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Abstract

LLM decoding is bottlenecked for large batches
and long contexts by loading the KV cache
from high-bandwidth memory, which raises
per-token latency, while its sequential nature
limits parallelism. We redesign attention to
perform more computation per byte of memory
transfer, maximizing hardware efficiency without
sacrificing parallel scalability. We first present
Grouped-Tied Attention (GTA), which merges
and reuses key and value states to reduce memory
traffic without affecting quality. Next, we
introduce Grouped Latent Attention (GLA), a
parallel friendly latent attention enhanced with
low-level optimizations for fast decoding at high
quality. Experiments show that GTA matches
Grouped Query Attention (GQA) quality while
using roughly half the KV cache, and GLA
matches Multi-head Latent Attention (MLA) yet
shards more easily. Our optimized GLA kernel
is up to 2× faster than FlashMLA in speculative
decoding once the query length exceeds one.

1 Introduction
In light of test-time compute (OpenAI, 2024), inference
efficiency now drives progress in AI, demanding a greater
emphasis on inference-aware architectures. The sequential
nature of token-by-token decoding limits opportunities for
parallelization. During decoding, Multi-Head Attention
(MHA) (Vaswani et al., 2017) caches the key-value (KV)
states of all prior tokens. These cached states scale linearly
with batch size and sequence length and quickly exhaust
high-bandwidth memory (HBM). Moreover, fetching
this large KV cache from off-chip memory dominates
execution time, significantly outweighing the relatively
small computation performed by the matrix-vector workload
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at each decoding step. Collectively, these issues highlight the
critical need for a hardware-efficient redesign of attention.
An ideal attention mechanism should (1) achieve high model
quality, (2) scale efficiently across multiple devices, and (3)
utilize modern hardware efficiently during inference.

Arithmetic intensity (Williams et al., 2009), the ratio of
FLOPs to bytes moved, indicates whether a workload is
memory-bound or compute-bound. Multi-Query Attention
(MQA) (Shazeer, 2019) increases this ratio by sharing one
KV head across all queries, shrinking the KV cache and
reducing the reload time from high-bandwidth memory
while keeping FLOPs unchanged, but at the cost of quality
and parallelism (Pope et al., 2022). Grouped Query Attention
(GQA) (Ainslie et al., 2023) modestly increases arithmetic
intensity in proportion to group size and scales well in
inference; yet with a moderate tensor parallel degree, each
GPU still holds a large KV cache and quality drops for very
large groups. Multi-head Latent Attention (MLA) from
DeepSeek (DeepSeek-AI, 2024; 2025) absorbs its low-rank
projection at decode time and uses a single latent head,
doubling the arithmetic intensity over MQA, but the latent
is duplicated on every device, hampering parallel inference.

We redesign hardware efficient attention through the
lens of arithmetic intensity, targeting scalable decoding
without quality loss. We denote the group size gq as the
number of query heads per distinct KV head; gq mainly
governs this metric. Increasing gq increases the arithmetic
intensity and proportionally reduces the KV cache. Beyond
a threshold, further increases trade higher compute per
byte for parallelism, duplicating projection weights and
KV cache across devices and limiting scalability. Guided
by this analysis, we introduce two attention variants that
pair high arithmetic intensity with efficient device scaling,
complemented by low-level optimizations.

• Grouped-Tied Attention (GTA) ties key and value into
one shared state reused by small query-head groups,
halving the KV cache and doubling arithmetic intensity
relative to GQA.

• Grouped Latent Attention (GLA) extends latent
attention with low-level optimizations, matches MLA
quality, and runs up to 2× faster, for example, in spec-
ulative decoding when the query length is at least two.
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• We evaluated in FineWeb-Edu: for the XL 1.47B model,
GTA yields 10.12 perplexity versus 10.20 for GQA,
while GLA gives 60.0% downstream accuracy with
10.21 perplexity compared with 59.1% and 10.25 for
MLA. On the large 876M model, GTA reaches 11.2
perplexity and 57. 6% accuracy compared to GQA’s
11.3 and 56.9%. For the medium 433M model, the GLA
attains 55.4% accuracy, slightly above MLA’s 54.9%.

• We combine their algorithmic design with a collection of
low-level optimizations, leading to attention-decoding
kernels 1.2-2× faster than FlashMLA 1 (Li, 2025).

2 Methodology
We describe our perspective on designing hardware-efficient
attention variants by focusing on the arithmetic intensity.
We then demonstrate how to maximize the arithmetic
intensity while efficiently parallelizing across devices by
tying the key and value states and sharding the cached latent
representation.

2.1 Arithmetic Intensity
in Decoding: A Hardware-Efficient Perspective

The GPU utilization of standard MHA, where the arithmetic
intensity is ∼1 as shown in Table 1, can drop to as low 7%
during decoding (Recasens et al., 2025). In theory, it could
accommodate around two and a half orders of magnitude
more FLOPs without increasing latency. However, practical
speed-ups are naturally smaller due to kernel overheads,
limited overlap, and other sources of inefficiency. This
low utilization reflects the growing gap between the
compute throughput of recent GPU generations and memory
bandwidth. Hardware FLOPs have scaled by ≈ 3× every
two years, while the HBM memory bandwidth increases by
∼1.6× over the same period (Gholami et al., 2024).
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Table 1. Let L be the KV sequence length, hq the number of
query heads, hkv the number of KV heads, and define the group
size gq =

hq

hkv
(queries per KV head). The KV multiplicity is

mkv ∈ {1,2}, with mkv = 1 for shared KV states (K = V ) and
mkv=2 for distinct KV states (K ̸=V ). We assume L≫hq .

2.2 Design
Strategies for Maximizing Arithmetic Intensity

GQA reuses one KV head for each group of query heads.
Because the number of operations remains unchanged

1Benchmarks were performed using the FlashMLA kernel
version dated 28 March 2025.

while memory reads drop, the arithmetic intensity grows in
proportion to the group size gq (see Table 1). In MQA, which
shares a single KV head across all queries, the intensity is
roughly the number of query heads, hq .

DeepSeek’s MLA absorbs low-rank projection matrices to
avoid materializing KV states, achieving high arithmetic
intensity by (i) caching one latent head, (ii) reusing it for
both key and value, and (iii) supporting many query heads.
A single latent loaded into the chip memory serves K and
V, doubling the arithmetic intensity over aggressive MQA
designs. The parameter savings let the up projection widen
to add more query heads, maintaining capacity and raising
intensity. As Table 1 shows, the arithmetic intensity grows
with the number of query heads: a larger gq both shrinks the
KV cache and maximizes GPU utilization. Let mkv∈{1,2}
denote KV multiplicity; increasing mkv from 1 to 2 enlarges
the cache and lowers intensity.

KVBytes =mkv ·B ·L· hq

gq
·dh × sizeof(dtype)

Arithmetic Intensity ≈ 2·L·hq

2·hq+
mkv·hq

gq
L

≈ 2·gq
mkv

For zero redundancy parallelism, the number of KV
heads hkv = hq/gq should be at least N and at most hq,
that is, gq ≤ hq/N . Here, B is the batch size and dh the
dimension per head. The increase gq increases the intensity
of arithmetic but also the duplication factor D; when D
equals the tensor parallel (TP) shard count N , each device
retains the full parameters and KV cache, eliminating
parallel gains. Thus, zero redundancy parallelism requires
hkv=hq/gq≥N , that is, gq≤hq/N .

2.3 Hardware-Efficient & Parallelizable Attention

2.3.1 GROUPED-TIED ATTENTION (GTA)

Singular value plots show a steep decay in the key cache: a
few principal directions capture almost all variance, so the
keys lie in a low-rank subspace (Saxena et al., 2024). Before
RoPE, this collapse was even stronger (Sun et al., 2024).
Studies find that rotating only a slice of each head with
RoPE maintains accuracy, so full-width rotation brings little
benefit (Black et al., 2022; Barbero et al., 2025). Rotating
just that slice and leaving the remaining low-rank channels
unrotated cuts the KV cache without harming quality. GQA
already reduces cache by letting each query group share one
KV head and scales well across devices. Merging grouping
with low rank and partial RoPE, we propose Grouped-Tied
Attention (GTA), which ties KV to a single state and applies
partial rotation for further cache reduction.

Tying the key and value projections yields a single tied KV
vector that matches one key or value. The value path uses the
entire vector, while the key path reuses its first half unrotated.
The missing RoPE half comes from a separate one-head pro-
jection of the hidden state, broadcast to all groups, and con-
catenated with the unrotated half to complete the key. Abla-
tions show that rotating the shared half harms quality even if it
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is later inverted, so it stays unrotated. The resulting query, key,
and value then enter standard scaled dot product attention.

Q∈RB×L×hq×dh ,KV,V,K∈RB×L×hkv×dh ,

Krope∈RB×L×1×dh/2,Khalf∈RB×L×hkv×dh/2;

Khalf=KV[:,:,:,:dh/2], V =KV, ;

K=
[
Khalf,broadcast(Krope,hkv)

]
.

