
Published as a conference paper at ICLR 2024

CASPR: COMBINING AXES PRECONDITIONERS
THROUGH KRONECKER APPROXIMATION FOR DEEP
LEARNING

Sai Surya Duvvuri∗
Department of Computer Science
The University of Texas at Austin
saisurya@cs.utexas.edu

Fnu Devvrit
Department of Computer Science
The University of Texas at Austin
devvrit@cs.utexas.edu

Rohan Anil
Google DeepMind
rohananil@google.com

Cho-Jui Hsieh
CS Department, UCLA & Google
chohsieh@cs.ucla.edu

Inderjit S. Dhillon
Google
isd@google.com

ABSTRACT

Adaptive regularization based optimization methods such as full-matrix Adagrad
which use gradient second-moment information hold significant potential for fast
convergence in deep neural network (DNN) training, but are memory intensive
and computationally demanding for large neural nets. We develop a technique
called Combining AxeS PReconditioners (CASPR), which optimizes matrix-shaped
DNN parameters by finding different preconditioners for each mode/axis of the
parameter and combining them using a Kronecker-sum based approximation. The
Kronecker-sum based combination allows us to show that CASPR is ordered
between a well-known Kronecker product based combination, Shampoo, and
full-matrix Adagrad preconditioners in Loewner order, as a result, it is nearer to
full-matrix Adagrad than Shampoo. We also show tighter convergence guarantees
in stochastic optimization compared to Shampoo. Furthermore, our experiments
demonstrates that CASPR approximates the gradient second-moment matrix in full-
matrix Adagrad more accurately, and shows significant improvement in training and
generalization performance compared to existing practical adaptive regularization
based methods such as Shampoo and Adam in a variety of tasks including graph
neural network on OGBG-molpcba, Transformer on a universal dependencies
dataset and auto-regressive large language modeling on C4 dataset.

1 INTRODUCTION

Adaptive methods, including Adagrad (Duchi et al., 2011) and its variants such as Adam (Kingma
& Ba, 2014) and RMSProp (Tieleman & Hinton, 2012), are widely employed for training neural
networks. These approaches calculate updates by scaling each coordinate of the gradient direction
(or momentum in case of Adam) (gt)i with an adaptive learning rate, which is tuned using the
second moments

∑
t(gt)

2
i of the gradients before updating the weights. This process is equivalent

to pre-multiplying the gradient by a diagonal matrix (preconditioner) to perform the weight update.
On the other hand, full-matrix Adagrad (Duchi et al., 2011) stores cross-moments, i.e., the (i, j)-th
element of the (full-matrix statistic)

∑
t gtg

⊤
t , where gt ∈ Rd. However, this can be infeasible for

modern neural networks with large number of parameters due to the O(d2) memory requirement
to store the second-moments and O(d3) computational complexity to perform inverse square root
operations.

We address this issue by first proposing a set of preconditioners- axes preconditioners, one for
each axis/dimension of matrix shaped parameters in a deep neural network, which is derived by
finding a block-diagonal approximation with identical blocks such that it is nearest to full-matrix
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statistic. Each approximation offers the advantages of a) fast inverse square root operation (which
then gives the axes preconditioner), and b) low memory. However, using only one axes preconditioner
throughout the training can be suboptimal, as it only stores partial information about full-matrix
statistic. To this end, we first propose a sequence of combinations of axes preconditioners using
Kronecker-sums, and subsequently show that a Kronecker product based preconditioner (an existing
preconditioner - Shampoo (Anil et al., 2020; Gupta et al., 2018)) to be at one end of this sequence,
we find our proposed novel combination - CASPR to be at the other end of the sequence (Lemma
3.2). CASPR preconditioner is carefully picked from the proposed set of combinations such that
it is ordered (sandwiched) between Shampoo and full-matrix Adagrad in Loewner order (Löwner,
1934), as a result, it is nearer to the more powerful full-matrix Adagrad preconditioner than Shampoo
in Loewner order. This is acheived by utilizing the simple inequality in Loewner order: (A +
B)2 ⪰ 4AB for commutable and positive definite A and B. Surprisingly, we show that the
established Loewner order also helps us derive tighter regret bounds in the online convex optimization
framework (Hazan et al., 2016; Shalev-Shwartz et al., 2012) than Shampoo, which translates to
convergence guarantees in stochastic convex optimization via online-to-batch conversions (Cesa-
Bianchi et al., 2004). Furthermore, we conduct numerical experiments to measure nearness of the
CASPR approximation to full-matrix statistics encountered during deep neural network training
and show that our CASPR approximates full-matrix statistics better than individual block-diagonal
approximations (with identical blocks) corresponding to each axis preconditioner and Shampoo.

Contributions: We develop a practical adaptive regularization method which uses a Kronecker-
sum based combination of axes preconditioners. We prove a tighter regret bound than a well-
known practical adaptive method - Shampoo (Gupta et al., 2018; Anil et al., 2020) in online convex
optimization framework. Note that regret bounds in online convex optimization framework have
reductions to convergence guarantee in stochastic convex optimization (Cesa-Bianchi et al., 2004),
non-smooth non-convex optimization (Cutkosky et al., 2023) and smooth non-convex optimization
guarantees (Agarwal et al., 2019). We conduct numerical experiments to compare the approximation
error with respect to full-matrix statistic and demonstrate better approximation error than Shampoo,
diagonal preconditioners, and individual axes preconditioners. We train graph neural network
(Battaglia et al., 2018) on OGBG-molpcba dataset (Hu et al., 2020), where CASPR gives a relative
improvement of 1.4% in test average precision compared with Shampoo and 7% improvement with
respect to AdamW. We also train a Transformer network (Vaswani et al., 2017) on a universal
dependencies dataset (Nivre et al., 2020), where we observe 1% relative improvement in validation
error compared to Shampoo and 3% relative improvement compared to AdamW. To demonstrate
scalability of our method we train a 14 million parameter on ∼ 167 billion tokens and 234 million
parameter model with ∼ 42 billion tokens on C4 dataset (Raffel et al., 2020), where we noticed
upto 1% relative improvement in log perplexity. Furthermore, it is worth noting that the simplicity
of CASPR would only require a small modification to existing implementations of Shampoo. As a
result, we notice that Shampoo and CASPR take almost similar training time in our experiments.

Notation and Standard Matrix Identities. We use A⊗B to denote Kronecker product (Petersen
et al., 2008), and vec(A) to denote row-major order vectorization of matrix A. Properties of
Kronecker product: a) (A⊗BT ) vec(G) = vec(AGB) b) (A⊗B)(C ⊗D) = (AC)⊗ (BD). We
use Loewner order A ⪰ B to denote that A− B is a positive semi-definite (PSD) matrix. We use
block-diag(A1, . . . , Am) to denote a block-diagonal matrix with blocks {A1, . . . , Am}. On the other
hand, diag(A)i,j = Ai,i if i = j else 0, preserving only the diagonal entries of A. We use tr(A) to
denote trace of a matrix and use ∥A∥F =

√
tr(A⊤A) to denote Frobenius norm, and ⟨u, v⟩ = u⊤v

to denote dot-product between vectors u and v. For A ⪰ 0, A1/p denotes the matrix pth root of A.

2 RELATED WORK

Hessian-based methods. Newton’s method is a second-order optimization technique that pre-
multiplies the gradient by the inverse of Hessian, which constitutes second-order partial derivatives to
update the model parameters. Although it can have fast convergence properties, it is computationally
expensive and inapplicable for large-scale neural networks due to the high computational and memory
complexity involved in calculating the Hessian matrix. BFGS (Broyden-Fletcher-Goldfarb-Shanno)
(Broyden, 1967; Fletcher, 1970; Shanno, 1970; Goldfarb, 1970) and LBFGS (Limited-memory
BFGS) (Liu & Nocedal, 1989) are quasi-Newton methods that implicitly approximate the Hessian
matrix, without computing second-order partial derivatives. However, directly applying LBFGS on
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neural networks can be infeasible due to high memory requirement in maintaining the gradients of
previous iterations in memory.

