing error occurs when a model is trained on the perturbed
dataset generated by ϕ = AT(200), where the testing error
increases to 24.89%. Similar results are also observed on
CIFAR-100 and Reduced ImageNet (see Appendix C Figure
5 and 6).

For IDE with ϕ = AT(200), a large generalization gap
—the gap between the red and green curves —emerges in
the early phase of the training (around the 20th training
epoch). After the drop of learning rate (at the 100th training
epoch), the training error quickly reduces to zero, yet the
generalization gap remains nearly unchanged, resulting in
a high final testing error. This is in contrast to the learning
behavior observed on the clean dataset and the IDE with
ϕ = AT(0), where a small generalization gap is established
at the early phase of training and is consistently preserved
along the training.

These experiments reveal a rather surprising phenomenon:
despite D̃ϕ being very close to D, the model’s learning per-
formance on the induced distribution D̃ϕ can be significantly
different from that on D. In particular, as AT proceeds, the
induced distribution D̃ϕ may deteriorate, in the sense that it
becomes increasingly more difficult to generalize, as signi-
fied by the increasing generalization gap.

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis to explain
the deteriorating learning behavior of the induced distribu-
tion along AT. Specifically, we derive an upper bound for the
“worst-case” generalization gap supθ∈Θ GGm(θ, S̃ϕ; D̃ϕ).

Assumption 5.1 (Anchored data model). We assume that
underlying the data distribution D, there is a latent distribu-
tion, or “anchor distribution”, D∗ on X ×Y . D∗ is specified
by its marginal DX

∗ on X and a classifier h∗ : X → Y
(which assigns every sample drawn from DX

∗ a label in Y).
The data distribution D of interest is a “smoothed” version
of D∗ as follows: Draw an “anchor variable” T from DX

∗ .
Then draw a noise ρ independent of T from a distribution
π (on Rd) with zero mean and a finite variance in each
dimension (recall that X is a subset of Rd) —we assume
the variance in each dimension is small. The distribution of
(T + ρ, h∗(T )) is then the distribution D.

Remark 5.2. In this anchored data model, the true input
variable X is treated as a noise-perturbed version of an
anchor variable T ∼ DX

∗ . Such an assumption is widely
used in various machine learning contexts, for example,
in the VAE model [Kingma and Welling, 2019] where the
reconstruction loss adopts the square error loss .

On the other hand, the assumption that X = T +ρ share the
same label as T is sensible, since one expects that within
small neighborhood of T , the class label remains unchanged.

Given a model class F := {fθ : θ ∈ Θ}, we now study its
generalization performance w.r.t the induced distributions.
Specifically, we will derive an upper bound for the general-
ization gap GGm(θ, S̃ϕ; D̃ϕ) for all θ ∈ Θ. As it turns out,
a key quantity governing the upper bound is a local property
of the perturbation map Qϕ that induces D̃ϕ.

Definition 5.3 (Local dispersion). For any (x, y) ∈ X × Y ,
we define the local dispersion γ̃ϕ(x, y) of the perturbation
mapping Qϕ at (x, y) as

γ̃ϕ(x, y) := Eρ,ρ′∥Qϕ(x+ ρ, y)−Qϕ(x+ ρ′, y)∥22. (9)

where ρ and ρ′ are drawn independently from π.



Remark 5.4. We refer to this quantity as the local dispersion
of Qϕ, as it measures how far apart the operator Qϕ dis-
perses two noise-perturbed versions of (x, y). In fact, one
may verify that γ̃ϕ(x, y) can be expressed as

γ̃ϕ(x, y) = 2 · Trace (COVρ(Qϕ(x+ ρ, y))) (10)

where ρ is drawn from π and COVρ(Qϕ(x+ρ, y)) denotes
the covariance matrix. That is, γ̃ϕ(x, y) also measures the
how far Qϕ spreads a randomly perturbed version of (x, y).
We defer the proof of (10) to Appendix B.1.

One may argue intuitively that smaller local dispersion of
Qϕ may allow the model to generalize better when learning
on the distribution D̃ϕ: consider an instance (T, Y ) drawn
from the anchor distribution D∗, and two observed data
points (T + ρ, Y ) and (T + ρ′, Y ) (with ρ and ρ′ drawn in-
dependently from π). Suppose that (T +ρ, Y ) is included in
the training set and (T + ρ′, Y ) is included in the testing set.
When the local dispersion is small, the perturbed version of
the training point (Qϕ(T + ρ, Y ), Y ) and that of the testing
point (Qϕ(T + ρ′, Y ), Y ) (both of which are realizations
from D̃ϕ) are close, allowing the model’s prediction on the
latter to behave similarly as that on the former.

We now rigorously formalize this intuition, under the fol-
lowing assumptions.

