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Figure 1. DiFF – a diffusion-generated facial forgery dataset encompassing over half a million images. The dataset contains manipulated
images created by thirteen state-of-the-art methods under four distinct conditions. The dataset will be released at https://github.
com/xaCheng1996/DiFF.

Abstract

Detecting diffusion-generated images has recently
grown into an emerging research area. Existing diffusion-
based datasets predominantly focus on general image gen-
eration. However, facial forgeries, which pose a more se-
vere social risk, have remained less explored thus far. To
address this gap, this paper introduces DiFF, a comprehen-
sive dataset dedicated to face-focused diffusion-generated
images. DiFF comprises over 500,000 images that are

synthesized using thirteen distinct generation methods un-
der four conditions. In particular, this dataset leverages
30,000 carefully collected textual and visual prompts, en-
suring the synthesis of images with both high fidelity and
semantic consistency. We conduct extensive experiments on
the DiFF dataset via a human test and several represen-
tative forgery detection methods. The results demonstrate
that the binary detection accuracy of both human observers
and automated detectors often falls below 30%, shedding
light on the challenges in detecting diffusion-generated fa-
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cial forgeries. Furthermore, we propose an edge graph reg-
ularization approach to effectively enhance the generaliza-
tion capability of existing detectors.

1. Introduction
Conditional Diffusion Models (CDMs) have achieved im-
pressive results in the field of image generation [3, 48,
50, 55]. Utilizing simple inputs, such as natural language
prompts, CDMs can generate images with a high degree
of semantic consistency [15, 25, 73]. However, the pre-
cise control over the generation process offered by CDMs
has also raised concerns regarding security and privacy. For
instance, malicious attackers can mass-produce counterfeit
images of any victim at a minimal cost, thus engendering
negative social impacts.

To address this problem, recent efforts have been made
to collect datasets containing diffusion-generated images,
wherein distribution differences [63] or amplitude varia-
tions [9] offer important cues for detection. Nevertheless,
as shown in Table 1, these datasets often encounter defi-
ciencies when applied to detect facial forgeries, which pose
more significant threats than generic fake artifacts. Specif-
ically, most large-scale diffusion-based datasets prioritize
generic images [9, 26, 46, 53, 57, 63], like bedrooms and
kitchens [70]. Although some facial-related datasets have
been introduced [5, 39], they all yet suffer from their small
scale (e.g., only 1.5K facial images in [39]). Moreover,
these facial images are typically collected under restricted
conditions with a narrow range of prompts, lacking compre-
hensive annotations as well. As a result, training a detector
with generalizability on these datasets remains less viable.

This paper fills the gap by introducing the Diffusion
Facial Forgery dataset, dubbed DiFF. There are three no-
table merits that make our dataset distinguished from ex-
isting ones. i) To the best of our knowledge, our DiFF
is the first comprehensive dataset that exclusively focuses
on diffusion-generated facial forgery. It contains more than
500,000 facial forgery images, a scale that significantly sur-
passes previous facial datasets (as shown in Table 1). ii)
DiFF is curated using a rich variety of diffusion methods
and prompts. Specifically, it encompasses thirteen state-of-
the-art diffusion techniques across four different conditions,
including Text-to-Image, Image-to-Image, Face Swapping,
and Face Editing. These methods are applied to generate
high-quality images using over 20,000 carefully collected
textual and 10,000 visual prompts, derived from 1,070 se-
lected identities. iii) It is worth noting that each forged
image in DiFF is meticulously annotated with the forgery
method employed and the corresponding prompt.

Using the DiFF dataset, we conducted both an in-depth
human study and extensive experiments with several deep-
fake and diffusion detectors [43, 49, 58, 63]. The results

highlight that existing detectors exhibit limited reliability
in detecting diffusion-synthesized facial forgeries. For in-
stance, the Xception model [49], originally designed for
deepfake detection, achieves an AUC of only 60% on DiFF
(versus 99% on conventional deepfake datasets). To over-
come this issue, we propose a novel regularization approach
that leverages the edge graph of images to discern high-
level facial features, thereby enhancing the generalizability
of models. Our approach can be seamlessly integrated into
existing detectors, achieving an average of 10% AUC im-
provements when applied to four popular detectors.

The contributions of this paper are three-fold:
• We construct a diffusion-based facial forgery dataset with

more than half a million images. To the best of our knowl-
edge, this is the first large-scale dataset that focuses on
high-quality diffusion-synthesized faces1.

• We conduct extensive experiments on this dataset and
build comprehensive benchmarks for diffusion-generated
face forgery detection.