Adaptive regularization methods. Adaptive regularization introduced in Duchi et al. (2011)
includes a diagonal preconditioner (diagonal Adagrad) that adapts the learning rate for each parameter
individually based on the historical sum of squared gradients. Although full-matrix version of this
preconditioner is outlined in this work it has been disregarded for its high memory and computational
requirements. There exist low-rank approximations of the full-matrix statistic such as Agarwal et al.
(2019), which demonstrate better performance in anisotropic loss landscapes compared to diagonal
preconditioners. However, this method requires storing hundreds of gradients from previous iterations,
which is memory-intensive. Alternatively, Kronecker product based approximation such as Shampoo
(Gupta et al., 2018) reduces the time and memory complexity by leveraging the matrix structure of the
gradient. Shampoo, which admits a regret bound in the online convex optimization (OCO) framework
(Hazan et al., 2016), has demonstrated superior performance than diagonal preconditioners such as
AdamW, RMSProp in large-batch settings (Anil et al., 2020) where the time to conduct large batch
forward-backward propagation is high compared to the costly optimizer update rule and also has
shown adoption in industry-scale clickthrough rate prediction models (Anil et al., 2022). It is worth
noting that regret upper bound guarantees can be converted to stochastic optimization convergence
rate guarantees to reach stationary point for smooth non-convex objectives as in (Agarwal et al., 2019)
and more recently, conversion to non-smooth non-convex objectives (Cutkosky et al., 2023).

Fisher approximation to Hessian. Natural Gradient Descent (Amari, 1998) is an optimization
method that uses inverse of Fisher information matrix of the model’s predictive distribution as
preconditioner. This has shown to be generalized Gauss-Newton approximation of the Hessian matrix
(Martens, 2020). Natural Gradient Descent (NGD) suffers from high complexity due to the need to
compute the Fisher matrix and its inverse, which can be infeasible to compute for modern neural
networks. Kronecker product approximations such as K-FAC (Martens & Grosse, 2015; Ren &
Goldfarb, 2021), have appeared to address the complexity issue. However, the gradients used to
approximate the Fisher matrix require an additional backpropagation step through a different loss
function, which can further increase the computational complexity.

3 KRONECKER SUM BASED PRECONDITIONER

Full-matrix Adagrad Duchi et al. (2011); Agarwal et al. (2019) maintains Ht ∈ Rd×d and updates
the parameters wt ∈ Rd using the following steps:

Ht := Ht−1 + gtg
⊤
t (1)

wt+1 := wt − ηtH
−1/2
t gt, (2)

where ft : Rd×d → R is the loss induced by the mini-batch at iteration t ∈ {1, . . . , T}, and
gt = ∇ft(wt). Here Ht stores all gradient cross-moments (Ht)i,j = ⟨g(i)1:t, g

(j)
1:t ⟩, where g

(i)
1:t =

((g1)i, . . . , (gt)i). Storing the entire full-matrix statistic Ht ∈ Rd×d is infeasible for a deep neural-
network (DNN) as d can be in the millions. Furthermore, the inverse square root takes O(d3) floating
point operations (flops).

To address these issues, we aim to find an approximation Ĥt of Ht that: a) offers a fast inverse
operation, b) has low memory representation, and c) approximates Ht well. To enforce these
constraints formally, we introduce an optimization sub-problem to determine a sparse approximate
statistic Ĥ constrained to a set of sparse matrices S, before conducting the inverse root to find the
preconditioner Ĥ−1/2

t and updating wt:

Ĥt := arg min
Ĥ∈S

∥Ĥ −Ht∥F , wt+1 := wt − ηtĤ
−1/2
t gt. (3)

Constraining Ĥ to the set of all positive semi-definite (PSD) matrices S = {A ∈ Rd×d : A ⪰ 0}
in subproblem (3) trivially gives the full-matrix statistic Ĥt = Ht, since Ht ⪰ 0. Note that inverse
square root Ĥ−1/2

t cannot be conducted on an indefinite Ĥt. But, if we choose S to be the set of
diagonal PSD matrices, S = {A ∈ Rd×d : A ⪰ 0, Ai,j = 0, i ̸= j ∈ [d]}, the optimal solution is
Ĥt = diag(Ht), which leads to the commonly used diagonal Adagrad update:

Ĥt := Ĥt−1 + diag(gtg
⊤
t ), wt+1 := wt − ηtĤ

−1/2
t gt.
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where, diag(A)i,j = Ai,j if i = j, and 0 if i ̸= j. Maintaining the above Ĥt requires only keeping d
diagonal elements of Ht in memory, and O(d) computations for the inverse square root operation.
Nonetheless, the approximation error ∥Ĥ−Ht∥F can be substantial when using the diagonal sparsity
structure since off-diagonal elements of Ht are neglected.

This calls for more accurate approximations Ĥt that also capture cross-moments of gradients. Note
that gradients of individual layers in most DNNs assume a matrix structure, for example, weight
matrices of fully-connected layers in DNNs. The gradient corresponding to weight matrix W ∈
Rm×n can be written as Gt ∈ Rm×n, with gt = vec(Gt), where vec(A) ∈ Rmn denotes a vector
with elements of matrix A in row-major order and total number of elements d = mn,. For such
matrix-structured gradients, we now generalize the diagonal sparsity structure mentioned earlier to the
following block-diagonal structure, SR = {block-diag(R1, R2 . . . , Rm) : Ri ⪰ 0 ∈ Rn×n,∀i ∈
[m]}, where individual blocks Ri capture gradient second-moments within row i of Gt. This is
related to unit-wise preconditioning in Osawa et al. (2023). Setting S := SR in (3) results in:

min
Ĥ∈SR

∥Ĥ −Ht∥2F = min
{R1,...,Rm}

∑
i∈[m]

∥Ri −H
(i)
t ∥2F =

∑
i∈[m]

min
Ri

∥Ri −H
(i)
t ∥2F

=⇒ R∗
i = H

(i)
t =

t∑
s=1

g(i)s g(i)s

⊤
,∀i ∈ [m]

where g
(i)
s denotes the i-th row of Gs, and H

(i)
t ∈ Rn×n is the i-th diagonal block of Ht =∑t

s=1 gsg
⊤
s . However, storing all the Ri requires mn2 memory, which can still be impractical when

m and n are high. Furthermore, the inverse root operation would require O(mn3) flops, as the
inverse needs to be computed for each block individually. To alleviate this issue, we propose a simpler
block-diagonal sparsity constraint SI⊗R, where all the Ri are identical, in the following lemma.
Lemma 3.1. Consider the sparsity constraint SI⊗R = {block-diag(R,R . . . , R) : R ⪰ 0 ∈ Rn×n}
in (3), then the optimal solution R∗ for (3) (rewritten below) is as follows:

R∗ = arg minR⪰0∥Im ⊗R−
t∑

s=1

gsg
⊤
s ∥2F =

1

m

t∑
s=1

G⊤
s Gs,

where gs = vec(Gs).

Proof. Let H(i)
t ∈ Rn×n be the i-th diagonal block of Ht =

∑t
s=1 gsg

⊤
s . Then:

min
Ĥ∈SI⊗R

∥Ĥ −Ht∥2F = min
R⪰0

∑
i∈[m]

∥R−H
(i)
t ∥2F = min

R⪰0
m∥R∥2F −

∑
i∈[m]

tr(H
(i)
t R).

=⇒ R∗ =
1

m

m∑
i=1

H
(i)
t =

1

m

m∑
i=1

t∑
s=1

g(i)s g(i)s

⊤
=

1

m

t∑
s=1

G⊤
s Gs

Similarly, for column preconditioner corresponding to gt = vec(G⊤
t ), defining the sparsity constraint

SL⊗I = {L ⊗ In : L ⪰ 0 ∈ Rm×m} and solving the subproblem (3) gives L∗ = 1
n

∑t
s=1 GsG

⊤
s

(see Appendix A.1, Lemma A.1).