• (Lipchitzness of fθ over X ) For any y ∈ Y and any θ ∈
Θ, |fθ(x, y)−fθ(x

′, y)| ≤ β∥x−x′∥2 for ∀x, x′ ∈ X .

• (Boundedness) sup
x,y∈X×Y

|fθ(x, y)| = B < ∞ for any

θ ∈ Θ.

The generalization gap (3) then has the following uniform
convergence result:

Lemma 5.5. Consider the model class F where each fθ ∈
F satisfies the above boundedness condition. For any ϕ (or
D̃ϕ), with probability 1− τ over drawing S̃ϕ from D̃ϕ, we
have

sup
θ∈Θ

GGm(θ, S̃ϕ; D̃ϕ)

≤ ES̃ϕ∼D̃m
ϕ
sup
θ∈Θ

GGm(θ, S̃ϕ; D̃ϕ) + 2B

√
log 1

τ

2m
(11)

The proof of the lemma is deferred to Appendix B.2. Build-
ing upon lemma 5.5, we now derive an upper bound for
ES̃ϕ∼D̃m

ϕ
supθ∈Θ GGm(θ, S̃ϕ; D̃ϕ) where the local disper-

sion of Qϕ plays a role.

Theorem 5.6. Consider the model class F where each
fθ ∈ F satisfies the above Lipchitzness and boundedness
conditions. Consider the data distribution D which satisfies
the assumptions 5.1. Let D̃ϕ denote the induced distribution
of D, generated by a perturbation Qϕ. We have

ES̃ϕ∼D̃m
ϕ
sup
θ∈Θ

GGm(θ, S̃ϕ; D̃ϕ)

≤ 2β√
m

√
E(x,y)∼D∗ γ̃ϕ(x, y) +

2(β
√
dϵ+B)√
m

(12)

We leave the proof of the Theorem in Appendix B.3. Com-
bining (12) with (11) immediately gives an upper bound for
the generalization gap (3) that applies for any θ ∈ Θ.

Remark 5.7. The derivation of Theorem 5.6 is based on
a modification of the Rademacher complexity analysis. It
worth noting that any direct application of Rademacher
complexity to establish a learning bound requires certain
restriction on the hypothesis class F , thus suffering from a
loss of generality.

The theorem suggests that the generalization gap of any
fθ w.r.t to the distribution D̃ϕ is affected by the expected
local dispersion (ELD) ED∗ γ̃ϕ(x, y) of Qϕ and that a small
generalization gap can be uniformly attained—for every
fθ ∈ F —with high probability when ELD ED∗ γ̃ϕ(x, y) is
small.

An interpretation of this theorem is that the learning diffi-
culty of the induced distribution D̃ϕ may be attributed to
the ELD ED∗ γ̃ϕ(x, y) of the perturbation operator Qϕ. But
since the theorem only provides an upper bound, such an
interpretation is only valid if the upper bound in the theorem
is indicative of the true generalization gap. We next report
experimental measurements to show this is indeed the case.

6 EXPERIMENTAL VALIDATION

We conducted experiments to estimate the ELD of Qϕ for
ϕ = AT(t) with various t values along the AT trajectory.
Note that the expectation here is over the distribution D∗,
from which no samples are available. However, due to
the relationship between DX and DX

∗ , namely that DX

is merely a slightly smoothed version of DX
∗ (since π has

small variances), one expects that when we draw x from
DX , DX (x) ≈ DX

∗ (x) with high probability. As a conse-
quence, ED∗ γ̃ϕ(x, y) ≈ EDγ̃ϕ(x, y) with high probability.
But the latter can be estimated using the i.i.d. samples from
D. This gives us the following estimation formula for ELD:

ED∗ γ̃ϕ(x, y) ≈
1

m

m∑
i=1

γ̃ϕ(xi, yi),

where {(xi, yi)}mi=1 are drawn from D.

Estimating the local dispersion γ̃ϕ(xi, yi) requires the
knowledge of π, which is unfortunately unavailable to us.
In our experiments, we take π as a spherical Gaussian, with
variance in each dimension equal to σ2. Various values of
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(d) σ = 0.001

Figure 2: Local dispersion measured on the CIFAR-10 test set. (a) ELDs estimated using different σ values. For different
choice of σ, the estimated ELDs fall within different ranges. To clearly compare the trends of ELD across different σ, we
plot all estimations in the same graph and position their respective vertical axes on the sides of the figure. (b) ELD (green
curve) of Qϕ for different ϕ in comparison to the generalization gap achieved on D̃ϕ. (c) and (d): histograms of γ̃ϕ(x, y) for
three distinct ϕ.

σ2 are considered in our experiments. The estimation of
each γ̃ϕ(xi, yi) is done by Monte-Carlo approximation via
sampling 250 pairs of (ρ, ρ′) from π. The expectation in (9)
is then approximated using the sample mean.