• We devise a novel approach based on edge graphs to iden-
tify the manipulated faces. Our approach can be seam-
lessly integrated into existing detection models to en-
hance their detection ability.

2. Related Work
2.1. Image Generation with Diffusion Models

Following the paradigm of introducing and then removing
small perturbations from original images, diffusion models
demonstrate the capability to generate high-quality images
from white noise [55]. Early methods require no super-
vision signals and often perform unconditionally. For in-
stance, Ho et al. [19] proposed a reverse learning process
by estimating the noise in the image at each step. Sub-
sequently, researchers have explored several optimization
directions, including backbone architectures [4, 12, 50],
sampling strategies [34, 40, 68], and adaptation for down-
stream tasks [1, 29, 72]. For example, Sinha et al. [54]
proposed mapping latent representations to images using a
diffusion decoding model. Song et al. [56] employed a non-
Markovian forward process to construct denoising diffusion
implicit models, resulting in a faster sampling procedure.

In contrast to the above unconditional approaches, re-
cent diffusion models have shifted their focus toward con-
ditional image synthesis [7, 23, 47, 51, 69, 71]. These con-
ditions rely on various source signals, including class labels,
textual prompts, and visual information, which generally
describe specific image attributes. For instance, Cascaded
Diffusion Models [20] initially generate low-resolution im-
ages from class labels and then employ subsequent mod-
els to increase resolutions. Furthermore, to achieve more
detailed control, Text-to-Image Synthesis, which combines

1The dataset will be released upon the acceptance of this paper.



Dataset Venue Type #Synthetic #Diffusion Conditions Real Images Prompts
Images Methods T2I I2I FS FE Source Labels

Stöckl et al. [57] Arxiv’22 General 260K 1 ✓ × × × ✓ × Nouns of WordNet
De-Fake [53] Arxiv’22 General 40K 2 ✓ ✓ × × ✓ ✓ Captions of the image dataset
Ricker et al. [46] Arxiv’22 General 70K 7 × × × × × × Unconditional generation
TEdBench [26] CVPR’23 General 0.1K 1 × × × ✓ ✓ ✓ 100 handwritten prompts for editing
DiffusionForensics [63] ICCV’23 General 80K 8 ✓ × × × ✓ × 1 pre-defined template
DMDetection [9] ICASSP’23 General 200K 3 ✓ × × × ✓ ✓ Captions of the image dataset
GenImage [77] NeurIPS’23 General 1,300K 5 ✓ × × × ✓ × 1 pre-defined template

GFW [5] Arxiv’22 Facial 15K 3 ✓ × × × × × Captions of the image dataset
Mundra et al. [39] CVPRW’23 Facial 1.5K 1 ✓ × × × × × 10 pre-defined templates
DiFF (Ours) – Facial 500K 13 ✓ ✓ ✓ ✓ ✓ ✓ 30K+ filtered high-quality prompts

Table 1. Comparison of DiFF and mainstream diffusion datasets. Existing diffusion datasets primarily focus on general arts synthesis
and utilize limited conditional input. For generation conditions – T2I: Text-to-Image, I2I: Image-to-Image, FS: Face Swapping, FE: Face
Editing. Pertaining to the Real Images column, Source represents that whether there is a real image collection process.

visual concepts and natural language, has emerged as one of
the most notable advancements in diffusion models. These
studies, exemplified by Stable Diffusion [42, 48], DALL-
E [45], and Imagen [52], align different modalities through
pre-trained vision language models such as CLIP [44]. Ad-
ditionally, some approaches leverage images as conditional
inputs. Zhao et al. [74] utilized an energy-based function
trained on both the source and target domains to generate
images that preserve domain-agnostic characteristics. Lug-
mayr et al. [36] proposed an inpainting method that is ag-
nostic to mask forms, altering reverse diffusion iterations by
sampling unmasked regions from provided images.

2.2. Synthetic Image Detection

Detecting generated images has long been a popular re-
search focus in computer vision. Earlier methods concen-
trate on the detection of specific types of forgeries, such as
splicing [24], copy-move [35], or inpainting [31]. There-
after, deep learning-based approaches have been applied to
identify high-quality forgeries generated by GANs or diffu-
sion models [60, 61]. For instance, Frank et al. [14] pro-
posed using frequency-domain features to detect forged im-
ages, as GAN models inevitably introduce artifacts during
up-sampling. Guo et al. [16] presented a hierarchical fine-
grained model to learn both comprehensive features and the
inherent hierarchical nature of different forgery attributes.