Individually A = L∗ ⊗ In and B = Im ⊗R∗ are optimal approximations for the sparsity constraints
SL⊗I and SI⊗R respectively for the subproblem (3). However, using the corresponding precondition-
ers A−1/2 = (L∗)−1/2 ⊗ In and B−1/2 = Im ⊗ (R∗)−1/2 (via (3)) individually can be inefficient
as they do not approximate gradient cross-moments outside the block-diagonals of the full-matrix
statistic Ht. To this end, several works have used Kronecker product structure (Martens & Grosse,
2015; Ren et al., 2021; Gupta et al., 2018) for preconditioner approximation. However, we take an
alternative approach by the following general combination of axes preconditioners.
Lemma 3.2 (A general combination of axes preconditioners). Consider a sequence of preconditioners
for p ≥ 1:

Xcaspr
t (p) = ((L̃

−1/4p
t ⊗ In + Im ⊗ R̃

−1/4p
t )/2)2p,

where, L̃t =
∑t

s=1 GsG
⊤
s + ϵIm, R̃t =

∑t
s=1 G

⊤
s Gs + ϵIn, then

lim
p→∞

Xcaspr
t (p) = L̃

−1/4
t ⊗ R̃

−1/4
t = Xsh

t

4



Published as a conference paper at ICLR 2024

where, Xsh
t is the Shampoo preconditioner, which is an existing Kronecker product based precondi-

tioner (Gupta et al., 2018; Anil et al., 2020).

Lemma 3.2 shows that the Shampoo preconditioner is a limiting case of the general CASPR precon-
ditioner Xcaspr

t (p). The proof of Lemma 3.2 is given in Appendix A.1. To compare with full-matrix
preconditioner, we show in the following lemma, that Xcaspr

t (1) is nearer to full-matrix precondi-
tioner than the Shampoo preconditioner in Loewner order (Löwner, 1934; Bhatia, 2009). We will use
this fact to prove tighter convergence guarantees than Shampoo in Section 4.

Lemma 3.3 (CASPR preconditioner). Let L̃t =
∑t

s=1 GsG
⊤
s + ϵIm, R̃t =

∑t
s=1 G

⊤
s Gs + ϵIn and

r = maxt rank(Gt), then the CASPR preconditioner ((L̃−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )/2)2 (Algorithm

1) and Shampoo preconditioner L̃−1/4
t ⊗ R̃

−1/4
t follow the Loewner order:

√
r(rϵId +

T∑
t=1

gtg
⊤
t )

−1/2 ⪰ ((L̃
−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )/2)2 ⪰ L̃

−1/4
t ⊗ R̃

−1/4
t

We give the proof of this lemma in Appendix A.1. Shampoo preconditioner is the geometric mean
of XL

t = L̃
−1/2
t ⊗ In and XR

t = Im ⊗ R̃
−1/2
t , Xsh

t = (XL
t X

R
t )1/2 = L

−1/4
t ⊗R

−1/4
t , where last

equality is due to (A⊗B)1/2 = A1/2 ⊗B1/2 (Petersen et al., 2008) for positive semidefinite A and
B. This geometric mean interpretation explains the occurrence of exponent −1/4 for L̃t and R̃t in
Shampoo preconditioner. The proposed preconditioner Xcaspr

t (1) can be rewritten as follows:

((L̃−1/4 ⊗ In + Im ⊗ R̃
−1/4
t )/2)2 =

(L̃−1/2 ⊗ In + Im ⊗ R̃−1/2)/2 + L̃
−1/4
t ⊗ R̃

−1/4
t

2

=
(XL

t +XR
t )/2 + (XL

t X
R
t )1/2

2
.

Using the last equality, Xcaspr
t (1) can be interpreted as the average of arithmetic mean and geometric

mean (which is Shampoo preconditioner) of XL
t and XR

t .

Using the CASPR preconditioner to update the parameter wt = vec(Wt) ∈ Rd, where d = mn, will
give the following update rule:

Xt :=
(
(L̃

−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )/2

)2
; wt := wt−1 − ηXtgt (vector update),

where gt = vec(Gt) ∈ Rd. Here we dropped the
√
r scale factor from Lemma 3.3 as it can be

absorbed in the learning rate parameter η. Forming the entire CASPR preconditioner Xt ∈ Rd×d is
infeasible, since d can be very large and computing the update Xtgt would cost O(d2). However,
expanding Xt and using the identity (A⊗C) vec(B) = vec(ABC⊤) will give the following feasible
update rule:

Wt+1 := Wt − η
(
L̃
−1/2
t Gt + 2L̃

−1/4
t GtR̃

−1/4
t +GtR̃

−1/2
t

)
/4 (matrix update).

This update rule can be further simplified into two preconditioning steps which only requires comput-
ing L̃

−1/4
t and R̃

−1/4
t as follows:

Ut := L̃
−1/4
t Gt +GtR̃

−1/4
t

Ut := L̃
−1/4
t Ut + UtR̃

−1/4
t (CASPR update)

Wt := Wt−1 − ηUt

which performs the above at every iteration by maintaining Lt and Rt in an online fashion (see line
4), which require storing a total of (m2 + n2) elements of matrices Lt and Rt in memory. Given the
simplicity of the update, it is easy to change the existing implementations of Shampoo to implement
CASPR, since both CASPR and Shampoo compute the same axes preconditioners L̃−1/4

t and R̃
−1/4
t ,

however Shampoo preconditions the gradient Gt differently:

Ut := L̃
−1/4
t Gt

Ut := UtR̃
−1/4
t (Shampoo update)
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Algorithm 1 CASPR Algorithm

1: W1 = 0 ∈ Rm×n, L0 = 0, R0 = 0
2: for t ∈ 1, . . . , T do
3: Compute gradient Gt = ∇ft(Wt) ∈ Rm×n

4: Update preconditioners:

Lt := Lt−1 +GtG
⊤
t , Rt := Rt−1 +G⊤

t Gt

5: Precondition gradient and update parameters:

Compute L̃
−1/4
t := (Lt + ϵIm)−1/4, R̃

−1/4
t := (Rt + ϵIn)

−1/4

Ut := L̃
−1/4
t Gt +GtR̃

−1/4
t

Ut := L̃
−1/4
t Ut + UtR̃

−1/4
t

Wt := Wt−1 − ηUt

6: end for

In line 5, the preconditioning of the columns and rows of Gt is achieved sequentially using L
−1/4
t

and R
−1/4
t . It is worth noting that this step takes O(m3 + n3) flops due to the inverse operation,

which is the same cost incurred by Kronecker product based approaches.

3.1 COMPARISON OF CASPR AND SHAMPOO APPROXIMATIONS

Let Xcaspr
t = ((L

−1/4
t ⊗ In + Im ⊗ R

−1/4
t )/2)2 and Xsh

t = L
−1/4
t ⊗ R

−1/4
t denote the precon-

ditioners of CASPR and Shampoo respectively as in Lemma 3.3 (here ϵ is dropped for brevity),
where Lt =

∑t
s=1 GsG

⊤
s and Rt =

∑t
s=1 G

⊤
s Gs, then the corresponding induced approximations

Ĥcaspr
t and Ĥsh

t for Ht =
∑

t gtg
⊤
t will satisfy Xcaspr

t = (Ĥcaspr
t )−1/2 and Xsh

t = (Ĥsh
t )−1/2

respectively. This relationship is evidenced in the update rule for Adagrad, as in (2). Then the explicit
expressions for the approximations Ĥcaspr and Ĥsh and their eigendecompositions is as follows:
Lemma 3.4 (eigendecomposition of CASPR preconditioner). Let the eigenpairs of Lt be
{(λ1, u1), . . . , (λm, um)} and Rt be {(σ1, v1), . . . , (σn, vn)}, then the eigenpairs of Ĥcaspr

t =

(Xcaspr
t )−2((L

−1/4
t ⊗ In + Im ⊗ R

−1/4
t )/2)−4 and Ĥsh

t = (Xsh
t )−2 = L

1/2
t ⊗ R

1/2
t are

{(((λ−1/4
i + σ

−1/4
j )/2)−4, ui ⊗ vj) : i, j ∈ [m], [n]} and {((λiσj)

1/2, ui ⊗ vj) : i, j ∈ [m], [n]}
respectively.