Same trend of ELD estimated from different σ Figure
2(a) show that the estimated ELD values with ϕ = AT(t)
using σ = 0.001, 0.005, 0.01 respectively. In the figure,
the three curves, each corresponding to a different σ value,
have very similar trend. In fact, when adjusting the range of
vertical axes, the three curves closely align with each other.

ELD as an indicator of generalization gap Figure 2 (b)
presents the generalization gaps of the models learned on
various D̃ϕ (red curve) and the estimated ELD values of the
corresponding Qϕ (green curve). In the experiments, we set
σ = 0.01 for ELD estimation. In each IDE, the model is
trained to achieve zero training error, hence the generaliza-
tion gaps in Figure 2 (b) correspond directly to the testing
errors of the learned models. As shown in the figure, when
the ELD of Qϕ is small, the model learned on the corre-
sponding D̃ϕ tends to achieve a smaller generalization gap.
This empirical observation aligns with the theoretical find-
ings in Theorem 5.6. The positive correlation between the
red and green curve in 2(b) suggests that the local dispersion
of the perturbation operator significantly affects the general-
ization performance of the models learned on the induced
distribution. This also validates the usefulness of Theorem
5.6, corroborating ELD as an indicator of the generalization
gap for the induced distributions.

Increasing dispersiveness along AT Since in our exper-
iments ϕ is obtained at different AT epochs, the upward
trend in the green curve of Figure 2(b) and that of all the
three curves in 2(a) suggest that performing AT for more
iterations tends to make the perturbation operator Qϕ in-
creasingly dispersive. To further illustrate this trend, Figure
2 (c) and (d) respectively plot the histograms of γ̃ϕ(x, y)
for ϕ = AT(20),AT(100),AT(200), estimated using dif-

ferent σ values. As shown on both figures, the histograms
shift progressively to the right as AT is performed for more
iterations, indicating that the perturbation operator Qϕ be-
comes more locally dispersive as ϕ evolves in AT. Similar
experimental results are also observed on CIFAR-100 and
Reduced ImageNet (see Appendix C Figure 7 and 8).

Summary From Theorem 5.6 and these experiments, one
may conclude that the deteriorating learning performance
on the induced distribution along the AT trajectory can be
attributed to the progressive increase of local dispersions of
the perturbation operators. It remains unclear what causes
perturbation operators in AT to become increasingly dis-
persive. Nonetheless, this study may shed new lights in
understanding the complex dynamics of AT. In particular,
we show next that the induced distribution deteriorating
along the AT trajectory is correlated with robust overfitting.

7 CORRELATION WITH ROBUST
GENERALIZATION

We now explore if the (standard) generalization performance
of models learned on the induced distribution D̃ϕ along the
AT trajectory has any connection to the robust generalization
performance of ϕ on original data distribution D.

We conduct extra IDEs for ϕ collected along AT at various
epochs and compare the IDE testing errors with the robust
generalization performance of the corresponding ϕ. AT and
each IDE are repeated five times with different random
seeds.

The experimental results on CIFAR-10 and CIFAR-100 are
shown in Figure 3(a) and (b), where the green and yel-
low curves respectively report the adversarial training error
and the robust generalization gap of ϕ (i.e., Radv

S (ϕ) and
GGm(ϕ, S̃ϕ; D̃ϕ)). The two curves illustrate a phenomenon
known as robust overfitting [Rice et al., 2020]: after a certain
point in AT, the robust generalization gap steadily increases
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(b) CIFAR-100
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(c) Reduced ImageNet
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Figure 3: Robust generalization gap of ϕ = AT(t) in comparison to the IDE test error w.r.t ϕ. Note that since models in
each IDE are trained to achieve zero training error, the IDE test error effectively represents the standard generalization gap
achieved on the induced distribution. The trend of the red curves matches that of the yellow curves in each sub-figures,
demonstrating a compelling correlation between these two quantities.

while the adversarial training error constantly decreases.
The red curves in the figures depict the standard testing
errors achieved in each IDEs (i.e., RD̃ϕ

(θ) with θ learned

on S̃ϕ). Notably, a significant rise in the IDE testing error
is observed when ϕ is taken between AT(80) and AT(120),
increasing from 3.6% to 27.68% for CIFAR-10 and from
19% to 48.99% for CIFAR-100. Furthermore, this shift coin-
cides with the onset of robust overfitting, where a significant
rise in GGm(ϕ, S̃ϕ; D̃ϕ)) is also observed.