By tying the KV states, we load a shared vector to chip
memory, reuse it for both keys and values, and share it with
each query group. This reuse halves memory traffic and the
KV cache and roughly doubles arithmetic intensity relative
to GQA at the same group size. GQA 4 has four distinct KV
heads; GTA 4 has four tied KV heads. The perplexity and
downstream performance match GQA.

2.3.2 GROUPED LATENT ATTENTION (GLA)

MLA compresses the KV cache by storing one latent
head of dimension dc = 4dh per token. Under tensor
parallelism, the key and value-up projection matrices
WUK ,WUV ∈R(4dh×hdh) are column-partitioned, so every
device must keep the full 4dh latent to reconstruct its heads,
duplicating the cache across ranks. The aggregate KV cache
therefore grows linearly with the tensor parallel degree,
eroding per device memory savings and limiting distributed
inference efficiency (see Section 2.2).

Grouped Latent Attention (GLA) compresses tokens into
hc latent heads, each of dimension dc = 2 dh (half of
MLA’s 4 dh). During training, every latent head and its
up-projection matrices reconstruct different key and value
characteristics for the gq =hq/hc query heads in its group,
so an up-projection has column size gqdh instead of MLA’s
hqdh. After weight absorption, each latent attends only
to its query group. Sharding the hc latent heads across
tensor-parallel ranks avoids KV duplication when hc equals
the tensor-parallel degree and reduces it otherwise.

For illustration, take hc = 2 as in our experiments. This
choice preserves the logical KV cache at 4dh but halves the
per-device cache at TP≥ 2. With TP= 2 GLA splits the
latent into cKV

0 and cKV
1 and partitions the query heads accord-

ingly. During decoding, each rank computes attention with
its latent and queries, applies its slice of the output projection,
then performs an AllReduce to sum the partial outputs.

The larger latent head of MLA (4dh) can exhaust the KV
cache per device for long sequences or large batches, limiting
the batch size or context length versus GLA. Example.
GLA–4 (hc=4, 2dh each) under (TP=4, DP=2) halves the
per-device cache, fetches a smaller cache each step, but
doubles the logical KV capacity. Our setup. We use hc=2,
giving GLA the same logical cache as MLA (dc=4 dh)
while halving the cache per device when TP≥ 2 and
matching MLA quality up to 1.471 B parameters. Arithmetic
intensity. During decoding, GLA achieves ≈ 2gq (twice
GQA); GLA–2 reaches ≈hq FLOPs per byte - on par with

aggressive MQA but with higher quality (Table 1).

cKV
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.

3 System Optimization: Asynchrony
& Distributed Offset Calculation

We describe the system optimization to achieve peak
performance for MLA, GTA, and GLA on modern hardware
such as H100 GPUs. Thanks to very fast specialized matrix
multiplication units such as Tensor Cores, we need careful
software pipelining of memory loading and tensor core
instructions to always keep the tensor cores busy. This
is achieved through the warp specialization technique to
exploit asynchrony on modern hardware.

3.1 Asynchrony
with software pipelining and warp specialization

We use two techniques to overlap compute and memory
loading:

1. Software pipelining: we load the next KV block while
the current KV block is being used in computation. This
classical technique (Lam, 1988) avoids having the tensor
cores waiting for memory loading.

2. Warp specialization: we have separate warps performing
memory loading with either TMA (tensor memory accel-
erator) or asynchronous copy (cp.async instruction),
and separate warps performing matrix-multiply-
accumulate (MMA). The former act as producer warps,
while the latter act as consumer warps (Bauer et al., 2014).
This is commonly used in matrix multiplication (Thakkar
et al., 2023) and attention (Shah et al., 2024a). This decou-
pling simplifies the software pipelining, allowing the warp
scheduler to overlap the memory loading and compute.

3.2 Distributed offset calculation for paged KV

As new attention variants such as MLA, GTA, and GLA stress
both the compute and the memory subsystems, one would
have to perform memory loading as quickly as possible.
Paged KV (Kwon et al., 2023) has become a standard way of
storing the KV cache. However, paged KV makes it difficult
to use the TMA, a specialized hardware unit that performs
address calculation and bound checking to load contiguous
blocks of memory. Instead, we use the asynchronous copy in-
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struction (cp.async) where each thread separately issues
individual load instructions. The challenge is that address
computation is surprisingly expensive, as it requires 64-bit
integer indexing, which translates to multiple instructions
per integer multiplication. We instead have multiple threads
in the same warp that cooperate to calculate the addresses.
As an example, for head dimension 128, to load a block of
size 128 x 128 from global memory to shared memory, we
use 128 threads, with 16 threads loading per row:

1. Group 128 threads into 8 groups, each consisting of 16
consecutive threads. Each group g for g=0,1,...,7 will
be assigned to load rows g,g+8,...,g+120.

2. For each thread t, which belongs to the group g=⌊t/16⌋,
read the page index from the page table in row
g+(t mod 16)∗8. Using the page index, compute the
global memory address of the paged KV corresponding
to this row and store in registers.

3. For row r in g,g+8,...,g+120, all 16 threads t in the same
group use warp shuffle to get the global memory address
from thread index g∗16+(r−g)/8. Use this address to
load the KV cache elements corresponding to this row.

We see that each thread only needs to store the address offset
of 1 row (instead of 16 rows), as the address offsets of 16
rows assigned to each group are spread across 16 threads.

This enables high efficiency for arbitrary page size (such
as page size 1), where page size 1 suffers no slowdown
compared to page size 64, despite a much larger number of
address computations. This unlocks use cases such as prefix
caching (Kwon et al., 2023) with RadixAttention (Zheng
et al., 2024) which requires page size 1. We benchmark the
speed of paged KV with GLA in appendix B.5, showing a
1.2-1.5x speedup.

4 Experiments and Results
4.1 Model Quality

We train GPT-3–style Llama 3 models with 183 M, 433
M, 876 M, and 1.471 B parameters on FineWeb-Edu (25
B tokens for the smallest model, 50 B for the others) and
evaluate validation perplexity on FineWeb-Edu, Wikipedia,
C4, Cosmopedia, and Pile—reporting their average in
Tables 2 and 3—plus zero-shot accuracy on ARC-Easy,
HellaSwag, PIQA, WinoGrande, MMLU, SciQ, and
OpenBookQA; full hyperparameters, RoPE settings, and
additional results appear in Appendix B.1–B.2.1.

At medium and large scales, GLA-2 reduces validation
perplexity on both FineWeb Edu and the five-dataset average
compared to MLA. GTA surpasses GQA while removing its
KV-cache duplication at low TP. In the large model, GLA-2
and GLAq-2 share the best average perplexity (24.49–24.51)
versus MLA’s 24.93. The pattern persists at the XL scale:
GTA-4 edges GQA-4 (10.12 vs. 10.20 on FineWeb Edu),
and GLA stays ahead of MLA (10.21 vs 10.25).

Medium (433M) Large (876M)
Method FineWeb Avg FineWeb Avg
MLA 12.561 28.230 11.363 24.929
GLAq-2 12.433 27.840 11.276 24.511
GLA-2 12.456 27.586 11.293 24.492
GTA-4 12.785 29.952 11.232 24.994
GQA-4 12.922 30.144 11.340 25.286
MHA 12.979 29.990 11.501 25.837
MQA 13.068 30.524 11.413 25.206

Table 2. Validation perplexities (lower is better) on FineWeb-Edu
across two model sizes (medium and large), along with the average
perplexity across five datasets (FineWeb-Edu validation set,
Cosmopedia, RPV1 C4, RPV1 Wikipedia, and Pile). The lowest
perplexity is in bold, and the second lowest is underlined.

1K 2K 4K 8K 16K 32K 64K
Sequence length

1000

2000

3000

GB
/s

1340

2120

2310 2370
2470 2510 2520

2020

2410

2730

2940
3040 3090 3120

Decoding speed, batch 128, query heads 128, query length 1
FlashMLA (DeepSeek)
GLA (ours)

Figure 1. Decoding speed of MLA and GLA on an H100 80 GB
SMX5 GPU (theoretical max BF16 compute 989 TFLOPS/s and
memory 3350 GB/s) for query length 1.

Method FineWeb Avg Avg KV cache
PPL PPL Downstream TP=2

MHA 10.311 21.206 60.1 4096
GQA-4 10.202 21.073 60.2 1024
GTA-4 10.129 20.823 60.2 640
GLA-2 10.218 21.163 60.0 640
MLA 10.256 21.199 59.1 1152

Table 3. Validation perplexity (lower is better) for the 1.471B model
on FineWeb-Edu and the average over five validation datasets
(FineWeb-Edu, Cosmopedia, RedPajama v1 C4, RedPajama v1
Wikipedia, and Pile). Downstream accuracy (higher is better).

Across downstream benchmarks on the XL scale (1.471 B
parameters), our variants meet or exceed baseline accuracy:
GLA-2 reaches 60. 0 % versus MLA 59. 1 %, while GTA-4
and GQA-4 each reach 60.2 % (Table 3). Detailed results
for smaller models appear in the Appendix B.3.