The proof is given in Appendix A.1, which uses the Kronecker product structure of Ĥsh
t and

Kronecker sum structure of Ĥcaspr
t to derive the eigenvalues and eigenvectors. Lemma 3.4 shows

that both Ĥsh
t and Ĥcaspr

t possess the same set of eigenvectors, but the corresponding eigenvalues
(λ

−1/4
i + σ

−1/4
j )−4/4 and (λiσj)

1/2 are significantly different.

While Lemma 3.4 conveys discrepancies between each eigenvalues of Shampoo and CASPR, we
measure overall approximation errors of Shampoo and CASPR with respect to Ht in Figure 1, where
CASPR demonstrates better approximation quality than Shampoo.

4 CONVERGENCE GUARANTEES

We set up our convergence analysis in the online convex optimization (OCO) framework, where the
OCO learner makes a prediction Wt and receives a loss ft(Wt), where ft is convex, and gradient
gt = ∇W ft(Wt), which is used to make the next prediction such that the regret is minimized:
RT (W1, . . . ,WT ) =

∑T
t=1 ft(Wt) − ft(W

∗). RT measures the closeness of the objective value
of the predictions with the optimal comparator W ∗ = arg minW

∑T
t=1 ft(W ). There are online-

to-batch conversion techniques (Cesa-Bianchi et al., 2004) which can serve as convergence rate
guarantees in stochastic convex optimization. For instance, a regret RT in OCO is equivalent to
a convergence rate RT /T in stochastic convex optimization. The following theorem establishes a
regret upper bound on CASPR algorithm.
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Figure 1: Error plots in a Transformer: minc∥cĤt −Ht∥F /∥Ht∥F (which gives the best approxima-
tion error up to a scale c at iteration-t). Here Lt =

∑
t GtG

⊤
t , Rt =

∑
t G

⊤
t Gt, where Gt ∈ Rm×n

denotes the downsampled gradient (m = n = 128) of the fully-connected layer, and Ht =
∑

t gtg
T
t ,

where gt = vec(Gt) ∈ Rmn. We note that diagonal-Adagrad, column-stat, and row-stat approxima-
tions have high relative error ∼ 1, while the combination of axes statistics (L,R) such as Shampoo,
CASPR, approximate full-matrix statistic Ht comparably well during training of a 6 layer Trans-
former. Here, each row corresponds to a layer/encoder block which constitutes a self-attention
sub-layer followed by a MLP sub-layer. We picked the Query, Key, Value transformations from
self-attention sub-layer, while the Dense transformation is picked from the MLP sub-layer. More
details of this experiment are in Appendix A.2.

Theorem 4.1 (Regret upper bound of CASPR (Algorithm 1)). Given that the loss functions ft :
Rm×n → R, ∀t ∈ [T ] are convex and G-Lipschitz in ℓ2-norm i.e., ∥∇ft(W )∥2 ≤ G, W ∈ Rm×n ,
Algorithm 1 incurs the following regret

T∑
t=1

ft(Wt)− ft(W
∗) ≤

√
2rD tr

((
(L̃

−1/4
T ⊗ In + Im ⊗ R̃

−1/4
T )/2

)−2
)

≤
√
2rD tr

(
L̃
1/4
T ⊗ R̃

1/4
T

)
= O(

√
T )

when η = D/
√
2r, where r = maxt rank(Gt), D = ∥Wt −W ∗∥F

The proof is given in Appendix A.3. The above theorem establishes a tighter regret bound for
CASPR (first inequality) than the regret upper bound of Shampoo (second inequality). Furthermore,
the upperbound O(

√
T ) conveys that Algorithm 1 is asymptotically optimal in the online convex

optimization setting. We also discuss existing reductions from regret bound guarantees to non-convex
optimization in Appendix A.6.

5 EXPERIMENTAL RESULTS

We conduct several experiments to evaluate the performance of CASPR on graph neural networks
(Battaglia et al., 2018)and Transformers (Vaswani et al., 2017). We compare CASPR with adaptive
regularization methods such as Adam (Kingma & Ba, 2014) and Shampoo (Gupta et al., 2018; Anil
et al., 2020). Specifically, we employ blocking Shampoo (Anil et al., 2020) and similarly in CASPR,
where large parameters are partitioned into blocks to precondition them separately. CASPR has a
computational and memory complexity of O(m3 + n3) and O(m2 + n2) respectively, which is the
same as Shampoo, while diagonal preconditioners have time and memory complexity of O(mn).

For Shampoo and CASPR, inverse root operations are performed once every 20 iterations, and the
inverted statistics L−1/4

t and R
−1/4
t are reused to amortize the cost of the inverse operations. The

inverse fourth root operations are computed via an iterative routine as in Anil et al. (2020) which uses
coupled Newton algorithm (Guo & Higham, 2006; Iannazzo, 2006). Given the wide applicability of
Shampoo in several benchmarks and existing comparisons with Fisher based methods in Anil et al.
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(2020), we make a more thorough comparison with Shampoo. However, the possibility of adapting
our method to approximate the Fisher matrix could be a fruitful avenue for future research.

To ensure fair comparison with the aforementioned methods, we incorporate exponential moving
averages into Line 4 of Algorithm 1 as follows: L̃ := β2L̃+ (1− β2)GtG

⊤
t , R̃ := β2R̃ + (1−

β2)G
⊤
t Gt . For more detailed insight into the Shampoo and CASPR settings used in our experiments,

see Appendix A.4. We conduct our experiments using the JAX (Bradbury et al., 2018) and Flax
(Heek et al., 2023) frameworks. The CASPR code is adapted from the Optax (Babuschkin et al.,
2020) implementation of Shampoo (Anil et al.), which is a JAX implementation.

5.1 GRAPH NEURAL NETWORK TRAINING ON OGBG-MOLPCBA

Our focus now shifts to evaluating the generalization performance of CASPR on a graph neural
network (GNN) (Battaglia et al., 2018). The GNN is trained on the OGBG-molpcba dataset (Hu et al.,
2020) using init2winit (Gilmer et al., 2023). The GNN model, implemented using the Jraph library
(Godwin* et al., 2020), constitutes 18 fully-connected layers. These layers collectively account for
3.5M parameters with the largest layer having dimensions of 1024× 256. The training data consists
of 350,343 graphs and the test set has 43,793 graphs. The nodes are represented as 9-dimensional
feature vector and edges are represented as a 3-dimensional feature vector and the task is to predict
128 binary labels each corresponding to a biological activity.

Our training process uses binary cross entropy loss for each class among the 128 with a batch size of
512. We utilize a specific learning rate schedule, involving a linear warmup followed by a cosine
decay. In this benchmark, we compare CASPR against Shampoo and AdamW. We use random search
with upto 300 hyperparameters, where we search over weight decay, learning rate and momentum
parameter for all the algorithms. We fix the dropout to 0.1. The test average precision are depicted in
Figure 3 which, demonstrates that CASPR shows relatively 1.4% better test average precision than
Shampoo and 7% better test average precision than AdamW. While CASPR and Shampoo are run for
60,000 iterations and take almost the same amount of time (Figure 3), AdamW is calibrated to run
for 72,000 iterations such that training finishes in the same amount of time as CASPR or Shampoo.
Our data-parallel training runs required 4 TPUv2s, however, the walltime in Figure 3 is computed on
TPU v4s to utilize more latest optimizations that TPU v2s don’t offer.

Figure 2: Transformer on Parts of Speech
dataset: best validation accuracies reached by
CASPR (69.76%), Shampoo (69.45%), AdamW
(68.84%). Shampoo and CASPR is run for 18,750
iterations, but AdamW is run for 66,180 iterations
so that it takes the same amount of time as CASPR
and Shampoo. Shampoo and CASPR take almost
the same amount of time, while CASPR gives a
much better accuracy.

Figure 3: GNN on OGBG-molpcba dataset:
CASPR demonstrates better test average preci-
sion (0.29) compared with Shampoo (0.286) and
AdamW (0.271). Here Shampoo and CASPR are
run for 60,000 steps, however, Adam is run for
72,000 steps, as a result, AdamW takes the same
amount of time as Shampoo and CASPR. Here,
Shampoo and CASPR take approximately the same
amount of time, while CASPR gives a better test
AP.