These results further demonstrate that D̃ϕ becomes harder
to learn as AT progresses. More importantly, it shows that
the appearance of this deteriorating induced distribution
is closely linked to the onset of the robust overfitting phe-
nomenon, revealing a correlation between the two. This cor-
relation is further demonstrated by experimental results on
Reduced ImageNet (see Figure 3 (c)), where robust overfit-
ting emerges at an earlier training stage and simultaneously
a rise in RD̃ϕ

(θ) occurs. This increment in RD̃ϕ
(θ) is also

substantial, with an averaged error of 21.65% at AT(20)
elevating to 38.52% at AT(60).
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Figure 4: AT with various weight decay rates and the test
error achieved in IDEs for each of the AT variants. The
blue curves are reproduced from Figure 3(a), serving as a
reference for a clear comparison. The results further solidify
the correlation between the robust generalization and the
generalization performance on the induced distribution.

Our experiments on MNIST [LeCun et al., 1998] (see Figure
3 (d)) exhibits a scenario where a good robust generalization
is achieved. 1 Interestingly, a small testing error RD̃ϕ

(θ) is

maintained throughout the evolution of D̃ϕ with the absence
of robust overfitting. Figure 4 shows results from additional
experiments on CIFAR-10. In these experiments, we per-
form AT with different levels of weight decay to control
the robust generalization gap. Subsequently, IDEs are con-
ducted for each such variant of AT. In Figure 4, each distinct
color corresponds to a different weight decay factor uti-
lized in AT. Within each color category, the dashed curves
and the corresponding solid lines represent, respectively,
GGm(ϕ, S̃ϕ; D̃ϕ) and RD̃ϕ

(θ) with ϕ trained by that spe-
cific AT variant. From these results, we see that increasing
the weight decay factor results in a notable reduction in the
GGm(ϕ, S̃ϕ; D̃ϕ), while conversely, decreasing the weight
decay factor leads to the opposite effect. This is shown by
the downward shift in the dashed curves across the three
color categories. More noteworthy is a clear synchronization
observed between each pair of dashed and solid curves (of
the same color), with lower dashed curves consistently cor-
responding to lower solid curves in the same color category.

All these results suggest a strong correlation between
RD̃ϕ

(θ) and the robust generalization gap GGm(ϕ, S̃ϕ; D̃ϕ).
Although by construction, the robust generalization gap is
written by GGm(ϕ, S̃ϕ; D̃ϕ) = |RD̃ϕ

(ϕ)−RS̃ϕ
(ϕ)| due to

that Radv
D (ϕ) = RD̃ϕ

(ϕ) and Radv
S (ϕ) = RS̃ϕ

(ϕ), such a
correlation is still quite surprising. This is because the learn-
ing of the parameter θ has been started from a completely
random initialization and one would not expect the resulting
parameter θ is linked to the parameter ϕ in any obvious way,
despite that the latter contributes to shaping the distribution
D̃ϕ.

A novel observation in this work, this correlation is certainly
curious in its own right and deserves further investigation.
At this point, it has at least highlighted the impact of the
dynamics of AT on robust overfitting, beyond the static

1Experimental settings on MNIST are shown in Appendix A



quantities, such as loss landscape, while also paving a way
for developing deeper understanding of how AT results in
robust overfitting.

8 CONCLUSION

In this paper, we show that the distribution induced by the
perturbation operator in AT may deteriorate along the trajec-
tory of AT. In particular, we observe experimentally that as
AT progresses, the induced distribution may become harder
to learn. Our theoretical analysis suggests that a key fac-
tor governing this increasing difficulty of learning is the
local dispersion of the perturbation operator that induces
the distribution. Experimental results confirm that as AT
proceeds, the perturbation becomes more dispersive, vali-
dating our theoretical results. Additionally, we empirically
observed a correlation between the deteriorating behavior
of the induced distributions with robust overfitting.

The novel observations and our theoretical explanation pre-
sented in this paper contribute to better understanding the
complex dynamics of AT. Unraveling this complexity is
arguably essential to understanding robust generalization in
AT.

Limitations & Future Works While this paper estab-
lishes a connection between local dispersion and the learn-
ing difficulty of the induced data distribution, the theoretical
framework does not fully explain the underlying causes of
increased local dispersion during AT. Nor does it provide
improved AT algorithms based on the theoretical insights.

Understanding the mechanism that increases local disper-
sions during AT remains an open and intriguing direction.
Any progress in this direction is likely to improve the practi-
cal design of AT algorithms. Not having a concrete answer
at present, we speculate that this might be related to the
increased complexity of classifier decision boundaries dur-
ing AT: when the boundaries become more complex, the
perturbations pointing to the boundaries are more scattered,
thereby increasing the local dispersion. Formalizing this
intuition with rigorous analysis is a promising avenue for
future research.