Many recent studies have been dedicated to facial
forgery detection [6, 62, 64]. Thus far, the majority of them
have focused on the detection of swapped faces generated
by VAE or GAN, i.e., deepfakes [33]. For example, Masi et
al. [37] introduced a two-branch network to extract optical
and frequency artifacts separately. RealForensics [17] lever-
ages visual and auditory correspondences in real videos
to improve detection performance. Huang et al. [22] de-
rived explicit and implicit embeddings using face recogni-
tion models, and the distance between these features serves
as the foundation for distinguishing real from fake faces.
With the rapid development of diffusion models, the risk
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Figure 2. Gender and age group distribution of pristine and forgery
subsets. Within each subset, percentages for different ages (rang-
ing from 20 to 60) are calculated separately for males (blue bars)
and females (red bars).

posed by using them to generate counterfeit faces is grad-
ually increasing [28]. However, research on the detection
of diffusion-generated faces remains relatively unexplored.
Although preliminary efforts have contributed to the detec-
tion of diffusion-generated outputs [9, 46, 63], they often
lack generalizability and do not specifically focus on the
detection of facial forgery.

3. Dataset Construction

In this work, our objective is to construct a high-quality
dataset for diffusion-based facial forgery. The dataset is
composed of three essential components: pristine images,
prompts, and forged images. The pristine images constitute
the real instances of our dataset. Derived from these pristine
images, the prompts serve as textual descriptions or visual
cues that guide the diffusion model in generating forged im-
ages. We maintain a high degree of semantic consistency
between pristine and forged images via these prompts.
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Figure 3. Pipeline of prompts construction and modification.

Figure 4. Word cloud of the top 200 most frequent and content
words in Pt

ori. Each word is sized by its frequency.

3.1. Pristine Image Collection

Our pristine images are sourced from a pool of celebrity
identities. Specifically, we manually select 1,070 celebri-
ties from established celebrity datasets such as VoxCeleb2
and CelebA [2, 8, 30]. Figure 2 illustrates that we have en-
sured a balanced gender distribution and diverse age groups
among these identities. In particular, the age distribution of
the selected celebrities ranges from 20 to 60 across different
subsets. Subsequently, we curate approximately 20 images
per identity from online videos and existing datasets, result-
ing in a pristine collection, denoted as Ipri, which encom-
passes a total of 23,661 images.

3.2. Prompts Construction and Modification

Prior studies have demonstrated a positive correlation be-
tween the quality of conditional inputs and that of diffusion-
generated images [41]. As a result, diverse and precise
prompts are particularly useful for generating high-quality
images in CDMs. Figure 3 illustrates our dataset includes
three categories of prompts: original textual prompts Pt

ori,
modified textual prompts Pt

mod, and visual prompts Pv .
These prompts serve as conditions to guide the sampling
process of diffusion models. The construction processes of

Subset Method #Images Remarks

T2I

Midjourney [38] 40,684 Web Service
SDXL [42] 40,336 Enhanced Stable Diffusion
FreeDoM T [71] 18,207 ICCV’23
HPS [67] 36,464 ICCV’23

I2I

SDXL Refiner [42] 40,336 Refine module for SDXL
LoRA [21] 42,800 LoRA adaption for diffusion
DeamBooth [51] 40,526 CVPR’23
FreeDoM I [71] 43,593 ICCV’23

FS DiffFace [27] 55,693 First diffusion-based FS work
DCFace [28] 44,721 CVPR’23

FE
Imagic [26] 40,508 CVPR’23
CoDiff [23] 48,672 CVPR’23
CycleDiff [65] 44,926 ICCV’23

Total 537,466 -

Table 2. Detailed statistics of DiFF. We employ thirteen different
methods to synthesize high-quality results based on 2.5K images
and their corresponding 20k textual and 10k visual prompts.

these prompts are detailed below.
• Original textual prompts Pt

ori. We generate diverse
and natural textual prompts via a semi-automated ap-
proach. Initially, we curate a set of 2,531 high-quality
images Îs ⊂ Ipri by selecting the clearest images of
the frontal face for each identity. These images are then
converted into textual descriptions using prompt inver-
sion tools [10, 38]. These descriptions are reviewed and
rewritten by experts to remove irrelevant terms and im-
prove clarity. Consequently, we obtain 10,084 polished
prompts, and some frequent words are shown in Figure 4.

• Modified textual prompts Pt
mod. To broaden the di-

versity of prompts and enable the generation of images
with specific modifications, Pt

mod involves alterations in
key attributes of Pt

ori. In particular, we randomly mod-
ify the salient words that describe identities in Pt

ori, such
as gender, hair color, or facial expression. For instance,
we transform a prompt like ‘A man with an emotive face’
into ‘A woman with an emotive face.’