5.2 TRANSFORMER ON A UNIVERSAL DEPENDENCIES DATASET

To further verify our generalization performance by using a transformer encoder model (Vaswani
et al., 2017) with around 16.6M parameters on a parts-of-speech tagging dataset from universal
dependencies (Nivre et al., 2020) with about 202,989 tokens. The largest layer of our model is of size
256× 2048 and a depth of 6 transformer encoder blocks where each block comprises a self-attention
mechanism with 8 attention heads and an MLP with hidden dimension 2048. We train our model for
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18750 iterations with a batch size of 256, and 48 randomly selected hyperparameter configurations,
where we search over weight decay, learning rate and momentum hyperparameters, while fixing the
dropout to 0.3, and pick the run which gave best validation error. We use an inverse square root
learning rate schedule. In this benchmark, Shampoo reports a best validation accuracy percentage
of 69.45%, and AdamW gives a validation accuracy of 68.84%, whereas CASPR reports 69.76%,
giving a relative improvement of 1% in error percentage (100-Accuracy) over Shampoo and 3%
improvement over AdamW. Figure 2 shows validation performance with similar observations. We
run our AdamW baseline for 3.53 times more iterations so that it spends the same training time as
Shampoo and CASPR. However, Shampoo and CASPR take about the same training time while they
were run for the same number of iterations 18,750. We use one Nvidia A100 gpu for this benchmark.

5.3 AUTO-REGRESSIVE LANGUAGE MODELING

We train a decoder-only GLU based Transformer model (Shazeer, 2020; Vaswani et al., 2017) with
234 million parameters on C4 Dataset (Raffel et al., 2020) with varying batch size (number of
sequences per iteration) and sequence length 1024. In Figure 4 we showcase two experiments a) 14
million parameter model with model dimension - 256, hidden dimension - 682 and 8 transformer
layers trained with batch size of 8192 sequences with sequence length 1024 for 20,000 iterations
totalling ∼ 167 billion tokens, and b) 234 million parameter model with model dimension - 1024,
hidden dimension - 2730 and 16 transformer layers trained with batch size of 256 sequences with
sequences length 1024 for 160,000 iterations totalling ∼ 42 billion tokens. Training involved 16
TPU v3s for 234M model with 256 batch size and 64 TPU v3s for 14M model with 8192 batch size,
using paxml software (Google). In Figure 4, we compare Shampoo and CASPR’s performance where
CASPR demonstrates better loss compared to Shampoo. We used linear warmup with cosine decay to
zero learning rate for both the optimizers. Given the superior performance of Shampoo and CASPR
against Adam in OGBG-molpcba and universal dependencies benchmarks, and due to expensive
nature of the language modeling experiments, we omitted Adam from our comparison.

(a) (b)

Figure 4: GLU based decoder-only Transformer model trained on C4 dataset with varying batch size (number
of sequences), number of parameters and total number of steps a) 8192 batch size and 14M parameters for
20,000 steps b) 256 batch size and 234M parameters for 160,000 steps. In both the training runs we see CASPR
outperforming Shampoo in log perplexity.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the CASPR preconditioner for deep neural network optimization
that considers the inherent matrix structure of fully-connected layer parameters to construct dedicated
preconditioners for each dimension or axis of the parameter. CASPR uses a Kronecker-sum inspired
combination to approximate the full-matrix statistic more accurately than existing Kronecker-product
based method Shampoo. We establish tighter regret bound guarantees within the online convex
optimization framework compared to Shampoo, and demonstrate better training and generalization
performance in our deep learning experiments. As future work, CASPR can be adapted to approximate
the Fisher matrix in Natural Gradient Descent (Amari, 1998).
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A APPENDIX

A.1 PROOFS

A.1.1 DERIVATION OF COLUMN PRECONDITIONER

Lemma A.1. Consider the sparsity constraint SL⊗I = {L⊗ In : L ⪰ 0 ∈ Rm×m} in (3), then the
optimal solution L∗ for the subproblem (3) (rewritten below) is as follows:

L∗ = arg minL⪰0∥L⊗ In −
t∑

s=1

gsg
⊤
s ∥F =

1

n

t∑
s=1

GsG
⊤
s ,

Proof. Let P is a permutation matrix such that P vec(G) = vec(G⊤) for any G ∈ Rm×n, then:

(L⊗ In) vec(G) = vec(LG)

= vec(L(G⊤)⊤)

= vec((G⊤L)⊤)

= P⊤ vec((G⊤L)

= P⊤(In ⊗ L) vec(G⊤)

= P⊤(In ⊗ L)P vec(G)

Thus L⊗ In = P⊤(In ⊗ L)P is a block-diagonal matrix upto a permutation, substituting this in the
objective function in the lemma gives:

L∗ = arg minL⪰0∥L⊗ In −
t∑

s=1

gsg
⊤
s ∥F

= arg minL⪰0∥P (L⊗ In)P
⊤ −

t∑
s=1

Pgsg
⊤
s P

⊤∥F

= arg minL⪰0∥In ⊗ L−
t∑

s=1

ĝsĝ
⊤
s ∥F

= arg minL⪰0∥block-diag(L, . . . , L)−
t∑

s=1

ĝsĝ
⊤
s ∥F

=
1

n

t∑
s=1

(G⊤
s )

⊤G⊤
s (Using Lemma 3.1 and ĝs = vec(G⊤

s ))

=
1

n

t∑
s=1

GsG
⊤
s

A.1.2 PROPERTIES OF KRONECKER PRODUCT, KRONECKER SUM AND LOEWNER ORDER

Lemma A.2 (Eigendecomposition of Kronecker-Sum). Let A ∈ Rm×m, B ∈ Rn×n be two positive
definite matrices with eigenpairs {(λi, ui) : i ∈ [m]} and {(σj , vj) : j ∈ [n]}, where Λi,i = λi and
Σj,j = σj , then the eigenpairs of the matrix A⊗In+Im⊗B are {(λi+σj , ui⊗vj) : i ∈ [m], j ∈ [n]}
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Proof. While this is a standard property, we give its proof here for completeness. First, we show that
ui ⊗ vj is an eigenvector of A⊗ In + Im ⊗B:

(A⊗ In + Im ⊗B)ui ⊗ vj = (A⊗ In + Im ⊗B) vec(uiv
⊤
j )

= (vec(Auiv
⊤
j ) + vec(uiv

⊤
j B))

= vec(λiuiv
⊤
j + σjuiv

⊤
j ) (since Aui = λiui and Bvj = σjvj)

= (λi + σj) vec(uiv
⊤
j )

= (λi + σj)ui ⊗ vj

Thus all the mn eigenpairs of A⊗ In + Im ⊗B are {(λi + σj , ui ⊗ vj) : i ∈ [m], j ∈ [n]}

Lemma A.3 (Eigendecomposition of Kronecker-Product ). Let A ∈ Rm×m, B ∈ Rn×n be two
positive definite matrices with eigenpairs {(λi, ui) : i ∈ [m]} and {(σj , uj) : j ∈ [n]}, where Λi,i =
λi and Σj,j = σj , then the eigenpairs of the matrix A⊗B are {(λiσj , ui ⊗ vj) : i ∈ [m], j ∈ [n]}
Lemma A.4 (Geometric mean of commutable matrices (Gupta et al., 2018)). Let 0 ⪯ A1 ⪯ B1

and 0 ⪯ A2 ⪯ B2 and further assume that A1A2 = A2A1, B1B2 = B2B1, then A
1/2
1 A

1/2
2 ⪯

B
1/2
1 B

1/2
2 .