4.2 Speed

We benchmark the decoding kernels for MLA (1 latent head
of dimension 512, RoPE dim 64) and GLA (2 latent heads
of dimension 256 each, RoPE dim 64) as shown in Figure 1,
with paged KV with page size 64.
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A Related Work
A.1 Attention Variants

A.1.1 ALGORITHMIC

Pre-training: Follow-up works to DeepSeek’s MLA include Multi-matrix Factorization Attention (MFA) (Hu et al., 2025),
which resembles MQA but uses a larger head dimension and factorized query projections, where it shares similar limitations
with MQA, particularly regarding inefficient KV cache utilization per device due to duplication and lack of compatibility
with tensor parallelism. Tensor Product Attention (TPA) (Zhang et al., 2025) factorizes queries, keys, and values with two
rank R projection matrices per state, so the per token cache is (RK+RV )(h+dh) elements. We report validation perplexity
in our ablations for TPA in the Appendix B.3. The low-rank structure of TPA supports straightforward head-level TP sharding,
but its KV cache scales linearly with R and already exceeds MLA once R≥4; ranks four and above are important for quality,
especially at larger scales, so it can quickly lose the memory-saving advantage.

Post-hoc adaptation: In (Lin et al., 2025) they propose SIGMA, which utilizes a novel differentially scaled QKV module
specifically optimized and applied during the fine-tuning stage to improve inference efficiency by compressing K while
lightly compressing V and increasing Q. Slim Attention (Graef and Wasielewski, 2025), a post-training approach that keeps
only the key vectors and recreates the values on the fly, cutting the context memory for any multi-head attention in half. Our
proposed method cuts the KV cache further than both of these approaches. It differs from the techniques above, as it attempts
to restructure the attention architecture during pre-training, as opposed to changing the existing attention of the already
pre-training model. However, similar distillation methods that have been applied to MLA (Meng et al., 2025; Ji et al., 2025)
can be adopted for GLA in the post-training stage to realize the benefits of the low KV cache footprint and easy parallelization.

A.1.2 SYSTEMS

FlashAttention (Dao et al., 2022) reorders attention computation with an I/O-aware tiling strategy that keeps data in high-speed
memory, avoiding the need to materialize the entire attention matrix. It drastically reduces memory overhead and yields
significant speedups, particularly during decoding with large sequence lengths. FlashAttention-2 (Dao, 2023) further refines
the attention kernel by reducing non-matrix multiplication operations and improving parallel work partitioning, delivering
additional gains in hardware utilization. Its system-level improvements provide a notable increase in throughput over the origi-
nal FlashAttention. Then FlashAttention-3 (Shah et al., 2024b) leverages next-generation GPU features, such as asynchronous
memory operations and low-precision computation, pushing attention efficiency closer to hardware limits. Natively trainable
sparse attention (NSA) (Yuan et al., 2025) introduces hardware-aligned sparse attention with a dynamic hierarchical pattern.
This design reduces computational complexity while maintaining near-full attention fidelity, enabling efficient decoding
over extremely long sequences. Our proposed methods are orthogonal to these system-level attention optimizations.

A.2 Additional Approaches to Accelerating Decoding

The following post hoc adaptation design features work in conjunction with the GLA and GTA design architecture, enhancing
its performance capabilities.

Algorithmic: There have been many algorithmic efforts such as token eviction (Zhang et al., 2023; Xiao et al., 2024) or
sharing KV cache between adjacent layers (Brandon et al., 2024), batching to improve GPU utilization (Mukherjee et al.,
2023), and speculative decoding (Xia et al., 2023). Systems: On the system side, there has been work on quantization (Hooper
et al., 2024), CPU offloading (Aminabadi et al., 2022; Sheng et al., 2023; He and Zhai, 2024), and memory management using
PagedAttention (Kwon et al., 2023) to mitigate memory fragmentation problems. Hardware: In addition, there have been
efforts on the hardware side that benefit inference, such as FP4 support (NVIDIA, 2024) or NVLink (NVIDIA Corporation,
2024), to hardware chips designed solely for fast inference (Groq, 2024).

A.3 Low-Rank Projections

Empirical findings indicate that, before applying RoPE, key activations have a sharply decaying singular-value spectrum
(?Chen et al., 2024), implying that many dimensions contribute minimally. Furthermore, (Singhania et al., 2024) show that
keys exhibit substantially reduced intrinsic dimensionality across models, suggesting an inherently low-rank space. For
example, (Kobayashi et al., 2024) finds that the regularization of the weight decay drives the combined key-query mapping
to an even lower rank. In contrast, value activations exhibit mixed low-rank tendencies. Some studies have shown that
cached values do not compress well without a severe accuracy penalty (Chang et al., 2024; Singhania et al., 2024). However,
additional findings demonstrate that partial compression can be achieved with acceptable performance degradation (Saxena
et al., 2024; Sun et al., 2024). These inconsistencies suggest that the effective rank of values is model- and method-dependent.
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GTA utilizes the insights from these aforementioned works for its design of tying the key and value within each query group,
thereby reducing the KV cache size.

A.4 Rotary Position Encoding (RoPE)

Per head dimension (Barbero et al., 2025) suggests that it may not be necessary to apply RoPE (Su et al., 2023) to every
head dimension since the highest frequencies already provide positional discrimination. Other studies (DeepSeek-AI, 2024;
Black et al., 2022; Wang and Komatsuzaki., 2021) find that they can preserve the quality of the model by applying RoPE
to only half of the dimension. Inspired by the same insight, GTA rotates only a partial slice of the head dimension and ties
the rest to the portion with half of the value head dimension, reducing the KV cache size while preserving accuracy.

Per layer (Chen and Yan, 2024) shows that RoPE contributes the most in the early transformer layers, where attention is
focused on local syntactic relations. In contrast, the deeper layers shift toward semantic cues, implying diminishing returns
from positional rotation later in the stack. (Yang et al., 2025) present RNoPE, a design that interleaves RoPE layers with
NoPE layers and limits RoPE to a sliding window, achieving markedly better retrieval at very long context lengths and
influencing the architecture choices of Llama 4 (Meta AI, 2025). Overall, applying RoPE to partial layers is beneficial for
GLA, considering that the decoupled RoPE, with a single head that is half the head dimension, can be eliminated.

B Full Experimental Results
B.1 Experimental Setup

We use the Llama 3 tokenizer (Grattafiori et al., 2024) with a vocabulary size of 128K tokens. We use the AdamW (Loshchilov
and Hutter, 2019) optimizer with ( β1,β2) = (0.9, 0.95), a weight decay of 0.1, and gradient clipping at 1.0. We follow the
training recipe from Gu and Dao (2024), using a learning rate scaled by 5× relative to GPT-3 for a model of the same size,
with decay of cosine to 1% of the maximum learning rate. We use the configuration of the GPT-3 model (Brown et al., 2020).
We first use the configuration of the GPT-3 model for a given parameter size for our MHA baseline, which has the largest
parameter budget. Then, we widen the MLPs of every other attention variant until each model matches the MHA parameter
count. Essentially, MHA’s parameter size is the anchor point.

In GQA-4 & GTA-4, the 4 represents the number of groups or the number of KV heads, hkv=
hq

gq
. GLAq refers to the GLA

version in which the latent query is also sharded.

Model Size #Param Micro-batch Size Batch Size Learning Rate #Layer dmodel hq dh

Small 183.65M 16 512 2.6 x 10−4 12 768 12 64
Medium 433.77M 16 512 1.45 x 10−4 24 1024 16 64
Large 876.55M 8 512 1.2 x 10−4 24 1536 16 96
XL 1471.12M 8 256 1.0 x 10−4 24 2048 16 128

Table 4. Model configuration for the four model sizes in our experiments. We adopted the GPT-3 model configuration, with the Llama
3 architecture as the backbone and its tokenizer as well.

Method Model Param Intermediate size

MLA 183.65M 2128
GLA-2 183.51M 2208
MHA 183.45M 2048
MQA 183.53M 2520
GTA-4 183.40M 2462
GQA-4 183.53M 2392

Table 5. Model parameters and FFN intermediate size for a small model.
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Method Model Param Intermediate size

GLA-2 433.89M 3152
GLAq-2 433.89M 3280
MLA 433.55M 3062
GTA-4 433.57M 3320
GQA-4 433.77M 3248
MHA 433.77M 2736
MQA 433.77M 3376

Table 6. Model parameters and FFN intermediate size for a medium model.

Method Model Param Intermediate size

MHA 876.55M 4096
GQA-4 876.55M 4864
MQA 876.55M 5056
GTA-4 876.55M 4976
MLA 876.73M 4640
MLA (dR :48) 876.74M 4592
GLA-2 (dR :48) 876.96M 4914
GLA-2 876.73M 4768
GLAq-2 876.44M 4936

Table 7. Model parameters and FFN intermediate size for a large model. dR denotes the RoPE dimension and the default is 32 for this
model size

Method Model Param Intermediate size

MLA 1470.58M 6120
GLA-2 1470.78M 6292
MHA 1471.12M 5464
GTA-4 1471.22M 6638
GQA-4 1470.83M 6486

Table 8. Model parameters and FFN intermediate size for a XL model.