Another promising direction is to explore ways to mitigate
the deterioration of induced distributions, such as through
regularization of perturbation operator to control local dis-
persion.
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Appendices
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A DETAILED EXPERIMENTAL SETUP

Our Reduced ImageNet is made by aggregating several semantically similar subsets of the original ImageNet, resulting in a
total of 66594 images. This dataset is then partitioned into a training set containing 5,000 images per class and a testing
set containing approximately 1,000 images per class. Compared to the restricted ImageNet in Russakovsky et al. [2015],
our dataset has a more balanced sample size across each classes. Table 1 illustrates the specific classes from the original
ImageNet that have been aggregated in our dataset.

Classes in the reduced ImageNet Classes in ImageNet

"dog" 86 to 90
"cat" (8,10,55,95,174)

"truck" 279 to 283
"car" 272 to 276

"beetles" 623 to 627
"turtle" 458 to 462
"crab" 612 to 616
"fish" 450 to 454

"snake" 477 to 481
"spider" 604 to 608

Table 1: The left column presents the classes within our reduced ImageNet dataset, with each class being an aggregation of
the corresponding classes from the full-scale ImageNet dataset, as depicted in the right column.

For adversarial training (AT), the settings on different datasets are summarized in Table 2. Data augmentation is performed
on these datasets except for MNIST during the training. For CIFAR-10 and CIFAR-100 we follow the data augmentation
setting in Rice et al. [2020]. For our reduced ImageNet, we adopt the same data augmentation scheme that is used on the
restricted ImageNet in Yang et al. [2020].

For the induced distribution experiments (IDEs) on each datasets, the settings are outlined in Table 3. It is important to note
that for each of the individual IDEs that is conducted on the same dataset, we maintain consistent training settings. This
includes using the same model architecture with identical model size and the same level of regularization. This ensures a fair
comparison of the IDE results obtained from the same dataset. Furthermore, the model is trained to achieve zero training
error in all the IDEs, excluding the situation that the degeneration in model performance could be attributed to inadequate
training procedures.

rtian081@uottawa.ca
ymao@uottawa.ca


MNIST CIFAR-10 CIFAR-100 Reduced ImageNet

model small CNN PRN18 WRN-34 PRN-50
optimizer Adam SGD SGD SGD
weight deacy None 5× 10−4 5× 10−4 None
batch size 128 128 128 128
ϵ 0.3 8/255 8/255 4/255
PGD step size 0.01 2/255 2/255 0.9/255
number of PGD 40 10 10 5

Table 2: Settings in PGD and AT across different datasets

MNIST CIFAR-10 CIFAR-100 Reduced ImageNet

model small CNN PRN-18 WRN-34 PRN-50
optimizer Adam SGD SGD SGD
weight deacy None 5× 10−4 5× 10−4 5× 10−4

batch size 128 128 128 128

Table 3: Settings in the IDE across different datasets

B PROOFS

B.1 PROOF OF (10)

We have that

γ̃ϕ(x, y) := Eρ,ρ′∥Qϕ(x+ ρ, y)−Qϕ(x+ ρ′, y)∥22
= Eρ,ρ′ (Qϕ(x+ ρ, y)−Qϕ(x+ ρ′, y))

T
(Qϕ(x+ ρ, y)−Qϕ(x+ ρ′, y)) (13)

= Eρ,ρ′
[
∥Qϕ(x+ ρ, y)∥22 + ∥Qϕ(x+ ρ′, y)∥22 − 2Qϕ(x+ ρ′, y)TQϕ(x+ ρ, y)

]
(14)

= 2Eρ∥Qϕ(x+ ρ, y)∥22 − 2∥EρQϕ(x+ ρ, y)∥22 (15)

On the other hand, we have that

γ̃ϕ(x, y) := Eρ,ρ′∥Qϕ(x+ ρ, y)−Qϕ(x+ ρ′, y)∥22
= Eρ,ρ′∥Qϕ(x+ ρ, y)− EρQϕ(x+ ρ, y)− (Qϕ(x+ ρ′, y)− Eρ′Qϕ(x+ ρ′, y)) ∥22 (16)

= 2Eρ∥Qϕ(x+ ρ, y)− EρQϕ(x+ ρ, y)∥22 − 2∥Eρ [Qϕ(x+ ρ, y)− EρQϕ(x+ ρ, y)] ∥22 (17)

= 2Eρ∥Qϕ(x+ ρ, y)− EρQϕ(x+ ρ, y)∥22 (18)

= 2Eρ

[
d∑

i=1

(Qϕ(x+ ρ, y)[i]− EρQϕ(x+ ρ, y)[i])
2

]
(19)

= 2

d∑
i=1

Eρ (Qϕ(x+ ρ, y)[i]− EρQϕ(x+ ρ, y)[i])
2 (20)

= 2Trace (COVρ(Qϕ(x+ ρ, y))) (21)

where equality (17) is derived by applying the results of (15). We use Qϕ(x+ ρ, y)[i] to denote the ith coordinate of the
vector Qϕ(x+ ρ, y).