Lemma A.5 (standard properties of Loewner order). Let A1 ⪰ A2 ≻ 0 and B1 ⪰ B2 ≻ 0, then

(a) A1 ⊗B1 ⪰ A2 ⊗B2

(b) A−1
1 ⪯ A−1

2 and B−1
1 ⪯ B−1

2

(c) A
1/2
1 ⪰ A

1/2
2 and B

1/2
1 ⪰ B

1/2
2

A.1.3 CONNECTIONS MADE AMONG CASPR, SHAMPOO AND FULL-MATRIX ADAGRAD

Proof of Lemma 3.4. Using Lemma A.2 and A.3 for L−1/4
t ⊗ In + Im ⊗R

−1/4
t and L

1/2
t ⊗R1/2

respectively, followed by the fact that eigenvalues of Ap are p-th powers of eigenvalues of A for any
integer p.

Proof of Lemma 3.2. In this proof, we drop the subscripts for L̃t and R̃t in the lemma statement.
Let L̃ = UΛU⊤ and R̃ = V ΣV ⊤, given that Λ ≻ 0 and Σ ≻ 0 (since L̃ ⪰ ϵIn ≻ 0). Using
Lemma A.2 the eigenpairs of the general combination Xcaspr

t (p) in the lemma are {(((λ−1/4p
i +

σ
−1/4p
j )/2)2p, ui ⊗ vj) : i ∈ [m], j ∈ [n]}. Note that the eigenvectors are independent of p, so

eigenpairs of limp→∞ Xcaspr
t (p) are {(limp→∞((λ

−1/4p
i + σ

−1/4p
j )/2)2p, ui ⊗ vj) : i ∈ [m], j ∈

[n]}. We now analyze the individual limits for each eigenvalue as follows:

lim
p→∞

((λ
−1/4p
i + σ

−1/4p
j )/2)2p = lim

p→∞
e2p log((λ

−1/4p
i +σ

−1/4p
j )/2)

= lim
p→∞

elog((λ
−1/4p
i +σ

−1/4p
j )/2)/(1/2p)

= elimp→∞ log((λ
−1/4p
i +σ

−1/4p
j )/2)/(1/2p)

As numerator and denominator in the exponent of the last equality evaluate to zero in the limit,
L’Hôpital’s rule can be used, which gives the following:

lim
p→∞

log((λ
−1/4p
i + σ

−1/4p
j )/2)/(1/2p) = lim

p→∞

2(log(λ
−1/4
i )λ

−1/4p
i + log(σ

−1/4
j )σ

−1/4p
j )

λ
−1/4p
i + σ

−1/4p
j

= log(λ
−1/4
i ) + log(σ

−1/4
j ) (Since lim

p→∞
λ
−1/4p
i , σ

−1/4p
j = 1)

applying exponential function on both sides gives:

lim
p→∞

((λ
−1/4p
i + σ

−1/4p
j )/2)2p = (λiσj)

−1/4

By Lemma A.3, we know that the ((λiσj)
−1/4, ui ⊗ vj) : i ∈ [m], j ∈ [n] are eigenpairs of the

Shampoo preconditioner Xsh
t = L

−1/4
t ⊗R

−1/4
t .
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Proof of Lemma 3.3.
Showing ϵId +

∑t
s=1

1
r gsg

T
s ⪯ (L̃t)⊗ In, We first upperbound individual rank-1 terms ggT in

Loewner order by proceeding as in the Gupta et al. (2017)(proof of Lemma 9). Using the SVD of
g = vec(G) = vec(

∑r
i=1 σiuiv

T
i ) =

∑r
i=1 σi(ui ⊗ vi), where r denotes the rank of the matrix G

gives:

ggT = (

r∑
i=1

σi(ui ⊗ vi))(

r∑
i=1

σi(ui ⊗ vi))
T ⪯ r

r∑
i=1

σ2
i (uiu

T
i ⊗ viv

T
i ),

≺ r

r∑
i=1

σ2
i (uiu

T
i ⊗ In) ≺ r(GGT ⊗ In) (4)

≺ r(Im ⊗GTG) (5)

where, the first ⪯ follows from (
∑r

i=1 wi)(
∑r

i=1 wi)
T ⪯ r(

∑r
i=1 wiw

T
i ) and (4),(5) use vivTi ≺ In,

uiu
T
i ≺ Im respectively.

Summing (4) and (5) for gradients gt, across iterations t ∈ [T ] gives, ϵId +
∑t

s=1
1
r gsg

T
s ⪯

(
∑

t GtG
T
t + ϵIm)⊗ In = L̃t ⊗ In and ϵId +

∑t
s=1

1
r gsg

T
s ⪯ Im ⊗ (

∑
t G

T
t Gt + ϵIn) = Im ⊗ R̃t

respectively.

Showing (ϵId +
∑t

s=1
1
r gsg

T
s )

−1/2 ≻ (L̃
−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )2/4:

Expanding the RHS gives

(L̃
−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )2 = L̃

−1/2
t ⊗ In + Im ⊗ R̃

−1/2
t + 2 · L̃−1/4

t ⊗ R̃
−1/4
t (6)

Now we use L̃
−1/2
t ⊗ In ⪯

(
ϵId +

∑t
s=1

1
r gsg

T
s

)−1/2

, since X → X1/2 is a monotone operator

and A ≻ B =⇒ A−1 ≺ B−1.

(L̃
−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )2 ⪯ 2

(
ϵId +

t∑
s=1

1

r
gsg

T
s

)−1/2

+ 2 · L̃−1/4
t ⊗ R̃

−1/4
t

Note that A = L̃
−1/2
t ⊗ In and B = Im ⊗ R̃

−1/2
t commute. Using Lemma A.4 gives AB =

L̃
−1/4
t ⊗ R̃

−1/4
t ⪯

(
ϵId +

∑t
s=1

1
r gsg

T
s

)−1/2

. Using this in (6) gives the first inequality.

Showing (L̃
−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )2/4 ⪰ L̃

−1/4
t ⊗ R̃

−1/4
t :

Using (A−B)2 = (A+B)2 − 4AB ⪰ 0, since AB = BA, gives the second inequality.

A.2 SETUP OF APPROXIMATION EXPERIMENT

In Figure 1, we used the attention-based transformer (Vaswani et al., 2017) with 16.6M parameters
from Section 5.2, where the details of the transformer are mentioned. Due to memory constraint we
cached the gradients once ever 50 iterations when using Adam optimizer, and the cached gradients are
used to construct the plot for each approximation in Figure 1. The Query, Key, Value parameters were
of size 256× 8× 32 (since 8 attention heads), which are flattened to 256× 256 (putting together all
the attention heads’ parameters), Dense parameter from MLP sub-layer is of size 256× 2048. Since
constructing

∑
t gtg

⊤
t can require large amounts of memory, we downsampled Query, Value, Key

and Dense parameters to 128× 128 parameter sizes. While Figure 1 mentions errors of column stat,
row stat and diagonal-Adagrad to be nearer to 1, close comparison among them is given in Figure 5.

A.3 REGRET BOUND ANALYSIS OF CASPR

We restate the theorem upper bounding regret here:
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Figure 5: Plot of log(1−minc∥cĤt −Ht∥F /∥Ht∥F ) in contrast to Figure 1. Here we notice that
the column stat and row stat approximate the full-matrix statistic better than the diagonal-Adagrad
approximation.

Theorem A.6 (Regret upper bound of CASPR (Algorithm 1)). Given that the loss functions ft,
∀t ∈ [T ] are convex, Algorithm 1 gives the following regret

T∑
t=1

ft(Wt)− ft(W
∗) ≤

√
2rD tr

((
(L̃

−1/4
T ⊗ In + Im ⊗ R̃

−1/4
T )/2

)−2
)

≤
√
2rD tr

(
L̃
1/4
T ⊗ R̃

1/4
T

)
,

when η = D/
√
2r, where r = maxt rank(Gt), D = maxt∈{1,...,T}∥Wt −W ∗∥F

Proof for Theorem 4.1 (Theorem A.6). We first give a general upperbound to regret RT by
proceeding as in (Hazan et al., 2016).