• Visual prompts Pv . These prompts comprise compre-
hensive facial features - such as embeddings, sketches,
landmarks, and segmentations - extracted from each im-
age in Îs. These features can be applied for diffusion
models conditioned on visual cues, which is particularly
useful in tasks like face editing.

3.3. Facial Forgery Generation

As illustrated in Figure 5, we categorize existing CDMs into
four main subsets [11] based on their input types: Text-to-
Image (T2I), which operates on textual prompts; Image-to-
Image (I2I) and Face Swapping (FS), both of which utilize
visual inputs; and Face Editing (FE), which incorporates a
combination of text and visual conditions.

Figure 5a demonstrates that T2I methods receive tex-



i. Text-to-Image ii. Image-to-Image

iii. Face Swapping iv. Face Editing

Faces

Source Target

Diffusion Model

Swapped Faces

Faces

Identity 𝛼
Diffusion 

Model

Diffusion 
Model

Fine-tune Generate

Faces of 𝛼 

Faces

Modified 
Prompts

Diffusion 
Model

Edited Faces

Prompts

Prompts

Diffusion Model

Generated Faces
Generate

Faces

(a) Text-to-Image (b) Image-to-Image (c) Face Swapping (d) Face Editing

Prompts

Diffusion Model

Generated Faces

Generate

Faces

Generate

Faces

Identity 𝛼
Diffusion 

Model

Diffusion 
Model

Fine-tune

Faces of 𝛼 

Edit

Faces

Modified 
Prompts

Diffusion 
Model

Edited Faces

Prompts

Swap

Faces

Source Target

Diffusion Model

Swapped Faces

Figure 5. Facial forgery generation under four conditions.

tual prompts (e.g., ‘A man in uniform’) and synthesize im-
ages that align with the inputs’ semantic content [48]. In
contrast, models processing visual input are further divided
into I2I and FS categories based on their manipulation pro-
cesses. Specifically, I2I, as illustrated in Figure 5b, per-
tains to methods that replicate a single identity. On the other
hand, FS models simultaneously handle two identities and
perform identity swaps as presented in Figure 5c. Lastly,
Figure 5d highlights that FE models utilize multi-modal in-
puts to modify facial attributes, such as expressions or lip
movements, while preserving other attributes. These four
subsets achieve comprehensive coverage of the conditions
under which existing diffusion models operate. Moreover,
to ensure the diversity of generated faces, we utilize mul-
tiple cutting-edge techniques within each category. A de-
tailed introduction to these methods is as follows:
Text-to-Image. We leverage four state-of-the-art methods
- Midjourney [38], Stable Diffusion XL (SDXL) [42], Free-
DoM T [71], and HPS [67] - for this subset. The first two
are the most influential web services for which we employ
official APIs. The latter two are recently released T2I mod-
els, and we apply their pre-trained models. These models
are guided by textual prompts Pt

ori.
Image-to-Image. We apply four methods in this context:
Low-Rank Adaption (LoRA) [21], DreamBooth [51], SDXL
Refiner [42], and FreeDoM I. Among these approaches, the
former two require fine-tuning of diffusion models to cap-
ture specific facial features. We employ Ipri to train these
two models. SDXL Refiner optimizes results from SDXL,
whereas FreeDoM I substitutes the textual encoder in Free-
DoM T with a visual encoder to reconstruct faces.
Face Swapping. In this subset, we implement DiffFace[27]
and DCFace[28] for the face swapping task. For each image
in Îs, we randomly choose ten targets from other identities
to perform face swaps. In particular, to prevent information
leakage, we divide the 1,070 identities into disjoint training,
validation, and testing sets in a 8:1:1 ratio.
Face Editing. This subset involves three approaches. In
particular, the modified textual prompt set Pt

mod and the
pristine image set Îs are both used in Imagic [26] and Cycle
Diffusion (CycleDiff) [65] to generate edited faces. More-
over, we use visual prompts Pv to guide the training of Col-
laborative Diffusion (CoDiff) [23].

Text-to-Image Image-to-Image Face Swapping Face Editing

Method ACC Method ACC Method ACC Method ACC

Midjourney 65.32 SDXL Refiner 71.85 DiffFace 36.33 Imagic 68.17
SDXL 72.11 LoRA 33.33 DCFace 66.67 CoDiff 27.78
FreeDoM T 25.47 DreamBooth 76.65 CycleDiff 40.65
HPS 75.68 FreeDoM I 56.67

Table 3. Human performance (%) on DiFF.

In summary, we show the statistics pertaining to the im-
ages generated by the aforementioned methods in Table 2.
As can be observed, the total number of generated images
is over 500K from thirteen diffusion methods.