B.2 Quality

B.2.1 VALIDATION PERPLEXITY

Method FineWeb-Edu Cosmopedia RPV1 Pile RPV1 Avg
C4 Wikipedia

MHA 16.715 20.542 31.628 40.444 99.800 41.826
GQA-4 16.578 20.599 32.059 43.841 99.525 42.520
MQA 16.972 22.094 32.245 44.308 103.915 43.907
GTA-4 16.607 20.768 32.911 42.181 100.932 42.680
GLA-2 16.371 20.542 31.628 40.444 94.037 40.604
GLAq-2 16.333 20.110 31.517 38.725 92.820 39.901
MLA 16.318 20.063 31.484 39.528 94.056 40.290

Table 9. Validation perplexity for the small model (lower is better). The lowest perplexity is in bold, and the second lowest is underlined.
RPV1 refers to RedPajama v1.
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Method FineWeb-Edu Cosmopedia RPV1 Pile RPV1 Avg
C4 Wikipedia

GLA-2 12.456 13.722 24.308 27.676 59.766 27.586
GLAq-2 12.433 13.917 24.263 28.224 60.359 27.840
MLA 12.561 14.039 24.507 28.602 61.438 28.230
GQA-4 12.845 14.532 25.159 30.401 65.871 29.761
GTA-4 12.785 14.812 25.009 30.447 66.708 29.952
MHA 12.979 14.666 25.331 30.772 66.201 29.990
GQA-4 (qoR :4·dh;hq :48) 12.922 15.024 25.282 31.510 65.980 30.144
MQA 13.068 15.163 25.585 31.504 67.302 30.524

Table 10. Validation perplexity for the medium model (lower is better). The lowest perplexity is in bold, and the second lowest is underlined.
qoR refers to the rank of the low-rank query and output projections, resulting in reduced model parameters. To offset these lost parameters
for fair comparison with the baselines, we increase the query heads hq to 48. It’s beneficial since arithmetic intensity depends on the number
of query heads. RPV1 refers to RedPajama v1.

Method FineWeb-Edu Cosmopedia RPV1 Pile RPV1 Avg
C4 Wikipedia

MHA 11.501 12.605 22.496 27.651 54.933 25.837
GQA-4 11.340 12.358 22.219 26.635 53.878 25.286
MQA 11.413 12.437 22.383 26.521 53.274 25.206
GTA-4 11.232 12.159 22.059 26.136 53.383 24.994
MLA 11.363 12.468 22.294 25.685 52.837 24.929
MLA (dR :48) 11.245 12.021 22.053 25.246 52.212 24.555
GLAq-2 (dR :48) 11.337 12.144 22.234 24.620 52.612 24.589
GLAq-2 11.276 12.100 22.126 24.681 52.371 24.511
GLA-2 11.293 12.106 22.130 24.698 52.233 24.492

Table 11. Validation perplexity for the large model (lower is better). dR refers to the RoPE dimension and the default is 32 for this model
size. RPV1 refers to RedPajama v1.

Method FineWeb-Edu Cosmopedia RPV1 Pile RPV1 Avg
C4 Wikipedia

MHA 10.311 10.540 20.117 22.432 42.628 21.206
GQA-4 10.202 10.418 19.986 22.642 42.119 21.073
GTA-4 10.129 10.399 19.849 22.184 41.551 20.823
GLA-2 10.218 10.482 20.020 22.298 42.796 21.163
MLA 10.256 10.561 20.041 22.516 42.624 21.199

Table 12. Validation perplexity for the XL model (lower is better). Bold indicates the lowest score in each column; underlined indicates
the second lowest. RPV1 refers to RedPajama v1.

Method FineWeb-Edu Avg Avg KV cache (bytes/token)
PPL PPL Downstream TP=1 TP=2 TP=4

MHA 10.311 21.206 60.1 8192 4096 2048
GQA-4 10.202 21.073 60.2 2048 1024 512
GTA-4 10.129 20.823 60.2 1152 640 384
GLA-2 10.218 21.163 60.0 1152 640 640
MLA 10.256 21.199 59.1 1152 1152 1152

Table 13. Validation perplexities (lower is better) for the 1.471B model on FineWeb-Edu along with the average perplexity across five
datasets (FineWeb-Edu validation, Cosmopedia, RedPajama v1 C4, RedPajama v1 Wikipedia, and Pile). The lowest perplexity is in bold,
and the second lowest is underlined. Average Downstream evaluation (higher is better), where the highest accuracy is in bold, the second
highest is underlined. TP refers to the tensor parallelism, and we report the KV cache of a token in bytes per device across various TP degrees.

11



Submission and Formatting Instructions for ICML 2025

B.2.2 DOWNSTREAM EVALUATION

Method Winogrande SciQ PiQA OpenBookQA MMLU HellaSwag Arc-Easy Avg
GLAq−2 55.2 84.9 70.5 35.6 25.2 47.9 66.3 55.1
GQA-4qoR 52.4 83.6 69.7 36.0 25.5 45.7 64.9 54.0
GQA-4 53.8 85.7 69.7 36.2 25.4 46.3 64.6 54.5
GTA-4 54.2 85.5 69.0 34.0 25.9 46.8 64.2 54.2
MQA 55.5 84.6 69.5 37.0 26.2 45.9 60.5 54.2
GLA-2 56.7 84.1 70.3 37.2 26.2 48.2 65.3 55.4
MLA 54.5 86.1 70.2 36.8 25.1 47.2 64.2 54.9
MHA 55.2 84.8 69.3 35.0 25.5 46.2 63.0 54.1

Table 14. Downstream evaluation for the medium model (higher is better). Bold indicates the highest score in each column; underlined
indicates the second highest. qoR denotes the rank of the low rank query and output projections, set to 4dh. To compensate for the reduced
parameter count and ensure a fair comparison with the baselines, we increase the number of query heads hq to 48, which also benefits
arithmetic intensity since it scales with the number of query heads.

Method Winogrande SciQ PiQA OpenBookQA MMLU HellaSwag Arc-Easy Avg
GLA-2 57.4 91.8 73.9 40.4 26.1 58.2 72.1 60.0
GQA-4 59.0 91.5 74.1 41.6 25.2 58.5 71.6 60.2
GTA-4 58.2 91.0 75.1 40.8 25.3 58.6 72.5 60.2
MLA 56.4 89.5 73.5 39.4 25.3 58.1 71.8 59.1
MHA 60.5 90.7 73.1 41.0 25.9 57.6 71.9 60.1

Table 15. Downstream evaluation for the XL model (higher is better). Bold indicates the highest score in each column; underlined indicates
the second highest.

B.3 Ablations

Different attention variants reduce the learned parameters and the representational capacity per layer; therefore, these saved
parameters need to be redistributed elsewhere. For example, Llama 2 (Touvron et al., 2023) increases the width of the FFNs for
MQA and GQA in their ablation to make a fair comparison to MHA. In addition, MQA initially proposed to increase the width
to match the parameters to MHA (Shazeer, 2019). Meanwhile, (DeepSeek-AI, 2024) adjusts the depth of the model, increasing
the number of layers for a fair comparison. Altering the depth is less common because it is challenging to make head-to-head
comparisons, as there is less flexibility in moderately scaled models to match parameters. (Pope et al., 2022) shrink the head
dimension of MHA to match the parameters of MQA and TPA, while (Zhang et al., 2025) increases the number of query heads
to align the parameter count, essentially distributing the saved parameters into the query projections. For instance, in the case of
GQA and GTA, the KV heads need to be divisible by the query heads, so there is less flexibility in terms of altering the number
of query heads to match as closely as possible to the baseline for fair comparison. In the case of MLA and GLA, increasing the
query heads is beneficial since, during decoding, we do not materialize KV. Essentially, a single latent head is shared across
all or groups of query heads; therefore, increasing the query heads trivially improves GPU utilization while decoding, as we
demonstrated earlier in Table 1 where the arithmetic intensity for MLA and GLA boils down to the number of query heads.
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B.3.1 ABLATIONS: SMALL MODEL 188M PARAMETERS

Attention Type Model Param FineWeb-Edu RPV1 Cosmopedia RPV1 Pile Avg
C4 Wikipedia

MHA 183.45M 16.71 32.24 20.54 99.79 40.44 41.94
GQA-4 174.01M 17.07 32.93 21.62 104.1 45.09 44.16
MQA 170.47M 17.39 33.70 22.53 108.0 46.79 45.68
GTA-4 171.95M 17.04 32.95 21.82 103.5 44.67 44.00
TPA (r=2) 172.10M 17.06 32.92 21.81 99.58 44.17 43.11
TPA (r=4) 174.90M 16.90 32.63 21.59 99.43 43.15 42.74
MLA 181.44M 16.40 31.61 20.49 95.46 40.04 40.80
GLAq-2 175.54M 16.56 31.91 20.66 94.49 40.13 40.75

Table 16. We ablate by keeping the width of the FFNs (2048) and number of query heads (hq :12) constant across the attention variants. Vali-
dation perplexity for the small model (lower is better). Bold marks the lowest value in each column, and underlined marks the second-lowest.
We include the benchmark for Tensor Product Attention (TPA) (Zhang et al., 2025) with ranks 2 and 4 for the low-rank projection matrices
of keys and values. Bold marks the lowest value in each column, and underlined marks the second-lowest. RPV1 refers to RedPajama v1.