Lemma A.7 (A general regret upperbound for adaptive regularization (Hazan et al., 2016)). Let the
regret RT =

∑T
t=1 f(Wt)− f(W ∗), then

RT ≤ 1

2η
∥w1 − w∗∥2

X−1
1

+
1

2η

T∑
t=2

(wt − w∗)⊤(X−1
t −X−1

t−1)(wt − w∗) +
η

2

T∑
t=1

g⊤t Xtgt

Proof. By the parameter update rule from Algorithm 1 we know that wt+1 = wt − ηXtgt, where
Xt = ((L

−1/4
t ⊗ In + Im ⊗R

−1/4
t )/2)2. Subtracting w∗ from both sides gives:

wt+1 − w∗ = wt − w∗ − ηXtgt

=⇒ ∥wt+1 − w∗∥2
X−1

t
= ∥(wt − w∗)− ηXtgt∥2X−1

t

= ∥(wt − w∗)∥2
X−1

t
+ η2g⊤t Xtgt − 2ηg⊤t (wt − w∗)

=⇒ g⊤t (wt − w∗) =
1

2η

(
∥(wt − w∗)∥2

X−1
t

− ∥wt+1 − w∗∥2
X−1

t

)
+

η

2
g⊤t Xtgt
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where, ∥u∥A =
√
u⊤Au is a generalized norm defined for positive definite A. Summing the above

equation over t ∈ {1, . . . , T} gives the following:

T∑
t=1

g⊤t (wt − w∗) =
1

2η
(

T∑
t=1

∥(wt − w∗)∥2
X−1

t
− ∥wt+1 − w∗∥2

X−1
t

) +
η

2

T∑
t=1

g⊤t Xtgt

=
1

2η
(∥(w1 − w∗)∥2

X−1
1

− ∥(w2 − w∗)∥2
X−1

1

+ ∥(w2 − w∗)∥2
X−1

2
− ∥(w3 − w∗)∥2

X−1
2

+ · · ·+ ∥(wT − w∗)∥2
X−1

T

− ∥(wT+1 − w∗)∥2
X−1

T

)

+
η

2

T∑
t=1

g⊤t Xtgt

=
1

2η
(∥(w1 − w∗)∥2

X−1
1

+ (w2 − w∗)⊤(X−1
2 −X−1

1 )(w2 − w∗)+

· · ·+ (wT − w∗)⊤(X−1
T −X−1

T−1)(wT − w∗)

− ∥(wT+1 − w∗)∥2
X−1

T

) +
η

2

T∑
t=1

g⊤t Xtgt (combining 2nd and 3rd terms, 4th and 5th, ...)

≤ 1

2η
(∥w1 − w∗∥2

X−1
1

+ (w2 − w∗)⊤(X−1
2 −X−1

1 )(w2 − w∗) + · · ·+ (wT − w∗)⊤(X−1
T −X−1

T−1)(wT − w∗))

+
η

2

T∑
t=1

g⊤t Xtgt

The last inequality is because −∥(wT+1 − w∗)∥2
X−1

T

≤ 0. Note that convexity of ft gives the
following:

ft(Wt)− f(W ∗) ≤ tr(G⊤
t (Wt −W ∗))

= g⊤t (wt − w∗),

where wt = vec(Wt) and gt = vec(Gt). Using the upperbound on
∑

t g
⊤
t (wt − w∗) derived earlier

and the above gives the following:

RT =

T∑
t=1

ft(Wt)− f(W ∗) ≤ 1

2η
(∥w1 − w∗∥2

X−1
1

+
1

2η

T∑
t=1

(wt − w∗)⊤(X−1
t −X−1

t−1)(wt − w∗)

+
η

2

T∑
t=1

g⊤t Xtgt

T1 = 1
2η∥w1 − w∗∥2

X−1
1

+ 1
2η

∑T
t=1(wt − w∗)⊤(X−1

t −X−1
t−1)(wt − w∗):

To upperbound this term we first establish a Loewner order on inverse of CASPR preconditioners for
consecutive iterations as follows:
Lemma A.8. Preconditioner inverses follow the Loewner order: 0 ⪯ X−1

1 ⪯ · · · ⪯ X−1
T

Proof. We can expand the CASPR preconditioner as follows:

Xt = ((L̃
−1/4
t ⊗ In + Im ⊗ R̃

−1/4
t )/2)2

= (L̃
−1/2
t ⊗ In + Im ⊗ R̃

−1/2
t + 2L̃

−1/4
t ⊗ R̃

−1/4
t )/4 (7)

Note that L̃t = L̃t−1 + GtG
⊤
t ⪰ L̃t−1 and R̃t = R̃t−1 + G⊤

t Gt ⪰ L̃t−1, then by Lemma A.5
(a,b,c), L̃−1/2

t ⊗ In ⪯ L̃
−1/2
t−1 ⊗ In and Im ⊗ R̃

−1/2
t ⪯ Im ⊗ R̃

−1/2
t−1 . Furthermore, since L̃−1/2

t ⊗ In
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and Im ⊗ R̃
−1/2
t are commutable, by Lemma A.4, we get L−1/4

t ⊗ R
−1/4
t ⪯ L

−1/4
t−1 ⊗ R

−1/4
t−1 .

Putting together the equations, L̃−1/2
t ⊗ In ⪯ L̃

−1/2
t−1 ⊗ In, Im ⊗ R̃

−1/2
t ⪯ Im ⊗ R̃

−1/2
t−1 and

L
−1/4
t ⊗R

−1/4
t ⪯ L

−1/4
t−1 ⊗R

−1/4
t−1 with (7) gives the following

Xt ⪯ Xt−1

=⇒ X−1
t ⪰ X−1

t−1 (By Lemma A.5(b))

The above lemma implies that difference between inverses of consecutive preconditioners X−1
t −

X−1
t−1 is positive semidefinite for all t ∈ {1, . . . , T}, thus the individual term

(wt − w∗)⊤(X−1
t −X−1

t−1)(wt − w∗) ≤ ∥(wt − w∗)∥22 tr (X−1
t −X−1

t−1).

Note that trace operator is a norm for positive semidefinite matrices. Summing over all t ∈ {1, . . . , T}
gives

T1 =
1

2η
∥w1 − w∗∥2

X−1
1

+
1

2η

T∑
t=1

(wt − w∗)⊤(X−1
t −X−1

t−1)(wt − w∗)

≤ 1

2η
(D2 tr(X−1

1 ) +D2 tr(X−1
2 −X−1

1 ) + · · ·+D2 tr(X−1
T −X−1

T−1)

=
1

2η
D2 tr(X−1

T )

=
1

2η
D2 tr(((L̃

−1/4
T ⊗ In + Im ⊗ R̃

−1/4
T )/2)−2),

where D = maxt∈{1,...,T}∥wt − w∗∥2 = maxt∈{1,...,T}∥Wt −W ∗∥F .

T2 = η
2

∑T
t=1 g

⊤
t Xtgt:

To upperbound this term, we use the Loewner order XT = ((L̃
−1/4
T ⊗ In + Im ⊗ R̃

−1/4
T )/2)2 ⪯

(ϵId +
∑

t
1
r gtg

T
t )

−1/2 which gives the following bound:

T2 ≤ η

2

T∑
t=1

g⊤t (ϵId +

t∑
s=1

1

r
gsg

T
s )

−1/2gt

≤
√
rη

2

T∑
t=1

g⊤t (ϵrId +

t∑
s=1

gsg
T
s )

−1/2gt (8)

Lemma A.9 (Gupta et al. (2017)). Let g1, g2, . . . , gT be a sequence of vectors and let Mt =∑t
s=1 gsg

⊤
s , for t ≤ T . Given a real-valued function ϕ over positive definite matrices, let

Ht = arg minH≻0

{
tr(MtH

−1) + ϕ(H)
}
,

for t ≤ T , then,
T∑

t=1

∥gt∥2H−1
t

≤
T∑

t=1

∥gt∥2H−1
T

+ ϕ(HT )− ϕ(H0)

We proceed as in Gupta et al. (2018) by setting ϕ(H) = tr(H) + rϵ tr(H−1) and solving the
following reparameterization of the subproblem in the above lemma in variable X = H−1:

Ht = (arg minX≻0

{
tr(MtX) + ϕ(X−1)

}
)−1.