4. Dataset Evaluation

Following the methodologies in deepfake detection [49], we
cast the detection of diffusion-generated facial forgeries as
a binary classification task.

4.1. Human Evaluation

We conducted a comprehensive human study involving 70
participants. In this study, participants are instructed to clas-
sify the authenticity of randomly selected images that are
generated from varied approaches. The image selection fol-
lowed a 50:50 split between pristine and fake images, with
each identity appearing only once to prevent bias. Each par-
ticipant is required to carefully examine 200 images, yield-
ing 14,000 human results in total.

Table 3 presents the results of this experiment across all
forgery methods under four conditions. One can observe
that human observers struggle to distinguish the vast major-
ity of forgery methods, as accuracy falls below the chance
level (50%). For instance, participants achieved an accu-
racy of merely 27.78% when identifying images generated
by CoDiff. Among the four conditions, FE poses the most
challenge for human observers. This result can be attributed
to the fact that this subset involves modifying a single real
image, which allows for a more faithful reproduction of
original features, such as illumination and texture.

4.2. Comparison with Existing Datasets

Statistics analysis. We presented the FID and PSNR met-
rics in Table 4. The results reveal notable improvements in



Dataset FF++ [49] ForgeryNet [18] DFor [63] GFW [5] DiFF

FID ↓ 33.87 36.94 31.79 39.35 25.75
PSNR ↑ 18.47 18.98 19.17 19.14 19.95

Table 4. FID and PSNR comparison across various datasets.

Method Dataset

FF++ [49] GFW [5] DiFF

Xception 98.12 99.72 93.87
F3-Net 98.89 99.17 98.47
EfficientNet 98.51 97.58 94.34
DIRE 99.43 99.59 96.35

Table 5. AUC (%) of detectors trained and tested on same datasets.

Method Train Test Set

Set FF++ [49] DFor [63] GFW [5] DiFF DFDC [13] ForgeryNet [18]

Xception

FF++ - 40.65 43.42 65.96 63.97 50.56
DFor 55.21 - 52.30 75.67 56.35 38.06
GFW 53.37 45.81 - 74.87 51.43 62.75
DiFF 65.33 55.30 63.50 - 67.10 65.78

Table 6. AUC (%) of detectors trained on different datasets.

DiFF, suggesting that the images in this dataset bear a closer
resemblance to reality.

Comparisons with face forgery datasets Beyond the ob-
served benefits in terms of FID and PSNR, Table 5 indicates
that the AUCs of DiFF are relatively lower, highlighting
the dataset’s greater complexity. This can be attributed to
the extensive diversity of conditions in DiFF, which is three
times greater than that in GFW.

Moreover, we utilized FF++ (a vanilla deepfake dataset),
GFW (a diffusion-generated facial forgery dataset), DFor (a
diffusion-generated general forgery dataset), and our DiFF
as training datasets to compared their generalization capa-
bilities. Additionally, we utilized two widely acknowledged
deepfake datasets, DFDC [13] and ForgeryNet [18], for fur-
ther evaluation.

From Table 6, it can be seen that the detector trained
on DiFF exhibits superior generalization capabilities. It is
worth noting that detectors trained on other datasets achieve
high accuracy when tested on DiFF. This may be attributed
to DiFF’s inclusion of a diverse array of image types, effec-
tively encompassing a wide spectrum of distributions.

4.3. Detection Results of Existing Methods

For this experiment, we split our DiFF dataset into training,
validation, and testing sets with a 8:1:1 ratio. We tuned the
hyper-parameters using the validation set, and results on the
testing set are reported. Detailed numerical values for all
figures are available in the supplemental material.

Deepfake Test Subset

Method Train Set FF++ T2I I2I FS FE

Xception† [49]

FF++ [49]

98.12 62.43 56.83 85.97 58.64
F3-Net† [43] 98.89 66.87 67.64 81.01 60.60
EfficientNet† [58] 98.51 74.12 57.27 82.11 57.20
DIRE‡ [63] 99.43 44.22 64.64 84.98 57.72

General Diffusion Test Subset

Method Train Set DFor T2I I2I FS FE

Xception† [49]

DFor [63]

99.98 20.52 30.92 69.42 37.89
F3-Net† [43] 99.99 43.88 60.58 52.39 47.06
EfficientNet† [58] 98.99 27.23 44.79 61.25 30.86
DIRE‡ [63] 98.80 36.37 34.83 36.28 39.92

Table 7. AUC (%) of detectors. Each detector is trained on
the deepfake dataset (FF++) and the diffusion-generated general
forgery dataset (DFor) separately, and tested on subsets of the
DiFF dataset. †: models for deepfake detection. ‡: models for
general diffusion detection.