□

B.2 PROOF OF LEMMA 5.5

With a little abuse of notation, let (t, y) denote an instance drawn from D∗ and let (v, y) denote an instance drawn from the
induced distribution D̃ϕ associate with a perturbation Qϕ. For shorter notations, we will denote z := (t, y), u := (v, y) and



f(u) := f(v, y) and simply write Qϕ as Q.

Denote by g(u1 · · ·um) := sup
θ∈Θ

GG(θ; S̃ϕ, D̃ϕ) = sup
θ∈Θ

∣∣∣∣ 1
m

m∑
i=1

fθ(ui)− Efθ(u)
∣∣∣∣. We have for any 1 ≤ j ≤ m

sup
u1,··· ,um,u′

j

∣∣g(u1, · · · , um)− g(u1, · · · , u′
j , uj+1, · · ·um)

∣∣ (22)

= sup
u1,··· ,um,u′

j

∣∣∣∣∣∣supθ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

fθ(ui)− Efθ(u)

∣∣∣∣∣− sup
θ∈Θ

∣∣∣∣∣∣ 1m
 m∑

i=1,i̸=j

fθ(ui) + fθ(u
′
j)

− Eufθ(u)

∣∣∣∣∣∣
∣∣∣∣∣∣ (23)

≤ sup
u1,··· ,um,u′

j

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣ 1m

m∑
i=1

fθ(ui)− Efθ(u)

∣∣∣∣∣−
∣∣∣∣∣∣ 1m

 m∑
i=1,i̸=j

fθ(ui) + fθ(u
′
j)

− Eufθ(u)

∣∣∣∣∣∣
∣∣∣∣∣∣ (24)

≤ sup
u1,··· ,um,u′

j

sup
θ∈Θ

∣∣∣∣∣∣ 1m
m∑
i=1

fθ(ui)− Eufθ(u)−
1

m

 m∑
i=1,i̸=j

fθ(ui) + fθ(u
′
j)

+ Eufθ(u)

∣∣∣∣∣∣ (25)

= sup
θ∈Θ

sup
uj ,u′

j

1

m

∣∣fθ(uj)− fθ(u
′
j)
∣∣ (26)

≤ 1

m
sup
θ∈Θ

sup
uj

|fθ(uj)|+
1

m
sup
θ∈Θ

sup
u′
j

∣∣fθ(u′
j)
∣∣ (27)

≤2B

m
(28)

where the inequality (25) follows from the inverse triangle inequality. The inequality (27) and (28) make use of the triangle
inequality and the boundedness condition of f .

With the result derived above, by McDiarmid inequality, we have for all µ > 0

Pr [g(u1 · · ·um)− EUg(u1 · · ·um) ≥ µ] ≤ exp

(
−mµ2

B

)

where we use U := (u1, · · · , um). This is equivalent to saying that with probability 1− τ , we have

g(u1 · · ·um) ≤ EUg(u1 · · ·um) + 2B

√
log 1

τ

2m
(29)

□

B.3 PROOF OF THEOREM 5.6

Following the notations in the proof of Lemma 5.5, we now derive an upper bound for the term EUg(u1 · · ·um).



For shorter notations, let Z := (z1, · · · , zm), Γ := (ρ1, · · · , ρm) and Fθ(Z,Γ) :=
1
m

m∑
i=1

fθ(Q(xi + ρi, yi), yi). We have

EUg(u1 · · ·um) (30)

=EU sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

fθ(ui)− Efθ(u)

∣∣∣∣∣ (31)

=EU sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

fθ(ui)− EÛ

[
1

m

m∑
i=1

fθ(ûi)

]∣∣∣∣∣ (32)

≤EU sup
θ∈Θ

[
EÛ

∣∣∣∣∣ 1m
m∑
i=1

fθ(ui)−
1

m

m∑
i=1

fθ(ûi)

∣∣∣∣∣
]

(33)

≤EUEÛ sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

fθ(ui)−
1

m

m∑
i=1

fθ(ûi)

∣∣∣∣∣ (34)

=EZEΓEẐEΓ̂ sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

fθ(Q(xi + ρi, yi), yi)−
1

m

m∑
i=1

fθ(Q(x̂i + ρ̂i, ŷi), ŷi)

∣∣∣∣∣ (35)

=EZEΓEẐEΓ̂ sup
θ∈Θ

∣∣∣Fθ(Z,Γ)− EΓ̄Fθ(Z, Γ̄) + EΓ̄Fθ(Z, Γ̄)− Fθ(Ẑ, Γ̂) + EΓ̃Fθ(Ẑ, Γ̃)− EΓ̃Fθ(Ẑ, Γ̃)
∣∣∣ (36)