Using that ∇X(tr(AX+X−1)) = A−X−2 = 0 =⇒ X = A−1/2 for all A ≻ 0 and the convexity
of the above problem, gives:

Ht =

(
rϵId +

t∑
s=1

gsg
⊤
s

)1/2

,
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By Lemma A.9 and (8):

T2 ≤
√
rη

2

T∑
t=1

g⊤t (ϵrId +

t∑
s=1

gsg
T
s )

−1/2gt

≤
√
rη

2

(
T∑

t=1

g⊤t (ϵrId +

T∑
s=1

gsg
T
s )

−1/2gt + tr((rϵId +

T∑
t=1

gtg
⊤
t )

1/2) + rϵ tr((rϵId +

T∑
s=1

gsg
⊤
s )

−1/2)

)

=

√
rη

2

(
tr

(
(rϵId +

T∑
t=1

gtg
⊤
t )(ϵrId +

T∑
s=1

gsg
T
s )

−1/2

)
+ tr((rϵId +

T∑
t=1

gtg
⊤
t )

1/2)

)
(adding terms 1&3)

=
√
rη tr((rϵId +

T∑
t=1

gtg
⊤
t )

1/2))

≤ rη tr(X−1
T ) (by Lemma 3.3)

Now setting η = D/
√
2r gives

RT ≤ T1 + T2 ≤
√
2rD tr(X−1

T ) =
√
2rD tr

((
(L̃

−1/4
T ⊗ In + Im ⊗ R̃

−1/4
T )/2

)−2
)
.

We also know by Lemma 3.3 and monotonicity of tr(.) operator, that

tr

((
(L̃

−1/4
T ⊗ In + Im ⊗ R̃

−1/4
T )/2

)−2
)

≤ tr
(
L̃
1/4
T ⊗ R̃

1/4
T

)
,

, thus proving second equality of Theorem 4.1. Given that ft are G-Lipschitz functions, GtG
⊤
t ⪯

G2Im and G⊤
t Gt ⪯ G2In, thus L̃T ⪯ TG2Im, R̃T ⪯ TG2In and tr(L̃

1/4
T ) ≤ m

√
GT 1/4,

tr(R̃
1/4
T ) ≤ n

√
GT 1/4. Substituting in the above gives tr(L̃1/4

T ⊗ R̃
1/4
T ) = O(

√
T ).

A.4 HYPERPARAMETER SEARCH SPACES AND OPTIMIZER CONFIGURATIONS

Here we mention the search spaces used for hyperparameter search for graph neural network bench-
mark 1 and transformer benchmark 2.

Hyperparameter Search Space

η [10−5, 0.1]
β1 [0.9, 0.999]
β2 0.999

weight decay [0.001, 1]

Table 1: Search space for graph neural net-
work benchmark in Section 5.1. ϵ is set to
10−6 for Shampoo and CASPR (which are
the default values)

Hyperparameter Search Space

η [10−5, 0.1]
β1 [0.9, 0.999]
β2 0.999

weight decay [10−4, 1]

Table 2: Search space for Transformer bench-
mark in Section 5.2, ϵ is set to 10−8 for
AdamW and 10−6 for Shampoo and CASPR
(which are the default values)

A.5 POTENTIAL NEGATIVE SOCIENTAL IMPACT

CASPR tries to reduce the number of iterations required to reach a desirable accuracy, and con-
sequently conserves GPU time. To the best of our knowledge, this poses no negative impact over
society.
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Hyperparameter Search Space

η {10−4, 10−3, 10−2, 10−1}
β2 {0.99, 0.999}

weight decay {0.0, 0.001, 0.1}
epsilon {10−10, 10−6}

Table 3: Search space for 14M parameter lan-
guage model in Section 5.3. β1 is set to 0.9.

Hyperparameter Search Space

η {10−4, 10−3, 10−2, 10−1}
β2 {0.99, 0.999}

Table 4: Search space of 234M parameter
model in 5.3. β1 is set to 0.9, weight decay is
set to 0.0.

A.6 REGRET BOUND MINIMIZATION FOR NON-CONVEX OPTIMIZATION

The problem of minimizing smooth non-convex functions f can be reduced to online convex opti-
mization (Agarwal et al., 2019) with sequence of objectives of the form

ft(w) = f(w) + c∥w − wt∥22
where, c > L and L- Lipschitz smoothness constant. This method introduced in Agarwal et al. (2019)
can be used to obtain convergence guarantees to reach stationary point of the non-convex objective f .

Recently, a more direct reduction to regret minimization of linear functions ft was established in
(Cutkosky et al., 2023), to obtain stationary point guarantees in non-smooth non-convex optimization.
Thus using regret upper bound guarantees, one can establish stationary point guarantees in the
non-convex regime, and hence we focus on the former in the paper.

A.7 COUPLED NEWTON ITERATION FOR INVERSE P-TH ROOT COMPUTATION

For computing inverses p-th roots we use Algorithm I in (Anil et al., 2020) in Appendix D, originally
formulated in Guo & Higham (2006); Iannazzo (2006), which we repeat in Algorithm 2. We limit the
number of iterations in while loop to be 100, as done in the JAX implementation of Shampoo. Coupled
Newton iteration for inverse 4-th roots has a time complexity of O(n3) and memory complexity of
O(n2). For our experiments, the inverse pth root operations were performed using single-precision
floating-point format (float32). We determined the damping term ϵI in Algorithm 1, by scaling
the largest eigenvalue of λmax(L) with ε as outlined in Algorithm 2. This scaling ensures that the
modified matrix L̃ = L+ ελmax(L)Im, maintains an ℓ2-condition number not exceeding 1/ε. We
set ε to 10−6 across all our experiments, which caps the condition number of L̃ at 106 which is less
than the inverse of machine epsilon for float32 . In the case of the 14M parameter language model
showcased in Figure 4a. In that instance, we experimented with ε values in the set {10−6, 10−8}, as
detailed in Table 3.

A.8 STANDARD DEVIATION IN EXPERIMENTS

We mention here the standard deviations averaged across 3 seeds for the Transformer on universal
dependencies and OGBG-molpcba benchmarks:

Optimizer Transformer on Universal Dependencies - Accuracy OGBG-molpcba - Test mAP
Shampoo 69.45± 0.26% 0.2843± 0.0028
CASPR 69.76± 0.14% 0.2873± 0.0017
AdamW 68.28± 0.39% 0.2701± 0.0011

Table 5: Standard deviations for Transformer on various benchmarks.

A.9 PRECONDITIONING MULTIDIMENSIONAL PARAMETERS

Our method (as well as Shampoo) can be applied to any parameter tensor. For example, in our
experiments with transformers we handle 3D parameters, such as attention layers by flattening the
parameter (in the form of higher order tensors) into a 2D tensor by merging the dimensions. The
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Algorithm 2 A coupled Newton iteration procedure for computing inverse p-th roots of a PSD matrix,
with warm start and singular value projection

1: procedure MaxSV(G)
2: Parameters: ε > 0, nstep

3: v ∈ Rn, where G ∈ Rn×n

4: i = 0, error = ∞, λ = 0
5: while i < nstep and error > ε do
6: v̂ = v/∥v∥
7: v = Gv̂
8: λold = λ; λ = v̂⊤v
9: error = |λ− λold|; i = i+ 1

10: return λ
11: end procedure
12:
13: procedure CoupledIteration(G, p ∈ N, X (optional))
14: Parameters: ε > 0
15: Outputs: G−1/p

16: λmax = MaxSV(G)
17: G = G+ ε · λmax · I
18: α = −1/p
19: if X is provided then
20: M = XpG
21: else
22: z = 1+p

2∥G∥F

23: X = 1
zα I

24: M = zG
25: while ∥M − I∥∞ > ε do
26: M1 = (1− α)I + αM
27: X = XM1

28: M = Mp
1M

29: return X
30: end procedure
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attention layers have 3-dimensional parameter (m,n, k) which we precondition by merging the
second and third dimensions to a 2-dimensional parameter (m,n ∗ k) and then applying CASPR. For
higher dimensional parameters, one can apply a similar transformation by merging more dimensions.
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