4.3.1 Cross-domain Detection

Following previous studies on forgery detection [63], we
adopted a cross-domain testing methodology to explore the
challenges of facial forgery detection. This involves evalu-
ating models that have performed well in related detection
domains. Initially, these models are trained on benchmark
datasets tailored to their respective tasks. We then evalu-
ated their performance on DiFF. Three widely recognized
deepfake detection models are utilized: Xception [49], F3-
Net [43], and EfficientNet [58]. Moreover, we included
DIRE [63], a state-of-the-art detector for general diffusion-
generated images, for this experiment. These models are
trained on the FF++ dataset [49] and the DiffusionForen-
sics dataset [63], respectively.

Table 7 displays the Area under the ROC Curve (AUC)
scores for these detectors. From this table, we can observe
that these detectors encounter a significant drop in perfor-
mance upon domain transfer. For example, DIRE exhibits
an AUC drop of over 60%. This sharp degradation indi-
cates the inherent challenge of detecting diffusion-based fa-
cial forgeries and suggests the considerable obstacles that
pre-trained detectors face when applied to this new task.

4.3.2 In-domain Detection

Given that existing deepfake and general diffusion detec-
tors cannot be seamlessly transferred to detect diffusion fa-
cial forgery, one may question the efficacy of re-training
these detectors on DiFF. Therefore, we conducted experi-
ments with an in-domain setting. Similar to previous eval-
uation protocols for the detection of deepfake and general
diffusion forgery [32, 63], detectors are trained on a single
subset of DiFF, followed by the test on the remaining ones.
Detection on re-training detectors. We presented the re-
training results in Figure 6. It can be observed that detectors
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Figure 6. AUC (%) comparison among re-trained detectors.

perform satisfactorily when trained and tested on the same
subset. However, when transferred to different subsets, they
exhibit varying degrees of performance degradation. The
most significant drop reaches up to 80% (e.g., Xception,
trained on FS and tested on FE). This significant drop high-
lights the challenge in developing a facial forgery detector
that effectively generalizes across various conditions.

It is worth noting that detectors trained on the T2I and I2I
subsets, which both rely on classical diffusion processes,
demonstrate a higher degree of similarity in performance.
This is evident from mutual benefits observed in the first
two subplots of Figure 6. FE-trained detectors show bet-
ter generalization capability than those trained in other sub-
sets. This may be attributed to the FE subset’s utilization
of multi-modal inputs, leading to a wider diversity of im-
ages, thereby enabling detectors trained on the FE subset to
capture more diffusion artifacts.
Detection on linear probing detectors. We introduced
the strategy of linear probing as an alternative to the full
re-training approach. Specifically, we used Xception pre-
trained on the FF++ dataset as described in Section 4.3.1
and optimized its last linear layer to align with the data dis-
tribution of DiFF. The results are presented in Figure 7.

One can observe that models using the linear probing
strategy significantly outperform the re-training ones in de-
tecting FS and FE forgeries. For instance, when trained on
the I2I subset, the linear probing model for detecting FS
and FE forgeries surpass the re-training models by 50% and
40%, respectively. A critical reason is that the pre-training
dataset, i.e., FF++, encompasses a large number of GAN-
based manipulated faces. This diversity enables linear prob-
ing models to effectively identify face-swapping and face-
editing images. However, it is worth noting that linear prob-
ing models show inferior results when trained and tested on
the same subset (e.g., both trained and tested on T2I), sug-
gesting insufficient capacity of this strategy.
Detection on fine-tuning detectors. In contrast to the lin-
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Figure 7. AUC (%) of Xception with different training strategies.

Method Train Processing Method

Subset None GN GB MB JPEG

Xception

T2I

59.52 47.65 15.02 56.59 58.69
F3-Net 76.08 48.04 74.67 71.68 74.61
EfficientNet 67.69 40.09 53.62 65.35 54.98
DIRE 66.28 34.07 32.78 41.36 40.99

Xception

I2I

66.74 19.70 54.09 58.07 63.66
F3-Net 68.39 21.38 58.77 66.17 63.61
EfficientNet 57.78 27.76 54.75 52.39 51.01
DIRE 67.40 35.69 26.63 65.19 65.67

Xception

FS

39.44 35.40 34.82 38.58 37.73
F3-Net 46.64 44.44 37.91 46.39 42.10
EfficientNet 37.29 36.74 23.82 36.12 35.13
DIRE 46.03 25.36 34.00 28.15 32.11

Xception

FE

82.69 39.69 24.15 79.35 81.19
F3-Net 78.84 50.17 25.51 38.76 70.31
EfficientNet 77.33 51.95 39.65 71.10 71.14
DIRE 64.89 35.42 55.59 60.08 53.08