Method FineWeb-Edu RPV1 Cosmopedia RPV1 Pile Avg
C4 Wikipedia

GLAq-2 (hq:20) 16.450 31.706 20.849 95.273 40.116 40.879
MLA 16.338 31.516 20.111 94.273 39.168 40.281
GLAq-2 16.337 31.517 20.110 92.820 38.726 39.902
GTA-4 (dR:16) 16.870 32.732 21.089 103.508 43.103 43.460
GTA-4 (qoR :4 hq:24) 16.517 31.946 20.727 99.962 41.462 42.123
GTA-4 (qoR :3 hq:36) 16.496 32.048 20.537 101.030 43.787 42.780
GQA-4 (qoR :3 hq:36) 16.546 32.048 20.786 99.684 43.787 42.570
GQA-4 (qoR :4 hq:24) 16.405 31.754 20.530 97.979 43.302 41.994

Table 17. The ablations are for different query head counts and projection ranks. Given that arithmetic intensity during decoding depends
on the number of query heads, we increase the number of query heads, hq , and the query and output projections are low-rank, denoted
by qoR, to compensate for the added parameters. dR denotes the RoPE dimension. For instance, dR =16 for GTA-4, we apply RoPE
to only 25% of the head dimensions instead of 50% in our proposed approach. Validation perplexity for the small model (lower is better).
Bold marks the lowest value in each column, and underlined marks the second-lowest. RPV1 refers to RedPajama v1.

Method Model Param hq FineWeb-Edu RPV1 Cosmopedia RPV1 Pile Avg
C4 Wikipedia

MHA 183.45M 12 16.71 32.24 20.54 99.79 40.44 41.94
MQA 183.45M 23 17.03 32.97 21.79 104.30 44.51 44.12
GQA-4 183.45M 20 16.79 32.44 21.19 101.50 43.05 42.99
GTA-4 181.40M 20 16.83 32.58 21.22 104.70 44.46 43.96
GTA-4 186.11M 24 16.55 32.07 20.49 99.13 42.78 42.20
TPA (r=2) 183.05M 21 16.74 32.33 22.32 103.60 43.32 43.66
TPA (r=4) 183.68M 19 16.75 32.32 21.63 99.78 41.81 42.46
MLA 183.02M 13 16.33 31.70 20.84 95.27 39.16 40.66
GLAq-2 183.51M 13 16.44 31.51 20.11 94.27 40.11 40.49

Table 18. We ablate by keeping the width of the FFNs (2048) constant across different variants, but increasing the query heads, hq , to match
the parameters for fair comparison. Recall that the arithmetic intensity of attention during decoding depends on the number of query heads.
Validation perplexity for the small model (lower is better) across different numbers of hq and identical FFN width. Bold marks the lowest
value in each column, and underlined marks the second-lowest.

B.3.2 ABLATIONS: MEDIUM MODEL 433M PARAMETERS

In the primary experiment, the medium model (433 M) is trained on 50B tokens, whereas the ablation studies and baseline
within this section are trained on 25B tokens.
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Method Model Param FineWeb-Edu RPV1 Cosmopedia RPV1 Pile Avg
C4 Wikipedia

GTA-4 433.57M 13.250 25.804 15.051 70.733 31.091 31.19
MLA 433.55M 13.066 25.367 14.515 66.667 30.027 29.93
GLA-2 433.60M 12.985 25.216 14.422 65.730 29.515 29.57
GLAq-2 433.89M 12.957 25.108 14.434 67.182 29.909 29.92
MLA 433.55M 13.087 25.411 14.582 66.847 29.725 29.93
GQA-4 433.77M 13.395 25.999 15.211 70.403 31.650 31.33
MHA 433.77M 13.552 26.286 15.330 72.488 32.124 31.96
MQA 433.77M 13.574 26.436 15.615 72.789 33.513 32.39
TPA (r=2) 433.77M 13.186 25.612 15.186 68.709 31.269 30.79
TPA (r=4) 433.96M 13.143 25.538 14.672 66.877 30.396 30.12

Table 19. The width of the FFN is modified to match parameters as closely as possible across variants. They are all trained on 25B tokens.
Validation perplexity for the medium model (lower is better). Bold marks the lowest value in each column, and underlined marks the
second-lowest. We benchmark TPA using low rank key and value projection matrices at ranks 2 and 4. RPV1 refers to RedPajama v1.

Method Model Winogrande SciQ PiQA OpenBook MMLU HellaSwag Arc Avg
Param QA Easy

TPA (r=2) 433.77M 53.8 84.1 68.3 36.3 25.8 45.4 63.5 53.8
TPA (r=4) 433.96M 51.8 83.7 68.6 35.4 25.2 45.5 65.7 53.6
GTA-4 433.57M 55.2 84.3 69.2 34.9 26.0 45.3 63.1 54.0
MLA 433.55M 54.0 82.9 69.3 39.9 25.4 46.1 65.4 54.7
GLA-2 433.60M 55.5 83.8 70.0 35.2 25.5 46.2 66.6 54.6
GLAq-2 433.89M 54.3 85.9 69.4 37.2 24.9 46.3 63.8 54.5
MLA 433.55M 53.2 83.9 69.3 39.9 25.4 45.9 64.3 54.5
GQA-4 433.77M 55.0 82.8 69.2 34.5 25.3 45.0 63.6 53.6
MHA 433.77M 51.7 85.5 69.3 35.6 25.4 44.2 62.8 53.5
MQA 433.77M 51.5 83.7 68.3 37.4 25.7 44.4 62.6 53.3

Table 20. The width of the FFN is modified to match parameters as closely as possible across variants. All models are trained on 25 B tokens.
Downstream evaluation for the medium model (higher is better). Bold indicates the highest score in each column; underlined indicates
the second highest. We benchmark TPA using low-rank key and value projection matrices at ranks 2 and 4. RPV1 refers to RedPajama v1.

Method Model hq FineWeb-Edu Avg Avg KV Cache (bytes/token)
Param PPL PPL Downstream TP=1 TP=2

GLA-2 434.73M 26 13.236 30.358 53.9 576 320
MQA 433.77M 31 13.703 33.022 53.4 256 256
GQA-4 433.77M 28 13.567 32.019 52.6 1024 512
GTA-4 428.26M 28 13.401 31.475 53.6 576 320
GLAq-2 434.76M 32 13.321 30.909 53.4 576 320
MLA 434.32M 23 13.249 30.875 54.2 576 576
MHA 433.77M 16 13.552 31.956 53.5 4096 2048
TPA(r=2) 433.47M 29 13.367 31.171 53.2 744 624
TPA(r=4) 432.59M 26 13.404 31.030 54.0 1440 1232

Table 21. We run ablation by keeping the width of the FFNs (2736) constant across different variants but increasing the query heads, hq ,
to match the parameters for fair comparison. Recall that the arithmetic intensity of attention during decoding depends on the number of
query heads. We report the validation perplexity (lower is better) for FineWeb-Edu, along with the average perplexity across five datasets:
FineWeb-Edu validation set, Cosmopedia, RedPajama v1 C4, RedPajama v1 Wikipedia, and Pile. The lowest perplexity is in bold, and
the second lowest is underlined. We report the average downstream evaluation (higher is better), where the highest accuracy is in bold,
and the second-highest is underlined. TP refers to the tensor parallelism, and we report the KV cache of a token in bytes per device across
various TP degrees. We benchmark TPA using low-rank key and value projection matrices at ranks 2 and 4. RPV1 refers to RedPajama v1.
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Method Model Param hq FineWeb-Edu RPV1 Cosmopedia RPV1 Pile Avg
C4 Wikipedia

GLA-2 434.73M 26 13.236 25.710 14.665 67.764 30.416 30.358
MQA 433.77M 31 13.703 26.721 15.732 75.651 33.305 33.022
GQA-4 433.77M 28 13.567 26.341 15.514 72.141 32.534 32.019
GTA-4 428.26M 28 13.401 26.036 15.217 71.095 31.628 31.475
GLAq-2 434.76M 32 13.321 25.859 15.085 69.604 30.677 30.909
MLA 434.32M 23 13.249 25.734 15.089 69.569 30.735 30.875
MHA 433.77M 16 13.552 26.286 15.330 72.488 32.124 31.956
TPA(r=2) 433.47M 29 13.367 25.936 15.322 70.091 31.138 31.171
TPA(r=4) 432.59M 26 13.404 26.059 15.409 69.805 30.473 31.030

Table 22. We ablate by keeping the width of the FFNs (2736) constant across different variants but increasing the number of query heads,
hq , to match the parameters for fair comparison. Recall that the arithmetic intensity of attention during decoding depends on the number
of query heads. Validation perplexity for the medium model (lower is better). Bold marks the lowest value in each column, and underlined
marks the second-lowest. There is less flexibility for GQA and GTA to match parameters since the number of KV heads hkv needs to be
divisible by the hq . We benchmark TPA using low-rank key and value projection matrices at ranks 2 and 4. RPV1 refers to RedPajama v1.