≤EZEΓ sup
θ∈Θ

∣∣F (Z,Γ)− EΓ̄Fθ(Z, Γ̄)
∣∣+ EẐEΓ̂ sup

θ∈Θ

∣∣∣Fθ(Ẑ, Γ̂)− EΓ̃Fθ(Ẑ, Γ̃)
∣∣∣+ EZEẐ sup

θ∈Θ

∣∣∣EΓ̄Fθ(Z, Γ̄)− EΓ̃Fθ(Ẑ, Γ̃)
∣∣∣

(37)

=2EZEΓ sup
θ∈Θ

∣∣Fθ(Z,Γ)− EΓ̄Fθ(Z, Γ̄)
∣∣︸ ︷︷ ︸

1⃝

+EZEẐ sup
θ∈Θ

∣∣∣EΓ̄Fθ(Z, Γ̄)− EΓ̃Fθ(Ẑ, Γ̃)
∣∣∣︸ ︷︷ ︸

2⃝

(38)

where (33) follows from Jensen’s inequality and (34) is due to that the supremum of expectation is less than equal to
expectation of the supremum. The inequality (37) is derived by the triangle inequality and the fact that supremum of sum is
less than equal to sum of supremum. We now individually construct upper bounds for the term 1⃝ and 2⃝.



For the term 1⃝, we have

2EZEΓ sup
θ∈Θ

∣∣Fθ(Z,Γ)− EΓ̄Fθ(Z, Γ̄)
∣∣

≤2EZEΓEΓ̄ sup
θ∈Θ

∣∣Fθ(Z,Γ)− Fθ(Z, Γ̄)
∣∣ (39)

=2EZEΓEΓ̄ sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

fθ(Q(xi + ρi, yi), yi)−
1

m

m∑
i=1

fθ(Q(xi + ρ̄i, yi), yi)

∣∣∣∣∣ (40)

=
2

m
EZEΓEΓ̄ sup

θ∈Θ
EΣ

∣∣∣∣∣
m∑
i=1

σi (fθ(Q(xi + ρi, yi), yi)− fθ(Q(xi + ρ̄i, yi), yi))

∣∣∣∣∣ (41)

≤ 2

m
EZEΓEΓ̄ sup

θ∈Θ

√√√√ m∑
i=1

|fθ(Q(xi + ρi, yi), yi)− fθ(Q(xi + ρ̄i, yi), yi)|2 (42)

≤ 2

m
EZEΓEΓ̄

√√√√ m∑
i=1

β2∥Q(xi + ρi, yi)−Q(xi + ρ̄i, yi)∥2 (43)

≤2β

m
EZ

√√√√EΓEΓ̄

[
m∑
i=1

∥Q(xi + ρi, yi)−Q(xi + ρ̄i, yi)∥2
]

(44)

=
2β

m
EZ

√√√√ m∑
i=1

EρEρ̄∥Q(xi + ρi, yi)−Q(xi + ρ̄i, yi)∥2 (45)

=
2β

m
EZ

√√√√ m∑
i=1

γ(xi, yi) (46)

≤2β

m

√√√√EZ

[
m∑
i=1

γ(xi, yi)

]
(47)

=
2β

m

√√√√ m∑
i=1

Eziγ(xi, yi) (48)

=
2β√
m

√
Ezγ(x, y) (49)

The inequality (39) is derived similarly to inequality (33) and (34). In (41), we introduce Rademacher variables Σ :=
(σ1, · · · , σm) (i.e., each random variable σi takes values in {−1,+1} independently with equal probability 0.5). The
Rademacher variables introduces a random exchange of the corresponding difference term. Since Γ and Γ̂ are independently
sampled from the same distribution, such a swap gives an equally likely configuration. Therefore, the equality (41) holds.
The inequality (42) is given by the Khintchine’s inequality. The inequality (43) makes use of the Lipschitz condition of f .
(44) is derived from Jensen’s inequality and due to that square root is a concave function. (46) is by the definition of the
local dispersion of Q. Again, we apply Jensen’s inequality to obtain (47). Equation (48) and (49) follow from the settings
that each zi = (xi, yi) is i.i.d.