Table 8. AUC (%) comparison among re-trained detectors with
different post-processing methods. Each row represents the av-
erage performance when tested on all four DiFF subsets. None:
no processing methods. GN: Gaussian Noise; GB: Gaussian Blur;
MB: Median Blur; JPEG: JPEG Compression.

ear probing strategy, which updates only the final layer, the
fine-tuning approach optimizes all the model parameters.
For this experiment, we reduce the learning rate of mod-
els for stable training. Figure 7 illustrates that fine-tuning
models demonstrate superior performance compared to the
re-training ones. For example, fine-tuning models achieve
higher AUCs in the detection of FS and FE forgeries, re-
gardless of the training subset used. This can also be at-
tributed to the pre-training on FF++. However, compared
to linear probing models, the generalizability of the fine-
tuning approaches is somewhat limited. This may be due to
a significant discrepancy between diffusion-generated facial
forgeries and GAN-based manipulated faces. Such a do-
main gap could lead to catastrophic forgetting in the model.
Detection with post-processing methods. We evaluated
re-training detectors under various image quality settings



by applying several post-processing techniques. Following
previous settings [76], we processed real and forged images
with Gaussian Noise (GN), Gaussian Blur (GB), Median
Blur (MB), and JPEG Compression (JPEG). Table 8 reveals
that, in most scenarios, applying post-processing methods
leads to a degradation in the detection performance. For in-
stance, the use of GB results in a 40% reduction in the AUC
for Xception when trained on the T2I subset.

5. Edge Graph Regularization
5.1. Motivation

Compared to real human faces captured by cameras, gener-
ated faces are more likely to evoke anomalies such as fre-
quency transitions or brightness fluctuations [46]. In par-
ticular, we extract the edge graphs of pristine and forged
images with the Sobel operator [59, 60]. Figure 8 illustrates
that the edge graphs of the pristine images are significantly
different from those of the synthesized images. Specifically,
edge graphs extracted from pristine images often capture in-
tricate facial details, such as fine wrinkles around the cheeks
and the eyes. In contrast, the synthesized images lack these
subtle contours and are of considerable contrast.

One naive approach to exploit the discriminative capa-
bility of edge graphs for facial forgery detection is to train
a binary classifier directly. However, our experiments indi-
cate that this approach is less favorable, as demonstrated in
Section 5.3. Instead, we propose an Edge Graph Regular-
ization (EGR) method, which enhances the discriminative
ability of detectors by incorporating edge graphs into the
processing of original images.

5.2. Methodology

Vanilla deepfake and general diffusion detecors entails fit-
ting the distribution of a specific dataset to discriminate be-
tween pristine and forged images. Let S = {(Ii, yi)}ni=1 be
the dataset and Θ be the continuous parameter space, where
Ii is the i-th image with respect to the target label yi. For
each parameter set θ ∈ Θ, the empirical risk during training
is formulated as follows:

R̂S(θ) :=
1

n

n∑
i=1

ℓ (θ, Ii, yi) , (1)

where ℓ(·) is the loss function such that,

ℓ(θ, Ii, yi) = −(yi log(ŷi) + (1− yi) log(1− ŷi)), (2)

where ŷi is the score from the predictive function fθ : Ii →
[0, 1] associated with θ. However, such training approaches
are highly susceptible to overfitting [32, 49, 66]. There-
fore, many endeavors have been made to improve gener-
alizability using additional features [22, 75]. In light of
these studies, our method employs a novel regularization

Method Train Test Subset

Backone +EGR Subset T2I I2I FS FE

Xception ×

T2I

93.32 86.85 34.65 23.28
Xception ✓ 95.57 89.48 43.74 55.50
F3-Net × 99.60 88.50 45.07 71.06
F3-Net ✓ 99.64 93.30 56.34 79.89
EfficientNet × 99.89 89.72 21.49 49.63
EfficientNet ✓ 99.93 97.89 40.86 52.36
DIRE × 95.04 84.07 35.15 50.86
DIRE ✓ 99.79 99.76 43.59 66.41

Xception ×

I2I

87.82 98.92 36.82 33.39
Xception ✓ 99.00 99.94 49.73 33.81
F3-Net × 87.23 99.50 40.62 46.19
F3-Net ✓ 96.85 99.70 48.69 47.66
EfficientNet × 84.39 99.80 19.47 27.46
EfficientNet ✓ 99.77 99.99 56.69 61.04
DIRE × 86.20 99.88 41.51 42.01
DIRE ✓ 97.65 99.99 51.84 58.68