Method Model Winogrande SciQ PiQA OpenBook MMLU HellaSwag Arc Avg
Param QA Easy

GLA 434.73M 52.5 84.1 69.2 36.3 25.6 45.4 64.3 53.9
MQA 433.77M 54.6 83.9 67.9 34.7 25.8 43.7 63.6 53.4
GQA-4 433.77M 52.2 82.3 68.0 34.9 24.9 43.9 62.6 52.6
GTA-4 428.26M 53.4 85.1 68.2 34.9 25.9 44.8 63.6 53.6
GLAq-2 434.76M 53.2 83.7 68.4 35.2 25.1 44.8 63.6 53.4
MLA 434.32M 53.9 85.6 69.5 35.4 24.4 44.9 65.9 54.2
MHA 433.77M 51.7 85.5 69.3 35.6 25.4 44.2 62.8 53.5
TPA(r=2) 433.47M 51.9 84.3 68.9 35.0 25.1 44.7 62.1 53.2
TPA(r=4) 432.59M 52.9 83.3 68.4 38.2 25.8 44.7 65.1 54.0

Table 23. We run ablations by keeping the FFN width (2736) constant across variants while increasing the number of query headshq to match
parameters for fair comparison. The arithmetic intensity of attention during decoding depends onhq . Downstream evaluation for the medium
model (higher is better). Bold indicates the highest score in each column; underlined indicates the second-highest. GQA and GTA have less
flexibility becausehkv must dividehq . TPA is benchmarked with low-rank key and value projections at ranks 2 and 4. RPV1 = RedPajama v1.

B.4 Per Token KV Cache Size per Device

Method KV cache KV cache per token KV cache per token KV cache per token
per Token per Device (2 GPUs) per Device (4 GPUs) per Device (8 GPUs)

MHA 64dh 32dh 16dh 8dh
GQA-4 16dh 8dh 4dh 2dh
MQA 2dh 2dh 2dh 2dh
MLA 4.5dh 4.5dh 4.5dh 4.5dh
GLA-2 4.5dh 2.5dh 2.5dh 2.5dh
GTA-4 8.5dh 4.5dh 2.5dh 1.5dh

Table 24. An example of KV cache per token for llama 3 8B model configuration with hq : 32 and hkv : 8 across various TP degrees. dh
denotes head dimension.

B.5 Speed

We show here that our technique (distributed offset calculation) significantly speeds up the attention kernel when using paged
KV. Typically, the attention kernel speed slows down when the page size is small since there is more overhead of address
calculation (Kwon et al., 2023). However, a smaller page size reduces fragmentation and unlocks new use cases, such as prefix
caching (Zheng et al., 2024). We benchmark the speed of the decoding kernels for GLA (2 latent heads of dimension 256
each, RoPE dimension 64) with paged KV, as shown in Figure 2. We compare page size 1 and page size 64, with or without
distributed offset calculation. With distributed offset calculation, page size 1 does not suffer from the slowdown, matching the
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Figure 2. Decoding speed of GLA on H100 80GB SMX5 GPU (theoretical max BF16 compute 989 TFLOPS/s and memory 3350 GB/s),
for query length 2, with BF16 format. Distributed offset calculation gives 1.2-1.5x speedup, allowing page size 1 to match the speed of
page size 64.

speed of page size 64. On the other hand, without distributed offset calculation, page size 1 is 1.3× slower than page size 64.
We see that the distributed offset calculation gives a speedup of 1.2× for page size 64 and a speedup of 1.5× for page size 1.

B.5.1 TENSOR PARALLELISM: GLA VS. MLA

In this configuration with TP degree 8 across x8 H100 GPUs, GLA-8 employs eight latent heads, where each token has to
cache a latent dimension of 256, whereas MLA maintains a 512-dimensional latent cache duplicated across devices. Both
methods have decoupled the RoPE dimension of 64. Figures 3 and Table 25 reveal consistent gains for GLA-8 at every load
level. With 16 concurrent requests, GLA-8 reduces the median end-to-end latency from 136 to 117 seconds, a reduction
of approximately 15%, while increasing token throughput by approximately 17%. When the concurrency limit increases
to 64, GLA-8 completes in 179 seconds compared to 381 seconds for MLA, cutting latency by 53% percent; the first token
now arrives after 12 seconds rather than about 3 minutes, and throughput grows by about 70% to 1461 tokens per second.
Even with 128 concurrent requests, GLA-8 still reduces latency by around 24% and maintains a throughput lead of nearly
60%. These advantages stem from the smaller KV cache footprint of GLA-8 per device, which reduces memory traffic, allows
more active requests to fit on the GPUs, and shortens the waiting time before computation can begin.
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Figure 3. Median end-to-end latency (left), lower is better, and output throughput (right), higher is better, of MLA and GLA-8 under pure
TP service on eight GPUs. Prefill/Decode are fixed at 8 K/4 K tokens as concurrency is swept over 16, 64, 128. Because GLA-8 stores
roughly half the KV-cache per token under a TP degree of 8, it fetches less data during decoding and consistently outperforms MLA.

Method Prefill/Decode
length

Max conc.
/#Prompts

Median
E2E Latency

(s)

Median
TTFT

(s)

Median
ITL
(ms)

Output
Throughput

(token/s)

GLA-8 (TP8) 8K/4K 16/1280 116.83 3.74 27.10 561.06
MLA (TP8) 8K/4K 16/1280 136.23 3.98 31.77 481.09
GLA-8 (TP8) 8K/4K 64/1280 179.32 11.96 38.16 1460.61
MLA (TP8) 8K/4K 64/1280 381.13 192.70 43.03 858.95
GLA-8 (TP8) 8K/4K 128/1280 432.54 223.09 45.99 1362.84
MLA (TP8) 8K/4K 128/1280 572.20 392.07 43.04 858.69

Table 25. Median service-level metrics for MLA and GLA on x8 GPU TP server; the table reports end-to-end latency, time to first token,
inter-token latency, and output throughput at concurrency limits of 16, 64, and 128. GLA surpasses MLA on every measure, cutting latency
by more than half and lifting throughput by roughly 70% at the mid-load point of 64 concurrent requests.

Method Prefill/Decode
length

Max conc.
/#Prompts

Mean
E2E Latency

(s)

Mean
TTFT

(s)

Mean
ITL
(ms)

Output
Throughput

(token/s)

GLA-8 (TP8) 8K/4K 16/1280 116.80 3.59 27.64 561.06
MLA (TP8) 8K/4K 16/1280 136.21 3.83 32.32 481.09
GLA-8 (TP8) 8K/4K 64/1280 179.45 11.94 40.90 1460.61
MLA (TP8) 8K/4K 64/1280 301.57 118.99 44.58 858.95
GLA-8 (TP8) 8K/4K 128/1280 370.62 168.84 49.27 1362.84
MLA (TP8) 8K/4K 128/1280 589.07 406.52 44.58 858.69

Table 26. Mean service-level metrics for MLA and GLA-8 on x8 GPU TP server; the table reports end-to-end latency, time to the first
token, inter-token latency, and output throughput at concurrency limits of 16, 64, and 128

B.5.2 DATA PARALLELISM + TENSOR PARALLELISM: GLA VS. MLA

Figures 4 and Table 27 demonstrate how the balance between compute capacity and memory traffic changes when parallel
data attention is introduced. Under mixed TP 2 + DP 4, as shown in Figures 4 and Table 27, GLA-2 with two latent heads
each with dimension 256, shortens the median end-to-end latency from 137 to 120 seconds and increases throughput from
477 tokens per second to 544 tokens per second at a light load of 16 concurrent requests. At 64 concurrency, the advantage
grows to roughly 16% lower latency (196 s relative to 166 s) and 19% higher throughput of 1334 tokens per second vs. 1584
tokens per second. Similarly, in mixed TP 4 + DP 2, as shown in Figures 5 and Table 29, GLA-4 consistently outperforms
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Figure 4. Median end-to-end latency (left), lower is better, and output throughput (right), higher is better, of MLA and GLA under expert
parallelism across 8 GPUs with 4 DP groups solely for attention. Prefill/Decode are fixed at 8K/4K tokens as concurrency is swept over
16, 64, 128. GLA outperforms MLA consistently under various concurrencies.

MLA under various concurrent requests.

However, when the limit reaches 128 requests, as shown in Figures 6 and Figures 7, MLA with the hybrid of TP with degree
2 and DP with degree 4, overtakes GLA-8 in pure TP with degree 8 by using the extra replicas to spread the batch and saturate
all compute units; MLA now delivers about 56% more tokens per second (2122 tokens per second vs. 1363 tokens per second)
and finishes roughly 43% earlier (247 seconds relative to 433 seconds). The cross-over occurs because the added compute
lanes of data parallelism offset its cache duplication overhead once the server is heavily loaded. In contrast, GLA-8 in pure
TP has already reached the memory bandwidth ceiling and cannot scale further, demonstrating that data parallelism is useful
only at large concurrency.