For the term 2⃝, we have

EZEẐ sup
θ∈Θ

∣∣∣EΓ̄Fθ(Z, Γ̄)− EΓ̃Fθ(Ẑ, Γ̃)
∣∣∣

=EZEẐ sup
θ∈Θ

∣∣∣∣∣EΓ̄

[
1

m

m∑
i=1

fθ(Q(xi + ρ̄i, yi), yi)

]
− EΓ̃

[
1

m

m∑
i=1

fθ(Q(x̂i + ρ̃i, ŷi), ŷi)

]∣∣∣∣∣ (50)

=EZEẐ sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

Eρ̄i
[fθ(Q(xi + ρ̄i, yi), yi)]−

1

m

m∑
i=1

Eρ̃i
[fθ(Q(x̂i + ρ̃i, ŷi), ŷi)]

∣∣∣∣∣ (51)

=EZEẐ sup
θ∈Θ

∣∣∣∣∣ 1m
m∑
i=1

Eρ [fθ(Q(xi + ρ, yi), yi)]−
1

m

m∑
i=1

Eρ [fθ(Q(x̂i + ρ, ŷi), ŷi)]

∣∣∣∣∣ (52)

=
1

m
EZEẐEΣ sup

θ∈Θ

∣∣∣∣∣
m∑
i=1

σi (Eρ [fθ(Q(xi + ρ, yi), yi)]− Eρ [fθ(Q(x̂i + ρ, ŷi), ŷi)])

∣∣∣∣∣ (53)

≤ 1

m
EZEẐ sup

θ∈Θ

√√√√ m∑
i=1

|(Eρ [fθ(Q(xi + ρ, yi), yi)]− Eρ [fθ(Q(x̂i + ρ, ŷi), ŷi)])|2 (54)

where equation (51) and (52) are due to each ρ̂i and ρ̃i is i.i.d. Again, we introduce Rademacher variables at (53) and apply
Khintchine’s inequality to get (54). For the term |(Eρ [fθ(Q(xi + ρ, yi), yi)]− Eρ [fθ(Q(x̂i + ρ, ŷi), ŷi)])|2, we have

|Eρfθ(Q(xi + ρ, yi), yi)− Eρfθ(Q(x̂i + ρ, ŷi), ŷi)|2 (55)

≤(|Eρfθ(Q(xi + ρ, yi), yi)|+ |Eρfθ(Q(x̂i + ρ, ŷi), ŷi)|)2 (56)

≤2 |Eρfθ(Q(xi + ρ, yi), yi)|2 + 2 |Eρfθ(Q(x̂i + ρ, ŷi), ŷi)|2 (57)

where inequality (57) is derived by the inequality (a+ b)2 ≤ 2(a2 + b2). We also have that

|Eρfθ(Q(x+ ρ, y), y)|2

≤(Eρ |fθ(Q(x+ ρ, y), y)− fθ(x+ ρ, y)|+ |fθ(x+ ρ, y)|)2 (58)

≤(Eρ |fθ(Q(x+ ρ, y), y)− fθ(x+ ρ, y)|+B)2 (59)

≤(Eρβ∥Q(x+ ρ, y)− (x+ ρ)∥2 +B)2 (60)

The inequalities (58)-(60) respectively make use of the triangle inequality, Jensen’s inequality, and the boundedness and
lipschitz condition of f .



Returning to (54), we then have

1

m
EZEẐ sup

θ∈Θ

√√√√ m∑
i=1

|(Eρ [fθ(Q(xi + ρ, yi), yi)]− Eρ [fθ(Q(x̂i + ρ, ŷi), ŷi)])|2

≤ 1

m
EZEẐ sup

θ∈Θ

√√√√ m∑
i=1

2 |Eρfθ(Q(xi + ρ, yi), yi)|2 +
m∑
i=1

2 |Eρfθ(Q(x̂i + ρ, ŷi), ŷi)|2 (61)

≤ 1

m
EZEẐ

√√√√ m∑
i=1

2(Eρβ∥Q(xi + ρ, yi)− (xi + ρ)∥2 +B)2 +

m∑
i=1

2(Eρβ∥Q(x̂i + ρ, ŷi)− (x̂i + ρ)∥2 +B)2 (62)

≤ 1

m

√√√√EZEẐ

[
m∑
i=1

2(Eρβ∥Q(xi + ρ, yi)− (xi + ρ)∥2 +B)2 +

m∑
i=1

2(Eρβ∥Q(x̂i + ρ, ŷi)− (x̂i + ρ)∥2 +B)2

]
(63)

≤ 2√
m

√
Ez(Eρβ∥Q(x+ ρ, y)− (x+ ρ)∥2 +B)2 (64)

≤2(β
√
dϵ+B)√
m

(65)

The final line is due to that with ∥Q(x+ ρ)− (x+ ρ)∥∞ ≤ ϵ we have ∥Q(x+ ρ)− (x+ ρ)∥2 ≤
√
dϵ. This gives the final

result

EUg(u1 · · ·um) ≤ 2β√
m

√
Ezγ(x, y) +

2(β
√
dϵ+B)√
m

□
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Figure 5: Experiments in Figure 1 reproduced on CIFAR-100.
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Figure 6: Experiments in Figure 1 reproduced on Reduced ImageNet.
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(d) σ = 0.005

Figure 7: Experiments in Figure 2 reproduced on CIFAR-100.
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Figure 8: Experiments in Figure 2 reproduced on Reduced ImageNet.
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