Xception ×

FS

23.17 24.47 99.95 10.17
Xception ✓ 67.41 55.92 99.98 46.01
F3-Net × 35.43 30.39 99.98 20.79
F3-Net ✓ 63.51 63.75 99.99 31.14
EfficientNet × 16.88 22.17 99.87 10.21
EfficientNet ✓ 64.16 67.92 99.99 22.01
DIRE × 16.08 36.27 99.09 32.68
DIRE ✓ 66.21 70.91 99.99 35.45

Xception ×

FE

80.84 79.12 70.81 99.95
Xception ✓ 94.15 84.04 73.09 99.99
F3-Net × 82.32 76.92 56.27 99.60
F3-Net ✓ 97.91 93.46 79.33 99.61
EfficientNet × 80.41 63.06 66.62 99.24
EfficientNet ✓ 96.50 89.97 73.28 99.99
DIRE × 56.70 59.22 43.78 99.87
DIRE ✓ 81.40 76.40 74.23 99.99

Table 9. Model performance (%) with and without our edge graph
regularization (EGR) method. Each row represents the perfor-
mance of the model trained on a specific subset and tested on all
four DiFF subsets. Better results are highlighted in bold.

method, which incorporates edge graphs as a regularization
term into the original empirical risk. This strategy encour-
ages the model to simultaneously focus on the features of
both the original and edge graphs, thereby mitigating over-
fitting. Specifically, we refine the empirical risk as follows:

RS(θ) := R̂S(θ) + λ
1

n

n∑
i=1

(ℓ (θ,Ei, yi)), (3)

where Ei represents the edge graph of the i-th image, and
λ ∈ [0, 1] is a regularization parameter that calibrates the
influence of edge graphs.

5.3. Evaluation of EGR

Main results. In Table 9, we compared the performance of
baseline detectors and our method. Each model is trained
on one forgery condition and subsequently evaluated on all
four conditions. From the table, one can observe that our
EGR method significantly improves the generalizability of
the baseline detectors. It is worth noting that even when a
model is trained and tested in the same subset, EGR still
contributes to performance enhancement, such as improv-
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Figure 8. Edge graphs of pristine images (first row) and non-cherry-picked forged facial images (last two rows).

Method Test Subset

T2I I2I FS FE

Xception 95.57 89.48 43.74 55.50
w/o regu. 95.54(-0.03) 88.91(-0.57) 43.31 (-0.43) 53.21 (-2.29)

F3-Net 99.64 93.30 56.34 79.89
w/o regu. 97.83(-1.81) 93.02(-0.28) 51.50 (-4.84) 64.80 (-15.09)

EfficientNet 99.93 97.89 40.86 52.36
w/o regu. 98.97 (-0.96) 96.34 (-1.55) 26.09(-14.77) 49.82(-2.54)

DIRE 99.79 99.76 43.59 66.41
w/o regu. 99.78(-0.01) 99.70 (-0.06) 32.36 (-11.23) 61.61 (-4.80)

Table 10. AUC (%) comparison of detectors with the removal of
the regularization approaches. All models are trained on T2I.

ing Xception with 2.2% AUC on T2I.
Ablation study. To evaluate the impact of the proposed
EGR method, we conducted experiments using edge graphs
as the only input. In other words, we removed the R̂S(θ) in
Equation (3), and optimized the model with Ei. The results
of these tests are presented in Table 10. We can observe a
significant decline in detector performance upon removing
the regularization approach. For instance, in the FE subset,
the AUC of F3-Net drops by 15%. The dominant reason is
that relying solely on edge graphs overlooks vital informa-
tion in original images, such as color and texture. On the
other hand, incorporating the EGR enables models to cap-
ture a more broad context, leading to better performance.

6. Discussion and Conclusion
We propose DiFF, a large-scale, high-quality diffusion-
generated facial forgery dataset, to address limitations of
existing datasets that underestimate the risks associated
with facial forgeries. Our dataset comprises over 500,000
facial images. Each image maintains high semantic con-
sistency with its original counterpart, guided by diverse
prompts. We conduct extensive experiments using DiFF
and establish a facial forgery detection benchmark. More-
over, we design an edge graph regularization method that
effectively improves detector performance. In the future,
we plan to further expand DiFF in terms of methods and
conditions and explore new tasks based on DiFF, such as
the traceability and retrieval of diffusion-generated images.
Potential Ethical Considerations. The pristine faces in our

dataset are sourced from publicly accessible celebrity online
videos. We have rigorously reviewed all prompts to ensure
that they do not describe specific biometric details. Each
generated image has been carefully examined to align with
societal values. We will try our best to control the acquisi-
tion procedure of DiFF to mitigate potential misuse.
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