Method Prefill/Decode
length

Max conc.
/#Prompts

Median
E2E Latency

(s)

Median
TTFT

(s)

Median
ITL
(ms)

Output
Throughput

(token/s)

GLA-2 (TP2, DP4) 8K/4K 16/1280 120.43 5.56 27.95 543.77
MLA (TP2, DP4) 8K/4K 16/1280 137.33 5.92 31.97 477.30
GLA-2 (TP2, DP4) 8K/4K 64/1280 165.86 14.12 35.01 1583.51
MLA (TP2, DP4) 8K/4K 64/1280 196.47 14.78 42.35 1334.18
GLA-2 (TP2, DP4) 8K/4K 128/1280 211.98 25.32 40.90 2474.20
MLA (TP2, DP4) 8K/4K 128/1280 246.81 26.93 49.12 2121.88

Table 27. Median service-level results for GLA-2 and MLA when both run with eight-way tensor parallelism and four-way data parallel
attention. GLA-2 shows lower latency and higher throughput at the two lighter loads; at the heaviest load, MLA narrows the gap, but GLA-2
still leads by about 14% on latency (lower is better) and throughput (higher is better).
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Method Prefill/Decode
length

Max conc.
/#Prompts

Mean
E2E Latency

(s)

Mean
TTFT

(s)

Mean
ITL
(ms)

Output
Throughput

(token/s)

GLA-2 (TP2, DP4) 8K/4K 16/1280 120.51 5.18 28.16 543.77
MLA (TP2, DP4) 8K/4K 16/1280 137.29 5.50 32.18 477.30
GLA-2 (TP2, DP4) 8K/4K 64/1280 165.52 14.20 36.95 1583.51
MLA (TP2, DP4) 8K/4K 64/1280 196.46 14.76 44.37 1334.18
GLA-2 (TP2, DP4) 8K/4K 128/1280 211.86 25.39 45.53 2474.20
MLA (TP2, DP4) 8K/4K 128/1280 247.04 26.57 53.84 2121.88

Table 28. Mean service-level results for GLA-2 and MLA when both run with eight-way tensor parallelism and four-way data parallel
attention. GLA-2 shows lower latency under various metrics.

Method Prefill/Decode
length

Max conc.
/#Prompts

Median
E2E Latency

(s)

Median
TTFT

(s)

Median
ITL
(ms)

Output
Throughput

(token/s)

GLA-4 (TP4, DP2) 8K/4K 16/1280 118.34 4.51 27.48 553.29
MLA (TP4, DP2) 8K/4K 16/1280 135.86 4.71 31.66 482.42
GLA-4 (TP4, DP2) 8K/4K 64/1280 170.66 12.80 36.07 1542.96
MLA (TP4, DP2) 8K/4K 64/1280 205.39 13.36 44.51 1276.25
GLA-4 (TP4, DP2) 8K/4K 128/1280 222.36 23.87 43.36 2357.85
MLA (TP4, DP2) 8K/4K 128/1280 462.03 237.35 49.66 1341.89

Table 29. Median service-level results for GLA-4 and MLA when both run with eight-way tensor parallelism and four-way data parallel
attention. GLA-4 shows slightly lower latency (lower is better) and higher throughput (higher is better) at the two lighter concurrent
requests; at the heaviest load GLA-4 performs significantly better than MLA.

Method Prefill/Decode
length

Max conc.
/#Prompts

Mean
E2E Latency

(s)

Mean
TTFT

(s)

Mean
ITL
(ms)

Output
Throughput

(token/s)

GLA-4 (TP4, DP2) 8K/4K 16/1280 118.44 4.21 27.89 553.29
MLA (TP4, DP2) 8K/4K 16/1280 135.84 4.44 32.09 482.42
GLA-4 (TP4, DP2) 8K/4K 64/1280 169.87 12.77 38.36 1542.96
MLA (TP4, DP2) 8K/4K 64/1280 205.37 13.38 46.88 1276.25
GLA-4 (TP4, DP2) 8K/4K 128/1280 222.30 23.87 48.46 2357.85
MLA (TP4, DP2) 8K/4K 128/1280 380.39 165.82 52.40 1341.89

Table 30. Mean service-level results for GLA-4 and MLA when both run with eight-way tensor parallelism and four-way data parallel
attention.

Method Prefill/Decode
length

Max conc.
/#Prompts

Median
E2E Latency

(s)

Median
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Median
ITL
(ms)

Output
Throughput

(token/s)

GLA-2 (TP8) 32K/4K 16/1280 166.18 18.11 32.47 394.76
MLA (TP2, DP4) 32K/4K 16/1280 188.37 36.13 34.02 347.88
GLA-2 (TP8) 64K/4K 16/1280 219.90 61.94 35.70 224.29
MLA (TP2, DP4) 64K/4K 16/1280 313.68 118.37 37.00 208.59

Table 31. Median service-level results for GLA-2 only with eight-way tensor parallelism and MLA under mix parallelism scheme with
eight-way tensor parallelism and four-way data parallel attention. GLA-2 has 14% higher throughput (higher is better) relative to MLA
for prefill length of 32K while 7% higher throughput for 64K prefill length.
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Figure 5. Mean service-level metrics for MLA and GLA on x8 GPU TP server; the table reports end-to-end latency, time to first token,
inter-token latency, and output throughput at concurrency limits of 16, 64, and 128 with fixed prefill/decode length of 8K/4K

Figure 6. Token throughput at 64 concurrent requests (left) and 128 concurrent requests (right), where higher is better. The prefill/decode
sequence length is 8192/4096. GLA outperforms MLA under equivalent parallelism configurations, but MLA with a hybrid of TP and
DP at the 128 concurrent requests has higher throughput than GLA under pure TP.

Method Prefill/Decode
length

Max conc.
/#Prompts

Mean
E2E Latency

(s)

Mean
TTFT

(s)

Mean
ITL
(ms)

Output
Throughput

(token/s)

GLA-2 (TP8) 32K/4K 16/1280 166.00 18.09 36.12 394.76
MLA (TP2, DP4) 32K/4K 16/1280 188.37 31.25 38.36 347.88
GLA-2 (TP8) 64K/4K 16/1280 291.90 112.39 43.63 224.29
MLA (TP2, DP4) 64K/4K 16/1280 314.16 102.16 51.77 208.59

Table 32. Mean service-level results for GLA-2 only with eight-way tensor parallelism and MLA under mix parallelism scheme with
eight-way tensor parallelism and four-way data parallel attention.

B.5.3 DATA PARALLELISM: WORKLOAD IMBALANCE

The random ratio parameter is a fraction of the minimum length that the benchmarks’ random-request generator may assign
to any individual prefill or decode sequence. For example, with a random ratio of 0.125 and a sequence length of 4096 tokens,
each request is created with lengths drawn uniformly from the integer range of 512 to 4096 tokens, giving every batch a
consistent lower bound while retaining a realistic spread of sequence sizes. The random ratio is applied to prefill sequence
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Figure 7. Median E2E latency at 64 concurrent request (left) and 128 concurrent request (right), where higher is better. The prefill/decode
sequence length is 8192/4096. GLA outperforms MLA under equivalent parallelism configurations, but MLA with a hybrid of TP and
DP at the 128 concurrent requests has higher throughput than GLA-8 under pure TP.

Figure 8. Median end-to-end latency (left), lower is better, and output throughput (right), higher is better, under TP and DP groups solely
for attention and expert parallelism for GLA and MLA respectively, across 8 GPUs. Demonstrating long-context with a moderately high
number of concurrent requests.

lengths (131K) and decode (4K). The experiments in this section demonstrate workload imbalance with varying sequence
lengths across the batch, which can leave GPUs idle.

In Figure 9 and Table 33, we demonstrate where for a long prefill of 131K and a relatively long decode of 4K, where the
sequence length is uniformly sampled within the batch, GLA-8 with TP degree 8 has about 2.7× higher throughput than
MLA in hybrid TP with degree 2 in four data parallel ranks. Because every NCCL collective in a data-parallel group must
be entered by all ranks, one replica that is still busy with a very long sequence forces every other replica, and its tensor-parallel
shards, to wait, so throughput collapses to the speed of that single straggler, with pure TP-8, there is no extra data-parallel
barrier, so only the eight shards that hold the weights pause for one another; a long sequence slows that shard group, but
leaves the rest of the cluster working, keeping GPU utilization much higher.
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Method Prefill/Decode
length

Rand.
ratio

Max conc.
/#Prompts

Median
E2E Latency

(s)

Median
TTFT

(s)

Median
ITL
(ms)

Output
Throughput

(token/s)

GLA-8 (TP8) 131K/4K 0 4/1280 80.21 6.42 25.10 101.59
MLA (TP2, DP4) 131K/4K 0 4/1280 203.04 32.03 28.64 37.50
GLA-8 (TP8) 131K/4K 0.125 4/1280 89.57 7.58 25.45 100.68
MLA (TP2, DP4) 131K/4K 0.125 4/1280 233.69 38.54 28.66 37.20
GLA-8 (TP8) 32K/4K 0.125 4/1280 55.97 1.14 22.32 165.78
MLA (TP2, DP4) 32K/4K 0.125 4/1280 73.82 3.29 25.73 125.31

Table 33. With a random ratio of 0, each request chooses its prefill and decode lengths uniformly from a single token up to the maximum
lengths. With a random ratio of 0.125, the lengths are sampled uniformly, but now the range starts at 12.5% of the maximum specified
length. GLA-8 with pure TP has higher throughput and lower median end-to-end latency than the hybrid TP + DP MLA configuration
across both long and moderate context settings.

Method Prefill/Decode
length

Rand.
ratio

Max conc.
/#Prompts

Mean
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(s)
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Throughput

(token/s)

GLA-8 (TP8) 131K/4K 0 4/1280 80.93 7.78 35.54 101.59
MLA (TP2, DP4) 131K/4K 0 4/1280 219.43 41.82 86.31 37.50
GLA-8 (TP8) 131K/4K 0.125 4/1280 91.73 8.72 35.93 100.68
MLA (TP2, DP4) 131K/4K 0.125 4/1280 248.35 46.89 87.21 37.20
GLA-8 (TP8) 32K/4K 0.125 4/1280 55.66 1.19 23.59 165.78
MLA (TP2, DP4) 32K/4K 0.125 4/1280 73.65 3.79 30.26 125.31

Table 34. With a random ratio of 0, each request draws its prefill and decode lengths uniformly from one token up to the maximum lengths.
With a random ratio of 0.125, the range begins at 12.5% of the maximum length. Across both long and moderate context settings, GLA-8 in
pure tensor parallel form sustains higher throughput and lower mean end-to-end latency than MLA that combines tensor and data parallelism.
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Output
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(token/s)

GLA-8 (TP8) 131K/4K 0 4/1280 175.47 19.91 26.78 101.59
MLA (TP2, DP4) 131K/4K 0 4/1280 566.48 117.44 30.80 37.50
GLA-8 (TP8) 131K/4K 0.125 4/1280 182.06 19.98 26.98 100.68
MLA (TP2, DP4) 131K/4K 0.125 4/1280 572.05 119.69 30.77 37.20
GLA-8 (TP8) 32K/4K 0.125 4/1280 99.08 2.49 23.49 125.31
MLA (TP2, DP4) 32K/4K 0.125 4/1280 135.87 8.61 27.48 165.78

Table 35. For ninety-ninth percentile values of latency, TTFT, and ITL (lower is better), GLA-8 with pure tensor parallel remains faster
for the extreme long-context workload, while MLA with hybrid parallelism shows higher output throughput in the moderate context run.

B.5.4 LATENCY SENSITIVE WORKLOADS

In latency-sensitive workloads, the predominant objective is to minimize end-to-end response time, particularly time to first
token, to meet strict service level objectives rather than to maximize aggregate throughput. Because a larger batch can increase
the queueing and prefill delay, latency-sensitive serving keeps the batch size very small, at the expense of throughput to deliver
faster responses. In Table 36, GLA-8 with pure TP at eight degrees manages to reduce latency by x2 and cut the time to first
token by almost x4 relative to MLA with a hybrid of TP and DP, where it is necessary to mitigate the duplication of the KV cache.
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Figure 9. Median end-to-end latency (left), lower is better, and output throughput (right), higher is better, where the sequence length can
vary and it is sampled from a uniform distribution. GLA using pure TP outperforms MLA with hybrid TP and DP.

Method Prefill/Decode
length

Max conc.
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Median
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Median
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Median
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(ms)

Output
Throughput

(token/s)

GLA-8 (TP8) 64K/256 3/1280 24.60 12.96 24.54 31.17
MLA (TP8, DP4) 64K/256 3/1280 54.25 46.76 28.14 14.14

Table 36. Under latency-sensitive scenarios, GLA with only tensor parallelism outperforms MLA with a mix of TP and DP solely for
attention for long context short decode scenarios by over 50% for both end-to-end median latency (lower is better) and output throughput
(higher is better).
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GLA-8 (TP8) 64K/256 3/1280 24.62 12.76 46.51 31.17
MLA (TP2, DP4) 64K/256 3/1280 54.26 46.47 30.55 14.14

Table 37. Mean service-level results for GLA and MLA. GLA shows lower latency (lower is better) than MLA under various metrics.

B.5.5 DECODE HEAVY WORKLOADS

In decode-heavy workloads, the generated continuation is so long that the sequential decode phase dominates wall-clock
time, resulting in latency and memory bandwidth for the KV cache being the primary bottleneck. Since the model will be
performing sequential decoding most of the time, batching offers minimal benefit. In Figure 10, where there is a short prefill
of 256 and long decoding of up to 32K, with GLA-8 and MLA across eight-degree parallelism, GLA-8 can generate up to
2.5x higher throughput.
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Figure 10. Demonstration of MLA and GLA for TP for degree of 8 on long decode tasks. With 256 number of prompts and 32 concurrent
requests across various decode sequence lengths with fixed 2K prefill sequence length.

B.5.6 SMALL CONTEXT AND SHORT CHAT

Small Context describes inference requests in which both the prompt and the generated continuation are very short relative
to the model context window. For example, a voice assistant answers a brief query in a single response. In Table 38, GLA-8
with eight latent heads in eight-degree parallelism has a lower latency relative to MLA with hybrid TP with degree 2 and
DP with four data-parallel ranks since it is a single batch setting, the GPUs in the three out of four DP rank parallel groups
remain idle, and GLA-8 has to fetch half the KV cache per layer; therefore, it outperforms MLA.

Method Prefill/Decode
length

Max conc.
/#Prompts

Median
E2E Latency

(s)

Median
TTFT

(s)

Median
ITL
(ms)

Output
Throughput

(token/s)

GLA-8 (TP8) 256/128 1/1280 2.49 0.11 18.72 51.45
MLA (TP2, DP4) 256/128 1/1280 2.91 0.12 21.94 43.96

Table 38. Under short chat scenario where there is usually one concurrent request, GLA with only tensor parallelism has 17% higher
throughput (higher is better) than MLA with mix of tensor parallelism and data parallelism
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GLA-8 (TP8) 256/128 1/1280 2.49 0.11 18.73 51.45
MLA (TP2, DP4) 256/128 1/1280 2.91 0.12 21.95 43.96

Table 39. Mean service-level results for GLA and MLA. GLA shows lower latency (lower is better) than MLA under various metrics
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GLA-8 (TP8) 2K/2K 8/1280 47.18 0.86 22.54 346.92
MLA (TP2, DP4) 2K/2K 8/1280 56.35 0.82 27.04 290.91

Table 40. For moderate size prefill and decode sequence lengths with moderate number of concurrent requests, GLA with only tensor
parallelism has roughly 19% higher throughput (higher is better) than MLA with mix of tensor parallelism and data parallelism.
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Figure 11. Left: Decoding speed of MLA and GLA on H100 80GB SMX5 GPU (theoretical max BF16 compute 989 TFLOPS/s and
memory 3350 GB/s), for query length 2. At query length 2, GLA saturates compute (700 TFLOPS/s) and memory (3030 GB/s). Right:
Peak BF16 theoretical peak FLOPs (TFLOPS/s) versus the arithmetic intensity for successive NVIDIA GPUs (Volta V100 with FP16).
Performance computing has historically grown faster than bandwidth, with the H100 architecture (NVIDIA, 2022), which has the most
drastic FLOPs-to-byte ratio increase relative to its predecessor. The decoding workload lies far left, so every device, even Blackwell B200,
stays memory-bound and reaches only a few percent of its nominal TFLOP rate.
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MLA (TP2, DP4) 2K/2K 8/1280 56.37 0.81 27.12 290.91
GLA-8 (TP8) 2K/2K 8/1280 47.22 0.82 22.67 346.92

Table 41. Mean service-level results for GLA and MLA. GLA shows lower latency (lower is better) than MLA under various metrics

B.6 Kernel Execution Time

We benchmark the latency of the attention kernels in these two settings on H100 GPUs (ignoring communication overhead)
in Tables 42 and 43. GLA with TP = 2 can be 1.3-1.5 times faster than MLA with DP in these settings.

Seqlen MLA (DP) GLA (TP=2)
2048 15.0 µs 16.1 µs
8192 20.8 µs 19.1 µs
32768 35.9 µs 27.6 µs
131072 81.0 µs 55.0 µs

Table 42. Attention kernel latency (µs) for MLA vs. GLA on
two GPUs with batch=1

Seqlens in batch MLA (DP) GLA (TP=2)

[1024]∗15+[8192] 23.8 µs 25.4 µs
[1024]∗15+[16384] 29.8 µs 26.2 µs
[1024]∗15+[32768] 41.1 µs 30.6 µs
[1024]∗15+[65536] 56.0 µs 42.6 µs

Table 43. Attention kernel latency (µs) with 2 H100 GPUs (8Bmodel),
imbalanced workload
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